xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 2a80d5458a027f6d514987c09f0b51f45c3a5be4)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{0,}
150 };
151 
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153 
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159 	{0x3241103C, "Smart Array P212", &SA5_access},
160 	{0x3243103C, "Smart Array P410", &SA5_access},
161 	{0x3245103C, "Smart Array P410i", &SA5_access},
162 	{0x3247103C, "Smart Array P411", &SA5_access},
163 	{0x3249103C, "Smart Array P812", &SA5_access},
164 	{0x324A103C, "Smart Array P712m", &SA5_access},
165 	{0x324B103C, "Smart Array P711m", &SA5_access},
166 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 	{0x3350103C, "Smart Array P222", &SA5_access},
168 	{0x3351103C, "Smart Array P420", &SA5_access},
169 	{0x3352103C, "Smart Array P421", &SA5_access},
170 	{0x3353103C, "Smart Array P822", &SA5_access},
171 	{0x3354103C, "Smart Array P420i", &SA5_access},
172 	{0x3355103C, "Smart Array P220i", &SA5_access},
173 	{0x3356103C, "Smart Array P721m", &SA5_access},
174 	{0x1921103C, "Smart Array P830i", &SA5_access},
175 	{0x1922103C, "Smart Array P430", &SA5_access},
176 	{0x1923103C, "Smart Array P431", &SA5_access},
177 	{0x1924103C, "Smart Array P830", &SA5_access},
178 	{0x1926103C, "Smart Array P731m", &SA5_access},
179 	{0x1928103C, "Smart Array P230i", &SA5_access},
180 	{0x1929103C, "Smart Array P530", &SA5_access},
181 	{0x21BD103C, "Smart Array P244br", &SA5_access},
182 	{0x21BE103C, "Smart Array P741m", &SA5_access},
183 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
185 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
186 	{0x21C2103C, "Smart Array P440", &SA5_access},
187 	{0x21C3103C, "Smart Array P441", &SA5_access},
188 	{0x21C4103C, "Smart Array", &SA5_access},
189 	{0x21C5103C, "Smart Array P841", &SA5_access},
190 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
191 	{0x21C7103C, "Smart HBA H240", &SA5_access},
192 	{0x21C8103C, "Smart HBA H241", &SA5_access},
193 	{0x21C9103C, "Smart Array", &SA5_access},
194 	{0x21CA103C, "Smart Array P246br", &SA5_access},
195 	{0x21CB103C, "Smart Array P840", &SA5_access},
196 	{0x21CC103C, "Smart Array", &SA5_access},
197 	{0x21CD103C, "Smart Array", &SA5_access},
198 	{0x21CE103C, "Smart HBA", &SA5_access},
199 	{0x05809005, "SmartHBA-SA", &SA5_access},
200 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212 
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 			struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 		struct sas_rphy *rphy);
222 
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228 
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232 
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 	void __user *arg);
236 #endif
237 
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 					    struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 	int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 	unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255 
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261 
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 	struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 	int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 			       u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 				    unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int wait_for_device_to_become_ready(struct ctlr_info *h,
280 					   unsigned char lunaddr[],
281 					   int reply_queue);
282 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
283 				     int wait_for_ready);
284 static inline void finish_cmd(struct CommandList *c);
285 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
286 #define BOARD_NOT_READY 0
287 #define BOARD_READY 1
288 static void hpsa_drain_accel_commands(struct ctlr_info *h);
289 static void hpsa_flush_cache(struct ctlr_info *h);
290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
291 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
292 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
293 static void hpsa_command_resubmit_worker(struct work_struct *work);
294 static u32 lockup_detected(struct ctlr_info *h);
295 static int detect_controller_lockup(struct ctlr_info *h);
296 static void hpsa_disable_rld_caching(struct ctlr_info *h);
297 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
298 	struct ReportExtendedLUNdata *buf, int bufsize);
299 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
300 	unsigned char scsi3addr[], u8 page);
301 static int hpsa_luns_changed(struct ctlr_info *h);
302 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
303 			       struct hpsa_scsi_dev_t *dev,
304 			       unsigned char *scsi3addr);
305 
306 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
307 {
308 	unsigned long *priv = shost_priv(sdev->host);
309 	return (struct ctlr_info *) *priv;
310 }
311 
312 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
313 {
314 	unsigned long *priv = shost_priv(sh);
315 	return (struct ctlr_info *) *priv;
316 }
317 
318 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
319 {
320 	return c->scsi_cmd == SCSI_CMD_IDLE;
321 }
322 
323 static inline bool hpsa_is_pending_event(struct CommandList *c)
324 {
325 	return c->abort_pending || c->reset_pending;
326 }
327 
328 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
329 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
330 			u8 *sense_key, u8 *asc, u8 *ascq)
331 {
332 	struct scsi_sense_hdr sshdr;
333 	bool rc;
334 
335 	*sense_key = -1;
336 	*asc = -1;
337 	*ascq = -1;
338 
339 	if (sense_data_len < 1)
340 		return;
341 
342 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
343 	if (rc) {
344 		*sense_key = sshdr.sense_key;
345 		*asc = sshdr.asc;
346 		*ascq = sshdr.ascq;
347 	}
348 }
349 
350 static int check_for_unit_attention(struct ctlr_info *h,
351 	struct CommandList *c)
352 {
353 	u8 sense_key, asc, ascq;
354 	int sense_len;
355 
356 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
357 		sense_len = sizeof(c->err_info->SenseInfo);
358 	else
359 		sense_len = c->err_info->SenseLen;
360 
361 	decode_sense_data(c->err_info->SenseInfo, sense_len,
362 				&sense_key, &asc, &ascq);
363 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
364 		return 0;
365 
366 	switch (asc) {
367 	case STATE_CHANGED:
368 		dev_warn(&h->pdev->dev,
369 			"%s: a state change detected, command retried\n",
370 			h->devname);
371 		break;
372 	case LUN_FAILED:
373 		dev_warn(&h->pdev->dev,
374 			"%s: LUN failure detected\n", h->devname);
375 		break;
376 	case REPORT_LUNS_CHANGED:
377 		dev_warn(&h->pdev->dev,
378 			"%s: report LUN data changed\n", h->devname);
379 	/*
380 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
381 	 * target (array) devices.
382 	 */
383 		break;
384 	case POWER_OR_RESET:
385 		dev_warn(&h->pdev->dev,
386 			"%s: a power on or device reset detected\n",
387 			h->devname);
388 		break;
389 	case UNIT_ATTENTION_CLEARED:
390 		dev_warn(&h->pdev->dev,
391 			"%s: unit attention cleared by another initiator\n",
392 			h->devname);
393 		break;
394 	default:
395 		dev_warn(&h->pdev->dev,
396 			"%s: unknown unit attention detected\n",
397 			h->devname);
398 		break;
399 	}
400 	return 1;
401 }
402 
403 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
404 {
405 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
406 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
407 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
408 		return 0;
409 	dev_warn(&h->pdev->dev, HPSA "device busy");
410 	return 1;
411 }
412 
413 static u32 lockup_detected(struct ctlr_info *h);
414 static ssize_t host_show_lockup_detected(struct device *dev,
415 		struct device_attribute *attr, char *buf)
416 {
417 	int ld;
418 	struct ctlr_info *h;
419 	struct Scsi_Host *shost = class_to_shost(dev);
420 
421 	h = shost_to_hba(shost);
422 	ld = lockup_detected(h);
423 
424 	return sprintf(buf, "ld=%d\n", ld);
425 }
426 
427 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
428 					 struct device_attribute *attr,
429 					 const char *buf, size_t count)
430 {
431 	int status, len;
432 	struct ctlr_info *h;
433 	struct Scsi_Host *shost = class_to_shost(dev);
434 	char tmpbuf[10];
435 
436 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
437 		return -EACCES;
438 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
439 	strncpy(tmpbuf, buf, len);
440 	tmpbuf[len] = '\0';
441 	if (sscanf(tmpbuf, "%d", &status) != 1)
442 		return -EINVAL;
443 	h = shost_to_hba(shost);
444 	h->acciopath_status = !!status;
445 	dev_warn(&h->pdev->dev,
446 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
447 		h->acciopath_status ? "enabled" : "disabled");
448 	return count;
449 }
450 
451 static ssize_t host_store_raid_offload_debug(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int debug_level, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
466 		return -EINVAL;
467 	if (debug_level < 0)
468 		debug_level = 0;
469 	h = shost_to_hba(shost);
470 	h->raid_offload_debug = debug_level;
471 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
472 		h->raid_offload_debug);
473 	return count;
474 }
475 
476 static ssize_t host_store_rescan(struct device *dev,
477 				 struct device_attribute *attr,
478 				 const char *buf, size_t count)
479 {
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	h = shost_to_hba(shost);
483 	hpsa_scan_start(h->scsi_host);
484 	return count;
485 }
486 
487 static ssize_t host_show_firmware_revision(struct device *dev,
488 	     struct device_attribute *attr, char *buf)
489 {
490 	struct ctlr_info *h;
491 	struct Scsi_Host *shost = class_to_shost(dev);
492 	unsigned char *fwrev;
493 
494 	h = shost_to_hba(shost);
495 	if (!h->hba_inquiry_data)
496 		return 0;
497 	fwrev = &h->hba_inquiry_data[32];
498 	return snprintf(buf, 20, "%c%c%c%c\n",
499 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
500 }
501 
502 static ssize_t host_show_commands_outstanding(struct device *dev,
503 	     struct device_attribute *attr, char *buf)
504 {
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	struct ctlr_info *h = shost_to_hba(shost);
507 
508 	return snprintf(buf, 20, "%d\n",
509 			atomic_read(&h->commands_outstanding));
510 }
511 
512 static ssize_t host_show_transport_mode(struct device *dev,
513 	struct device_attribute *attr, char *buf)
514 {
515 	struct ctlr_info *h;
516 	struct Scsi_Host *shost = class_to_shost(dev);
517 
518 	h = shost_to_hba(shost);
519 	return snprintf(buf, 20, "%s\n",
520 		h->transMethod & CFGTBL_Trans_Performant ?
521 			"performant" : "simple");
522 }
523 
524 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
525 	struct device_attribute *attr, char *buf)
526 {
527 	struct ctlr_info *h;
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 
530 	h = shost_to_hba(shost);
531 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
532 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
533 }
534 
535 /* List of controllers which cannot be hard reset on kexec with reset_devices */
536 static u32 unresettable_controller[] = {
537 	0x324a103C, /* Smart Array P712m */
538 	0x324b103C, /* Smart Array P711m */
539 	0x3223103C, /* Smart Array P800 */
540 	0x3234103C, /* Smart Array P400 */
541 	0x3235103C, /* Smart Array P400i */
542 	0x3211103C, /* Smart Array E200i */
543 	0x3212103C, /* Smart Array E200 */
544 	0x3213103C, /* Smart Array E200i */
545 	0x3214103C, /* Smart Array E200i */
546 	0x3215103C, /* Smart Array E200i */
547 	0x3237103C, /* Smart Array E500 */
548 	0x323D103C, /* Smart Array P700m */
549 	0x40800E11, /* Smart Array 5i */
550 	0x409C0E11, /* Smart Array 6400 */
551 	0x409D0E11, /* Smart Array 6400 EM */
552 	0x40700E11, /* Smart Array 5300 */
553 	0x40820E11, /* Smart Array 532 */
554 	0x40830E11, /* Smart Array 5312 */
555 	0x409A0E11, /* Smart Array 641 */
556 	0x409B0E11, /* Smart Array 642 */
557 	0x40910E11, /* Smart Array 6i */
558 };
559 
560 /* List of controllers which cannot even be soft reset */
561 static u32 soft_unresettable_controller[] = {
562 	0x40800E11, /* Smart Array 5i */
563 	0x40700E11, /* Smart Array 5300 */
564 	0x40820E11, /* Smart Array 532 */
565 	0x40830E11, /* Smart Array 5312 */
566 	0x409A0E11, /* Smart Array 641 */
567 	0x409B0E11, /* Smart Array 642 */
568 	0x40910E11, /* Smart Array 6i */
569 	/* Exclude 640x boards.  These are two pci devices in one slot
570 	 * which share a battery backed cache module.  One controls the
571 	 * cache, the other accesses the cache through the one that controls
572 	 * it.  If we reset the one controlling the cache, the other will
573 	 * likely not be happy.  Just forbid resetting this conjoined mess.
574 	 * The 640x isn't really supported by hpsa anyway.
575 	 */
576 	0x409C0E11, /* Smart Array 6400 */
577 	0x409D0E11, /* Smart Array 6400 EM */
578 };
579 
580 static u32 needs_abort_tags_swizzled[] = {
581 	0x323D103C, /* Smart Array P700m */
582 	0x324a103C, /* Smart Array P712m */
583 	0x324b103C, /* SmartArray P711m */
584 };
585 
586 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
587 {
588 	int i;
589 
590 	for (i = 0; i < nelems; i++)
591 		if (a[i] == board_id)
592 			return 1;
593 	return 0;
594 }
595 
596 static int ctlr_is_hard_resettable(u32 board_id)
597 {
598 	return !board_id_in_array(unresettable_controller,
599 			ARRAY_SIZE(unresettable_controller), board_id);
600 }
601 
602 static int ctlr_is_soft_resettable(u32 board_id)
603 {
604 	return !board_id_in_array(soft_unresettable_controller,
605 			ARRAY_SIZE(soft_unresettable_controller), board_id);
606 }
607 
608 static int ctlr_is_resettable(u32 board_id)
609 {
610 	return ctlr_is_hard_resettable(board_id) ||
611 		ctlr_is_soft_resettable(board_id);
612 }
613 
614 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
615 {
616 	return board_id_in_array(needs_abort_tags_swizzled,
617 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
618 }
619 
620 static ssize_t host_show_resettable(struct device *dev,
621 	struct device_attribute *attr, char *buf)
622 {
623 	struct ctlr_info *h;
624 	struct Scsi_Host *shost = class_to_shost(dev);
625 
626 	h = shost_to_hba(shost);
627 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629 
630 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
631 {
632 	return (scsi3addr[3] & 0xC0) == 0x40;
633 }
634 
635 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
636 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
637 };
638 #define HPSA_RAID_0	0
639 #define HPSA_RAID_4	1
640 #define HPSA_RAID_1	2	/* also used for RAID 10 */
641 #define HPSA_RAID_5	3	/* also used for RAID 50 */
642 #define HPSA_RAID_51	4
643 #define HPSA_RAID_6	5	/* also used for RAID 60 */
644 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
645 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
646 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
647 
648 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
649 {
650 	return !device->physical_device;
651 }
652 
653 static ssize_t raid_level_show(struct device *dev,
654 	     struct device_attribute *attr, char *buf)
655 {
656 	ssize_t l = 0;
657 	unsigned char rlevel;
658 	struct ctlr_info *h;
659 	struct scsi_device *sdev;
660 	struct hpsa_scsi_dev_t *hdev;
661 	unsigned long flags;
662 
663 	sdev = to_scsi_device(dev);
664 	h = sdev_to_hba(sdev);
665 	spin_lock_irqsave(&h->lock, flags);
666 	hdev = sdev->hostdata;
667 	if (!hdev) {
668 		spin_unlock_irqrestore(&h->lock, flags);
669 		return -ENODEV;
670 	}
671 
672 	/* Is this even a logical drive? */
673 	if (!is_logical_device(hdev)) {
674 		spin_unlock_irqrestore(&h->lock, flags);
675 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
676 		return l;
677 	}
678 
679 	rlevel = hdev->raid_level;
680 	spin_unlock_irqrestore(&h->lock, flags);
681 	if (rlevel > RAID_UNKNOWN)
682 		rlevel = RAID_UNKNOWN;
683 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
684 	return l;
685 }
686 
687 static ssize_t lunid_show(struct device *dev,
688 	     struct device_attribute *attr, char *buf)
689 {
690 	struct ctlr_info *h;
691 	struct scsi_device *sdev;
692 	struct hpsa_scsi_dev_t *hdev;
693 	unsigned long flags;
694 	unsigned char lunid[8];
695 
696 	sdev = to_scsi_device(dev);
697 	h = sdev_to_hba(sdev);
698 	spin_lock_irqsave(&h->lock, flags);
699 	hdev = sdev->hostdata;
700 	if (!hdev) {
701 		spin_unlock_irqrestore(&h->lock, flags);
702 		return -ENODEV;
703 	}
704 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
705 	spin_unlock_irqrestore(&h->lock, flags);
706 	return snprintf(buf, 20, "0x%8phN\n", lunid);
707 }
708 
709 static ssize_t unique_id_show(struct device *dev,
710 	     struct device_attribute *attr, char *buf)
711 {
712 	struct ctlr_info *h;
713 	struct scsi_device *sdev;
714 	struct hpsa_scsi_dev_t *hdev;
715 	unsigned long flags;
716 	unsigned char sn[16];
717 
718 	sdev = to_scsi_device(dev);
719 	h = sdev_to_hba(sdev);
720 	spin_lock_irqsave(&h->lock, flags);
721 	hdev = sdev->hostdata;
722 	if (!hdev) {
723 		spin_unlock_irqrestore(&h->lock, flags);
724 		return -ENODEV;
725 	}
726 	memcpy(sn, hdev->device_id, sizeof(sn));
727 	spin_unlock_irqrestore(&h->lock, flags);
728 	return snprintf(buf, 16 * 2 + 2,
729 			"%02X%02X%02X%02X%02X%02X%02X%02X"
730 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
731 			sn[0], sn[1], sn[2], sn[3],
732 			sn[4], sn[5], sn[6], sn[7],
733 			sn[8], sn[9], sn[10], sn[11],
734 			sn[12], sn[13], sn[14], sn[15]);
735 }
736 
737 static ssize_t sas_address_show(struct device *dev,
738 	      struct device_attribute *attr, char *buf)
739 {
740 	struct ctlr_info *h;
741 	struct scsi_device *sdev;
742 	struct hpsa_scsi_dev_t *hdev;
743 	unsigned long flags;
744 	u64 sas_address;
745 
746 	sdev = to_scsi_device(dev);
747 	h = sdev_to_hba(sdev);
748 	spin_lock_irqsave(&h->lock, flags);
749 	hdev = sdev->hostdata;
750 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
751 		spin_unlock_irqrestore(&h->lock, flags);
752 		return -ENODEV;
753 	}
754 	sas_address = hdev->sas_address;
755 	spin_unlock_irqrestore(&h->lock, flags);
756 
757 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
758 }
759 
760 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
761 	     struct device_attribute *attr, char *buf)
762 {
763 	struct ctlr_info *h;
764 	struct scsi_device *sdev;
765 	struct hpsa_scsi_dev_t *hdev;
766 	unsigned long flags;
767 	int offload_enabled;
768 
769 	sdev = to_scsi_device(dev);
770 	h = sdev_to_hba(sdev);
771 	spin_lock_irqsave(&h->lock, flags);
772 	hdev = sdev->hostdata;
773 	if (!hdev) {
774 		spin_unlock_irqrestore(&h->lock, flags);
775 		return -ENODEV;
776 	}
777 	offload_enabled = hdev->offload_enabled;
778 	spin_unlock_irqrestore(&h->lock, flags);
779 	return snprintf(buf, 20, "%d\n", offload_enabled);
780 }
781 
782 #define MAX_PATHS 8
783 static ssize_t path_info_show(struct device *dev,
784 	     struct device_attribute *attr, char *buf)
785 {
786 	struct ctlr_info *h;
787 	struct scsi_device *sdev;
788 	struct hpsa_scsi_dev_t *hdev;
789 	unsigned long flags;
790 	int i;
791 	int output_len = 0;
792 	u8 box;
793 	u8 bay;
794 	u8 path_map_index = 0;
795 	char *active;
796 	unsigned char phys_connector[2];
797 
798 	sdev = to_scsi_device(dev);
799 	h = sdev_to_hba(sdev);
800 	spin_lock_irqsave(&h->devlock, flags);
801 	hdev = sdev->hostdata;
802 	if (!hdev) {
803 		spin_unlock_irqrestore(&h->devlock, flags);
804 		return -ENODEV;
805 	}
806 
807 	bay = hdev->bay;
808 	for (i = 0; i < MAX_PATHS; i++) {
809 		path_map_index = 1<<i;
810 		if (i == hdev->active_path_index)
811 			active = "Active";
812 		else if (hdev->path_map & path_map_index)
813 			active = "Inactive";
814 		else
815 			continue;
816 
817 		output_len += scnprintf(buf + output_len,
818 				PAGE_SIZE - output_len,
819 				"[%d:%d:%d:%d] %20.20s ",
820 				h->scsi_host->host_no,
821 				hdev->bus, hdev->target, hdev->lun,
822 				scsi_device_type(hdev->devtype));
823 
824 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
825 			output_len += scnprintf(buf + output_len,
826 						PAGE_SIZE - output_len,
827 						"%s\n", active);
828 			continue;
829 		}
830 
831 		box = hdev->box[i];
832 		memcpy(&phys_connector, &hdev->phys_connector[i],
833 			sizeof(phys_connector));
834 		if (phys_connector[0] < '0')
835 			phys_connector[0] = '0';
836 		if (phys_connector[1] < '0')
837 			phys_connector[1] = '0';
838 		output_len += scnprintf(buf + output_len,
839 				PAGE_SIZE - output_len,
840 				"PORT: %.2s ",
841 				phys_connector);
842 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
843 			hdev->expose_device) {
844 			if (box == 0 || box == 0xFF) {
845 				output_len += scnprintf(buf + output_len,
846 					PAGE_SIZE - output_len,
847 					"BAY: %hhu %s\n",
848 					bay, active);
849 			} else {
850 				output_len += scnprintf(buf + output_len,
851 					PAGE_SIZE - output_len,
852 					"BOX: %hhu BAY: %hhu %s\n",
853 					box, bay, active);
854 			}
855 		} else if (box != 0 && box != 0xFF) {
856 			output_len += scnprintf(buf + output_len,
857 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
858 				box, active);
859 		} else
860 			output_len += scnprintf(buf + output_len,
861 				PAGE_SIZE - output_len, "%s\n", active);
862 	}
863 
864 	spin_unlock_irqrestore(&h->devlock, flags);
865 	return output_len;
866 }
867 
868 static ssize_t host_show_ctlr_num(struct device *dev,
869 	struct device_attribute *attr, char *buf)
870 {
871 	struct ctlr_info *h;
872 	struct Scsi_Host *shost = class_to_shost(dev);
873 
874 	h = shost_to_hba(shost);
875 	return snprintf(buf, 20, "%d\n", h->ctlr);
876 }
877 
878 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
879 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
880 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
881 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
882 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
883 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
884 			host_show_hp_ssd_smart_path_enabled, NULL);
885 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
886 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
887 		host_show_hp_ssd_smart_path_status,
888 		host_store_hp_ssd_smart_path_status);
889 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
890 			host_store_raid_offload_debug);
891 static DEVICE_ATTR(firmware_revision, S_IRUGO,
892 	host_show_firmware_revision, NULL);
893 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
894 	host_show_commands_outstanding, NULL);
895 static DEVICE_ATTR(transport_mode, S_IRUGO,
896 	host_show_transport_mode, NULL);
897 static DEVICE_ATTR(resettable, S_IRUGO,
898 	host_show_resettable, NULL);
899 static DEVICE_ATTR(lockup_detected, S_IRUGO,
900 	host_show_lockup_detected, NULL);
901 static DEVICE_ATTR(ctlr_num, S_IRUGO,
902 	host_show_ctlr_num, NULL);
903 
904 static struct device_attribute *hpsa_sdev_attrs[] = {
905 	&dev_attr_raid_level,
906 	&dev_attr_lunid,
907 	&dev_attr_unique_id,
908 	&dev_attr_hp_ssd_smart_path_enabled,
909 	&dev_attr_path_info,
910 	&dev_attr_sas_address,
911 	NULL,
912 };
913 
914 static struct device_attribute *hpsa_shost_attrs[] = {
915 	&dev_attr_rescan,
916 	&dev_attr_firmware_revision,
917 	&dev_attr_commands_outstanding,
918 	&dev_attr_transport_mode,
919 	&dev_attr_resettable,
920 	&dev_attr_hp_ssd_smart_path_status,
921 	&dev_attr_raid_offload_debug,
922 	&dev_attr_lockup_detected,
923 	&dev_attr_ctlr_num,
924 	NULL,
925 };
926 
927 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
928 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
929 
930 static struct scsi_host_template hpsa_driver_template = {
931 	.module			= THIS_MODULE,
932 	.name			= HPSA,
933 	.proc_name		= HPSA,
934 	.queuecommand		= hpsa_scsi_queue_command,
935 	.scan_start		= hpsa_scan_start,
936 	.scan_finished		= hpsa_scan_finished,
937 	.change_queue_depth	= hpsa_change_queue_depth,
938 	.this_id		= -1,
939 	.use_clustering		= ENABLE_CLUSTERING,
940 	.eh_abort_handler	= hpsa_eh_abort_handler,
941 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
942 	.ioctl			= hpsa_ioctl,
943 	.slave_alloc		= hpsa_slave_alloc,
944 	.slave_configure	= hpsa_slave_configure,
945 	.slave_destroy		= hpsa_slave_destroy,
946 #ifdef CONFIG_COMPAT
947 	.compat_ioctl		= hpsa_compat_ioctl,
948 #endif
949 	.sdev_attrs = hpsa_sdev_attrs,
950 	.shost_attrs = hpsa_shost_attrs,
951 	.max_sectors = 8192,
952 	.no_write_same = 1,
953 };
954 
955 static inline u32 next_command(struct ctlr_info *h, u8 q)
956 {
957 	u32 a;
958 	struct reply_queue_buffer *rq = &h->reply_queue[q];
959 
960 	if (h->transMethod & CFGTBL_Trans_io_accel1)
961 		return h->access.command_completed(h, q);
962 
963 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
964 		return h->access.command_completed(h, q);
965 
966 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
967 		a = rq->head[rq->current_entry];
968 		rq->current_entry++;
969 		atomic_dec(&h->commands_outstanding);
970 	} else {
971 		a = FIFO_EMPTY;
972 	}
973 	/* Check for wraparound */
974 	if (rq->current_entry == h->max_commands) {
975 		rq->current_entry = 0;
976 		rq->wraparound ^= 1;
977 	}
978 	return a;
979 }
980 
981 /*
982  * There are some special bits in the bus address of the
983  * command that we have to set for the controller to know
984  * how to process the command:
985  *
986  * Normal performant mode:
987  * bit 0: 1 means performant mode, 0 means simple mode.
988  * bits 1-3 = block fetch table entry
989  * bits 4-6 = command type (== 0)
990  *
991  * ioaccel1 mode:
992  * bit 0 = "performant mode" bit.
993  * bits 1-3 = block fetch table entry
994  * bits 4-6 = command type (== 110)
995  * (command type is needed because ioaccel1 mode
996  * commands are submitted through the same register as normal
997  * mode commands, so this is how the controller knows whether
998  * the command is normal mode or ioaccel1 mode.)
999  *
1000  * ioaccel2 mode:
1001  * bit 0 = "performant mode" bit.
1002  * bits 1-4 = block fetch table entry (note extra bit)
1003  * bits 4-6 = not needed, because ioaccel2 mode has
1004  * a separate special register for submitting commands.
1005  */
1006 
1007 /*
1008  * set_performant_mode: Modify the tag for cciss performant
1009  * set bit 0 for pull model, bits 3-1 for block fetch
1010  * register number
1011  */
1012 #define DEFAULT_REPLY_QUEUE (-1)
1013 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1014 					int reply_queue)
1015 {
1016 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1017 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1018 		if (unlikely(!h->msix_vectors))
1019 			return;
1020 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021 			c->Header.ReplyQueue =
1022 				raw_smp_processor_id() % h->nreply_queues;
1023 		else
1024 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1025 	}
1026 }
1027 
1028 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1029 						struct CommandList *c,
1030 						int reply_queue)
1031 {
1032 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1033 
1034 	/*
1035 	 * Tell the controller to post the reply to the queue for this
1036 	 * processor.  This seems to give the best I/O throughput.
1037 	 */
1038 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1040 	else
1041 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1042 	/*
1043 	 * Set the bits in the address sent down to include:
1044 	 *  - performant mode bit (bit 0)
1045 	 *  - pull count (bits 1-3)
1046 	 *  - command type (bits 4-6)
1047 	 */
1048 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1049 					IOACCEL1_BUSADDR_CMDTYPE;
1050 }
1051 
1052 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1053 						struct CommandList *c,
1054 						int reply_queue)
1055 {
1056 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1057 		&h->ioaccel2_cmd_pool[c->cmdindex];
1058 
1059 	/* Tell the controller to post the reply to the queue for this
1060 	 * processor.  This seems to give the best I/O throughput.
1061 	 */
1062 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1063 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1064 	else
1065 		cp->reply_queue = reply_queue % h->nreply_queues;
1066 	/* Set the bits in the address sent down to include:
1067 	 *  - performant mode bit not used in ioaccel mode 2
1068 	 *  - pull count (bits 0-3)
1069 	 *  - command type isn't needed for ioaccel2
1070 	 */
1071 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1072 }
1073 
1074 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1075 						struct CommandList *c,
1076 						int reply_queue)
1077 {
1078 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1079 
1080 	/*
1081 	 * Tell the controller to post the reply to the queue for this
1082 	 * processor.  This seems to give the best I/O throughput.
1083 	 */
1084 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1085 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1086 	else
1087 		cp->reply_queue = reply_queue % h->nreply_queues;
1088 	/*
1089 	 * Set the bits in the address sent down to include:
1090 	 *  - performant mode bit not used in ioaccel mode 2
1091 	 *  - pull count (bits 0-3)
1092 	 *  - command type isn't needed for ioaccel2
1093 	 */
1094 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1095 }
1096 
1097 static int is_firmware_flash_cmd(u8 *cdb)
1098 {
1099 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1100 }
1101 
1102 /*
1103  * During firmware flash, the heartbeat register may not update as frequently
1104  * as it should.  So we dial down lockup detection during firmware flash. and
1105  * dial it back up when firmware flash completes.
1106  */
1107 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1108 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1109 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1110 		struct CommandList *c)
1111 {
1112 	if (!is_firmware_flash_cmd(c->Request.CDB))
1113 		return;
1114 	atomic_inc(&h->firmware_flash_in_progress);
1115 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1116 }
1117 
1118 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1119 		struct CommandList *c)
1120 {
1121 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1122 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1123 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1124 }
1125 
1126 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1127 	struct CommandList *c, int reply_queue)
1128 {
1129 	dial_down_lockup_detection_during_fw_flash(h, c);
1130 	atomic_inc(&h->commands_outstanding);
1131 	switch (c->cmd_type) {
1132 	case CMD_IOACCEL1:
1133 		set_ioaccel1_performant_mode(h, c, reply_queue);
1134 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1135 		break;
1136 	case CMD_IOACCEL2:
1137 		set_ioaccel2_performant_mode(h, c, reply_queue);
1138 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1139 		break;
1140 	case IOACCEL2_TMF:
1141 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1142 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143 		break;
1144 	default:
1145 		set_performant_mode(h, c, reply_queue);
1146 		h->access.submit_command(h, c);
1147 	}
1148 }
1149 
1150 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1151 {
1152 	if (unlikely(hpsa_is_pending_event(c)))
1153 		return finish_cmd(c);
1154 
1155 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1156 }
1157 
1158 static inline int is_hba_lunid(unsigned char scsi3addr[])
1159 {
1160 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1161 }
1162 
1163 static inline int is_scsi_rev_5(struct ctlr_info *h)
1164 {
1165 	if (!h->hba_inquiry_data)
1166 		return 0;
1167 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1168 		return 1;
1169 	return 0;
1170 }
1171 
1172 static int hpsa_find_target_lun(struct ctlr_info *h,
1173 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1174 {
1175 	/* finds an unused bus, target, lun for a new physical device
1176 	 * assumes h->devlock is held
1177 	 */
1178 	int i, found = 0;
1179 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1180 
1181 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1182 
1183 	for (i = 0; i < h->ndevices; i++) {
1184 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1185 			__set_bit(h->dev[i]->target, lun_taken);
1186 	}
1187 
1188 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1189 	if (i < HPSA_MAX_DEVICES) {
1190 		/* *bus = 1; */
1191 		*target = i;
1192 		*lun = 0;
1193 		found = 1;
1194 	}
1195 	return !found;
1196 }
1197 
1198 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1199 	struct hpsa_scsi_dev_t *dev, char *description)
1200 {
1201 #define LABEL_SIZE 25
1202 	char label[LABEL_SIZE];
1203 
1204 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1205 		return;
1206 
1207 	switch (dev->devtype) {
1208 	case TYPE_RAID:
1209 		snprintf(label, LABEL_SIZE, "controller");
1210 		break;
1211 	case TYPE_ENCLOSURE:
1212 		snprintf(label, LABEL_SIZE, "enclosure");
1213 		break;
1214 	case TYPE_DISK:
1215 	case TYPE_ZBC:
1216 		if (dev->external)
1217 			snprintf(label, LABEL_SIZE, "external");
1218 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1219 			snprintf(label, LABEL_SIZE, "%s",
1220 				raid_label[PHYSICAL_DRIVE]);
1221 		else
1222 			snprintf(label, LABEL_SIZE, "RAID-%s",
1223 				dev->raid_level > RAID_UNKNOWN ? "?" :
1224 				raid_label[dev->raid_level]);
1225 		break;
1226 	case TYPE_ROM:
1227 		snprintf(label, LABEL_SIZE, "rom");
1228 		break;
1229 	case TYPE_TAPE:
1230 		snprintf(label, LABEL_SIZE, "tape");
1231 		break;
1232 	case TYPE_MEDIUM_CHANGER:
1233 		snprintf(label, LABEL_SIZE, "changer");
1234 		break;
1235 	default:
1236 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1237 		break;
1238 	}
1239 
1240 	dev_printk(level, &h->pdev->dev,
1241 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1242 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1243 			description,
1244 			scsi_device_type(dev->devtype),
1245 			dev->vendor,
1246 			dev->model,
1247 			label,
1248 			dev->offload_config ? '+' : '-',
1249 			dev->offload_enabled ? '+' : '-',
1250 			dev->expose_device);
1251 }
1252 
1253 /* Add an entry into h->dev[] array. */
1254 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1255 		struct hpsa_scsi_dev_t *device,
1256 		struct hpsa_scsi_dev_t *added[], int *nadded)
1257 {
1258 	/* assumes h->devlock is held */
1259 	int n = h->ndevices;
1260 	int i;
1261 	unsigned char addr1[8], addr2[8];
1262 	struct hpsa_scsi_dev_t *sd;
1263 
1264 	if (n >= HPSA_MAX_DEVICES) {
1265 		dev_err(&h->pdev->dev, "too many devices, some will be "
1266 			"inaccessible.\n");
1267 		return -1;
1268 	}
1269 
1270 	/* physical devices do not have lun or target assigned until now. */
1271 	if (device->lun != -1)
1272 		/* Logical device, lun is already assigned. */
1273 		goto lun_assigned;
1274 
1275 	/* If this device a non-zero lun of a multi-lun device
1276 	 * byte 4 of the 8-byte LUN addr will contain the logical
1277 	 * unit no, zero otherwise.
1278 	 */
1279 	if (device->scsi3addr[4] == 0) {
1280 		/* This is not a non-zero lun of a multi-lun device */
1281 		if (hpsa_find_target_lun(h, device->scsi3addr,
1282 			device->bus, &device->target, &device->lun) != 0)
1283 			return -1;
1284 		goto lun_assigned;
1285 	}
1286 
1287 	/* This is a non-zero lun of a multi-lun device.
1288 	 * Search through our list and find the device which
1289 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1290 	 * Assign the same bus and target for this new LUN.
1291 	 * Use the logical unit number from the firmware.
1292 	 */
1293 	memcpy(addr1, device->scsi3addr, 8);
1294 	addr1[4] = 0;
1295 	addr1[5] = 0;
1296 	for (i = 0; i < n; i++) {
1297 		sd = h->dev[i];
1298 		memcpy(addr2, sd->scsi3addr, 8);
1299 		addr2[4] = 0;
1300 		addr2[5] = 0;
1301 		/* differ only in byte 4 and 5? */
1302 		if (memcmp(addr1, addr2, 8) == 0) {
1303 			device->bus = sd->bus;
1304 			device->target = sd->target;
1305 			device->lun = device->scsi3addr[4];
1306 			break;
1307 		}
1308 	}
1309 	if (device->lun == -1) {
1310 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1311 			" suspect firmware bug or unsupported hardware "
1312 			"configuration.\n");
1313 			return -1;
1314 	}
1315 
1316 lun_assigned:
1317 
1318 	h->dev[n] = device;
1319 	h->ndevices++;
1320 	added[*nadded] = device;
1321 	(*nadded)++;
1322 	hpsa_show_dev_msg(KERN_INFO, h, device,
1323 		device->expose_device ? "added" : "masked");
1324 	device->offload_to_be_enabled = device->offload_enabled;
1325 	device->offload_enabled = 0;
1326 	return 0;
1327 }
1328 
1329 /* Update an entry in h->dev[] array. */
1330 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1331 	int entry, struct hpsa_scsi_dev_t *new_entry)
1332 {
1333 	int offload_enabled;
1334 	/* assumes h->devlock is held */
1335 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1336 
1337 	/* Raid level changed. */
1338 	h->dev[entry]->raid_level = new_entry->raid_level;
1339 
1340 	/* Raid offload parameters changed.  Careful about the ordering. */
1341 	if (new_entry->offload_config && new_entry->offload_enabled) {
1342 		/*
1343 		 * if drive is newly offload_enabled, we want to copy the
1344 		 * raid map data first.  If previously offload_enabled and
1345 		 * offload_config were set, raid map data had better be
1346 		 * the same as it was before.  if raid map data is changed
1347 		 * then it had better be the case that
1348 		 * h->dev[entry]->offload_enabled is currently 0.
1349 		 */
1350 		h->dev[entry]->raid_map = new_entry->raid_map;
1351 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1352 	}
1353 	if (new_entry->hba_ioaccel_enabled) {
1354 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1355 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1356 	}
1357 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1358 	h->dev[entry]->offload_config = new_entry->offload_config;
1359 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1360 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1361 
1362 	/*
1363 	 * We can turn off ioaccel offload now, but need to delay turning
1364 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1365 	 * can't do that until all the devices are updated.
1366 	 */
1367 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1368 	if (!new_entry->offload_enabled)
1369 		h->dev[entry]->offload_enabled = 0;
1370 
1371 	offload_enabled = h->dev[entry]->offload_enabled;
1372 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1373 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1374 	h->dev[entry]->offload_enabled = offload_enabled;
1375 }
1376 
1377 /* Replace an entry from h->dev[] array. */
1378 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1379 	int entry, struct hpsa_scsi_dev_t *new_entry,
1380 	struct hpsa_scsi_dev_t *added[], int *nadded,
1381 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1382 {
1383 	/* assumes h->devlock is held */
1384 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1385 	removed[*nremoved] = h->dev[entry];
1386 	(*nremoved)++;
1387 
1388 	/*
1389 	 * New physical devices won't have target/lun assigned yet
1390 	 * so we need to preserve the values in the slot we are replacing.
1391 	 */
1392 	if (new_entry->target == -1) {
1393 		new_entry->target = h->dev[entry]->target;
1394 		new_entry->lun = h->dev[entry]->lun;
1395 	}
1396 
1397 	h->dev[entry] = new_entry;
1398 	added[*nadded] = new_entry;
1399 	(*nadded)++;
1400 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1401 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1402 	new_entry->offload_enabled = 0;
1403 }
1404 
1405 /* Remove an entry from h->dev[] array. */
1406 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1407 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 {
1409 	/* assumes h->devlock is held */
1410 	int i;
1411 	struct hpsa_scsi_dev_t *sd;
1412 
1413 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1414 
1415 	sd = h->dev[entry];
1416 	removed[*nremoved] = h->dev[entry];
1417 	(*nremoved)++;
1418 
1419 	for (i = entry; i < h->ndevices-1; i++)
1420 		h->dev[i] = h->dev[i+1];
1421 	h->ndevices--;
1422 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1423 }
1424 
1425 #define SCSI3ADDR_EQ(a, b) ( \
1426 	(a)[7] == (b)[7] && \
1427 	(a)[6] == (b)[6] && \
1428 	(a)[5] == (b)[5] && \
1429 	(a)[4] == (b)[4] && \
1430 	(a)[3] == (b)[3] && \
1431 	(a)[2] == (b)[2] && \
1432 	(a)[1] == (b)[1] && \
1433 	(a)[0] == (b)[0])
1434 
1435 static void fixup_botched_add(struct ctlr_info *h,
1436 	struct hpsa_scsi_dev_t *added)
1437 {
1438 	/* called when scsi_add_device fails in order to re-adjust
1439 	 * h->dev[] to match the mid layer's view.
1440 	 */
1441 	unsigned long flags;
1442 	int i, j;
1443 
1444 	spin_lock_irqsave(&h->lock, flags);
1445 	for (i = 0; i < h->ndevices; i++) {
1446 		if (h->dev[i] == added) {
1447 			for (j = i; j < h->ndevices-1; j++)
1448 				h->dev[j] = h->dev[j+1];
1449 			h->ndevices--;
1450 			break;
1451 		}
1452 	}
1453 	spin_unlock_irqrestore(&h->lock, flags);
1454 	kfree(added);
1455 }
1456 
1457 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1458 	struct hpsa_scsi_dev_t *dev2)
1459 {
1460 	/* we compare everything except lun and target as these
1461 	 * are not yet assigned.  Compare parts likely
1462 	 * to differ first
1463 	 */
1464 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1465 		sizeof(dev1->scsi3addr)) != 0)
1466 		return 0;
1467 	if (memcmp(dev1->device_id, dev2->device_id,
1468 		sizeof(dev1->device_id)) != 0)
1469 		return 0;
1470 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1471 		return 0;
1472 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1473 		return 0;
1474 	if (dev1->devtype != dev2->devtype)
1475 		return 0;
1476 	if (dev1->bus != dev2->bus)
1477 		return 0;
1478 	return 1;
1479 }
1480 
1481 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* Device attributes that can change, but don't mean
1485 	 * that the device is a different device, nor that the OS
1486 	 * needs to be told anything about the change.
1487 	 */
1488 	if (dev1->raid_level != dev2->raid_level)
1489 		return 1;
1490 	if (dev1->offload_config != dev2->offload_config)
1491 		return 1;
1492 	if (dev1->offload_enabled != dev2->offload_enabled)
1493 		return 1;
1494 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1495 		if (dev1->queue_depth != dev2->queue_depth)
1496 			return 1;
1497 	return 0;
1498 }
1499 
1500 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1501  * and return needle location in *index.  If scsi3addr matches, but not
1502  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1503  * location in *index.
1504  * In the case of a minor device attribute change, such as RAID level, just
1505  * return DEVICE_UPDATED, along with the updated device's location in index.
1506  * If needle not found, return DEVICE_NOT_FOUND.
1507  */
1508 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1509 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1510 	int *index)
1511 {
1512 	int i;
1513 #define DEVICE_NOT_FOUND 0
1514 #define DEVICE_CHANGED 1
1515 #define DEVICE_SAME 2
1516 #define DEVICE_UPDATED 3
1517 	if (needle == NULL)
1518 		return DEVICE_NOT_FOUND;
1519 
1520 	for (i = 0; i < haystack_size; i++) {
1521 		if (haystack[i] == NULL) /* previously removed. */
1522 			continue;
1523 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1524 			*index = i;
1525 			if (device_is_the_same(needle, haystack[i])) {
1526 				if (device_updated(needle, haystack[i]))
1527 					return DEVICE_UPDATED;
1528 				return DEVICE_SAME;
1529 			} else {
1530 				/* Keep offline devices offline */
1531 				if (needle->volume_offline)
1532 					return DEVICE_NOT_FOUND;
1533 				return DEVICE_CHANGED;
1534 			}
1535 		}
1536 	}
1537 	*index = -1;
1538 	return DEVICE_NOT_FOUND;
1539 }
1540 
1541 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1542 					unsigned char scsi3addr[])
1543 {
1544 	struct offline_device_entry *device;
1545 	unsigned long flags;
1546 
1547 	/* Check to see if device is already on the list */
1548 	spin_lock_irqsave(&h->offline_device_lock, flags);
1549 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1550 		if (memcmp(device->scsi3addr, scsi3addr,
1551 			sizeof(device->scsi3addr)) == 0) {
1552 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1553 			return;
1554 		}
1555 	}
1556 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557 
1558 	/* Device is not on the list, add it. */
1559 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1560 	if (!device) {
1561 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1562 		return;
1563 	}
1564 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1565 	spin_lock_irqsave(&h->offline_device_lock, flags);
1566 	list_add_tail(&device->offline_list, &h->offline_device_list);
1567 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1568 }
1569 
1570 /* Print a message explaining various offline volume states */
1571 static void hpsa_show_volume_status(struct ctlr_info *h,
1572 	struct hpsa_scsi_dev_t *sd)
1573 {
1574 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1575 		dev_info(&h->pdev->dev,
1576 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1577 			h->scsi_host->host_no,
1578 			sd->bus, sd->target, sd->lun);
1579 	switch (sd->volume_offline) {
1580 	case HPSA_LV_OK:
1581 		break;
1582 	case HPSA_LV_UNDERGOING_ERASE:
1583 		dev_info(&h->pdev->dev,
1584 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1585 			h->scsi_host->host_no,
1586 			sd->bus, sd->target, sd->lun);
1587 		break;
1588 	case HPSA_LV_NOT_AVAILABLE:
1589 		dev_info(&h->pdev->dev,
1590 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1591 			h->scsi_host->host_no,
1592 			sd->bus, sd->target, sd->lun);
1593 		break;
1594 	case HPSA_LV_UNDERGOING_RPI:
1595 		dev_info(&h->pdev->dev,
1596 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1597 			h->scsi_host->host_no,
1598 			sd->bus, sd->target, sd->lun);
1599 		break;
1600 	case HPSA_LV_PENDING_RPI:
1601 		dev_info(&h->pdev->dev,
1602 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1603 			h->scsi_host->host_no,
1604 			sd->bus, sd->target, sd->lun);
1605 		break;
1606 	case HPSA_LV_ENCRYPTED_NO_KEY:
1607 		dev_info(&h->pdev->dev,
1608 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1609 			h->scsi_host->host_no,
1610 			sd->bus, sd->target, sd->lun);
1611 		break;
1612 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1613 		dev_info(&h->pdev->dev,
1614 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1615 			h->scsi_host->host_no,
1616 			sd->bus, sd->target, sd->lun);
1617 		break;
1618 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1619 		dev_info(&h->pdev->dev,
1620 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1621 			h->scsi_host->host_no,
1622 			sd->bus, sd->target, sd->lun);
1623 		break;
1624 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1625 		dev_info(&h->pdev->dev,
1626 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1627 			h->scsi_host->host_no,
1628 			sd->bus, sd->target, sd->lun);
1629 		break;
1630 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1631 		dev_info(&h->pdev->dev,
1632 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1633 			h->scsi_host->host_no,
1634 			sd->bus, sd->target, sd->lun);
1635 		break;
1636 	case HPSA_LV_PENDING_ENCRYPTION:
1637 		dev_info(&h->pdev->dev,
1638 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1639 			h->scsi_host->host_no,
1640 			sd->bus, sd->target, sd->lun);
1641 		break;
1642 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1643 		dev_info(&h->pdev->dev,
1644 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1645 			h->scsi_host->host_no,
1646 			sd->bus, sd->target, sd->lun);
1647 		break;
1648 	}
1649 }
1650 
1651 /*
1652  * Figure the list of physical drive pointers for a logical drive with
1653  * raid offload configured.
1654  */
1655 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1656 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1657 				struct hpsa_scsi_dev_t *logical_drive)
1658 {
1659 	struct raid_map_data *map = &logical_drive->raid_map;
1660 	struct raid_map_disk_data *dd = &map->data[0];
1661 	int i, j;
1662 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1663 				le16_to_cpu(map->metadata_disks_per_row);
1664 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1665 				le16_to_cpu(map->layout_map_count) *
1666 				total_disks_per_row;
1667 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1668 				total_disks_per_row;
1669 	int qdepth;
1670 
1671 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1672 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1673 
1674 	logical_drive->nphysical_disks = nraid_map_entries;
1675 
1676 	qdepth = 0;
1677 	for (i = 0; i < nraid_map_entries; i++) {
1678 		logical_drive->phys_disk[i] = NULL;
1679 		if (!logical_drive->offload_config)
1680 			continue;
1681 		for (j = 0; j < ndevices; j++) {
1682 			if (dev[j] == NULL)
1683 				continue;
1684 			if (dev[j]->devtype != TYPE_DISK &&
1685 			    dev[j]->devtype != TYPE_ZBC)
1686 				continue;
1687 			if (is_logical_device(dev[j]))
1688 				continue;
1689 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1690 				continue;
1691 
1692 			logical_drive->phys_disk[i] = dev[j];
1693 			if (i < nphys_disk)
1694 				qdepth = min(h->nr_cmds, qdepth +
1695 				    logical_drive->phys_disk[i]->queue_depth);
1696 			break;
1697 		}
1698 
1699 		/*
1700 		 * This can happen if a physical drive is removed and
1701 		 * the logical drive is degraded.  In that case, the RAID
1702 		 * map data will refer to a physical disk which isn't actually
1703 		 * present.  And in that case offload_enabled should already
1704 		 * be 0, but we'll turn it off here just in case
1705 		 */
1706 		if (!logical_drive->phys_disk[i]) {
1707 			logical_drive->offload_enabled = 0;
1708 			logical_drive->offload_to_be_enabled = 0;
1709 			logical_drive->queue_depth = 8;
1710 		}
1711 	}
1712 	if (nraid_map_entries)
1713 		/*
1714 		 * This is correct for reads, too high for full stripe writes,
1715 		 * way too high for partial stripe writes
1716 		 */
1717 		logical_drive->queue_depth = qdepth;
1718 	else
1719 		logical_drive->queue_depth = h->nr_cmds;
1720 }
1721 
1722 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1723 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1724 {
1725 	int i;
1726 
1727 	for (i = 0; i < ndevices; i++) {
1728 		if (dev[i] == NULL)
1729 			continue;
1730 		if (dev[i]->devtype != TYPE_DISK &&
1731 		    dev[i]->devtype != TYPE_ZBC)
1732 			continue;
1733 		if (!is_logical_device(dev[i]))
1734 			continue;
1735 
1736 		/*
1737 		 * If offload is currently enabled, the RAID map and
1738 		 * phys_disk[] assignment *better* not be changing
1739 		 * and since it isn't changing, we do not need to
1740 		 * update it.
1741 		 */
1742 		if (dev[i]->offload_enabled)
1743 			continue;
1744 
1745 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1746 	}
1747 }
1748 
1749 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1750 {
1751 	int rc = 0;
1752 
1753 	if (!h->scsi_host)
1754 		return 1;
1755 
1756 	if (is_logical_device(device)) /* RAID */
1757 		rc = scsi_add_device(h->scsi_host, device->bus,
1758 					device->target, device->lun);
1759 	else /* HBA */
1760 		rc = hpsa_add_sas_device(h->sas_host, device);
1761 
1762 	return rc;
1763 }
1764 
1765 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1766 						struct hpsa_scsi_dev_t *dev)
1767 {
1768 	int i;
1769 	int count = 0;
1770 
1771 	for (i = 0; i < h->nr_cmds; i++) {
1772 		struct CommandList *c = h->cmd_pool + i;
1773 		int refcount = atomic_inc_return(&c->refcount);
1774 
1775 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1776 				dev->scsi3addr)) {
1777 			unsigned long flags;
1778 
1779 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1780 			if (!hpsa_is_cmd_idle(c))
1781 				++count;
1782 			spin_unlock_irqrestore(&h->lock, flags);
1783 		}
1784 
1785 		cmd_free(h, c);
1786 	}
1787 
1788 	return count;
1789 }
1790 
1791 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1792 						struct hpsa_scsi_dev_t *device)
1793 {
1794 	int cmds = 0;
1795 	int waits = 0;
1796 
1797 	while (1) {
1798 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1799 		if (cmds == 0)
1800 			break;
1801 		if (++waits > 20)
1802 			break;
1803 		dev_warn(&h->pdev->dev,
1804 			"%s: removing device with %d outstanding commands!\n",
1805 			__func__, cmds);
1806 		msleep(1000);
1807 	}
1808 }
1809 
1810 static void hpsa_remove_device(struct ctlr_info *h,
1811 			struct hpsa_scsi_dev_t *device)
1812 {
1813 	struct scsi_device *sdev = NULL;
1814 
1815 	if (!h->scsi_host)
1816 		return;
1817 
1818 	if (is_logical_device(device)) { /* RAID */
1819 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1820 						device->target, device->lun);
1821 		if (sdev) {
1822 			scsi_remove_device(sdev);
1823 			scsi_device_put(sdev);
1824 		} else {
1825 			/*
1826 			 * We don't expect to get here.  Future commands
1827 			 * to this device will get a selection timeout as
1828 			 * if the device were gone.
1829 			 */
1830 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1831 					"didn't find device for removal.");
1832 		}
1833 	} else { /* HBA */
1834 
1835 		device->removed = 1;
1836 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1837 
1838 		hpsa_remove_sas_device(device);
1839 	}
1840 }
1841 
1842 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1843 	struct hpsa_scsi_dev_t *sd[], int nsds)
1844 {
1845 	/* sd contains scsi3 addresses and devtypes, and inquiry
1846 	 * data.  This function takes what's in sd to be the current
1847 	 * reality and updates h->dev[] to reflect that reality.
1848 	 */
1849 	int i, entry, device_change, changes = 0;
1850 	struct hpsa_scsi_dev_t *csd;
1851 	unsigned long flags;
1852 	struct hpsa_scsi_dev_t **added, **removed;
1853 	int nadded, nremoved;
1854 
1855 	/*
1856 	 * A reset can cause a device status to change
1857 	 * re-schedule the scan to see what happened.
1858 	 */
1859 	if (h->reset_in_progress) {
1860 		h->drv_req_rescan = 1;
1861 		return;
1862 	}
1863 
1864 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1865 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1866 
1867 	if (!added || !removed) {
1868 		dev_warn(&h->pdev->dev, "out of memory in "
1869 			"adjust_hpsa_scsi_table\n");
1870 		goto free_and_out;
1871 	}
1872 
1873 	spin_lock_irqsave(&h->devlock, flags);
1874 
1875 	/* find any devices in h->dev[] that are not in
1876 	 * sd[] and remove them from h->dev[], and for any
1877 	 * devices which have changed, remove the old device
1878 	 * info and add the new device info.
1879 	 * If minor device attributes change, just update
1880 	 * the existing device structure.
1881 	 */
1882 	i = 0;
1883 	nremoved = 0;
1884 	nadded = 0;
1885 	while (i < h->ndevices) {
1886 		csd = h->dev[i];
1887 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1888 		if (device_change == DEVICE_NOT_FOUND) {
1889 			changes++;
1890 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1891 			continue; /* remove ^^^, hence i not incremented */
1892 		} else if (device_change == DEVICE_CHANGED) {
1893 			changes++;
1894 			hpsa_scsi_replace_entry(h, i, sd[entry],
1895 				added, &nadded, removed, &nremoved);
1896 			/* Set it to NULL to prevent it from being freed
1897 			 * at the bottom of hpsa_update_scsi_devices()
1898 			 */
1899 			sd[entry] = NULL;
1900 		} else if (device_change == DEVICE_UPDATED) {
1901 			hpsa_scsi_update_entry(h, i, sd[entry]);
1902 		}
1903 		i++;
1904 	}
1905 
1906 	/* Now, make sure every device listed in sd[] is also
1907 	 * listed in h->dev[], adding them if they aren't found
1908 	 */
1909 
1910 	for (i = 0; i < nsds; i++) {
1911 		if (!sd[i]) /* if already added above. */
1912 			continue;
1913 
1914 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1915 		 * as the SCSI mid-layer does not handle such devices well.
1916 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1917 		 * at 160Hz, and prevents the system from coming up.
1918 		 */
1919 		if (sd[i]->volume_offline) {
1920 			hpsa_show_volume_status(h, sd[i]);
1921 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1922 			continue;
1923 		}
1924 
1925 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1926 					h->ndevices, &entry);
1927 		if (device_change == DEVICE_NOT_FOUND) {
1928 			changes++;
1929 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1930 				break;
1931 			sd[i] = NULL; /* prevent from being freed later. */
1932 		} else if (device_change == DEVICE_CHANGED) {
1933 			/* should never happen... */
1934 			changes++;
1935 			dev_warn(&h->pdev->dev,
1936 				"device unexpectedly changed.\n");
1937 			/* but if it does happen, we just ignore that device */
1938 		}
1939 	}
1940 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1941 
1942 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1943 	 * any logical drives that need it enabled.
1944 	 */
1945 	for (i = 0; i < h->ndevices; i++) {
1946 		if (h->dev[i] == NULL)
1947 			continue;
1948 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1949 	}
1950 
1951 	spin_unlock_irqrestore(&h->devlock, flags);
1952 
1953 	/* Monitor devices which are in one of several NOT READY states to be
1954 	 * brought online later. This must be done without holding h->devlock,
1955 	 * so don't touch h->dev[]
1956 	 */
1957 	for (i = 0; i < nsds; i++) {
1958 		if (!sd[i]) /* if already added above. */
1959 			continue;
1960 		if (sd[i]->volume_offline)
1961 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1962 	}
1963 
1964 	/* Don't notify scsi mid layer of any changes the first time through
1965 	 * (or if there are no changes) scsi_scan_host will do it later the
1966 	 * first time through.
1967 	 */
1968 	if (!changes)
1969 		goto free_and_out;
1970 
1971 	/* Notify scsi mid layer of any removed devices */
1972 	for (i = 0; i < nremoved; i++) {
1973 		if (removed[i] == NULL)
1974 			continue;
1975 		if (removed[i]->expose_device)
1976 			hpsa_remove_device(h, removed[i]);
1977 		kfree(removed[i]);
1978 		removed[i] = NULL;
1979 	}
1980 
1981 	/* Notify scsi mid layer of any added devices */
1982 	for (i = 0; i < nadded; i++) {
1983 		int rc = 0;
1984 
1985 		if (added[i] == NULL)
1986 			continue;
1987 		if (!(added[i]->expose_device))
1988 			continue;
1989 		rc = hpsa_add_device(h, added[i]);
1990 		if (!rc)
1991 			continue;
1992 		dev_warn(&h->pdev->dev,
1993 			"addition failed %d, device not added.", rc);
1994 		/* now we have to remove it from h->dev,
1995 		 * since it didn't get added to scsi mid layer
1996 		 */
1997 		fixup_botched_add(h, added[i]);
1998 		h->drv_req_rescan = 1;
1999 	}
2000 
2001 free_and_out:
2002 	kfree(added);
2003 	kfree(removed);
2004 }
2005 
2006 /*
2007  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2008  * Assume's h->devlock is held.
2009  */
2010 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2011 	int bus, int target, int lun)
2012 {
2013 	int i;
2014 	struct hpsa_scsi_dev_t *sd;
2015 
2016 	for (i = 0; i < h->ndevices; i++) {
2017 		sd = h->dev[i];
2018 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2019 			return sd;
2020 	}
2021 	return NULL;
2022 }
2023 
2024 static int hpsa_slave_alloc(struct scsi_device *sdev)
2025 {
2026 	struct hpsa_scsi_dev_t *sd;
2027 	unsigned long flags;
2028 	struct ctlr_info *h;
2029 
2030 	h = sdev_to_hba(sdev);
2031 	spin_lock_irqsave(&h->devlock, flags);
2032 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2033 		struct scsi_target *starget;
2034 		struct sas_rphy *rphy;
2035 
2036 		starget = scsi_target(sdev);
2037 		rphy = target_to_rphy(starget);
2038 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2039 		if (sd) {
2040 			sd->target = sdev_id(sdev);
2041 			sd->lun = sdev->lun;
2042 		}
2043 	} else
2044 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2045 					sdev_id(sdev), sdev->lun);
2046 
2047 	if (sd && sd->expose_device) {
2048 		atomic_set(&sd->ioaccel_cmds_out, 0);
2049 		sdev->hostdata = sd;
2050 	} else
2051 		sdev->hostdata = NULL;
2052 	spin_unlock_irqrestore(&h->devlock, flags);
2053 	return 0;
2054 }
2055 
2056 /* configure scsi device based on internal per-device structure */
2057 static int hpsa_slave_configure(struct scsi_device *sdev)
2058 {
2059 	struct hpsa_scsi_dev_t *sd;
2060 	int queue_depth;
2061 
2062 	sd = sdev->hostdata;
2063 	sdev->no_uld_attach = !sd || !sd->expose_device;
2064 
2065 	if (sd)
2066 		queue_depth = sd->queue_depth != 0 ?
2067 			sd->queue_depth : sdev->host->can_queue;
2068 	else
2069 		queue_depth = sdev->host->can_queue;
2070 
2071 	scsi_change_queue_depth(sdev, queue_depth);
2072 
2073 	return 0;
2074 }
2075 
2076 static void hpsa_slave_destroy(struct scsi_device *sdev)
2077 {
2078 	/* nothing to do. */
2079 }
2080 
2081 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2082 {
2083 	int i;
2084 
2085 	if (!h->ioaccel2_cmd_sg_list)
2086 		return;
2087 	for (i = 0; i < h->nr_cmds; i++) {
2088 		kfree(h->ioaccel2_cmd_sg_list[i]);
2089 		h->ioaccel2_cmd_sg_list[i] = NULL;
2090 	}
2091 	kfree(h->ioaccel2_cmd_sg_list);
2092 	h->ioaccel2_cmd_sg_list = NULL;
2093 }
2094 
2095 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2096 {
2097 	int i;
2098 
2099 	if (h->chainsize <= 0)
2100 		return 0;
2101 
2102 	h->ioaccel2_cmd_sg_list =
2103 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2104 					GFP_KERNEL);
2105 	if (!h->ioaccel2_cmd_sg_list)
2106 		return -ENOMEM;
2107 	for (i = 0; i < h->nr_cmds; i++) {
2108 		h->ioaccel2_cmd_sg_list[i] =
2109 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2110 					h->maxsgentries, GFP_KERNEL);
2111 		if (!h->ioaccel2_cmd_sg_list[i])
2112 			goto clean;
2113 	}
2114 	return 0;
2115 
2116 clean:
2117 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2118 	return -ENOMEM;
2119 }
2120 
2121 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2122 {
2123 	int i;
2124 
2125 	if (!h->cmd_sg_list)
2126 		return;
2127 	for (i = 0; i < h->nr_cmds; i++) {
2128 		kfree(h->cmd_sg_list[i]);
2129 		h->cmd_sg_list[i] = NULL;
2130 	}
2131 	kfree(h->cmd_sg_list);
2132 	h->cmd_sg_list = NULL;
2133 }
2134 
2135 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2136 {
2137 	int i;
2138 
2139 	if (h->chainsize <= 0)
2140 		return 0;
2141 
2142 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2143 				GFP_KERNEL);
2144 	if (!h->cmd_sg_list) {
2145 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2146 		return -ENOMEM;
2147 	}
2148 	for (i = 0; i < h->nr_cmds; i++) {
2149 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2150 						h->chainsize, GFP_KERNEL);
2151 		if (!h->cmd_sg_list[i]) {
2152 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2153 			goto clean;
2154 		}
2155 	}
2156 	return 0;
2157 
2158 clean:
2159 	hpsa_free_sg_chain_blocks(h);
2160 	return -ENOMEM;
2161 }
2162 
2163 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2164 	struct io_accel2_cmd *cp, struct CommandList *c)
2165 {
2166 	struct ioaccel2_sg_element *chain_block;
2167 	u64 temp64;
2168 	u32 chain_size;
2169 
2170 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2171 	chain_size = le32_to_cpu(cp->sg[0].length);
2172 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2173 				PCI_DMA_TODEVICE);
2174 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2175 		/* prevent subsequent unmapping */
2176 		cp->sg->address = 0;
2177 		return -1;
2178 	}
2179 	cp->sg->address = cpu_to_le64(temp64);
2180 	return 0;
2181 }
2182 
2183 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2184 	struct io_accel2_cmd *cp)
2185 {
2186 	struct ioaccel2_sg_element *chain_sg;
2187 	u64 temp64;
2188 	u32 chain_size;
2189 
2190 	chain_sg = cp->sg;
2191 	temp64 = le64_to_cpu(chain_sg->address);
2192 	chain_size = le32_to_cpu(cp->sg[0].length);
2193 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2194 }
2195 
2196 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2197 	struct CommandList *c)
2198 {
2199 	struct SGDescriptor *chain_sg, *chain_block;
2200 	u64 temp64;
2201 	u32 chain_len;
2202 
2203 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2204 	chain_block = h->cmd_sg_list[c->cmdindex];
2205 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2206 	chain_len = sizeof(*chain_sg) *
2207 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2208 	chain_sg->Len = cpu_to_le32(chain_len);
2209 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2210 				PCI_DMA_TODEVICE);
2211 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2212 		/* prevent subsequent unmapping */
2213 		chain_sg->Addr = cpu_to_le64(0);
2214 		return -1;
2215 	}
2216 	chain_sg->Addr = cpu_to_le64(temp64);
2217 	return 0;
2218 }
2219 
2220 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2221 	struct CommandList *c)
2222 {
2223 	struct SGDescriptor *chain_sg;
2224 
2225 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2226 		return;
2227 
2228 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2229 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2230 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2231 }
2232 
2233 
2234 /* Decode the various types of errors on ioaccel2 path.
2235  * Return 1 for any error that should generate a RAID path retry.
2236  * Return 0 for errors that don't require a RAID path retry.
2237  */
2238 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2239 					struct CommandList *c,
2240 					struct scsi_cmnd *cmd,
2241 					struct io_accel2_cmd *c2,
2242 					struct hpsa_scsi_dev_t *dev)
2243 {
2244 	int data_len;
2245 	int retry = 0;
2246 	u32 ioaccel2_resid = 0;
2247 
2248 	switch (c2->error_data.serv_response) {
2249 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2250 		switch (c2->error_data.status) {
2251 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2252 			break;
2253 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2254 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2255 			if (c2->error_data.data_present !=
2256 					IOACCEL2_SENSE_DATA_PRESENT) {
2257 				memset(cmd->sense_buffer, 0,
2258 					SCSI_SENSE_BUFFERSIZE);
2259 				break;
2260 			}
2261 			/* copy the sense data */
2262 			data_len = c2->error_data.sense_data_len;
2263 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2264 				data_len = SCSI_SENSE_BUFFERSIZE;
2265 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2266 				data_len =
2267 					sizeof(c2->error_data.sense_data_buff);
2268 			memcpy(cmd->sense_buffer,
2269 				c2->error_data.sense_data_buff, data_len);
2270 			retry = 1;
2271 			break;
2272 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2273 			retry = 1;
2274 			break;
2275 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2276 			retry = 1;
2277 			break;
2278 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2279 			retry = 1;
2280 			break;
2281 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2282 			retry = 1;
2283 			break;
2284 		default:
2285 			retry = 1;
2286 			break;
2287 		}
2288 		break;
2289 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2290 		switch (c2->error_data.status) {
2291 		case IOACCEL2_STATUS_SR_IO_ERROR:
2292 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2293 		case IOACCEL2_STATUS_SR_OVERRUN:
2294 			retry = 1;
2295 			break;
2296 		case IOACCEL2_STATUS_SR_UNDERRUN:
2297 			cmd->result = (DID_OK << 16);		/* host byte */
2298 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2299 			ioaccel2_resid = get_unaligned_le32(
2300 						&c2->error_data.resid_cnt[0]);
2301 			scsi_set_resid(cmd, ioaccel2_resid);
2302 			break;
2303 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2304 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2305 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2306 			/*
2307 			 * Did an HBA disk disappear? We will eventually
2308 			 * get a state change event from the controller but
2309 			 * in the meantime, we need to tell the OS that the
2310 			 * HBA disk is no longer there and stop I/O
2311 			 * from going down. This allows the potential re-insert
2312 			 * of the disk to get the same device node.
2313 			 */
2314 			if (dev->physical_device && dev->expose_device) {
2315 				cmd->result = DID_NO_CONNECT << 16;
2316 				dev->removed = 1;
2317 				h->drv_req_rescan = 1;
2318 				dev_warn(&h->pdev->dev,
2319 					"%s: device is gone!\n", __func__);
2320 			} else
2321 				/*
2322 				 * Retry by sending down the RAID path.
2323 				 * We will get an event from ctlr to
2324 				 * trigger rescan regardless.
2325 				 */
2326 				retry = 1;
2327 			break;
2328 		default:
2329 			retry = 1;
2330 		}
2331 		break;
2332 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2333 		break;
2334 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2335 		break;
2336 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2337 		retry = 1;
2338 		break;
2339 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2340 		break;
2341 	default:
2342 		retry = 1;
2343 		break;
2344 	}
2345 
2346 	return retry;	/* retry on raid path? */
2347 }
2348 
2349 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2350 		struct CommandList *c)
2351 {
2352 	bool do_wake = false;
2353 
2354 	/*
2355 	 * Prevent the following race in the abort handler:
2356 	 *
2357 	 * 1. LLD is requested to abort a SCSI command
2358 	 * 2. The SCSI command completes
2359 	 * 3. The struct CommandList associated with step 2 is made available
2360 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2361 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2362 	 *    finds struct CommandList and tries to aborts it
2363 	 * Now we have aborted the wrong command.
2364 	 *
2365 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2366 	 * this command has completed.  Then, check to see if the handler is
2367 	 * waiting for this command, and, if so, wake it.
2368 	 */
2369 	c->scsi_cmd = SCSI_CMD_IDLE;
2370 	mb();	/* Declare command idle before checking for pending events. */
2371 	if (c->abort_pending) {
2372 		do_wake = true;
2373 		c->abort_pending = false;
2374 	}
2375 	if (c->reset_pending) {
2376 		unsigned long flags;
2377 		struct hpsa_scsi_dev_t *dev;
2378 
2379 		/*
2380 		 * There appears to be a reset pending; lock the lock and
2381 		 * reconfirm.  If so, then decrement the count of outstanding
2382 		 * commands and wake the reset command if this is the last one.
2383 		 */
2384 		spin_lock_irqsave(&h->lock, flags);
2385 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2386 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2387 			do_wake = true;
2388 		c->reset_pending = NULL;
2389 		spin_unlock_irqrestore(&h->lock, flags);
2390 	}
2391 
2392 	if (do_wake)
2393 		wake_up_all(&h->event_sync_wait_queue);
2394 }
2395 
2396 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2397 				      struct CommandList *c)
2398 {
2399 	hpsa_cmd_resolve_events(h, c);
2400 	cmd_tagged_free(h, c);
2401 }
2402 
2403 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2404 		struct CommandList *c, struct scsi_cmnd *cmd)
2405 {
2406 	hpsa_cmd_resolve_and_free(h, c);
2407 	if (cmd && cmd->scsi_done)
2408 		cmd->scsi_done(cmd);
2409 }
2410 
2411 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2412 {
2413 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2414 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2415 }
2416 
2417 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2418 {
2419 	cmd->result = DID_ABORT << 16;
2420 }
2421 
2422 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2423 				    struct scsi_cmnd *cmd)
2424 {
2425 	hpsa_set_scsi_cmd_aborted(cmd);
2426 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2427 			 c->Request.CDB, c->err_info->ScsiStatus);
2428 	hpsa_cmd_resolve_and_free(h, c);
2429 }
2430 
2431 static void process_ioaccel2_completion(struct ctlr_info *h,
2432 		struct CommandList *c, struct scsi_cmnd *cmd,
2433 		struct hpsa_scsi_dev_t *dev)
2434 {
2435 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2436 
2437 	/* check for good status */
2438 	if (likely(c2->error_data.serv_response == 0 &&
2439 			c2->error_data.status == 0))
2440 		return hpsa_cmd_free_and_done(h, c, cmd);
2441 
2442 	/*
2443 	 * Any RAID offload error results in retry which will use
2444 	 * the normal I/O path so the controller can handle whatever's
2445 	 * wrong.
2446 	 */
2447 	if (is_logical_device(dev) &&
2448 		c2->error_data.serv_response ==
2449 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2450 		if (c2->error_data.status ==
2451 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2452 			dev->offload_enabled = 0;
2453 			dev->offload_to_be_enabled = 0;
2454 		}
2455 
2456 		return hpsa_retry_cmd(h, c);
2457 	}
2458 
2459 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2460 		return hpsa_retry_cmd(h, c);
2461 
2462 	return hpsa_cmd_free_and_done(h, c, cmd);
2463 }
2464 
2465 /* Returns 0 on success, < 0 otherwise. */
2466 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2467 					struct CommandList *cp)
2468 {
2469 	u8 tmf_status = cp->err_info->ScsiStatus;
2470 
2471 	switch (tmf_status) {
2472 	case CISS_TMF_COMPLETE:
2473 		/*
2474 		 * CISS_TMF_COMPLETE never happens, instead,
2475 		 * ei->CommandStatus == 0 for this case.
2476 		 */
2477 	case CISS_TMF_SUCCESS:
2478 		return 0;
2479 	case CISS_TMF_INVALID_FRAME:
2480 	case CISS_TMF_NOT_SUPPORTED:
2481 	case CISS_TMF_FAILED:
2482 	case CISS_TMF_WRONG_LUN:
2483 	case CISS_TMF_OVERLAPPED_TAG:
2484 		break;
2485 	default:
2486 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2487 				tmf_status);
2488 		break;
2489 	}
2490 	return -tmf_status;
2491 }
2492 
2493 static void complete_scsi_command(struct CommandList *cp)
2494 {
2495 	struct scsi_cmnd *cmd;
2496 	struct ctlr_info *h;
2497 	struct ErrorInfo *ei;
2498 	struct hpsa_scsi_dev_t *dev;
2499 	struct io_accel2_cmd *c2;
2500 
2501 	u8 sense_key;
2502 	u8 asc;      /* additional sense code */
2503 	u8 ascq;     /* additional sense code qualifier */
2504 	unsigned long sense_data_size;
2505 
2506 	ei = cp->err_info;
2507 	cmd = cp->scsi_cmd;
2508 	h = cp->h;
2509 
2510 	if (!cmd->device) {
2511 		cmd->result = DID_NO_CONNECT << 16;
2512 		return hpsa_cmd_free_and_done(h, cp, cmd);
2513 	}
2514 
2515 	dev = cmd->device->hostdata;
2516 	if (!dev) {
2517 		cmd->result = DID_NO_CONNECT << 16;
2518 		return hpsa_cmd_free_and_done(h, cp, cmd);
2519 	}
2520 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2521 
2522 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2523 	if ((cp->cmd_type == CMD_SCSI) &&
2524 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2525 		hpsa_unmap_sg_chain_block(h, cp);
2526 
2527 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2528 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2529 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2530 
2531 	cmd->result = (DID_OK << 16); 		/* host byte */
2532 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2533 
2534 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2535 		if (dev->physical_device && dev->expose_device &&
2536 			dev->removed) {
2537 			cmd->result = DID_NO_CONNECT << 16;
2538 			return hpsa_cmd_free_and_done(h, cp, cmd);
2539 		}
2540 		if (likely(cp->phys_disk != NULL))
2541 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2542 	}
2543 
2544 	/*
2545 	 * We check for lockup status here as it may be set for
2546 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2547 	 * fail_all_oustanding_cmds()
2548 	 */
2549 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2550 		/* DID_NO_CONNECT will prevent a retry */
2551 		cmd->result = DID_NO_CONNECT << 16;
2552 		return hpsa_cmd_free_and_done(h, cp, cmd);
2553 	}
2554 
2555 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2556 		if (cp->reset_pending)
2557 			return hpsa_cmd_free_and_done(h, cp, cmd);
2558 		if (cp->abort_pending)
2559 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2560 	}
2561 
2562 	if (cp->cmd_type == CMD_IOACCEL2)
2563 		return process_ioaccel2_completion(h, cp, cmd, dev);
2564 
2565 	scsi_set_resid(cmd, ei->ResidualCnt);
2566 	if (ei->CommandStatus == 0)
2567 		return hpsa_cmd_free_and_done(h, cp, cmd);
2568 
2569 	/* For I/O accelerator commands, copy over some fields to the normal
2570 	 * CISS header used below for error handling.
2571 	 */
2572 	if (cp->cmd_type == CMD_IOACCEL1) {
2573 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2574 		cp->Header.SGList = scsi_sg_count(cmd);
2575 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2576 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2577 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2578 		cp->Header.tag = c->tag;
2579 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2580 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2581 
2582 		/* Any RAID offload error results in retry which will use
2583 		 * the normal I/O path so the controller can handle whatever's
2584 		 * wrong.
2585 		 */
2586 		if (is_logical_device(dev)) {
2587 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2588 				dev->offload_enabled = 0;
2589 			return hpsa_retry_cmd(h, cp);
2590 		}
2591 	}
2592 
2593 	/* an error has occurred */
2594 	switch (ei->CommandStatus) {
2595 
2596 	case CMD_TARGET_STATUS:
2597 		cmd->result |= ei->ScsiStatus;
2598 		/* copy the sense data */
2599 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2600 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2601 		else
2602 			sense_data_size = sizeof(ei->SenseInfo);
2603 		if (ei->SenseLen < sense_data_size)
2604 			sense_data_size = ei->SenseLen;
2605 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2606 		if (ei->ScsiStatus)
2607 			decode_sense_data(ei->SenseInfo, sense_data_size,
2608 				&sense_key, &asc, &ascq);
2609 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2610 			if (sense_key == ABORTED_COMMAND) {
2611 				cmd->result |= DID_SOFT_ERROR << 16;
2612 				break;
2613 			}
2614 			break;
2615 		}
2616 		/* Problem was not a check condition
2617 		 * Pass it up to the upper layers...
2618 		 */
2619 		if (ei->ScsiStatus) {
2620 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2621 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2622 				"Returning result: 0x%x\n",
2623 				cp, ei->ScsiStatus,
2624 				sense_key, asc, ascq,
2625 				cmd->result);
2626 		} else {  /* scsi status is zero??? How??? */
2627 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2628 				"Returning no connection.\n", cp),
2629 
2630 			/* Ordinarily, this case should never happen,
2631 			 * but there is a bug in some released firmware
2632 			 * revisions that allows it to happen if, for
2633 			 * example, a 4100 backplane loses power and
2634 			 * the tape drive is in it.  We assume that
2635 			 * it's a fatal error of some kind because we
2636 			 * can't show that it wasn't. We will make it
2637 			 * look like selection timeout since that is
2638 			 * the most common reason for this to occur,
2639 			 * and it's severe enough.
2640 			 */
2641 
2642 			cmd->result = DID_NO_CONNECT << 16;
2643 		}
2644 		break;
2645 
2646 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2647 		break;
2648 	case CMD_DATA_OVERRUN:
2649 		dev_warn(&h->pdev->dev,
2650 			"CDB %16phN data overrun\n", cp->Request.CDB);
2651 		break;
2652 	case CMD_INVALID: {
2653 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2654 		print_cmd(cp); */
2655 		/* We get CMD_INVALID if you address a non-existent device
2656 		 * instead of a selection timeout (no response).  You will
2657 		 * see this if you yank out a drive, then try to access it.
2658 		 * This is kind of a shame because it means that any other
2659 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2660 		 * missing target. */
2661 		cmd->result = DID_NO_CONNECT << 16;
2662 	}
2663 		break;
2664 	case CMD_PROTOCOL_ERR:
2665 		cmd->result = DID_ERROR << 16;
2666 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2667 				cp->Request.CDB);
2668 		break;
2669 	case CMD_HARDWARE_ERR:
2670 		cmd->result = DID_ERROR << 16;
2671 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2672 			cp->Request.CDB);
2673 		break;
2674 	case CMD_CONNECTION_LOST:
2675 		cmd->result = DID_ERROR << 16;
2676 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2677 			cp->Request.CDB);
2678 		break;
2679 	case CMD_ABORTED:
2680 		/* Return now to avoid calling scsi_done(). */
2681 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2682 	case CMD_ABORT_FAILED:
2683 		cmd->result = DID_ERROR << 16;
2684 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2685 			cp->Request.CDB);
2686 		break;
2687 	case CMD_UNSOLICITED_ABORT:
2688 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2689 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2690 			cp->Request.CDB);
2691 		break;
2692 	case CMD_TIMEOUT:
2693 		cmd->result = DID_TIME_OUT << 16;
2694 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2695 			cp->Request.CDB);
2696 		break;
2697 	case CMD_UNABORTABLE:
2698 		cmd->result = DID_ERROR << 16;
2699 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2700 		break;
2701 	case CMD_TMF_STATUS:
2702 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2703 			cmd->result = DID_ERROR << 16;
2704 		break;
2705 	case CMD_IOACCEL_DISABLED:
2706 		/* This only handles the direct pass-through case since RAID
2707 		 * offload is handled above.  Just attempt a retry.
2708 		 */
2709 		cmd->result = DID_SOFT_ERROR << 16;
2710 		dev_warn(&h->pdev->dev,
2711 				"cp %p had HP SSD Smart Path error\n", cp);
2712 		break;
2713 	default:
2714 		cmd->result = DID_ERROR << 16;
2715 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2716 				cp, ei->CommandStatus);
2717 	}
2718 
2719 	return hpsa_cmd_free_and_done(h, cp, cmd);
2720 }
2721 
2722 static void hpsa_pci_unmap(struct pci_dev *pdev,
2723 	struct CommandList *c, int sg_used, int data_direction)
2724 {
2725 	int i;
2726 
2727 	for (i = 0; i < sg_used; i++)
2728 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2729 				le32_to_cpu(c->SG[i].Len),
2730 				data_direction);
2731 }
2732 
2733 static int hpsa_map_one(struct pci_dev *pdev,
2734 		struct CommandList *cp,
2735 		unsigned char *buf,
2736 		size_t buflen,
2737 		int data_direction)
2738 {
2739 	u64 addr64;
2740 
2741 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2742 		cp->Header.SGList = 0;
2743 		cp->Header.SGTotal = cpu_to_le16(0);
2744 		return 0;
2745 	}
2746 
2747 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2748 	if (dma_mapping_error(&pdev->dev, addr64)) {
2749 		/* Prevent subsequent unmap of something never mapped */
2750 		cp->Header.SGList = 0;
2751 		cp->Header.SGTotal = cpu_to_le16(0);
2752 		return -1;
2753 	}
2754 	cp->SG[0].Addr = cpu_to_le64(addr64);
2755 	cp->SG[0].Len = cpu_to_le32(buflen);
2756 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2757 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2758 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2759 	return 0;
2760 }
2761 
2762 #define NO_TIMEOUT ((unsigned long) -1)
2763 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2764 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2765 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2766 {
2767 	DECLARE_COMPLETION_ONSTACK(wait);
2768 
2769 	c->waiting = &wait;
2770 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2771 	if (timeout_msecs == NO_TIMEOUT) {
2772 		/* TODO: get rid of this no-timeout thing */
2773 		wait_for_completion_io(&wait);
2774 		return IO_OK;
2775 	}
2776 	if (!wait_for_completion_io_timeout(&wait,
2777 					msecs_to_jiffies(timeout_msecs))) {
2778 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2779 		return -ETIMEDOUT;
2780 	}
2781 	return IO_OK;
2782 }
2783 
2784 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2785 				   int reply_queue, unsigned long timeout_msecs)
2786 {
2787 	if (unlikely(lockup_detected(h))) {
2788 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2789 		return IO_OK;
2790 	}
2791 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2792 }
2793 
2794 static u32 lockup_detected(struct ctlr_info *h)
2795 {
2796 	int cpu;
2797 	u32 rc, *lockup_detected;
2798 
2799 	cpu = get_cpu();
2800 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2801 	rc = *lockup_detected;
2802 	put_cpu();
2803 	return rc;
2804 }
2805 
2806 #define MAX_DRIVER_CMD_RETRIES 25
2807 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2808 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2809 {
2810 	int backoff_time = 10, retry_count = 0;
2811 	int rc;
2812 
2813 	do {
2814 		memset(c->err_info, 0, sizeof(*c->err_info));
2815 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2816 						  timeout_msecs);
2817 		if (rc)
2818 			break;
2819 		retry_count++;
2820 		if (retry_count > 3) {
2821 			msleep(backoff_time);
2822 			if (backoff_time < 1000)
2823 				backoff_time *= 2;
2824 		}
2825 	} while ((check_for_unit_attention(h, c) ||
2826 			check_for_busy(h, c)) &&
2827 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2828 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2829 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2830 		rc = -EIO;
2831 	return rc;
2832 }
2833 
2834 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2835 				struct CommandList *c)
2836 {
2837 	const u8 *cdb = c->Request.CDB;
2838 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2839 
2840 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2841 		 txt, lun, cdb);
2842 }
2843 
2844 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2845 			struct CommandList *cp)
2846 {
2847 	const struct ErrorInfo *ei = cp->err_info;
2848 	struct device *d = &cp->h->pdev->dev;
2849 	u8 sense_key, asc, ascq;
2850 	int sense_len;
2851 
2852 	switch (ei->CommandStatus) {
2853 	case CMD_TARGET_STATUS:
2854 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2855 			sense_len = sizeof(ei->SenseInfo);
2856 		else
2857 			sense_len = ei->SenseLen;
2858 		decode_sense_data(ei->SenseInfo, sense_len,
2859 					&sense_key, &asc, &ascq);
2860 		hpsa_print_cmd(h, "SCSI status", cp);
2861 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2862 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2863 				sense_key, asc, ascq);
2864 		else
2865 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2866 		if (ei->ScsiStatus == 0)
2867 			dev_warn(d, "SCSI status is abnormally zero.  "
2868 			"(probably indicates selection timeout "
2869 			"reported incorrectly due to a known "
2870 			"firmware bug, circa July, 2001.)\n");
2871 		break;
2872 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2873 		break;
2874 	case CMD_DATA_OVERRUN:
2875 		hpsa_print_cmd(h, "overrun condition", cp);
2876 		break;
2877 	case CMD_INVALID: {
2878 		/* controller unfortunately reports SCSI passthru's
2879 		 * to non-existent targets as invalid commands.
2880 		 */
2881 		hpsa_print_cmd(h, "invalid command", cp);
2882 		dev_warn(d, "probably means device no longer present\n");
2883 		}
2884 		break;
2885 	case CMD_PROTOCOL_ERR:
2886 		hpsa_print_cmd(h, "protocol error", cp);
2887 		break;
2888 	case CMD_HARDWARE_ERR:
2889 		hpsa_print_cmd(h, "hardware error", cp);
2890 		break;
2891 	case CMD_CONNECTION_LOST:
2892 		hpsa_print_cmd(h, "connection lost", cp);
2893 		break;
2894 	case CMD_ABORTED:
2895 		hpsa_print_cmd(h, "aborted", cp);
2896 		break;
2897 	case CMD_ABORT_FAILED:
2898 		hpsa_print_cmd(h, "abort failed", cp);
2899 		break;
2900 	case CMD_UNSOLICITED_ABORT:
2901 		hpsa_print_cmd(h, "unsolicited abort", cp);
2902 		break;
2903 	case CMD_TIMEOUT:
2904 		hpsa_print_cmd(h, "timed out", cp);
2905 		break;
2906 	case CMD_UNABORTABLE:
2907 		hpsa_print_cmd(h, "unabortable", cp);
2908 		break;
2909 	case CMD_CTLR_LOCKUP:
2910 		hpsa_print_cmd(h, "controller lockup detected", cp);
2911 		break;
2912 	default:
2913 		hpsa_print_cmd(h, "unknown status", cp);
2914 		dev_warn(d, "Unknown command status %x\n",
2915 				ei->CommandStatus);
2916 	}
2917 }
2918 
2919 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2920 			u16 page, unsigned char *buf,
2921 			unsigned char bufsize)
2922 {
2923 	int rc = IO_OK;
2924 	struct CommandList *c;
2925 	struct ErrorInfo *ei;
2926 
2927 	c = cmd_alloc(h);
2928 
2929 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2930 			page, scsi3addr, TYPE_CMD)) {
2931 		rc = -1;
2932 		goto out;
2933 	}
2934 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2935 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2936 	if (rc)
2937 		goto out;
2938 	ei = c->err_info;
2939 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2940 		hpsa_scsi_interpret_error(h, c);
2941 		rc = -1;
2942 	}
2943 out:
2944 	cmd_free(h, c);
2945 	return rc;
2946 }
2947 
2948 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2949 	u8 reset_type, int reply_queue)
2950 {
2951 	int rc = IO_OK;
2952 	struct CommandList *c;
2953 	struct ErrorInfo *ei;
2954 
2955 	c = cmd_alloc(h);
2956 
2957 
2958 	/* fill_cmd can't fail here, no data buffer to map. */
2959 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2960 			scsi3addr, TYPE_MSG);
2961 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2962 	if (rc) {
2963 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2964 		goto out;
2965 	}
2966 	/* no unmap needed here because no data xfer. */
2967 
2968 	ei = c->err_info;
2969 	if (ei->CommandStatus != 0) {
2970 		hpsa_scsi_interpret_error(h, c);
2971 		rc = -1;
2972 	}
2973 out:
2974 	cmd_free(h, c);
2975 	return rc;
2976 }
2977 
2978 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2979 			       struct hpsa_scsi_dev_t *dev,
2980 			       unsigned char *scsi3addr)
2981 {
2982 	int i;
2983 	bool match = false;
2984 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2985 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2986 
2987 	if (hpsa_is_cmd_idle(c))
2988 		return false;
2989 
2990 	switch (c->cmd_type) {
2991 	case CMD_SCSI:
2992 	case CMD_IOCTL_PEND:
2993 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2994 				sizeof(c->Header.LUN.LunAddrBytes));
2995 		break;
2996 
2997 	case CMD_IOACCEL1:
2998 	case CMD_IOACCEL2:
2999 		if (c->phys_disk == dev) {
3000 			/* HBA mode match */
3001 			match = true;
3002 		} else {
3003 			/* Possible RAID mode -- check each phys dev. */
3004 			/* FIXME:  Do we need to take out a lock here?  If
3005 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3006 			 * instead. */
3007 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3008 				/* FIXME: an alternate test might be
3009 				 *
3010 				 * match = dev->phys_disk[i]->ioaccel_handle
3011 				 *              == c2->scsi_nexus;      */
3012 				match = dev->phys_disk[i] == c->phys_disk;
3013 			}
3014 		}
3015 		break;
3016 
3017 	case IOACCEL2_TMF:
3018 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3019 			match = dev->phys_disk[i]->ioaccel_handle ==
3020 					le32_to_cpu(ac->it_nexus);
3021 		}
3022 		break;
3023 
3024 	case 0:		/* The command is in the middle of being initialized. */
3025 		match = false;
3026 		break;
3027 
3028 	default:
3029 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3030 			c->cmd_type);
3031 		BUG();
3032 	}
3033 
3034 	return match;
3035 }
3036 
3037 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3038 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3039 {
3040 	int i;
3041 	int rc = 0;
3042 
3043 	/* We can really only handle one reset at a time */
3044 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3045 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3046 		return -EINTR;
3047 	}
3048 
3049 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3050 
3051 	for (i = 0; i < h->nr_cmds; i++) {
3052 		struct CommandList *c = h->cmd_pool + i;
3053 		int refcount = atomic_inc_return(&c->refcount);
3054 
3055 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3056 			unsigned long flags;
3057 
3058 			/*
3059 			 * Mark the target command as having a reset pending,
3060 			 * then lock a lock so that the command cannot complete
3061 			 * while we're considering it.  If the command is not
3062 			 * idle then count it; otherwise revoke the event.
3063 			 */
3064 			c->reset_pending = dev;
3065 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3066 			if (!hpsa_is_cmd_idle(c))
3067 				atomic_inc(&dev->reset_cmds_out);
3068 			else
3069 				c->reset_pending = NULL;
3070 			spin_unlock_irqrestore(&h->lock, flags);
3071 		}
3072 
3073 		cmd_free(h, c);
3074 	}
3075 
3076 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3077 	if (!rc)
3078 		wait_event(h->event_sync_wait_queue,
3079 			atomic_read(&dev->reset_cmds_out) == 0 ||
3080 			lockup_detected(h));
3081 
3082 	if (unlikely(lockup_detected(h))) {
3083 		dev_warn(&h->pdev->dev,
3084 			 "Controller lockup detected during reset wait\n");
3085 		rc = -ENODEV;
3086 	}
3087 
3088 	if (unlikely(rc))
3089 		atomic_set(&dev->reset_cmds_out, 0);
3090 	else
3091 		wait_for_device_to_become_ready(h, scsi3addr, 0);
3092 
3093 	mutex_unlock(&h->reset_mutex);
3094 	return rc;
3095 }
3096 
3097 static void hpsa_get_raid_level(struct ctlr_info *h,
3098 	unsigned char *scsi3addr, unsigned char *raid_level)
3099 {
3100 	int rc;
3101 	unsigned char *buf;
3102 
3103 	*raid_level = RAID_UNKNOWN;
3104 	buf = kzalloc(64, GFP_KERNEL);
3105 	if (!buf)
3106 		return;
3107 
3108 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3109 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3110 		goto exit;
3111 
3112 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3113 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3114 
3115 	if (rc == 0)
3116 		*raid_level = buf[8];
3117 	if (*raid_level > RAID_UNKNOWN)
3118 		*raid_level = RAID_UNKNOWN;
3119 exit:
3120 	kfree(buf);
3121 	return;
3122 }
3123 
3124 #define HPSA_MAP_DEBUG
3125 #ifdef HPSA_MAP_DEBUG
3126 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3127 				struct raid_map_data *map_buff)
3128 {
3129 	struct raid_map_disk_data *dd = &map_buff->data[0];
3130 	int map, row, col;
3131 	u16 map_cnt, row_cnt, disks_per_row;
3132 
3133 	if (rc != 0)
3134 		return;
3135 
3136 	/* Show details only if debugging has been activated. */
3137 	if (h->raid_offload_debug < 2)
3138 		return;
3139 
3140 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3141 				le32_to_cpu(map_buff->structure_size));
3142 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3143 			le32_to_cpu(map_buff->volume_blk_size));
3144 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3145 			le64_to_cpu(map_buff->volume_blk_cnt));
3146 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3147 			map_buff->phys_blk_shift);
3148 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3149 			map_buff->parity_rotation_shift);
3150 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3151 			le16_to_cpu(map_buff->strip_size));
3152 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3153 			le64_to_cpu(map_buff->disk_starting_blk));
3154 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3155 			le64_to_cpu(map_buff->disk_blk_cnt));
3156 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3157 			le16_to_cpu(map_buff->data_disks_per_row));
3158 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3159 			le16_to_cpu(map_buff->metadata_disks_per_row));
3160 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3161 			le16_to_cpu(map_buff->row_cnt));
3162 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3163 			le16_to_cpu(map_buff->layout_map_count));
3164 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3165 			le16_to_cpu(map_buff->flags));
3166 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3167 			le16_to_cpu(map_buff->flags) &
3168 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3169 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3170 			le16_to_cpu(map_buff->dekindex));
3171 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3172 	for (map = 0; map < map_cnt; map++) {
3173 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3174 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3175 		for (row = 0; row < row_cnt; row++) {
3176 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3177 			disks_per_row =
3178 				le16_to_cpu(map_buff->data_disks_per_row);
3179 			for (col = 0; col < disks_per_row; col++, dd++)
3180 				dev_info(&h->pdev->dev,
3181 					"    D%02u: h=0x%04x xor=%u,%u\n",
3182 					col, dd->ioaccel_handle,
3183 					dd->xor_mult[0], dd->xor_mult[1]);
3184 			disks_per_row =
3185 				le16_to_cpu(map_buff->metadata_disks_per_row);
3186 			for (col = 0; col < disks_per_row; col++, dd++)
3187 				dev_info(&h->pdev->dev,
3188 					"    M%02u: h=0x%04x xor=%u,%u\n",
3189 					col, dd->ioaccel_handle,
3190 					dd->xor_mult[0], dd->xor_mult[1]);
3191 		}
3192 	}
3193 }
3194 #else
3195 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3196 			__attribute__((unused)) int rc,
3197 			__attribute__((unused)) struct raid_map_data *map_buff)
3198 {
3199 }
3200 #endif
3201 
3202 static int hpsa_get_raid_map(struct ctlr_info *h,
3203 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3204 {
3205 	int rc = 0;
3206 	struct CommandList *c;
3207 	struct ErrorInfo *ei;
3208 
3209 	c = cmd_alloc(h);
3210 
3211 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3212 			sizeof(this_device->raid_map), 0,
3213 			scsi3addr, TYPE_CMD)) {
3214 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3215 		cmd_free(h, c);
3216 		return -1;
3217 	}
3218 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3219 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3220 	if (rc)
3221 		goto out;
3222 	ei = c->err_info;
3223 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3224 		hpsa_scsi_interpret_error(h, c);
3225 		rc = -1;
3226 		goto out;
3227 	}
3228 	cmd_free(h, c);
3229 
3230 	/* @todo in the future, dynamically allocate RAID map memory */
3231 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3232 				sizeof(this_device->raid_map)) {
3233 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3234 		rc = -1;
3235 	}
3236 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3237 	return rc;
3238 out:
3239 	cmd_free(h, c);
3240 	return rc;
3241 }
3242 
3243 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3244 		unsigned char scsi3addr[], u16 bmic_device_index,
3245 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3246 {
3247 	int rc = IO_OK;
3248 	struct CommandList *c;
3249 	struct ErrorInfo *ei;
3250 
3251 	c = cmd_alloc(h);
3252 
3253 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3254 		0, RAID_CTLR_LUNID, TYPE_CMD);
3255 	if (rc)
3256 		goto out;
3257 
3258 	c->Request.CDB[2] = bmic_device_index & 0xff;
3259 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3260 
3261 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3262 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3263 	if (rc)
3264 		goto out;
3265 	ei = c->err_info;
3266 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3267 		hpsa_scsi_interpret_error(h, c);
3268 		rc = -1;
3269 	}
3270 out:
3271 	cmd_free(h, c);
3272 	return rc;
3273 }
3274 
3275 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3276 	struct bmic_identify_controller *buf, size_t bufsize)
3277 {
3278 	int rc = IO_OK;
3279 	struct CommandList *c;
3280 	struct ErrorInfo *ei;
3281 
3282 	c = cmd_alloc(h);
3283 
3284 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3285 		0, RAID_CTLR_LUNID, TYPE_CMD);
3286 	if (rc)
3287 		goto out;
3288 
3289 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3290 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3291 	if (rc)
3292 		goto out;
3293 	ei = c->err_info;
3294 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3295 		hpsa_scsi_interpret_error(h, c);
3296 		rc = -1;
3297 	}
3298 out:
3299 	cmd_free(h, c);
3300 	return rc;
3301 }
3302 
3303 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3304 		unsigned char scsi3addr[], u16 bmic_device_index,
3305 		struct bmic_identify_physical_device *buf, size_t bufsize)
3306 {
3307 	int rc = IO_OK;
3308 	struct CommandList *c;
3309 	struct ErrorInfo *ei;
3310 
3311 	c = cmd_alloc(h);
3312 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3313 		0, RAID_CTLR_LUNID, TYPE_CMD);
3314 	if (rc)
3315 		goto out;
3316 
3317 	c->Request.CDB[2] = bmic_device_index & 0xff;
3318 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3319 
3320 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3321 						DEFAULT_TIMEOUT);
3322 	ei = c->err_info;
3323 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3324 		hpsa_scsi_interpret_error(h, c);
3325 		rc = -1;
3326 	}
3327 out:
3328 	cmd_free(h, c);
3329 
3330 	return rc;
3331 }
3332 
3333 /*
3334  * get enclosure information
3335  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3336  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3337  * Uses id_physical_device to determine the box_index.
3338  */
3339 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3340 			unsigned char *scsi3addr,
3341 			struct ReportExtendedLUNdata *rlep, int rle_index,
3342 			struct hpsa_scsi_dev_t *encl_dev)
3343 {
3344 	int rc = -1;
3345 	struct CommandList *c = NULL;
3346 	struct ErrorInfo *ei = NULL;
3347 	struct bmic_sense_storage_box_params *bssbp = NULL;
3348 	struct bmic_identify_physical_device *id_phys = NULL;
3349 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3350 	u16 bmic_device_index = 0;
3351 
3352 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3353 
3354 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3355 		rc = IO_OK;
3356 		goto out;
3357 	}
3358 
3359 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3360 	if (!bssbp)
3361 		goto out;
3362 
3363 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3364 	if (!id_phys)
3365 		goto out;
3366 
3367 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3368 						id_phys, sizeof(*id_phys));
3369 	if (rc) {
3370 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3371 			__func__, encl_dev->external, bmic_device_index);
3372 		goto out;
3373 	}
3374 
3375 	c = cmd_alloc(h);
3376 
3377 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3378 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3379 
3380 	if (rc)
3381 		goto out;
3382 
3383 	if (id_phys->phys_connector[1] == 'E')
3384 		c->Request.CDB[5] = id_phys->box_index;
3385 	else
3386 		c->Request.CDB[5] = 0;
3387 
3388 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3389 						DEFAULT_TIMEOUT);
3390 	if (rc)
3391 		goto out;
3392 
3393 	ei = c->err_info;
3394 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3395 		rc = -1;
3396 		goto out;
3397 	}
3398 
3399 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3400 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3401 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3402 
3403 	rc = IO_OK;
3404 out:
3405 	kfree(bssbp);
3406 	kfree(id_phys);
3407 
3408 	if (c)
3409 		cmd_free(h, c);
3410 
3411 	if (rc != IO_OK)
3412 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3413 			"Error, could not get enclosure information\n");
3414 }
3415 
3416 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3417 						unsigned char *scsi3addr)
3418 {
3419 	struct ReportExtendedLUNdata *physdev;
3420 	u32 nphysicals;
3421 	u64 sa = 0;
3422 	int i;
3423 
3424 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3425 	if (!physdev)
3426 		return 0;
3427 
3428 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3429 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3430 		kfree(physdev);
3431 		return 0;
3432 	}
3433 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3434 
3435 	for (i = 0; i < nphysicals; i++)
3436 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3437 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3438 			break;
3439 		}
3440 
3441 	kfree(physdev);
3442 
3443 	return sa;
3444 }
3445 
3446 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3447 					struct hpsa_scsi_dev_t *dev)
3448 {
3449 	int rc;
3450 	u64 sa = 0;
3451 
3452 	if (is_hba_lunid(scsi3addr)) {
3453 		struct bmic_sense_subsystem_info *ssi;
3454 
3455 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3456 		if (ssi == NULL) {
3457 			dev_warn(&h->pdev->dev,
3458 				"%s: out of memory\n", __func__);
3459 			return;
3460 		}
3461 
3462 		rc = hpsa_bmic_sense_subsystem_information(h,
3463 					scsi3addr, 0, ssi, sizeof(*ssi));
3464 		if (rc == 0) {
3465 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3466 			h->sas_address = sa;
3467 		}
3468 
3469 		kfree(ssi);
3470 	} else
3471 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3472 
3473 	dev->sas_address = sa;
3474 }
3475 
3476 /* Get a device id from inquiry page 0x83 */
3477 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3478 	unsigned char scsi3addr[], u8 page)
3479 {
3480 	int rc;
3481 	int i;
3482 	int pages;
3483 	unsigned char *buf, bufsize;
3484 
3485 	buf = kzalloc(256, GFP_KERNEL);
3486 	if (!buf)
3487 		return false;
3488 
3489 	/* Get the size of the page list first */
3490 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3491 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3492 				buf, HPSA_VPD_HEADER_SZ);
3493 	if (rc != 0)
3494 		goto exit_unsupported;
3495 	pages = buf[3];
3496 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3497 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3498 	else
3499 		bufsize = 255;
3500 
3501 	/* Get the whole VPD page list */
3502 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3503 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3504 				buf, bufsize);
3505 	if (rc != 0)
3506 		goto exit_unsupported;
3507 
3508 	pages = buf[3];
3509 	for (i = 1; i <= pages; i++)
3510 		if (buf[3 + i] == page)
3511 			goto exit_supported;
3512 exit_unsupported:
3513 	kfree(buf);
3514 	return false;
3515 exit_supported:
3516 	kfree(buf);
3517 	return true;
3518 }
3519 
3520 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3521 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3522 {
3523 	int rc;
3524 	unsigned char *buf;
3525 	u8 ioaccel_status;
3526 
3527 	this_device->offload_config = 0;
3528 	this_device->offload_enabled = 0;
3529 	this_device->offload_to_be_enabled = 0;
3530 
3531 	buf = kzalloc(64, GFP_KERNEL);
3532 	if (!buf)
3533 		return;
3534 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3535 		goto out;
3536 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3537 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3538 	if (rc != 0)
3539 		goto out;
3540 
3541 #define IOACCEL_STATUS_BYTE 4
3542 #define OFFLOAD_CONFIGURED_BIT 0x01
3543 #define OFFLOAD_ENABLED_BIT 0x02
3544 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3545 	this_device->offload_config =
3546 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3547 	if (this_device->offload_config) {
3548 		this_device->offload_enabled =
3549 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3550 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3551 			this_device->offload_enabled = 0;
3552 	}
3553 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3554 out:
3555 	kfree(buf);
3556 	return;
3557 }
3558 
3559 /* Get the device id from inquiry page 0x83 */
3560 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3561 	unsigned char *device_id, int index, int buflen)
3562 {
3563 	int rc;
3564 	unsigned char *buf;
3565 
3566 	/* Does controller have VPD for device id? */
3567 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3568 		return 1; /* not supported */
3569 
3570 	buf = kzalloc(64, GFP_KERNEL);
3571 	if (!buf)
3572 		return -ENOMEM;
3573 
3574 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3575 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3576 	if (rc == 0) {
3577 		if (buflen > 16)
3578 			buflen = 16;
3579 		memcpy(device_id, &buf[8], buflen);
3580 	}
3581 
3582 	kfree(buf);
3583 
3584 	return rc; /*0 - got id,  otherwise, didn't */
3585 }
3586 
3587 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3588 		void *buf, int bufsize,
3589 		int extended_response)
3590 {
3591 	int rc = IO_OK;
3592 	struct CommandList *c;
3593 	unsigned char scsi3addr[8];
3594 	struct ErrorInfo *ei;
3595 
3596 	c = cmd_alloc(h);
3597 
3598 	/* address the controller */
3599 	memset(scsi3addr, 0, sizeof(scsi3addr));
3600 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3601 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3602 		rc = -1;
3603 		goto out;
3604 	}
3605 	if (extended_response)
3606 		c->Request.CDB[1] = extended_response;
3607 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3608 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3609 	if (rc)
3610 		goto out;
3611 	ei = c->err_info;
3612 	if (ei->CommandStatus != 0 &&
3613 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3614 		hpsa_scsi_interpret_error(h, c);
3615 		rc = -1;
3616 	} else {
3617 		struct ReportLUNdata *rld = buf;
3618 
3619 		if (rld->extended_response_flag != extended_response) {
3620 			dev_err(&h->pdev->dev,
3621 				"report luns requested format %u, got %u\n",
3622 				extended_response,
3623 				rld->extended_response_flag);
3624 			rc = -1;
3625 		}
3626 	}
3627 out:
3628 	cmd_free(h, c);
3629 	return rc;
3630 }
3631 
3632 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3633 		struct ReportExtendedLUNdata *buf, int bufsize)
3634 {
3635 	int rc;
3636 	struct ReportLUNdata *lbuf;
3637 
3638 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3639 				      HPSA_REPORT_PHYS_EXTENDED);
3640 	if (!rc || !hpsa_allow_any)
3641 		return rc;
3642 
3643 	/* REPORT PHYS EXTENDED is not supported */
3644 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3645 	if (!lbuf)
3646 		return -ENOMEM;
3647 
3648 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3649 	if (!rc) {
3650 		int i;
3651 		u32 nphys;
3652 
3653 		/* Copy ReportLUNdata header */
3654 		memcpy(buf, lbuf, 8);
3655 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3656 		for (i = 0; i < nphys; i++)
3657 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3658 	}
3659 	kfree(lbuf);
3660 	return rc;
3661 }
3662 
3663 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3664 		struct ReportLUNdata *buf, int bufsize)
3665 {
3666 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3667 }
3668 
3669 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3670 	int bus, int target, int lun)
3671 {
3672 	device->bus = bus;
3673 	device->target = target;
3674 	device->lun = lun;
3675 }
3676 
3677 /* Use VPD inquiry to get details of volume status */
3678 static int hpsa_get_volume_status(struct ctlr_info *h,
3679 					unsigned char scsi3addr[])
3680 {
3681 	int rc;
3682 	int status;
3683 	int size;
3684 	unsigned char *buf;
3685 
3686 	buf = kzalloc(64, GFP_KERNEL);
3687 	if (!buf)
3688 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3689 
3690 	/* Does controller have VPD for logical volume status? */
3691 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3692 		goto exit_failed;
3693 
3694 	/* Get the size of the VPD return buffer */
3695 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3696 					buf, HPSA_VPD_HEADER_SZ);
3697 	if (rc != 0)
3698 		goto exit_failed;
3699 	size = buf[3];
3700 
3701 	/* Now get the whole VPD buffer */
3702 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3703 					buf, size + HPSA_VPD_HEADER_SZ);
3704 	if (rc != 0)
3705 		goto exit_failed;
3706 	status = buf[4]; /* status byte */
3707 
3708 	kfree(buf);
3709 	return status;
3710 exit_failed:
3711 	kfree(buf);
3712 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3713 }
3714 
3715 /* Determine offline status of a volume.
3716  * Return either:
3717  *  0 (not offline)
3718  *  0xff (offline for unknown reasons)
3719  *  # (integer code indicating one of several NOT READY states
3720  *     describing why a volume is to be kept offline)
3721  */
3722 static int hpsa_volume_offline(struct ctlr_info *h,
3723 					unsigned char scsi3addr[])
3724 {
3725 	struct CommandList *c;
3726 	unsigned char *sense;
3727 	u8 sense_key, asc, ascq;
3728 	int sense_len;
3729 	int rc, ldstat = 0;
3730 	u16 cmd_status;
3731 	u8 scsi_status;
3732 #define ASC_LUN_NOT_READY 0x04
3733 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3734 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3735 
3736 	c = cmd_alloc(h);
3737 
3738 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3739 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3740 					DEFAULT_TIMEOUT);
3741 	if (rc) {
3742 		cmd_free(h, c);
3743 		return 0;
3744 	}
3745 	sense = c->err_info->SenseInfo;
3746 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3747 		sense_len = sizeof(c->err_info->SenseInfo);
3748 	else
3749 		sense_len = c->err_info->SenseLen;
3750 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3751 	cmd_status = c->err_info->CommandStatus;
3752 	scsi_status = c->err_info->ScsiStatus;
3753 	cmd_free(h, c);
3754 	/* Is the volume 'not ready'? */
3755 	if (cmd_status != CMD_TARGET_STATUS ||
3756 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3757 		sense_key != NOT_READY ||
3758 		asc != ASC_LUN_NOT_READY)  {
3759 		return 0;
3760 	}
3761 
3762 	/* Determine the reason for not ready state */
3763 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3764 
3765 	/* Keep volume offline in certain cases: */
3766 	switch (ldstat) {
3767 	case HPSA_LV_UNDERGOING_ERASE:
3768 	case HPSA_LV_NOT_AVAILABLE:
3769 	case HPSA_LV_UNDERGOING_RPI:
3770 	case HPSA_LV_PENDING_RPI:
3771 	case HPSA_LV_ENCRYPTED_NO_KEY:
3772 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3773 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3774 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3775 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3776 		return ldstat;
3777 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3778 		/* If VPD status page isn't available,
3779 		 * use ASC/ASCQ to determine state
3780 		 */
3781 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3782 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3783 			return ldstat;
3784 		break;
3785 	default:
3786 		break;
3787 	}
3788 	return 0;
3789 }
3790 
3791 /*
3792  * Find out if a logical device supports aborts by simply trying one.
3793  * Smart Array may claim not to support aborts on logical drives, but
3794  * if a MSA2000 * is connected, the drives on that will be presented
3795  * by the Smart Array as logical drives, and aborts may be sent to
3796  * those devices successfully.  So the simplest way to find out is
3797  * to simply try an abort and see how the device responds.
3798  */
3799 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3800 					unsigned char *scsi3addr)
3801 {
3802 	struct CommandList *c;
3803 	struct ErrorInfo *ei;
3804 	int rc = 0;
3805 
3806 	u64 tag = (u64) -1; /* bogus tag */
3807 
3808 	/* Assume that physical devices support aborts */
3809 	if (!is_logical_dev_addr_mode(scsi3addr))
3810 		return 1;
3811 
3812 	c = cmd_alloc(h);
3813 
3814 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3815 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3816 					DEFAULT_TIMEOUT);
3817 	/* no unmap needed here because no data xfer. */
3818 	ei = c->err_info;
3819 	switch (ei->CommandStatus) {
3820 	case CMD_INVALID:
3821 		rc = 0;
3822 		break;
3823 	case CMD_UNABORTABLE:
3824 	case CMD_ABORT_FAILED:
3825 		rc = 1;
3826 		break;
3827 	case CMD_TMF_STATUS:
3828 		rc = hpsa_evaluate_tmf_status(h, c);
3829 		break;
3830 	default:
3831 		rc = 0;
3832 		break;
3833 	}
3834 	cmd_free(h, c);
3835 	return rc;
3836 }
3837 
3838 static int hpsa_update_device_info(struct ctlr_info *h,
3839 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3840 	unsigned char *is_OBDR_device)
3841 {
3842 
3843 #define OBDR_SIG_OFFSET 43
3844 #define OBDR_TAPE_SIG "$DR-10"
3845 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3846 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3847 
3848 	unsigned char *inq_buff;
3849 	unsigned char *obdr_sig;
3850 	int rc = 0;
3851 
3852 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3853 	if (!inq_buff) {
3854 		rc = -ENOMEM;
3855 		goto bail_out;
3856 	}
3857 
3858 	/* Do an inquiry to the device to see what it is. */
3859 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3860 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3861 		/* Inquiry failed (msg printed already) */
3862 		dev_err(&h->pdev->dev,
3863 			"hpsa_update_device_info: inquiry failed\n");
3864 		rc = -EIO;
3865 		goto bail_out;
3866 	}
3867 
3868 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3869 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3870 
3871 	this_device->devtype = (inq_buff[0] & 0x1f);
3872 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3873 	memcpy(this_device->vendor, &inq_buff[8],
3874 		sizeof(this_device->vendor));
3875 	memcpy(this_device->model, &inq_buff[16],
3876 		sizeof(this_device->model));
3877 	memset(this_device->device_id, 0,
3878 		sizeof(this_device->device_id));
3879 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3880 		sizeof(this_device->device_id)))
3881 		dev_err(&h->pdev->dev,
3882 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3883 			h->ctlr, __func__,
3884 			h->scsi_host->host_no,
3885 			this_device->target, this_device->lun,
3886 			scsi_device_type(this_device->devtype),
3887 			this_device->model);
3888 
3889 	if ((this_device->devtype == TYPE_DISK ||
3890 		this_device->devtype == TYPE_ZBC) &&
3891 		is_logical_dev_addr_mode(scsi3addr)) {
3892 		int volume_offline;
3893 
3894 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3895 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3896 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3897 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3898 		if (volume_offline < 0 || volume_offline > 0xff)
3899 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3900 		this_device->volume_offline = volume_offline & 0xff;
3901 	} else {
3902 		this_device->raid_level = RAID_UNKNOWN;
3903 		this_device->offload_config = 0;
3904 		this_device->offload_enabled = 0;
3905 		this_device->offload_to_be_enabled = 0;
3906 		this_device->hba_ioaccel_enabled = 0;
3907 		this_device->volume_offline = 0;
3908 		this_device->queue_depth = h->nr_cmds;
3909 	}
3910 
3911 	if (is_OBDR_device) {
3912 		/* See if this is a One-Button-Disaster-Recovery device
3913 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3914 		 */
3915 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3916 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3917 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3918 						OBDR_SIG_LEN) == 0);
3919 	}
3920 	kfree(inq_buff);
3921 	return 0;
3922 
3923 bail_out:
3924 	kfree(inq_buff);
3925 	return rc;
3926 }
3927 
3928 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3929 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3930 {
3931 	unsigned long flags;
3932 	int rc, entry;
3933 	/*
3934 	 * See if this device supports aborts.  If we already know
3935 	 * the device, we already know if it supports aborts, otherwise
3936 	 * we have to find out if it supports aborts by trying one.
3937 	 */
3938 	spin_lock_irqsave(&h->devlock, flags);
3939 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3940 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3941 		entry >= 0 && entry < h->ndevices) {
3942 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3943 		spin_unlock_irqrestore(&h->devlock, flags);
3944 	} else {
3945 		spin_unlock_irqrestore(&h->devlock, flags);
3946 		dev->supports_aborts =
3947 				hpsa_device_supports_aborts(h, scsi3addr);
3948 		if (dev->supports_aborts < 0)
3949 			dev->supports_aborts = 0;
3950 	}
3951 }
3952 
3953 /*
3954  * Helper function to assign bus, target, lun mapping of devices.
3955  * Logical drive target and lun are assigned at this time, but
3956  * physical device lun and target assignment are deferred (assigned
3957  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3958 */
3959 static void figure_bus_target_lun(struct ctlr_info *h,
3960 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3961 {
3962 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3963 
3964 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3965 		/* physical device, target and lun filled in later */
3966 		if (is_hba_lunid(lunaddrbytes))
3967 			hpsa_set_bus_target_lun(device,
3968 					HPSA_HBA_BUS, 0, lunid & 0x3fff);
3969 		else
3970 			/* defer target, lun assignment for physical devices */
3971 			hpsa_set_bus_target_lun(device,
3972 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3973 		return;
3974 	}
3975 	/* It's a logical device */
3976 	if (device->external) {
3977 		hpsa_set_bus_target_lun(device,
3978 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3979 			lunid & 0x00ff);
3980 		return;
3981 	}
3982 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3983 				0, lunid & 0x3fff);
3984 }
3985 
3986 
3987 /*
3988  * Get address of physical disk used for an ioaccel2 mode command:
3989  *	1. Extract ioaccel2 handle from the command.
3990  *	2. Find a matching ioaccel2 handle from list of physical disks.
3991  *	3. Return:
3992  *		1 and set scsi3addr to address of matching physical
3993  *		0 if no matching physical disk was found.
3994  */
3995 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3996 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3997 {
3998 	struct io_accel2_cmd *c2 =
3999 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4000 	unsigned long flags;
4001 	int i;
4002 
4003 	spin_lock_irqsave(&h->devlock, flags);
4004 	for (i = 0; i < h->ndevices; i++)
4005 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4006 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
4007 				sizeof(h->dev[i]->scsi3addr));
4008 			spin_unlock_irqrestore(&h->devlock, flags);
4009 			return 1;
4010 		}
4011 	spin_unlock_irqrestore(&h->devlock, flags);
4012 	return 0;
4013 }
4014 
4015 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4016 	int i, int nphysicals, int nlocal_logicals)
4017 {
4018 	/* In report logicals, local logicals are listed first,
4019 	* then any externals.
4020 	*/
4021 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4022 
4023 	if (i == raid_ctlr_position)
4024 		return 0;
4025 
4026 	if (i < logicals_start)
4027 		return 0;
4028 
4029 	/* i is in logicals range, but still within local logicals */
4030 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4031 		return 0;
4032 
4033 	return 1; /* it's an external lun */
4034 }
4035 
4036 /*
4037  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4038  * logdev.  The number of luns in physdev and logdev are returned in
4039  * *nphysicals and *nlogicals, respectively.
4040  * Returns 0 on success, -1 otherwise.
4041  */
4042 static int hpsa_gather_lun_info(struct ctlr_info *h,
4043 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4044 	struct ReportLUNdata *logdev, u32 *nlogicals)
4045 {
4046 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4047 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4048 		return -1;
4049 	}
4050 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4051 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4052 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4053 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4054 		*nphysicals = HPSA_MAX_PHYS_LUN;
4055 	}
4056 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4057 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4058 		return -1;
4059 	}
4060 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4061 	/* Reject Logicals in excess of our max capability. */
4062 	if (*nlogicals > HPSA_MAX_LUN) {
4063 		dev_warn(&h->pdev->dev,
4064 			"maximum logical LUNs (%d) exceeded.  "
4065 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4066 			*nlogicals - HPSA_MAX_LUN);
4067 			*nlogicals = HPSA_MAX_LUN;
4068 	}
4069 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4070 		dev_warn(&h->pdev->dev,
4071 			"maximum logical + physical LUNs (%d) exceeded. "
4072 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4073 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4074 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4075 	}
4076 	return 0;
4077 }
4078 
4079 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4080 	int i, int nphysicals, int nlogicals,
4081 	struct ReportExtendedLUNdata *physdev_list,
4082 	struct ReportLUNdata *logdev_list)
4083 {
4084 	/* Helper function, figure out where the LUN ID info is coming from
4085 	 * given index i, lists of physical and logical devices, where in
4086 	 * the list the raid controller is supposed to appear (first or last)
4087 	 */
4088 
4089 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4090 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4091 
4092 	if (i == raid_ctlr_position)
4093 		return RAID_CTLR_LUNID;
4094 
4095 	if (i < logicals_start)
4096 		return &physdev_list->LUN[i -
4097 				(raid_ctlr_position == 0)].lunid[0];
4098 
4099 	if (i < last_device)
4100 		return &logdev_list->LUN[i - nphysicals -
4101 			(raid_ctlr_position == 0)][0];
4102 	BUG();
4103 	return NULL;
4104 }
4105 
4106 /* get physical drive ioaccel handle and queue depth */
4107 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4108 		struct hpsa_scsi_dev_t *dev,
4109 		struct ReportExtendedLUNdata *rlep, int rle_index,
4110 		struct bmic_identify_physical_device *id_phys)
4111 {
4112 	int rc;
4113 	struct ext_report_lun_entry *rle;
4114 
4115 	/*
4116 	 * external targets don't support BMIC
4117 	 */
4118 	if (dev->external) {
4119 		dev->queue_depth = 7;
4120 		return;
4121 	}
4122 
4123 	rle = &rlep->LUN[rle_index];
4124 
4125 	dev->ioaccel_handle = rle->ioaccel_handle;
4126 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4127 		dev->hba_ioaccel_enabled = 1;
4128 	memset(id_phys, 0, sizeof(*id_phys));
4129 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4130 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4131 			sizeof(*id_phys));
4132 	if (!rc)
4133 		/* Reserve space for FW operations */
4134 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4135 #define DRIVE_QUEUE_DEPTH 7
4136 		dev->queue_depth =
4137 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4138 				DRIVE_CMDS_RESERVED_FOR_FW;
4139 	else
4140 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4141 }
4142 
4143 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4144 	struct ReportExtendedLUNdata *rlep, int rle_index,
4145 	struct bmic_identify_physical_device *id_phys)
4146 {
4147 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4148 
4149 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4150 		this_device->hba_ioaccel_enabled = 1;
4151 
4152 	memcpy(&this_device->active_path_index,
4153 		&id_phys->active_path_number,
4154 		sizeof(this_device->active_path_index));
4155 	memcpy(&this_device->path_map,
4156 		&id_phys->redundant_path_present_map,
4157 		sizeof(this_device->path_map));
4158 	memcpy(&this_device->box,
4159 		&id_phys->alternate_paths_phys_box_on_port,
4160 		sizeof(this_device->box));
4161 	memcpy(&this_device->phys_connector,
4162 		&id_phys->alternate_paths_phys_connector,
4163 		sizeof(this_device->phys_connector));
4164 	memcpy(&this_device->bay,
4165 		&id_phys->phys_bay_in_box,
4166 		sizeof(this_device->bay));
4167 }
4168 
4169 /* get number of local logical disks. */
4170 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4171 	struct bmic_identify_controller *id_ctlr,
4172 	u32 *nlocals)
4173 {
4174 	int rc;
4175 
4176 	if (!id_ctlr) {
4177 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4178 			__func__);
4179 		return -ENOMEM;
4180 	}
4181 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4182 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4183 	if (!rc)
4184 		if (id_ctlr->configured_logical_drive_count < 256)
4185 			*nlocals = id_ctlr->configured_logical_drive_count;
4186 		else
4187 			*nlocals = le16_to_cpu(
4188 					id_ctlr->extended_logical_unit_count);
4189 	else
4190 		*nlocals = -1;
4191 	return rc;
4192 }
4193 
4194 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4195 {
4196 	struct bmic_identify_physical_device *id_phys;
4197 	bool is_spare = false;
4198 	int rc;
4199 
4200 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4201 	if (!id_phys)
4202 		return false;
4203 
4204 	rc = hpsa_bmic_id_physical_device(h,
4205 					lunaddrbytes,
4206 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4207 					id_phys, sizeof(*id_phys));
4208 	if (rc == 0)
4209 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4210 
4211 	kfree(id_phys);
4212 	return is_spare;
4213 }
4214 
4215 #define RPL_DEV_FLAG_NON_DISK                           0x1
4216 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4217 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4218 
4219 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4220 
4221 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4222 				struct ext_report_lun_entry *rle)
4223 {
4224 	u8 device_flags;
4225 	u8 device_type;
4226 
4227 	if (!MASKED_DEVICE(lunaddrbytes))
4228 		return false;
4229 
4230 	device_flags = rle->device_flags;
4231 	device_type = rle->device_type;
4232 
4233 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4234 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4235 			return false;
4236 		return true;
4237 	}
4238 
4239 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4240 		return false;
4241 
4242 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4243 		return false;
4244 
4245 	/*
4246 	 * Spares may be spun down, we do not want to
4247 	 * do an Inquiry to a RAID set spare drive as
4248 	 * that would have them spun up, that is a
4249 	 * performance hit because I/O to the RAID device
4250 	 * stops while the spin up occurs which can take
4251 	 * over 50 seconds.
4252 	 */
4253 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4254 		return true;
4255 
4256 	return false;
4257 }
4258 
4259 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4260 {
4261 	/* the idea here is we could get notified
4262 	 * that some devices have changed, so we do a report
4263 	 * physical luns and report logical luns cmd, and adjust
4264 	 * our list of devices accordingly.
4265 	 *
4266 	 * The scsi3addr's of devices won't change so long as the
4267 	 * adapter is not reset.  That means we can rescan and
4268 	 * tell which devices we already know about, vs. new
4269 	 * devices, vs.  disappearing devices.
4270 	 */
4271 	struct ReportExtendedLUNdata *physdev_list = NULL;
4272 	struct ReportLUNdata *logdev_list = NULL;
4273 	struct bmic_identify_physical_device *id_phys = NULL;
4274 	struct bmic_identify_controller *id_ctlr = NULL;
4275 	u32 nphysicals = 0;
4276 	u32 nlogicals = 0;
4277 	u32 nlocal_logicals = 0;
4278 	u32 ndev_allocated = 0;
4279 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4280 	int ncurrent = 0;
4281 	int i, n_ext_target_devs, ndevs_to_allocate;
4282 	int raid_ctlr_position;
4283 	bool physical_device;
4284 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4285 
4286 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4287 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4288 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4289 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4290 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4291 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4292 
4293 	if (!currentsd || !physdev_list || !logdev_list ||
4294 		!tmpdevice || !id_phys || !id_ctlr) {
4295 		dev_err(&h->pdev->dev, "out of memory\n");
4296 		goto out;
4297 	}
4298 	memset(lunzerobits, 0, sizeof(lunzerobits));
4299 
4300 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4301 
4302 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4303 			logdev_list, &nlogicals)) {
4304 		h->drv_req_rescan = 1;
4305 		goto out;
4306 	}
4307 
4308 	/* Set number of local logicals (non PTRAID) */
4309 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4310 		dev_warn(&h->pdev->dev,
4311 			"%s: Can't determine number of local logical devices.\n",
4312 			__func__);
4313 	}
4314 
4315 	/* We might see up to the maximum number of logical and physical disks
4316 	 * plus external target devices, and a device for the local RAID
4317 	 * controller.
4318 	 */
4319 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4320 
4321 	/* Allocate the per device structures */
4322 	for (i = 0; i < ndevs_to_allocate; i++) {
4323 		if (i >= HPSA_MAX_DEVICES) {
4324 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4325 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4326 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4327 			break;
4328 		}
4329 
4330 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4331 		if (!currentsd[i]) {
4332 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4333 				__FILE__, __LINE__);
4334 			h->drv_req_rescan = 1;
4335 			goto out;
4336 		}
4337 		ndev_allocated++;
4338 	}
4339 
4340 	if (is_scsi_rev_5(h))
4341 		raid_ctlr_position = 0;
4342 	else
4343 		raid_ctlr_position = nphysicals + nlogicals;
4344 
4345 	/* adjust our table of devices */
4346 	n_ext_target_devs = 0;
4347 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4348 		u8 *lunaddrbytes, is_OBDR = 0;
4349 		int rc = 0;
4350 		int phys_dev_index = i - (raid_ctlr_position == 0);
4351 		bool skip_device = false;
4352 
4353 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4354 
4355 		/* Figure out where the LUN ID info is coming from */
4356 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4357 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4358 
4359 		/* Determine if this is a lun from an external target array */
4360 		tmpdevice->external =
4361 			figure_external_status(h, raid_ctlr_position, i,
4362 						nphysicals, nlocal_logicals);
4363 
4364 		/*
4365 		 * Skip over some devices such as a spare.
4366 		 */
4367 		if (!tmpdevice->external && physical_device) {
4368 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4369 					&physdev_list->LUN[phys_dev_index]);
4370 			if (skip_device)
4371 				continue;
4372 		}
4373 
4374 		/* Get device type, vendor, model, device id */
4375 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4376 							&is_OBDR);
4377 		if (rc == -ENOMEM) {
4378 			dev_warn(&h->pdev->dev,
4379 				"Out of memory, rescan deferred.\n");
4380 			h->drv_req_rescan = 1;
4381 			goto out;
4382 		}
4383 		if (rc) {
4384 			dev_warn(&h->pdev->dev,
4385 				"Inquiry failed, skipping device.\n");
4386 			continue;
4387 		}
4388 
4389 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4390 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4391 		this_device = currentsd[ncurrent];
4392 
4393 		/* Turn on discovery_polling if there are ext target devices.
4394 		 * Event-based change notification is unreliable for those.
4395 		 */
4396 		if (!h->discovery_polling) {
4397 			if (tmpdevice->external) {
4398 				h->discovery_polling = 1;
4399 				dev_info(&h->pdev->dev,
4400 					"External target, activate discovery polling.\n");
4401 			}
4402 		}
4403 
4404 
4405 		*this_device = *tmpdevice;
4406 		this_device->physical_device = physical_device;
4407 
4408 		/*
4409 		 * Expose all devices except for physical devices that
4410 		 * are masked.
4411 		 */
4412 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4413 			this_device->expose_device = 0;
4414 		else
4415 			this_device->expose_device = 1;
4416 
4417 
4418 		/*
4419 		 * Get the SAS address for physical devices that are exposed.
4420 		 */
4421 		if (this_device->physical_device && this_device->expose_device)
4422 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4423 
4424 		switch (this_device->devtype) {
4425 		case TYPE_ROM:
4426 			/* We don't *really* support actual CD-ROM devices,
4427 			 * just "One Button Disaster Recovery" tape drive
4428 			 * which temporarily pretends to be a CD-ROM drive.
4429 			 * So we check that the device is really an OBDR tape
4430 			 * device by checking for "$DR-10" in bytes 43-48 of
4431 			 * the inquiry data.
4432 			 */
4433 			if (is_OBDR)
4434 				ncurrent++;
4435 			break;
4436 		case TYPE_DISK:
4437 		case TYPE_ZBC:
4438 			if (this_device->physical_device) {
4439 				/* The disk is in HBA mode. */
4440 				/* Never use RAID mapper in HBA mode. */
4441 				this_device->offload_enabled = 0;
4442 				hpsa_get_ioaccel_drive_info(h, this_device,
4443 					physdev_list, phys_dev_index, id_phys);
4444 				hpsa_get_path_info(this_device,
4445 					physdev_list, phys_dev_index, id_phys);
4446 			}
4447 			ncurrent++;
4448 			break;
4449 		case TYPE_TAPE:
4450 		case TYPE_MEDIUM_CHANGER:
4451 			ncurrent++;
4452 			break;
4453 		case TYPE_ENCLOSURE:
4454 			if (!this_device->external)
4455 				hpsa_get_enclosure_info(h, lunaddrbytes,
4456 						physdev_list, phys_dev_index,
4457 						this_device);
4458 			ncurrent++;
4459 			break;
4460 		case TYPE_RAID:
4461 			/* Only present the Smartarray HBA as a RAID controller.
4462 			 * If it's a RAID controller other than the HBA itself
4463 			 * (an external RAID controller, MSA500 or similar)
4464 			 * don't present it.
4465 			 */
4466 			if (!is_hba_lunid(lunaddrbytes))
4467 				break;
4468 			ncurrent++;
4469 			break;
4470 		default:
4471 			break;
4472 		}
4473 		if (ncurrent >= HPSA_MAX_DEVICES)
4474 			break;
4475 	}
4476 
4477 	if (h->sas_host == NULL) {
4478 		int rc = 0;
4479 
4480 		rc = hpsa_add_sas_host(h);
4481 		if (rc) {
4482 			dev_warn(&h->pdev->dev,
4483 				"Could not add sas host %d\n", rc);
4484 			goto out;
4485 		}
4486 	}
4487 
4488 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4489 out:
4490 	kfree(tmpdevice);
4491 	for (i = 0; i < ndev_allocated; i++)
4492 		kfree(currentsd[i]);
4493 	kfree(currentsd);
4494 	kfree(physdev_list);
4495 	kfree(logdev_list);
4496 	kfree(id_ctlr);
4497 	kfree(id_phys);
4498 }
4499 
4500 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4501 				   struct scatterlist *sg)
4502 {
4503 	u64 addr64 = (u64) sg_dma_address(sg);
4504 	unsigned int len = sg_dma_len(sg);
4505 
4506 	desc->Addr = cpu_to_le64(addr64);
4507 	desc->Len = cpu_to_le32(len);
4508 	desc->Ext = 0;
4509 }
4510 
4511 /*
4512  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4513  * dma mapping  and fills in the scatter gather entries of the
4514  * hpsa command, cp.
4515  */
4516 static int hpsa_scatter_gather(struct ctlr_info *h,
4517 		struct CommandList *cp,
4518 		struct scsi_cmnd *cmd)
4519 {
4520 	struct scatterlist *sg;
4521 	int use_sg, i, sg_limit, chained, last_sg;
4522 	struct SGDescriptor *curr_sg;
4523 
4524 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4525 
4526 	use_sg = scsi_dma_map(cmd);
4527 	if (use_sg < 0)
4528 		return use_sg;
4529 
4530 	if (!use_sg)
4531 		goto sglist_finished;
4532 
4533 	/*
4534 	 * If the number of entries is greater than the max for a single list,
4535 	 * then we have a chained list; we will set up all but one entry in the
4536 	 * first list (the last entry is saved for link information);
4537 	 * otherwise, we don't have a chained list and we'll set up at each of
4538 	 * the entries in the one list.
4539 	 */
4540 	curr_sg = cp->SG;
4541 	chained = use_sg > h->max_cmd_sg_entries;
4542 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4543 	last_sg = scsi_sg_count(cmd) - 1;
4544 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4545 		hpsa_set_sg_descriptor(curr_sg, sg);
4546 		curr_sg++;
4547 	}
4548 
4549 	if (chained) {
4550 		/*
4551 		 * Continue with the chained list.  Set curr_sg to the chained
4552 		 * list.  Modify the limit to the total count less the entries
4553 		 * we've already set up.  Resume the scan at the list entry
4554 		 * where the previous loop left off.
4555 		 */
4556 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4557 		sg_limit = use_sg - sg_limit;
4558 		for_each_sg(sg, sg, sg_limit, i) {
4559 			hpsa_set_sg_descriptor(curr_sg, sg);
4560 			curr_sg++;
4561 		}
4562 	}
4563 
4564 	/* Back the pointer up to the last entry and mark it as "last". */
4565 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4566 
4567 	if (use_sg + chained > h->maxSG)
4568 		h->maxSG = use_sg + chained;
4569 
4570 	if (chained) {
4571 		cp->Header.SGList = h->max_cmd_sg_entries;
4572 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4573 		if (hpsa_map_sg_chain_block(h, cp)) {
4574 			scsi_dma_unmap(cmd);
4575 			return -1;
4576 		}
4577 		return 0;
4578 	}
4579 
4580 sglist_finished:
4581 
4582 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4583 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4584 	return 0;
4585 }
4586 
4587 #define IO_ACCEL_INELIGIBLE (1)
4588 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4589 {
4590 	int is_write = 0;
4591 	u32 block;
4592 	u32 block_cnt;
4593 
4594 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4595 	switch (cdb[0]) {
4596 	case WRITE_6:
4597 	case WRITE_12:
4598 		is_write = 1;
4599 	case READ_6:
4600 	case READ_12:
4601 		if (*cdb_len == 6) {
4602 			block = (((cdb[1] & 0x1F) << 16) |
4603 				(cdb[2] << 8) |
4604 				cdb[3]);
4605 			block_cnt = cdb[4];
4606 			if (block_cnt == 0)
4607 				block_cnt = 256;
4608 		} else {
4609 			BUG_ON(*cdb_len != 12);
4610 			block = get_unaligned_be32(&cdb[2]);
4611 			block_cnt = get_unaligned_be32(&cdb[6]);
4612 		}
4613 		if (block_cnt > 0xffff)
4614 			return IO_ACCEL_INELIGIBLE;
4615 
4616 		cdb[0] = is_write ? WRITE_10 : READ_10;
4617 		cdb[1] = 0;
4618 		cdb[2] = (u8) (block >> 24);
4619 		cdb[3] = (u8) (block >> 16);
4620 		cdb[4] = (u8) (block >> 8);
4621 		cdb[5] = (u8) (block);
4622 		cdb[6] = 0;
4623 		cdb[7] = (u8) (block_cnt >> 8);
4624 		cdb[8] = (u8) (block_cnt);
4625 		cdb[9] = 0;
4626 		*cdb_len = 10;
4627 		break;
4628 	}
4629 	return 0;
4630 }
4631 
4632 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4633 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4634 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4635 {
4636 	struct scsi_cmnd *cmd = c->scsi_cmd;
4637 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4638 	unsigned int len;
4639 	unsigned int total_len = 0;
4640 	struct scatterlist *sg;
4641 	u64 addr64;
4642 	int use_sg, i;
4643 	struct SGDescriptor *curr_sg;
4644 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4645 
4646 	/* TODO: implement chaining support */
4647 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4648 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4649 		return IO_ACCEL_INELIGIBLE;
4650 	}
4651 
4652 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4653 
4654 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4655 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4656 		return IO_ACCEL_INELIGIBLE;
4657 	}
4658 
4659 	c->cmd_type = CMD_IOACCEL1;
4660 
4661 	/* Adjust the DMA address to point to the accelerated command buffer */
4662 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4663 				(c->cmdindex * sizeof(*cp));
4664 	BUG_ON(c->busaddr & 0x0000007F);
4665 
4666 	use_sg = scsi_dma_map(cmd);
4667 	if (use_sg < 0) {
4668 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4669 		return use_sg;
4670 	}
4671 
4672 	if (use_sg) {
4673 		curr_sg = cp->SG;
4674 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4675 			addr64 = (u64) sg_dma_address(sg);
4676 			len  = sg_dma_len(sg);
4677 			total_len += len;
4678 			curr_sg->Addr = cpu_to_le64(addr64);
4679 			curr_sg->Len = cpu_to_le32(len);
4680 			curr_sg->Ext = cpu_to_le32(0);
4681 			curr_sg++;
4682 		}
4683 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4684 
4685 		switch (cmd->sc_data_direction) {
4686 		case DMA_TO_DEVICE:
4687 			control |= IOACCEL1_CONTROL_DATA_OUT;
4688 			break;
4689 		case DMA_FROM_DEVICE:
4690 			control |= IOACCEL1_CONTROL_DATA_IN;
4691 			break;
4692 		case DMA_NONE:
4693 			control |= IOACCEL1_CONTROL_NODATAXFER;
4694 			break;
4695 		default:
4696 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4697 			cmd->sc_data_direction);
4698 			BUG();
4699 			break;
4700 		}
4701 	} else {
4702 		control |= IOACCEL1_CONTROL_NODATAXFER;
4703 	}
4704 
4705 	c->Header.SGList = use_sg;
4706 	/* Fill out the command structure to submit */
4707 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4708 	cp->transfer_len = cpu_to_le32(total_len);
4709 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4710 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4711 	cp->control = cpu_to_le32(control);
4712 	memcpy(cp->CDB, cdb, cdb_len);
4713 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4714 	/* Tag was already set at init time. */
4715 	enqueue_cmd_and_start_io(h, c);
4716 	return 0;
4717 }
4718 
4719 /*
4720  * Queue a command directly to a device behind the controller using the
4721  * I/O accelerator path.
4722  */
4723 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4724 	struct CommandList *c)
4725 {
4726 	struct scsi_cmnd *cmd = c->scsi_cmd;
4727 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4728 
4729 	if (!dev)
4730 		return -1;
4731 
4732 	c->phys_disk = dev;
4733 
4734 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4735 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4736 }
4737 
4738 /*
4739  * Set encryption parameters for the ioaccel2 request
4740  */
4741 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4742 	struct CommandList *c, struct io_accel2_cmd *cp)
4743 {
4744 	struct scsi_cmnd *cmd = c->scsi_cmd;
4745 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4746 	struct raid_map_data *map = &dev->raid_map;
4747 	u64 first_block;
4748 
4749 	/* Are we doing encryption on this device */
4750 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4751 		return;
4752 	/* Set the data encryption key index. */
4753 	cp->dekindex = map->dekindex;
4754 
4755 	/* Set the encryption enable flag, encoded into direction field. */
4756 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4757 
4758 	/* Set encryption tweak values based on logical block address
4759 	 * If block size is 512, tweak value is LBA.
4760 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4761 	 */
4762 	switch (cmd->cmnd[0]) {
4763 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4764 	case READ_6:
4765 	case WRITE_6:
4766 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4767 				(cmd->cmnd[2] << 8) |
4768 				cmd->cmnd[3]);
4769 		break;
4770 	case WRITE_10:
4771 	case READ_10:
4772 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4773 	case WRITE_12:
4774 	case READ_12:
4775 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4776 		break;
4777 	case WRITE_16:
4778 	case READ_16:
4779 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4780 		break;
4781 	default:
4782 		dev_err(&h->pdev->dev,
4783 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4784 			__func__, cmd->cmnd[0]);
4785 		BUG();
4786 		break;
4787 	}
4788 
4789 	if (le32_to_cpu(map->volume_blk_size) != 512)
4790 		first_block = first_block *
4791 				le32_to_cpu(map->volume_blk_size)/512;
4792 
4793 	cp->tweak_lower = cpu_to_le32(first_block);
4794 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4795 }
4796 
4797 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4798 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4799 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4800 {
4801 	struct scsi_cmnd *cmd = c->scsi_cmd;
4802 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4803 	struct ioaccel2_sg_element *curr_sg;
4804 	int use_sg, i;
4805 	struct scatterlist *sg;
4806 	u64 addr64;
4807 	u32 len;
4808 	u32 total_len = 0;
4809 
4810 	if (!cmd->device)
4811 		return -1;
4812 
4813 	if (!cmd->device->hostdata)
4814 		return -1;
4815 
4816 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4817 
4818 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4819 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4820 		return IO_ACCEL_INELIGIBLE;
4821 	}
4822 
4823 	c->cmd_type = CMD_IOACCEL2;
4824 	/* Adjust the DMA address to point to the accelerated command buffer */
4825 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4826 				(c->cmdindex * sizeof(*cp));
4827 	BUG_ON(c->busaddr & 0x0000007F);
4828 
4829 	memset(cp, 0, sizeof(*cp));
4830 	cp->IU_type = IOACCEL2_IU_TYPE;
4831 
4832 	use_sg = scsi_dma_map(cmd);
4833 	if (use_sg < 0) {
4834 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4835 		return use_sg;
4836 	}
4837 
4838 	if (use_sg) {
4839 		curr_sg = cp->sg;
4840 		if (use_sg > h->ioaccel_maxsg) {
4841 			addr64 = le64_to_cpu(
4842 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4843 			curr_sg->address = cpu_to_le64(addr64);
4844 			curr_sg->length = 0;
4845 			curr_sg->reserved[0] = 0;
4846 			curr_sg->reserved[1] = 0;
4847 			curr_sg->reserved[2] = 0;
4848 			curr_sg->chain_indicator = 0x80;
4849 
4850 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4851 		}
4852 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4853 			addr64 = (u64) sg_dma_address(sg);
4854 			len  = sg_dma_len(sg);
4855 			total_len += len;
4856 			curr_sg->address = cpu_to_le64(addr64);
4857 			curr_sg->length = cpu_to_le32(len);
4858 			curr_sg->reserved[0] = 0;
4859 			curr_sg->reserved[1] = 0;
4860 			curr_sg->reserved[2] = 0;
4861 			curr_sg->chain_indicator = 0;
4862 			curr_sg++;
4863 		}
4864 
4865 		switch (cmd->sc_data_direction) {
4866 		case DMA_TO_DEVICE:
4867 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4868 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4869 			break;
4870 		case DMA_FROM_DEVICE:
4871 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4872 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4873 			break;
4874 		case DMA_NONE:
4875 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4876 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4877 			break;
4878 		default:
4879 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4880 				cmd->sc_data_direction);
4881 			BUG();
4882 			break;
4883 		}
4884 	} else {
4885 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4886 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4887 	}
4888 
4889 	/* Set encryption parameters, if necessary */
4890 	set_encrypt_ioaccel2(h, c, cp);
4891 
4892 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4893 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4894 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4895 
4896 	cp->data_len = cpu_to_le32(total_len);
4897 	cp->err_ptr = cpu_to_le64(c->busaddr +
4898 			offsetof(struct io_accel2_cmd, error_data));
4899 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4900 
4901 	/* fill in sg elements */
4902 	if (use_sg > h->ioaccel_maxsg) {
4903 		cp->sg_count = 1;
4904 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4905 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4906 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4907 			scsi_dma_unmap(cmd);
4908 			return -1;
4909 		}
4910 	} else
4911 		cp->sg_count = (u8) use_sg;
4912 
4913 	enqueue_cmd_and_start_io(h, c);
4914 	return 0;
4915 }
4916 
4917 /*
4918  * Queue a command to the correct I/O accelerator path.
4919  */
4920 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4921 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4922 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4923 {
4924 	if (!c->scsi_cmd->device)
4925 		return -1;
4926 
4927 	if (!c->scsi_cmd->device->hostdata)
4928 		return -1;
4929 
4930 	/* Try to honor the device's queue depth */
4931 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4932 					phys_disk->queue_depth) {
4933 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4934 		return IO_ACCEL_INELIGIBLE;
4935 	}
4936 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4937 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4938 						cdb, cdb_len, scsi3addr,
4939 						phys_disk);
4940 	else
4941 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4942 						cdb, cdb_len, scsi3addr,
4943 						phys_disk);
4944 }
4945 
4946 static void raid_map_helper(struct raid_map_data *map,
4947 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4948 {
4949 	if (offload_to_mirror == 0)  {
4950 		/* use physical disk in the first mirrored group. */
4951 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4952 		return;
4953 	}
4954 	do {
4955 		/* determine mirror group that *map_index indicates */
4956 		*current_group = *map_index /
4957 			le16_to_cpu(map->data_disks_per_row);
4958 		if (offload_to_mirror == *current_group)
4959 			continue;
4960 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4961 			/* select map index from next group */
4962 			*map_index += le16_to_cpu(map->data_disks_per_row);
4963 			(*current_group)++;
4964 		} else {
4965 			/* select map index from first group */
4966 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4967 			*current_group = 0;
4968 		}
4969 	} while (offload_to_mirror != *current_group);
4970 }
4971 
4972 /*
4973  * Attempt to perform offload RAID mapping for a logical volume I/O.
4974  */
4975 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4976 	struct CommandList *c)
4977 {
4978 	struct scsi_cmnd *cmd = c->scsi_cmd;
4979 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4980 	struct raid_map_data *map = &dev->raid_map;
4981 	struct raid_map_disk_data *dd = &map->data[0];
4982 	int is_write = 0;
4983 	u32 map_index;
4984 	u64 first_block, last_block;
4985 	u32 block_cnt;
4986 	u32 blocks_per_row;
4987 	u64 first_row, last_row;
4988 	u32 first_row_offset, last_row_offset;
4989 	u32 first_column, last_column;
4990 	u64 r0_first_row, r0_last_row;
4991 	u32 r5or6_blocks_per_row;
4992 	u64 r5or6_first_row, r5or6_last_row;
4993 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4994 	u32 r5or6_first_column, r5or6_last_column;
4995 	u32 total_disks_per_row;
4996 	u32 stripesize;
4997 	u32 first_group, last_group, current_group;
4998 	u32 map_row;
4999 	u32 disk_handle;
5000 	u64 disk_block;
5001 	u32 disk_block_cnt;
5002 	u8 cdb[16];
5003 	u8 cdb_len;
5004 	u16 strip_size;
5005 #if BITS_PER_LONG == 32
5006 	u64 tmpdiv;
5007 #endif
5008 	int offload_to_mirror;
5009 
5010 	if (!dev)
5011 		return -1;
5012 
5013 	/* check for valid opcode, get LBA and block count */
5014 	switch (cmd->cmnd[0]) {
5015 	case WRITE_6:
5016 		is_write = 1;
5017 	case READ_6:
5018 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5019 				(cmd->cmnd[2] << 8) |
5020 				cmd->cmnd[3]);
5021 		block_cnt = cmd->cmnd[4];
5022 		if (block_cnt == 0)
5023 			block_cnt = 256;
5024 		break;
5025 	case WRITE_10:
5026 		is_write = 1;
5027 	case READ_10:
5028 		first_block =
5029 			(((u64) cmd->cmnd[2]) << 24) |
5030 			(((u64) cmd->cmnd[3]) << 16) |
5031 			(((u64) cmd->cmnd[4]) << 8) |
5032 			cmd->cmnd[5];
5033 		block_cnt =
5034 			(((u32) cmd->cmnd[7]) << 8) |
5035 			cmd->cmnd[8];
5036 		break;
5037 	case WRITE_12:
5038 		is_write = 1;
5039 	case READ_12:
5040 		first_block =
5041 			(((u64) cmd->cmnd[2]) << 24) |
5042 			(((u64) cmd->cmnd[3]) << 16) |
5043 			(((u64) cmd->cmnd[4]) << 8) |
5044 			cmd->cmnd[5];
5045 		block_cnt =
5046 			(((u32) cmd->cmnd[6]) << 24) |
5047 			(((u32) cmd->cmnd[7]) << 16) |
5048 			(((u32) cmd->cmnd[8]) << 8) |
5049 		cmd->cmnd[9];
5050 		break;
5051 	case WRITE_16:
5052 		is_write = 1;
5053 	case READ_16:
5054 		first_block =
5055 			(((u64) cmd->cmnd[2]) << 56) |
5056 			(((u64) cmd->cmnd[3]) << 48) |
5057 			(((u64) cmd->cmnd[4]) << 40) |
5058 			(((u64) cmd->cmnd[5]) << 32) |
5059 			(((u64) cmd->cmnd[6]) << 24) |
5060 			(((u64) cmd->cmnd[7]) << 16) |
5061 			(((u64) cmd->cmnd[8]) << 8) |
5062 			cmd->cmnd[9];
5063 		block_cnt =
5064 			(((u32) cmd->cmnd[10]) << 24) |
5065 			(((u32) cmd->cmnd[11]) << 16) |
5066 			(((u32) cmd->cmnd[12]) << 8) |
5067 			cmd->cmnd[13];
5068 		break;
5069 	default:
5070 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5071 	}
5072 	last_block = first_block + block_cnt - 1;
5073 
5074 	/* check for write to non-RAID-0 */
5075 	if (is_write && dev->raid_level != 0)
5076 		return IO_ACCEL_INELIGIBLE;
5077 
5078 	/* check for invalid block or wraparound */
5079 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5080 		last_block < first_block)
5081 		return IO_ACCEL_INELIGIBLE;
5082 
5083 	/* calculate stripe information for the request */
5084 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5085 				le16_to_cpu(map->strip_size);
5086 	strip_size = le16_to_cpu(map->strip_size);
5087 #if BITS_PER_LONG == 32
5088 	tmpdiv = first_block;
5089 	(void) do_div(tmpdiv, blocks_per_row);
5090 	first_row = tmpdiv;
5091 	tmpdiv = last_block;
5092 	(void) do_div(tmpdiv, blocks_per_row);
5093 	last_row = tmpdiv;
5094 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5095 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5096 	tmpdiv = first_row_offset;
5097 	(void) do_div(tmpdiv, strip_size);
5098 	first_column = tmpdiv;
5099 	tmpdiv = last_row_offset;
5100 	(void) do_div(tmpdiv, strip_size);
5101 	last_column = tmpdiv;
5102 #else
5103 	first_row = first_block / blocks_per_row;
5104 	last_row = last_block / blocks_per_row;
5105 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5106 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5107 	first_column = first_row_offset / strip_size;
5108 	last_column = last_row_offset / strip_size;
5109 #endif
5110 
5111 	/* if this isn't a single row/column then give to the controller */
5112 	if ((first_row != last_row) || (first_column != last_column))
5113 		return IO_ACCEL_INELIGIBLE;
5114 
5115 	/* proceeding with driver mapping */
5116 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5117 				le16_to_cpu(map->metadata_disks_per_row);
5118 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5119 				le16_to_cpu(map->row_cnt);
5120 	map_index = (map_row * total_disks_per_row) + first_column;
5121 
5122 	switch (dev->raid_level) {
5123 	case HPSA_RAID_0:
5124 		break; /* nothing special to do */
5125 	case HPSA_RAID_1:
5126 		/* Handles load balance across RAID 1 members.
5127 		 * (2-drive R1 and R10 with even # of drives.)
5128 		 * Appropriate for SSDs, not optimal for HDDs
5129 		 */
5130 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5131 		if (dev->offload_to_mirror)
5132 			map_index += le16_to_cpu(map->data_disks_per_row);
5133 		dev->offload_to_mirror = !dev->offload_to_mirror;
5134 		break;
5135 	case HPSA_RAID_ADM:
5136 		/* Handles N-way mirrors  (R1-ADM)
5137 		 * and R10 with # of drives divisible by 3.)
5138 		 */
5139 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5140 
5141 		offload_to_mirror = dev->offload_to_mirror;
5142 		raid_map_helper(map, offload_to_mirror,
5143 				&map_index, &current_group);
5144 		/* set mirror group to use next time */
5145 		offload_to_mirror =
5146 			(offload_to_mirror >=
5147 			le16_to_cpu(map->layout_map_count) - 1)
5148 			? 0 : offload_to_mirror + 1;
5149 		dev->offload_to_mirror = offload_to_mirror;
5150 		/* Avoid direct use of dev->offload_to_mirror within this
5151 		 * function since multiple threads might simultaneously
5152 		 * increment it beyond the range of dev->layout_map_count -1.
5153 		 */
5154 		break;
5155 	case HPSA_RAID_5:
5156 	case HPSA_RAID_6:
5157 		if (le16_to_cpu(map->layout_map_count) <= 1)
5158 			break;
5159 
5160 		/* Verify first and last block are in same RAID group */
5161 		r5or6_blocks_per_row =
5162 			le16_to_cpu(map->strip_size) *
5163 			le16_to_cpu(map->data_disks_per_row);
5164 		BUG_ON(r5or6_blocks_per_row == 0);
5165 		stripesize = r5or6_blocks_per_row *
5166 			le16_to_cpu(map->layout_map_count);
5167 #if BITS_PER_LONG == 32
5168 		tmpdiv = first_block;
5169 		first_group = do_div(tmpdiv, stripesize);
5170 		tmpdiv = first_group;
5171 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5172 		first_group = tmpdiv;
5173 		tmpdiv = last_block;
5174 		last_group = do_div(tmpdiv, stripesize);
5175 		tmpdiv = last_group;
5176 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5177 		last_group = tmpdiv;
5178 #else
5179 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5180 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5181 #endif
5182 		if (first_group != last_group)
5183 			return IO_ACCEL_INELIGIBLE;
5184 
5185 		/* Verify request is in a single row of RAID 5/6 */
5186 #if BITS_PER_LONG == 32
5187 		tmpdiv = first_block;
5188 		(void) do_div(tmpdiv, stripesize);
5189 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5190 		tmpdiv = last_block;
5191 		(void) do_div(tmpdiv, stripesize);
5192 		r5or6_last_row = r0_last_row = tmpdiv;
5193 #else
5194 		first_row = r5or6_first_row = r0_first_row =
5195 						first_block / stripesize;
5196 		r5or6_last_row = r0_last_row = last_block / stripesize;
5197 #endif
5198 		if (r5or6_first_row != r5or6_last_row)
5199 			return IO_ACCEL_INELIGIBLE;
5200 
5201 
5202 		/* Verify request is in a single column */
5203 #if BITS_PER_LONG == 32
5204 		tmpdiv = first_block;
5205 		first_row_offset = do_div(tmpdiv, stripesize);
5206 		tmpdiv = first_row_offset;
5207 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5208 		r5or6_first_row_offset = first_row_offset;
5209 		tmpdiv = last_block;
5210 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5211 		tmpdiv = r5or6_last_row_offset;
5212 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5213 		tmpdiv = r5or6_first_row_offset;
5214 		(void) do_div(tmpdiv, map->strip_size);
5215 		first_column = r5or6_first_column = tmpdiv;
5216 		tmpdiv = r5or6_last_row_offset;
5217 		(void) do_div(tmpdiv, map->strip_size);
5218 		r5or6_last_column = tmpdiv;
5219 #else
5220 		first_row_offset = r5or6_first_row_offset =
5221 			(u32)((first_block % stripesize) %
5222 						r5or6_blocks_per_row);
5223 
5224 		r5or6_last_row_offset =
5225 			(u32)((last_block % stripesize) %
5226 						r5or6_blocks_per_row);
5227 
5228 		first_column = r5or6_first_column =
5229 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5230 		r5or6_last_column =
5231 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5232 #endif
5233 		if (r5or6_first_column != r5or6_last_column)
5234 			return IO_ACCEL_INELIGIBLE;
5235 
5236 		/* Request is eligible */
5237 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5238 			le16_to_cpu(map->row_cnt);
5239 
5240 		map_index = (first_group *
5241 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5242 			(map_row * total_disks_per_row) + first_column;
5243 		break;
5244 	default:
5245 		return IO_ACCEL_INELIGIBLE;
5246 	}
5247 
5248 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5249 		return IO_ACCEL_INELIGIBLE;
5250 
5251 	c->phys_disk = dev->phys_disk[map_index];
5252 	if (!c->phys_disk)
5253 		return IO_ACCEL_INELIGIBLE;
5254 
5255 	disk_handle = dd[map_index].ioaccel_handle;
5256 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5257 			first_row * le16_to_cpu(map->strip_size) +
5258 			(first_row_offset - first_column *
5259 			le16_to_cpu(map->strip_size));
5260 	disk_block_cnt = block_cnt;
5261 
5262 	/* handle differing logical/physical block sizes */
5263 	if (map->phys_blk_shift) {
5264 		disk_block <<= map->phys_blk_shift;
5265 		disk_block_cnt <<= map->phys_blk_shift;
5266 	}
5267 	BUG_ON(disk_block_cnt > 0xffff);
5268 
5269 	/* build the new CDB for the physical disk I/O */
5270 	if (disk_block > 0xffffffff) {
5271 		cdb[0] = is_write ? WRITE_16 : READ_16;
5272 		cdb[1] = 0;
5273 		cdb[2] = (u8) (disk_block >> 56);
5274 		cdb[3] = (u8) (disk_block >> 48);
5275 		cdb[4] = (u8) (disk_block >> 40);
5276 		cdb[5] = (u8) (disk_block >> 32);
5277 		cdb[6] = (u8) (disk_block >> 24);
5278 		cdb[7] = (u8) (disk_block >> 16);
5279 		cdb[8] = (u8) (disk_block >> 8);
5280 		cdb[9] = (u8) (disk_block);
5281 		cdb[10] = (u8) (disk_block_cnt >> 24);
5282 		cdb[11] = (u8) (disk_block_cnt >> 16);
5283 		cdb[12] = (u8) (disk_block_cnt >> 8);
5284 		cdb[13] = (u8) (disk_block_cnt);
5285 		cdb[14] = 0;
5286 		cdb[15] = 0;
5287 		cdb_len = 16;
5288 	} else {
5289 		cdb[0] = is_write ? WRITE_10 : READ_10;
5290 		cdb[1] = 0;
5291 		cdb[2] = (u8) (disk_block >> 24);
5292 		cdb[3] = (u8) (disk_block >> 16);
5293 		cdb[4] = (u8) (disk_block >> 8);
5294 		cdb[5] = (u8) (disk_block);
5295 		cdb[6] = 0;
5296 		cdb[7] = (u8) (disk_block_cnt >> 8);
5297 		cdb[8] = (u8) (disk_block_cnt);
5298 		cdb[9] = 0;
5299 		cdb_len = 10;
5300 	}
5301 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5302 						dev->scsi3addr,
5303 						dev->phys_disk[map_index]);
5304 }
5305 
5306 /*
5307  * Submit commands down the "normal" RAID stack path
5308  * All callers to hpsa_ciss_submit must check lockup_detected
5309  * beforehand, before (opt.) and after calling cmd_alloc
5310  */
5311 static int hpsa_ciss_submit(struct ctlr_info *h,
5312 	struct CommandList *c, struct scsi_cmnd *cmd,
5313 	unsigned char scsi3addr[])
5314 {
5315 	cmd->host_scribble = (unsigned char *) c;
5316 	c->cmd_type = CMD_SCSI;
5317 	c->scsi_cmd = cmd;
5318 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5319 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5320 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5321 
5322 	/* Fill in the request block... */
5323 
5324 	c->Request.Timeout = 0;
5325 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5326 	c->Request.CDBLen = cmd->cmd_len;
5327 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5328 	switch (cmd->sc_data_direction) {
5329 	case DMA_TO_DEVICE:
5330 		c->Request.type_attr_dir =
5331 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5332 		break;
5333 	case DMA_FROM_DEVICE:
5334 		c->Request.type_attr_dir =
5335 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5336 		break;
5337 	case DMA_NONE:
5338 		c->Request.type_attr_dir =
5339 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5340 		break;
5341 	case DMA_BIDIRECTIONAL:
5342 		/* This can happen if a buggy application does a scsi passthru
5343 		 * and sets both inlen and outlen to non-zero. ( see
5344 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5345 		 */
5346 
5347 		c->Request.type_attr_dir =
5348 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5349 		/* This is technically wrong, and hpsa controllers should
5350 		 * reject it with CMD_INVALID, which is the most correct
5351 		 * response, but non-fibre backends appear to let it
5352 		 * slide by, and give the same results as if this field
5353 		 * were set correctly.  Either way is acceptable for
5354 		 * our purposes here.
5355 		 */
5356 
5357 		break;
5358 
5359 	default:
5360 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5361 			cmd->sc_data_direction);
5362 		BUG();
5363 		break;
5364 	}
5365 
5366 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5367 		hpsa_cmd_resolve_and_free(h, c);
5368 		return SCSI_MLQUEUE_HOST_BUSY;
5369 	}
5370 	enqueue_cmd_and_start_io(h, c);
5371 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5372 	return 0;
5373 }
5374 
5375 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5376 				struct CommandList *c)
5377 {
5378 	dma_addr_t cmd_dma_handle, err_dma_handle;
5379 
5380 	/* Zero out all of commandlist except the last field, refcount */
5381 	memset(c, 0, offsetof(struct CommandList, refcount));
5382 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5383 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5384 	c->err_info = h->errinfo_pool + index;
5385 	memset(c->err_info, 0, sizeof(*c->err_info));
5386 	err_dma_handle = h->errinfo_pool_dhandle
5387 	    + index * sizeof(*c->err_info);
5388 	c->cmdindex = index;
5389 	c->busaddr = (u32) cmd_dma_handle;
5390 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5391 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5392 	c->h = h;
5393 	c->scsi_cmd = SCSI_CMD_IDLE;
5394 }
5395 
5396 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5397 {
5398 	int i;
5399 
5400 	for (i = 0; i < h->nr_cmds; i++) {
5401 		struct CommandList *c = h->cmd_pool + i;
5402 
5403 		hpsa_cmd_init(h, i, c);
5404 		atomic_set(&c->refcount, 0);
5405 	}
5406 }
5407 
5408 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5409 				struct CommandList *c)
5410 {
5411 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5412 
5413 	BUG_ON(c->cmdindex != index);
5414 
5415 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5416 	memset(c->err_info, 0, sizeof(*c->err_info));
5417 	c->busaddr = (u32) cmd_dma_handle;
5418 }
5419 
5420 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5421 		struct CommandList *c, struct scsi_cmnd *cmd,
5422 		unsigned char *scsi3addr)
5423 {
5424 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5425 	int rc = IO_ACCEL_INELIGIBLE;
5426 
5427 	if (!dev)
5428 		return SCSI_MLQUEUE_HOST_BUSY;
5429 
5430 	cmd->host_scribble = (unsigned char *) c;
5431 
5432 	if (dev->offload_enabled) {
5433 		hpsa_cmd_init(h, c->cmdindex, c);
5434 		c->cmd_type = CMD_SCSI;
5435 		c->scsi_cmd = cmd;
5436 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5437 		if (rc < 0)     /* scsi_dma_map failed. */
5438 			rc = SCSI_MLQUEUE_HOST_BUSY;
5439 	} else if (dev->hba_ioaccel_enabled) {
5440 		hpsa_cmd_init(h, c->cmdindex, c);
5441 		c->cmd_type = CMD_SCSI;
5442 		c->scsi_cmd = cmd;
5443 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5444 		if (rc < 0)     /* scsi_dma_map failed. */
5445 			rc = SCSI_MLQUEUE_HOST_BUSY;
5446 	}
5447 	return rc;
5448 }
5449 
5450 static void hpsa_command_resubmit_worker(struct work_struct *work)
5451 {
5452 	struct scsi_cmnd *cmd;
5453 	struct hpsa_scsi_dev_t *dev;
5454 	struct CommandList *c = container_of(work, struct CommandList, work);
5455 
5456 	cmd = c->scsi_cmd;
5457 	dev = cmd->device->hostdata;
5458 	if (!dev) {
5459 		cmd->result = DID_NO_CONNECT << 16;
5460 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5461 	}
5462 	if (c->reset_pending)
5463 		return hpsa_cmd_resolve_and_free(c->h, c);
5464 	if (c->abort_pending)
5465 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5466 	if (c->cmd_type == CMD_IOACCEL2) {
5467 		struct ctlr_info *h = c->h;
5468 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5469 		int rc;
5470 
5471 		if (c2->error_data.serv_response ==
5472 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5473 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5474 			if (rc == 0)
5475 				return;
5476 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5477 				/*
5478 				 * If we get here, it means dma mapping failed.
5479 				 * Try again via scsi mid layer, which will
5480 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5481 				 */
5482 				cmd->result = DID_IMM_RETRY << 16;
5483 				return hpsa_cmd_free_and_done(h, c, cmd);
5484 			}
5485 			/* else, fall thru and resubmit down CISS path */
5486 		}
5487 	}
5488 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5489 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5490 		/*
5491 		 * If we get here, it means dma mapping failed. Try
5492 		 * again via scsi mid layer, which will then get
5493 		 * SCSI_MLQUEUE_HOST_BUSY.
5494 		 *
5495 		 * hpsa_ciss_submit will have already freed c
5496 		 * if it encountered a dma mapping failure.
5497 		 */
5498 		cmd->result = DID_IMM_RETRY << 16;
5499 		cmd->scsi_done(cmd);
5500 	}
5501 }
5502 
5503 /* Running in struct Scsi_Host->host_lock less mode */
5504 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5505 {
5506 	struct ctlr_info *h;
5507 	struct hpsa_scsi_dev_t *dev;
5508 	unsigned char scsi3addr[8];
5509 	struct CommandList *c;
5510 	int rc = 0;
5511 
5512 	/* Get the ptr to our adapter structure out of cmd->host. */
5513 	h = sdev_to_hba(cmd->device);
5514 
5515 	BUG_ON(cmd->request->tag < 0);
5516 
5517 	dev = cmd->device->hostdata;
5518 	if (!dev) {
5519 		cmd->result = DID_NO_CONNECT << 16;
5520 		cmd->scsi_done(cmd);
5521 		return 0;
5522 	}
5523 
5524 	if (dev->removed) {
5525 		cmd->result = DID_NO_CONNECT << 16;
5526 		cmd->scsi_done(cmd);
5527 		return 0;
5528 	}
5529 
5530 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5531 
5532 	if (unlikely(lockup_detected(h))) {
5533 		cmd->result = DID_NO_CONNECT << 16;
5534 		cmd->scsi_done(cmd);
5535 		return 0;
5536 	}
5537 	c = cmd_tagged_alloc(h, cmd);
5538 
5539 	/*
5540 	 * Call alternate submit routine for I/O accelerated commands.
5541 	 * Retries always go down the normal I/O path.
5542 	 */
5543 	if (likely(cmd->retries == 0 &&
5544 		cmd->request->cmd_type == REQ_TYPE_FS &&
5545 		h->acciopath_status)) {
5546 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5547 		if (rc == 0)
5548 			return 0;
5549 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5550 			hpsa_cmd_resolve_and_free(h, c);
5551 			return SCSI_MLQUEUE_HOST_BUSY;
5552 		}
5553 	}
5554 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5555 }
5556 
5557 static void hpsa_scan_complete(struct ctlr_info *h)
5558 {
5559 	unsigned long flags;
5560 
5561 	spin_lock_irqsave(&h->scan_lock, flags);
5562 	h->scan_finished = 1;
5563 	wake_up_all(&h->scan_wait_queue);
5564 	spin_unlock_irqrestore(&h->scan_lock, flags);
5565 }
5566 
5567 static void hpsa_scan_start(struct Scsi_Host *sh)
5568 {
5569 	struct ctlr_info *h = shost_to_hba(sh);
5570 	unsigned long flags;
5571 
5572 	/*
5573 	 * Don't let rescans be initiated on a controller known to be locked
5574 	 * up.  If the controller locks up *during* a rescan, that thread is
5575 	 * probably hosed, but at least we can prevent new rescan threads from
5576 	 * piling up on a locked up controller.
5577 	 */
5578 	if (unlikely(lockup_detected(h)))
5579 		return hpsa_scan_complete(h);
5580 
5581 	/* wait until any scan already in progress is finished. */
5582 	while (1) {
5583 		spin_lock_irqsave(&h->scan_lock, flags);
5584 		if (h->scan_finished)
5585 			break;
5586 		spin_unlock_irqrestore(&h->scan_lock, flags);
5587 		wait_event(h->scan_wait_queue, h->scan_finished);
5588 		/* Note: We don't need to worry about a race between this
5589 		 * thread and driver unload because the midlayer will
5590 		 * have incremented the reference count, so unload won't
5591 		 * happen if we're in here.
5592 		 */
5593 	}
5594 	h->scan_finished = 0; /* mark scan as in progress */
5595 	spin_unlock_irqrestore(&h->scan_lock, flags);
5596 
5597 	if (unlikely(lockup_detected(h)))
5598 		return hpsa_scan_complete(h);
5599 
5600 	/*
5601 	 * Do the scan after a reset completion
5602 	 */
5603 	if (h->reset_in_progress) {
5604 		h->drv_req_rescan = 1;
5605 		return;
5606 	}
5607 
5608 	hpsa_update_scsi_devices(h);
5609 
5610 	hpsa_scan_complete(h);
5611 }
5612 
5613 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5614 {
5615 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5616 
5617 	if (!logical_drive)
5618 		return -ENODEV;
5619 
5620 	if (qdepth < 1)
5621 		qdepth = 1;
5622 	else if (qdepth > logical_drive->queue_depth)
5623 		qdepth = logical_drive->queue_depth;
5624 
5625 	return scsi_change_queue_depth(sdev, qdepth);
5626 }
5627 
5628 static int hpsa_scan_finished(struct Scsi_Host *sh,
5629 	unsigned long elapsed_time)
5630 {
5631 	struct ctlr_info *h = shost_to_hba(sh);
5632 	unsigned long flags;
5633 	int finished;
5634 
5635 	spin_lock_irqsave(&h->scan_lock, flags);
5636 	finished = h->scan_finished;
5637 	spin_unlock_irqrestore(&h->scan_lock, flags);
5638 	return finished;
5639 }
5640 
5641 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5642 {
5643 	struct Scsi_Host *sh;
5644 
5645 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5646 	if (sh == NULL) {
5647 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5648 		return -ENOMEM;
5649 	}
5650 
5651 	sh->io_port = 0;
5652 	sh->n_io_port = 0;
5653 	sh->this_id = -1;
5654 	sh->max_channel = 3;
5655 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5656 	sh->max_lun = HPSA_MAX_LUN;
5657 	sh->max_id = HPSA_MAX_LUN;
5658 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5659 	sh->cmd_per_lun = sh->can_queue;
5660 	sh->sg_tablesize = h->maxsgentries;
5661 	sh->transportt = hpsa_sas_transport_template;
5662 	sh->hostdata[0] = (unsigned long) h;
5663 	sh->irq = pci_irq_vector(h->pdev, 0);
5664 	sh->unique_id = sh->irq;
5665 
5666 	h->scsi_host = sh;
5667 	return 0;
5668 }
5669 
5670 static int hpsa_scsi_add_host(struct ctlr_info *h)
5671 {
5672 	int rv;
5673 
5674 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5675 	if (rv) {
5676 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5677 		return rv;
5678 	}
5679 	scsi_scan_host(h->scsi_host);
5680 	return 0;
5681 }
5682 
5683 /*
5684  * The block layer has already gone to the trouble of picking out a unique,
5685  * small-integer tag for this request.  We use an offset from that value as
5686  * an index to select our command block.  (The offset allows us to reserve the
5687  * low-numbered entries for our own uses.)
5688  */
5689 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5690 {
5691 	int idx = scmd->request->tag;
5692 
5693 	if (idx < 0)
5694 		return idx;
5695 
5696 	/* Offset to leave space for internal cmds. */
5697 	return idx += HPSA_NRESERVED_CMDS;
5698 }
5699 
5700 /*
5701  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5702  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5703  */
5704 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5705 				struct CommandList *c, unsigned char lunaddr[],
5706 				int reply_queue)
5707 {
5708 	int rc;
5709 
5710 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5711 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5712 			NULL, 0, 0, lunaddr, TYPE_CMD);
5713 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5714 	if (rc)
5715 		return rc;
5716 	/* no unmap needed here because no data xfer. */
5717 
5718 	/* Check if the unit is already ready. */
5719 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5720 		return 0;
5721 
5722 	/*
5723 	 * The first command sent after reset will receive "unit attention" to
5724 	 * indicate that the LUN has been reset...this is actually what we're
5725 	 * looking for (but, success is good too).
5726 	 */
5727 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5728 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5729 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5730 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5731 		return 0;
5732 
5733 	return 1;
5734 }
5735 
5736 /*
5737  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5738  * returns zero when the unit is ready, and non-zero when giving up.
5739  */
5740 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5741 				struct CommandList *c,
5742 				unsigned char lunaddr[], int reply_queue)
5743 {
5744 	int rc;
5745 	int count = 0;
5746 	int waittime = 1; /* seconds */
5747 
5748 	/* Send test unit ready until device ready, or give up. */
5749 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5750 
5751 		/*
5752 		 * Wait for a bit.  do this first, because if we send
5753 		 * the TUR right away, the reset will just abort it.
5754 		 */
5755 		msleep(1000 * waittime);
5756 
5757 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5758 		if (!rc)
5759 			break;
5760 
5761 		/* Increase wait time with each try, up to a point. */
5762 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5763 			waittime *= 2;
5764 
5765 		dev_warn(&h->pdev->dev,
5766 			 "waiting %d secs for device to become ready.\n",
5767 			 waittime);
5768 	}
5769 
5770 	return rc;
5771 }
5772 
5773 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5774 					   unsigned char lunaddr[],
5775 					   int reply_queue)
5776 {
5777 	int first_queue;
5778 	int last_queue;
5779 	int rq;
5780 	int rc = 0;
5781 	struct CommandList *c;
5782 
5783 	c = cmd_alloc(h);
5784 
5785 	/*
5786 	 * If no specific reply queue was requested, then send the TUR
5787 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5788 	 * the loop exactly once using only the specified queue.
5789 	 */
5790 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5791 		first_queue = 0;
5792 		last_queue = h->nreply_queues - 1;
5793 	} else {
5794 		first_queue = reply_queue;
5795 		last_queue = reply_queue;
5796 	}
5797 
5798 	for (rq = first_queue; rq <= last_queue; rq++) {
5799 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5800 		if (rc)
5801 			break;
5802 	}
5803 
5804 	if (rc)
5805 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5806 	else
5807 		dev_warn(&h->pdev->dev, "device is ready.\n");
5808 
5809 	cmd_free(h, c);
5810 	return rc;
5811 }
5812 
5813 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5814  * complaining.  Doing a host- or bus-reset can't do anything good here.
5815  */
5816 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5817 {
5818 	int rc;
5819 	struct ctlr_info *h;
5820 	struct hpsa_scsi_dev_t *dev;
5821 	u8 reset_type;
5822 	char msg[48];
5823 
5824 	/* find the controller to which the command to be aborted was sent */
5825 	h = sdev_to_hba(scsicmd->device);
5826 	if (h == NULL) /* paranoia */
5827 		return FAILED;
5828 
5829 	if (lockup_detected(h))
5830 		return FAILED;
5831 
5832 	dev = scsicmd->device->hostdata;
5833 	if (!dev) {
5834 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5835 		return FAILED;
5836 	}
5837 
5838 	/* if controller locked up, we can guarantee command won't complete */
5839 	if (lockup_detected(h)) {
5840 		snprintf(msg, sizeof(msg),
5841 			 "cmd %d RESET FAILED, lockup detected",
5842 			 hpsa_get_cmd_index(scsicmd));
5843 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5844 		return FAILED;
5845 	}
5846 
5847 	/* this reset request might be the result of a lockup; check */
5848 	if (detect_controller_lockup(h)) {
5849 		snprintf(msg, sizeof(msg),
5850 			 "cmd %d RESET FAILED, new lockup detected",
5851 			 hpsa_get_cmd_index(scsicmd));
5852 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5853 		return FAILED;
5854 	}
5855 
5856 	/* Do not attempt on controller */
5857 	if (is_hba_lunid(dev->scsi3addr))
5858 		return SUCCESS;
5859 
5860 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5861 		reset_type = HPSA_DEVICE_RESET_MSG;
5862 	else
5863 		reset_type = HPSA_PHYS_TARGET_RESET;
5864 
5865 	sprintf(msg, "resetting %s",
5866 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5867 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5868 
5869 	h->reset_in_progress = 1;
5870 
5871 	/* send a reset to the SCSI LUN which the command was sent to */
5872 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5873 			   DEFAULT_REPLY_QUEUE);
5874 	sprintf(msg, "reset %s %s",
5875 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5876 		rc == 0 ? "completed successfully" : "failed");
5877 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5878 	h->reset_in_progress = 0;
5879 	return rc == 0 ? SUCCESS : FAILED;
5880 }
5881 
5882 static void swizzle_abort_tag(u8 *tag)
5883 {
5884 	u8 original_tag[8];
5885 
5886 	memcpy(original_tag, tag, 8);
5887 	tag[0] = original_tag[3];
5888 	tag[1] = original_tag[2];
5889 	tag[2] = original_tag[1];
5890 	tag[3] = original_tag[0];
5891 	tag[4] = original_tag[7];
5892 	tag[5] = original_tag[6];
5893 	tag[6] = original_tag[5];
5894 	tag[7] = original_tag[4];
5895 }
5896 
5897 static void hpsa_get_tag(struct ctlr_info *h,
5898 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5899 {
5900 	u64 tag;
5901 	if (c->cmd_type == CMD_IOACCEL1) {
5902 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5903 			&h->ioaccel_cmd_pool[c->cmdindex];
5904 		tag = le64_to_cpu(cm1->tag);
5905 		*tagupper = cpu_to_le32(tag >> 32);
5906 		*taglower = cpu_to_le32(tag);
5907 		return;
5908 	}
5909 	if (c->cmd_type == CMD_IOACCEL2) {
5910 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5911 			&h->ioaccel2_cmd_pool[c->cmdindex];
5912 		/* upper tag not used in ioaccel2 mode */
5913 		memset(tagupper, 0, sizeof(*tagupper));
5914 		*taglower = cm2->Tag;
5915 		return;
5916 	}
5917 	tag = le64_to_cpu(c->Header.tag);
5918 	*tagupper = cpu_to_le32(tag >> 32);
5919 	*taglower = cpu_to_le32(tag);
5920 }
5921 
5922 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5923 	struct CommandList *abort, int reply_queue)
5924 {
5925 	int rc = IO_OK;
5926 	struct CommandList *c;
5927 	struct ErrorInfo *ei;
5928 	__le32 tagupper, taglower;
5929 
5930 	c = cmd_alloc(h);
5931 
5932 	/* fill_cmd can't fail here, no buffer to map */
5933 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5934 		0, 0, scsi3addr, TYPE_MSG);
5935 	if (h->needs_abort_tags_swizzled)
5936 		swizzle_abort_tag(&c->Request.CDB[4]);
5937 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5938 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5939 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5940 		__func__, tagupper, taglower);
5941 	/* no unmap needed here because no data xfer. */
5942 
5943 	ei = c->err_info;
5944 	switch (ei->CommandStatus) {
5945 	case CMD_SUCCESS:
5946 		break;
5947 	case CMD_TMF_STATUS:
5948 		rc = hpsa_evaluate_tmf_status(h, c);
5949 		break;
5950 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5951 		rc = -1;
5952 		break;
5953 	default:
5954 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5955 			__func__, tagupper, taglower);
5956 		hpsa_scsi_interpret_error(h, c);
5957 		rc = -1;
5958 		break;
5959 	}
5960 	cmd_free(h, c);
5961 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5962 		__func__, tagupper, taglower);
5963 	return rc;
5964 }
5965 
5966 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5967 	struct CommandList *command_to_abort, int reply_queue)
5968 {
5969 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5970 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5971 	struct io_accel2_cmd *c2a =
5972 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5973 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5974 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5975 
5976 	if (!dev)
5977 		return;
5978 
5979 	/*
5980 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5981 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5982 	 * actually fits, and doesn't overrun the error info space.
5983 	 */
5984 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5985 			sizeof(struct io_accel2_cmd));
5986 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5987 			offsetof(struct hpsa_tmf_struct, error_len) +
5988 				sizeof(ac->error_len));
5989 
5990 	c->cmd_type = IOACCEL2_TMF;
5991 	c->scsi_cmd = SCSI_CMD_BUSY;
5992 
5993 	/* Adjust the DMA address to point to the accelerated command buffer */
5994 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5995 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5996 	BUG_ON(c->busaddr & 0x0000007F);
5997 
5998 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5999 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6000 	ac->reply_queue = reply_queue;
6001 	ac->tmf = IOACCEL2_TMF_ABORT;
6002 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6003 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
6004 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6005 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6006 	ac->error_ptr = cpu_to_le64(c->busaddr +
6007 			offsetof(struct io_accel2_cmd, error_data));
6008 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6009 }
6010 
6011 /* ioaccel2 path firmware cannot handle abort task requests.
6012  * Change abort requests to physical target reset, and send to the
6013  * address of the physical disk used for the ioaccel 2 command.
6014  * Return 0 on success (IO_OK)
6015  *	 -1 on failure
6016  */
6017 
6018 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6019 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6020 {
6021 	int rc = IO_OK;
6022 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6023 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6024 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6025 	unsigned char *psa = &phys_scsi3addr[0];
6026 
6027 	/* Get a pointer to the hpsa logical device. */
6028 	scmd = abort->scsi_cmd;
6029 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6030 	if (dev == NULL) {
6031 		dev_warn(&h->pdev->dev,
6032 			"Cannot abort: no device pointer for command.\n");
6033 			return -1; /* not abortable */
6034 	}
6035 
6036 	if (h->raid_offload_debug > 0)
6037 		dev_info(&h->pdev->dev,
6038 			"scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6039 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6040 			"Reset as abort", scsi3addr);
6041 
6042 	if (!dev->offload_enabled) {
6043 		dev_warn(&h->pdev->dev,
6044 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6045 		return -1; /* not abortable */
6046 	}
6047 
6048 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
6049 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6050 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6051 		return -1; /* not abortable */
6052 	}
6053 
6054 	/* send the reset */
6055 	if (h->raid_offload_debug > 0)
6056 		dev_info(&h->pdev->dev,
6057 			"Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6058 			psa);
6059 	rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6060 	if (rc != 0) {
6061 		dev_warn(&h->pdev->dev,
6062 			"Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6063 			psa);
6064 		return rc; /* failed to reset */
6065 	}
6066 
6067 	/* wait for device to recover */
6068 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6069 		dev_warn(&h->pdev->dev,
6070 			"Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6071 			psa);
6072 		return -1;  /* failed to recover */
6073 	}
6074 
6075 	/* device recovered */
6076 	dev_info(&h->pdev->dev,
6077 		"Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6078 		psa);
6079 
6080 	return rc; /* success */
6081 }
6082 
6083 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6084 	struct CommandList *abort, int reply_queue)
6085 {
6086 	int rc = IO_OK;
6087 	struct CommandList *c;
6088 	__le32 taglower, tagupper;
6089 	struct hpsa_scsi_dev_t *dev;
6090 	struct io_accel2_cmd *c2;
6091 
6092 	dev = abort->scsi_cmd->device->hostdata;
6093 	if (!dev)
6094 		return -1;
6095 
6096 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6097 		return -1;
6098 
6099 	c = cmd_alloc(h);
6100 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6101 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6102 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6103 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6104 	dev_dbg(&h->pdev->dev,
6105 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6106 		__func__, tagupper, taglower);
6107 	/* no unmap needed here because no data xfer. */
6108 
6109 	dev_dbg(&h->pdev->dev,
6110 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6111 		__func__, tagupper, taglower, c2->error_data.serv_response);
6112 	switch (c2->error_data.serv_response) {
6113 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6114 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6115 		rc = 0;
6116 		break;
6117 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6118 	case IOACCEL2_SERV_RESPONSE_FAILURE:
6119 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6120 		rc = -1;
6121 		break;
6122 	default:
6123 		dev_warn(&h->pdev->dev,
6124 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6125 			__func__, tagupper, taglower,
6126 			c2->error_data.serv_response);
6127 		rc = -1;
6128 	}
6129 	cmd_free(h, c);
6130 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6131 		tagupper, taglower);
6132 	return rc;
6133 }
6134 
6135 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6136 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6137 {
6138 	/*
6139 	 * ioccelerator mode 2 commands should be aborted via the
6140 	 * accelerated path, since RAID path is unaware of these commands,
6141 	 * but not all underlying firmware can handle abort TMF.
6142 	 * Change abort to physical device reset when abort TMF is unsupported.
6143 	 */
6144 	if (abort->cmd_type == CMD_IOACCEL2) {
6145 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6146 			dev->physical_device)
6147 			return hpsa_send_abort_ioaccel2(h, abort,
6148 						reply_queue);
6149 		else
6150 			return hpsa_send_reset_as_abort_ioaccel2(h,
6151 							dev->scsi3addr,
6152 							abort, reply_queue);
6153 	}
6154 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6155 }
6156 
6157 /* Find out which reply queue a command was meant to return on */
6158 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6159 					struct CommandList *c)
6160 {
6161 	if (c->cmd_type == CMD_IOACCEL2)
6162 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6163 	return c->Header.ReplyQueue;
6164 }
6165 
6166 /*
6167  * Limit concurrency of abort commands to prevent
6168  * over-subscription of commands
6169  */
6170 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6171 {
6172 #define ABORT_CMD_WAIT_MSECS 5000
6173 	return !wait_event_timeout(h->abort_cmd_wait_queue,
6174 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6175 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6176 }
6177 
6178 /* Send an abort for the specified command.
6179  *	If the device and controller support it,
6180  *		send a task abort request.
6181  */
6182 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6183 {
6184 
6185 	int rc;
6186 	struct ctlr_info *h;
6187 	struct hpsa_scsi_dev_t *dev;
6188 	struct CommandList *abort; /* pointer to command to be aborted */
6189 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
6190 	char msg[256];		/* For debug messaging. */
6191 	int ml = 0;
6192 	__le32 tagupper, taglower;
6193 	int refcount, reply_queue;
6194 
6195 	if (sc == NULL)
6196 		return FAILED;
6197 
6198 	if (sc->device == NULL)
6199 		return FAILED;
6200 
6201 	/* Find the controller of the command to be aborted */
6202 	h = sdev_to_hba(sc->device);
6203 	if (h == NULL)
6204 		return FAILED;
6205 
6206 	/* Find the device of the command to be aborted */
6207 	dev = sc->device->hostdata;
6208 	if (!dev) {
6209 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6210 				msg);
6211 		return FAILED;
6212 	}
6213 
6214 	/* If controller locked up, we can guarantee command won't complete */
6215 	if (lockup_detected(h)) {
6216 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6217 					"ABORT FAILED, lockup detected");
6218 		return FAILED;
6219 	}
6220 
6221 	/* This is a good time to check if controller lockup has occurred */
6222 	if (detect_controller_lockup(h)) {
6223 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6224 					"ABORT FAILED, new lockup detected");
6225 		return FAILED;
6226 	}
6227 
6228 	/* Check that controller supports some kind of task abort */
6229 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6230 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6231 		return FAILED;
6232 
6233 	memset(msg, 0, sizeof(msg));
6234 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6235 		h->scsi_host->host_no, sc->device->channel,
6236 		sc->device->id, sc->device->lun,
6237 		"Aborting command", sc);
6238 
6239 	/* Get SCSI command to be aborted */
6240 	abort = (struct CommandList *) sc->host_scribble;
6241 	if (abort == NULL) {
6242 		/* This can happen if the command already completed. */
6243 		return SUCCESS;
6244 	}
6245 	refcount = atomic_inc_return(&abort->refcount);
6246 	if (refcount == 1) { /* Command is done already. */
6247 		cmd_free(h, abort);
6248 		return SUCCESS;
6249 	}
6250 
6251 	/* Don't bother trying the abort if we know it won't work. */
6252 	if (abort->cmd_type != CMD_IOACCEL2 &&
6253 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6254 		cmd_free(h, abort);
6255 		return FAILED;
6256 	}
6257 
6258 	/*
6259 	 * Check that we're aborting the right command.
6260 	 * It's possible the CommandList already completed and got re-used.
6261 	 */
6262 	if (abort->scsi_cmd != sc) {
6263 		cmd_free(h, abort);
6264 		return SUCCESS;
6265 	}
6266 
6267 	abort->abort_pending = true;
6268 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6269 	reply_queue = hpsa_extract_reply_queue(h, abort);
6270 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6271 	as  = abort->scsi_cmd;
6272 	if (as != NULL)
6273 		ml += sprintf(msg+ml,
6274 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6275 			as->cmd_len, as->cmnd[0], as->cmnd[1],
6276 			as->serial_number);
6277 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6278 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6279 
6280 	/*
6281 	 * Command is in flight, or possibly already completed
6282 	 * by the firmware (but not to the scsi mid layer) but we can't
6283 	 * distinguish which.  Send the abort down.
6284 	 */
6285 	if (wait_for_available_abort_cmd(h)) {
6286 		dev_warn(&h->pdev->dev,
6287 			"%s FAILED, timeout waiting for an abort command to become available.\n",
6288 			msg);
6289 		cmd_free(h, abort);
6290 		return FAILED;
6291 	}
6292 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6293 	atomic_inc(&h->abort_cmds_available);
6294 	wake_up_all(&h->abort_cmd_wait_queue);
6295 	if (rc != 0) {
6296 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6297 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6298 				"FAILED to abort command");
6299 		cmd_free(h, abort);
6300 		return FAILED;
6301 	}
6302 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6303 	wait_event(h->event_sync_wait_queue,
6304 		   abort->scsi_cmd != sc || lockup_detected(h));
6305 	cmd_free(h, abort);
6306 	return !lockup_detected(h) ? SUCCESS : FAILED;
6307 }
6308 
6309 /*
6310  * For operations with an associated SCSI command, a command block is allocated
6311  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6312  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6313  * the complement, although cmd_free() may be called instead.
6314  */
6315 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6316 					    struct scsi_cmnd *scmd)
6317 {
6318 	int idx = hpsa_get_cmd_index(scmd);
6319 	struct CommandList *c = h->cmd_pool + idx;
6320 
6321 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6322 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6323 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6324 		/* The index value comes from the block layer, so if it's out of
6325 		 * bounds, it's probably not our bug.
6326 		 */
6327 		BUG();
6328 	}
6329 
6330 	atomic_inc(&c->refcount);
6331 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6332 		/*
6333 		 * We expect that the SCSI layer will hand us a unique tag
6334 		 * value.  Thus, there should never be a collision here between
6335 		 * two requests...because if the selected command isn't idle
6336 		 * then someone is going to be very disappointed.
6337 		 */
6338 		dev_err(&h->pdev->dev,
6339 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6340 			idx);
6341 		if (c->scsi_cmd != NULL)
6342 			scsi_print_command(c->scsi_cmd);
6343 		scsi_print_command(scmd);
6344 	}
6345 
6346 	hpsa_cmd_partial_init(h, idx, c);
6347 	return c;
6348 }
6349 
6350 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6351 {
6352 	/*
6353 	 * Release our reference to the block.  We don't need to do anything
6354 	 * else to free it, because it is accessed by index.  (There's no point
6355 	 * in checking the result of the decrement, since we cannot guarantee
6356 	 * that there isn't a concurrent abort which is also accessing it.)
6357 	 */
6358 	(void)atomic_dec(&c->refcount);
6359 }
6360 
6361 /*
6362  * For operations that cannot sleep, a command block is allocated at init,
6363  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6364  * which ones are free or in use.  Lock must be held when calling this.
6365  * cmd_free() is the complement.
6366  * This function never gives up and returns NULL.  If it hangs,
6367  * another thread must call cmd_free() to free some tags.
6368  */
6369 
6370 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6371 {
6372 	struct CommandList *c;
6373 	int refcount, i;
6374 	int offset = 0;
6375 
6376 	/*
6377 	 * There is some *extremely* small but non-zero chance that that
6378 	 * multiple threads could get in here, and one thread could
6379 	 * be scanning through the list of bits looking for a free
6380 	 * one, but the free ones are always behind him, and other
6381 	 * threads sneak in behind him and eat them before he can
6382 	 * get to them, so that while there is always a free one, a
6383 	 * very unlucky thread might be starved anyway, never able to
6384 	 * beat the other threads.  In reality, this happens so
6385 	 * infrequently as to be indistinguishable from never.
6386 	 *
6387 	 * Note that we start allocating commands before the SCSI host structure
6388 	 * is initialized.  Since the search starts at bit zero, this
6389 	 * all works, since we have at least one command structure available;
6390 	 * however, it means that the structures with the low indexes have to be
6391 	 * reserved for driver-initiated requests, while requests from the block
6392 	 * layer will use the higher indexes.
6393 	 */
6394 
6395 	for (;;) {
6396 		i = find_next_zero_bit(h->cmd_pool_bits,
6397 					HPSA_NRESERVED_CMDS,
6398 					offset);
6399 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6400 			offset = 0;
6401 			continue;
6402 		}
6403 		c = h->cmd_pool + i;
6404 		refcount = atomic_inc_return(&c->refcount);
6405 		if (unlikely(refcount > 1)) {
6406 			cmd_free(h, c); /* already in use */
6407 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6408 			continue;
6409 		}
6410 		set_bit(i & (BITS_PER_LONG - 1),
6411 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6412 		break; /* it's ours now. */
6413 	}
6414 	hpsa_cmd_partial_init(h, i, c);
6415 	return c;
6416 }
6417 
6418 /*
6419  * This is the complementary operation to cmd_alloc().  Note, however, in some
6420  * corner cases it may also be used to free blocks allocated by
6421  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6422  * the clear-bit is harmless.
6423  */
6424 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6425 {
6426 	if (atomic_dec_and_test(&c->refcount)) {
6427 		int i;
6428 
6429 		i = c - h->cmd_pool;
6430 		clear_bit(i & (BITS_PER_LONG - 1),
6431 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6432 	}
6433 }
6434 
6435 #ifdef CONFIG_COMPAT
6436 
6437 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6438 	void __user *arg)
6439 {
6440 	IOCTL32_Command_struct __user *arg32 =
6441 	    (IOCTL32_Command_struct __user *) arg;
6442 	IOCTL_Command_struct arg64;
6443 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6444 	int err;
6445 	u32 cp;
6446 
6447 	memset(&arg64, 0, sizeof(arg64));
6448 	err = 0;
6449 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6450 			   sizeof(arg64.LUN_info));
6451 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6452 			   sizeof(arg64.Request));
6453 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6454 			   sizeof(arg64.error_info));
6455 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6456 	err |= get_user(cp, &arg32->buf);
6457 	arg64.buf = compat_ptr(cp);
6458 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6459 
6460 	if (err)
6461 		return -EFAULT;
6462 
6463 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6464 	if (err)
6465 		return err;
6466 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6467 			 sizeof(arg32->error_info));
6468 	if (err)
6469 		return -EFAULT;
6470 	return err;
6471 }
6472 
6473 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6474 	int cmd, void __user *arg)
6475 {
6476 	BIG_IOCTL32_Command_struct __user *arg32 =
6477 	    (BIG_IOCTL32_Command_struct __user *) arg;
6478 	BIG_IOCTL_Command_struct arg64;
6479 	BIG_IOCTL_Command_struct __user *p =
6480 	    compat_alloc_user_space(sizeof(arg64));
6481 	int err;
6482 	u32 cp;
6483 
6484 	memset(&arg64, 0, sizeof(arg64));
6485 	err = 0;
6486 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6487 			   sizeof(arg64.LUN_info));
6488 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6489 			   sizeof(arg64.Request));
6490 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6491 			   sizeof(arg64.error_info));
6492 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6493 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6494 	err |= get_user(cp, &arg32->buf);
6495 	arg64.buf = compat_ptr(cp);
6496 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6497 
6498 	if (err)
6499 		return -EFAULT;
6500 
6501 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6502 	if (err)
6503 		return err;
6504 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6505 			 sizeof(arg32->error_info));
6506 	if (err)
6507 		return -EFAULT;
6508 	return err;
6509 }
6510 
6511 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6512 {
6513 	switch (cmd) {
6514 	case CCISS_GETPCIINFO:
6515 	case CCISS_GETINTINFO:
6516 	case CCISS_SETINTINFO:
6517 	case CCISS_GETNODENAME:
6518 	case CCISS_SETNODENAME:
6519 	case CCISS_GETHEARTBEAT:
6520 	case CCISS_GETBUSTYPES:
6521 	case CCISS_GETFIRMVER:
6522 	case CCISS_GETDRIVVER:
6523 	case CCISS_REVALIDVOLS:
6524 	case CCISS_DEREGDISK:
6525 	case CCISS_REGNEWDISK:
6526 	case CCISS_REGNEWD:
6527 	case CCISS_RESCANDISK:
6528 	case CCISS_GETLUNINFO:
6529 		return hpsa_ioctl(dev, cmd, arg);
6530 
6531 	case CCISS_PASSTHRU32:
6532 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6533 	case CCISS_BIG_PASSTHRU32:
6534 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6535 
6536 	default:
6537 		return -ENOIOCTLCMD;
6538 	}
6539 }
6540 #endif
6541 
6542 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6543 {
6544 	struct hpsa_pci_info pciinfo;
6545 
6546 	if (!argp)
6547 		return -EINVAL;
6548 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6549 	pciinfo.bus = h->pdev->bus->number;
6550 	pciinfo.dev_fn = h->pdev->devfn;
6551 	pciinfo.board_id = h->board_id;
6552 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6553 		return -EFAULT;
6554 	return 0;
6555 }
6556 
6557 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6558 {
6559 	DriverVer_type DriverVer;
6560 	unsigned char vmaj, vmin, vsubmin;
6561 	int rc;
6562 
6563 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6564 		&vmaj, &vmin, &vsubmin);
6565 	if (rc != 3) {
6566 		dev_info(&h->pdev->dev, "driver version string '%s' "
6567 			"unrecognized.", HPSA_DRIVER_VERSION);
6568 		vmaj = 0;
6569 		vmin = 0;
6570 		vsubmin = 0;
6571 	}
6572 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6573 	if (!argp)
6574 		return -EINVAL;
6575 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6576 		return -EFAULT;
6577 	return 0;
6578 }
6579 
6580 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6581 {
6582 	IOCTL_Command_struct iocommand;
6583 	struct CommandList *c;
6584 	char *buff = NULL;
6585 	u64 temp64;
6586 	int rc = 0;
6587 
6588 	if (!argp)
6589 		return -EINVAL;
6590 	if (!capable(CAP_SYS_RAWIO))
6591 		return -EPERM;
6592 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6593 		return -EFAULT;
6594 	if ((iocommand.buf_size < 1) &&
6595 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6596 		return -EINVAL;
6597 	}
6598 	if (iocommand.buf_size > 0) {
6599 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6600 		if (buff == NULL)
6601 			return -ENOMEM;
6602 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6603 			/* Copy the data into the buffer we created */
6604 			if (copy_from_user(buff, iocommand.buf,
6605 				iocommand.buf_size)) {
6606 				rc = -EFAULT;
6607 				goto out_kfree;
6608 			}
6609 		} else {
6610 			memset(buff, 0, iocommand.buf_size);
6611 		}
6612 	}
6613 	c = cmd_alloc(h);
6614 
6615 	/* Fill in the command type */
6616 	c->cmd_type = CMD_IOCTL_PEND;
6617 	c->scsi_cmd = SCSI_CMD_BUSY;
6618 	/* Fill in Command Header */
6619 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6620 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6621 		c->Header.SGList = 1;
6622 		c->Header.SGTotal = cpu_to_le16(1);
6623 	} else	{ /* no buffers to fill */
6624 		c->Header.SGList = 0;
6625 		c->Header.SGTotal = cpu_to_le16(0);
6626 	}
6627 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6628 
6629 	/* Fill in Request block */
6630 	memcpy(&c->Request, &iocommand.Request,
6631 		sizeof(c->Request));
6632 
6633 	/* Fill in the scatter gather information */
6634 	if (iocommand.buf_size > 0) {
6635 		temp64 = pci_map_single(h->pdev, buff,
6636 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6637 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6638 			c->SG[0].Addr = cpu_to_le64(0);
6639 			c->SG[0].Len = cpu_to_le32(0);
6640 			rc = -ENOMEM;
6641 			goto out;
6642 		}
6643 		c->SG[0].Addr = cpu_to_le64(temp64);
6644 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6645 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6646 	}
6647 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6648 					NO_TIMEOUT);
6649 	if (iocommand.buf_size > 0)
6650 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6651 	check_ioctl_unit_attention(h, c);
6652 	if (rc) {
6653 		rc = -EIO;
6654 		goto out;
6655 	}
6656 
6657 	/* Copy the error information out */
6658 	memcpy(&iocommand.error_info, c->err_info,
6659 		sizeof(iocommand.error_info));
6660 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6661 		rc = -EFAULT;
6662 		goto out;
6663 	}
6664 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6665 		iocommand.buf_size > 0) {
6666 		/* Copy the data out of the buffer we created */
6667 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6668 			rc = -EFAULT;
6669 			goto out;
6670 		}
6671 	}
6672 out:
6673 	cmd_free(h, c);
6674 out_kfree:
6675 	kfree(buff);
6676 	return rc;
6677 }
6678 
6679 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6680 {
6681 	BIG_IOCTL_Command_struct *ioc;
6682 	struct CommandList *c;
6683 	unsigned char **buff = NULL;
6684 	int *buff_size = NULL;
6685 	u64 temp64;
6686 	BYTE sg_used = 0;
6687 	int status = 0;
6688 	u32 left;
6689 	u32 sz;
6690 	BYTE __user *data_ptr;
6691 
6692 	if (!argp)
6693 		return -EINVAL;
6694 	if (!capable(CAP_SYS_RAWIO))
6695 		return -EPERM;
6696 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6697 	if (!ioc) {
6698 		status = -ENOMEM;
6699 		goto cleanup1;
6700 	}
6701 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6702 		status = -EFAULT;
6703 		goto cleanup1;
6704 	}
6705 	if ((ioc->buf_size < 1) &&
6706 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6707 		status = -EINVAL;
6708 		goto cleanup1;
6709 	}
6710 	/* Check kmalloc limits  using all SGs */
6711 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6712 		status = -EINVAL;
6713 		goto cleanup1;
6714 	}
6715 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6716 		status = -EINVAL;
6717 		goto cleanup1;
6718 	}
6719 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6720 	if (!buff) {
6721 		status = -ENOMEM;
6722 		goto cleanup1;
6723 	}
6724 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6725 	if (!buff_size) {
6726 		status = -ENOMEM;
6727 		goto cleanup1;
6728 	}
6729 	left = ioc->buf_size;
6730 	data_ptr = ioc->buf;
6731 	while (left) {
6732 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6733 		buff_size[sg_used] = sz;
6734 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6735 		if (buff[sg_used] == NULL) {
6736 			status = -ENOMEM;
6737 			goto cleanup1;
6738 		}
6739 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6740 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6741 				status = -EFAULT;
6742 				goto cleanup1;
6743 			}
6744 		} else
6745 			memset(buff[sg_used], 0, sz);
6746 		left -= sz;
6747 		data_ptr += sz;
6748 		sg_used++;
6749 	}
6750 	c = cmd_alloc(h);
6751 
6752 	c->cmd_type = CMD_IOCTL_PEND;
6753 	c->scsi_cmd = SCSI_CMD_BUSY;
6754 	c->Header.ReplyQueue = 0;
6755 	c->Header.SGList = (u8) sg_used;
6756 	c->Header.SGTotal = cpu_to_le16(sg_used);
6757 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6758 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6759 	if (ioc->buf_size > 0) {
6760 		int i;
6761 		for (i = 0; i < sg_used; i++) {
6762 			temp64 = pci_map_single(h->pdev, buff[i],
6763 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6764 			if (dma_mapping_error(&h->pdev->dev,
6765 							(dma_addr_t) temp64)) {
6766 				c->SG[i].Addr = cpu_to_le64(0);
6767 				c->SG[i].Len = cpu_to_le32(0);
6768 				hpsa_pci_unmap(h->pdev, c, i,
6769 					PCI_DMA_BIDIRECTIONAL);
6770 				status = -ENOMEM;
6771 				goto cleanup0;
6772 			}
6773 			c->SG[i].Addr = cpu_to_le64(temp64);
6774 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6775 			c->SG[i].Ext = cpu_to_le32(0);
6776 		}
6777 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6778 	}
6779 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6780 						NO_TIMEOUT);
6781 	if (sg_used)
6782 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6783 	check_ioctl_unit_attention(h, c);
6784 	if (status) {
6785 		status = -EIO;
6786 		goto cleanup0;
6787 	}
6788 
6789 	/* Copy the error information out */
6790 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6791 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6792 		status = -EFAULT;
6793 		goto cleanup0;
6794 	}
6795 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6796 		int i;
6797 
6798 		/* Copy the data out of the buffer we created */
6799 		BYTE __user *ptr = ioc->buf;
6800 		for (i = 0; i < sg_used; i++) {
6801 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6802 				status = -EFAULT;
6803 				goto cleanup0;
6804 			}
6805 			ptr += buff_size[i];
6806 		}
6807 	}
6808 	status = 0;
6809 cleanup0:
6810 	cmd_free(h, c);
6811 cleanup1:
6812 	if (buff) {
6813 		int i;
6814 
6815 		for (i = 0; i < sg_used; i++)
6816 			kfree(buff[i]);
6817 		kfree(buff);
6818 	}
6819 	kfree(buff_size);
6820 	kfree(ioc);
6821 	return status;
6822 }
6823 
6824 static void check_ioctl_unit_attention(struct ctlr_info *h,
6825 	struct CommandList *c)
6826 {
6827 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6828 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6829 		(void) check_for_unit_attention(h, c);
6830 }
6831 
6832 /*
6833  * ioctl
6834  */
6835 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6836 {
6837 	struct ctlr_info *h;
6838 	void __user *argp = (void __user *)arg;
6839 	int rc;
6840 
6841 	h = sdev_to_hba(dev);
6842 
6843 	switch (cmd) {
6844 	case CCISS_DEREGDISK:
6845 	case CCISS_REGNEWDISK:
6846 	case CCISS_REGNEWD:
6847 		hpsa_scan_start(h->scsi_host);
6848 		return 0;
6849 	case CCISS_GETPCIINFO:
6850 		return hpsa_getpciinfo_ioctl(h, argp);
6851 	case CCISS_GETDRIVVER:
6852 		return hpsa_getdrivver_ioctl(h, argp);
6853 	case CCISS_PASSTHRU:
6854 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6855 			return -EAGAIN;
6856 		rc = hpsa_passthru_ioctl(h, argp);
6857 		atomic_inc(&h->passthru_cmds_avail);
6858 		return rc;
6859 	case CCISS_BIG_PASSTHRU:
6860 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6861 			return -EAGAIN;
6862 		rc = hpsa_big_passthru_ioctl(h, argp);
6863 		atomic_inc(&h->passthru_cmds_avail);
6864 		return rc;
6865 	default:
6866 		return -ENOTTY;
6867 	}
6868 }
6869 
6870 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6871 				u8 reset_type)
6872 {
6873 	struct CommandList *c;
6874 
6875 	c = cmd_alloc(h);
6876 
6877 	/* fill_cmd can't fail here, no data buffer to map */
6878 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6879 		RAID_CTLR_LUNID, TYPE_MSG);
6880 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6881 	c->waiting = NULL;
6882 	enqueue_cmd_and_start_io(h, c);
6883 	/* Don't wait for completion, the reset won't complete.  Don't free
6884 	 * the command either.  This is the last command we will send before
6885 	 * re-initializing everything, so it doesn't matter and won't leak.
6886 	 */
6887 	return;
6888 }
6889 
6890 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6891 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6892 	int cmd_type)
6893 {
6894 	int pci_dir = XFER_NONE;
6895 	u64 tag; /* for commands to be aborted */
6896 
6897 	c->cmd_type = CMD_IOCTL_PEND;
6898 	c->scsi_cmd = SCSI_CMD_BUSY;
6899 	c->Header.ReplyQueue = 0;
6900 	if (buff != NULL && size > 0) {
6901 		c->Header.SGList = 1;
6902 		c->Header.SGTotal = cpu_to_le16(1);
6903 	} else {
6904 		c->Header.SGList = 0;
6905 		c->Header.SGTotal = cpu_to_le16(0);
6906 	}
6907 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6908 
6909 	if (cmd_type == TYPE_CMD) {
6910 		switch (cmd) {
6911 		case HPSA_INQUIRY:
6912 			/* are we trying to read a vital product page */
6913 			if (page_code & VPD_PAGE) {
6914 				c->Request.CDB[1] = 0x01;
6915 				c->Request.CDB[2] = (page_code & 0xff);
6916 			}
6917 			c->Request.CDBLen = 6;
6918 			c->Request.type_attr_dir =
6919 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6920 			c->Request.Timeout = 0;
6921 			c->Request.CDB[0] = HPSA_INQUIRY;
6922 			c->Request.CDB[4] = size & 0xFF;
6923 			break;
6924 		case HPSA_REPORT_LOG:
6925 		case HPSA_REPORT_PHYS:
6926 			/* Talking to controller so It's a physical command
6927 			   mode = 00 target = 0.  Nothing to write.
6928 			 */
6929 			c->Request.CDBLen = 12;
6930 			c->Request.type_attr_dir =
6931 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6932 			c->Request.Timeout = 0;
6933 			c->Request.CDB[0] = cmd;
6934 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6935 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6936 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6937 			c->Request.CDB[9] = size & 0xFF;
6938 			break;
6939 		case BMIC_SENSE_DIAG_OPTIONS:
6940 			c->Request.CDBLen = 16;
6941 			c->Request.type_attr_dir =
6942 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6943 			c->Request.Timeout = 0;
6944 			/* Spec says this should be BMIC_WRITE */
6945 			c->Request.CDB[0] = BMIC_READ;
6946 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6947 			break;
6948 		case BMIC_SET_DIAG_OPTIONS:
6949 			c->Request.CDBLen = 16;
6950 			c->Request.type_attr_dir =
6951 					TYPE_ATTR_DIR(cmd_type,
6952 						ATTR_SIMPLE, XFER_WRITE);
6953 			c->Request.Timeout = 0;
6954 			c->Request.CDB[0] = BMIC_WRITE;
6955 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6956 			break;
6957 		case HPSA_CACHE_FLUSH:
6958 			c->Request.CDBLen = 12;
6959 			c->Request.type_attr_dir =
6960 					TYPE_ATTR_DIR(cmd_type,
6961 						ATTR_SIMPLE, XFER_WRITE);
6962 			c->Request.Timeout = 0;
6963 			c->Request.CDB[0] = BMIC_WRITE;
6964 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6965 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6966 			c->Request.CDB[8] = size & 0xFF;
6967 			break;
6968 		case TEST_UNIT_READY:
6969 			c->Request.CDBLen = 6;
6970 			c->Request.type_attr_dir =
6971 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6972 			c->Request.Timeout = 0;
6973 			break;
6974 		case HPSA_GET_RAID_MAP:
6975 			c->Request.CDBLen = 12;
6976 			c->Request.type_attr_dir =
6977 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6978 			c->Request.Timeout = 0;
6979 			c->Request.CDB[0] = HPSA_CISS_READ;
6980 			c->Request.CDB[1] = cmd;
6981 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6982 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6983 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6984 			c->Request.CDB[9] = size & 0xFF;
6985 			break;
6986 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6987 			c->Request.CDBLen = 10;
6988 			c->Request.type_attr_dir =
6989 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6990 			c->Request.Timeout = 0;
6991 			c->Request.CDB[0] = BMIC_READ;
6992 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6993 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6994 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6995 			break;
6996 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6997 			c->Request.CDBLen = 10;
6998 			c->Request.type_attr_dir =
6999 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7000 			c->Request.Timeout = 0;
7001 			c->Request.CDB[0] = BMIC_READ;
7002 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7003 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7004 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7005 			break;
7006 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7007 			c->Request.CDBLen = 10;
7008 			c->Request.type_attr_dir =
7009 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7010 			c->Request.Timeout = 0;
7011 			c->Request.CDB[0] = BMIC_READ;
7012 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7013 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7014 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7015 			break;
7016 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
7017 			c->Request.CDBLen = 10;
7018 			c->Request.type_attr_dir =
7019 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7020 			c->Request.Timeout = 0;
7021 			c->Request.CDB[0] = BMIC_READ;
7022 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7023 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7024 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7025 			break;
7026 		case BMIC_IDENTIFY_CONTROLLER:
7027 			c->Request.CDBLen = 10;
7028 			c->Request.type_attr_dir =
7029 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7030 			c->Request.Timeout = 0;
7031 			c->Request.CDB[0] = BMIC_READ;
7032 			c->Request.CDB[1] = 0;
7033 			c->Request.CDB[2] = 0;
7034 			c->Request.CDB[3] = 0;
7035 			c->Request.CDB[4] = 0;
7036 			c->Request.CDB[5] = 0;
7037 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7038 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7039 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7040 			c->Request.CDB[9] = 0;
7041 			break;
7042 		default:
7043 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7044 			BUG();
7045 			return -1;
7046 		}
7047 	} else if (cmd_type == TYPE_MSG) {
7048 		switch (cmd) {
7049 
7050 		case  HPSA_PHYS_TARGET_RESET:
7051 			c->Request.CDBLen = 16;
7052 			c->Request.type_attr_dir =
7053 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7054 			c->Request.Timeout = 0; /* Don't time out */
7055 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7056 			c->Request.CDB[0] = HPSA_RESET;
7057 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7058 			/* Physical target reset needs no control bytes 4-7*/
7059 			c->Request.CDB[4] = 0x00;
7060 			c->Request.CDB[5] = 0x00;
7061 			c->Request.CDB[6] = 0x00;
7062 			c->Request.CDB[7] = 0x00;
7063 			break;
7064 		case  HPSA_DEVICE_RESET_MSG:
7065 			c->Request.CDBLen = 16;
7066 			c->Request.type_attr_dir =
7067 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7068 			c->Request.Timeout = 0; /* Don't time out */
7069 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7070 			c->Request.CDB[0] =  cmd;
7071 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7072 			/* If bytes 4-7 are zero, it means reset the */
7073 			/* LunID device */
7074 			c->Request.CDB[4] = 0x00;
7075 			c->Request.CDB[5] = 0x00;
7076 			c->Request.CDB[6] = 0x00;
7077 			c->Request.CDB[7] = 0x00;
7078 			break;
7079 		case  HPSA_ABORT_MSG:
7080 			memcpy(&tag, buff, sizeof(tag));
7081 			dev_dbg(&h->pdev->dev,
7082 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7083 				tag, c->Header.tag);
7084 			c->Request.CDBLen = 16;
7085 			c->Request.type_attr_dir =
7086 					TYPE_ATTR_DIR(cmd_type,
7087 						ATTR_SIMPLE, XFER_WRITE);
7088 			c->Request.Timeout = 0; /* Don't time out */
7089 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7090 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7091 			c->Request.CDB[2] = 0x00; /* reserved */
7092 			c->Request.CDB[3] = 0x00; /* reserved */
7093 			/* Tag to abort goes in CDB[4]-CDB[11] */
7094 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7095 			c->Request.CDB[12] = 0x00; /* reserved */
7096 			c->Request.CDB[13] = 0x00; /* reserved */
7097 			c->Request.CDB[14] = 0x00; /* reserved */
7098 			c->Request.CDB[15] = 0x00; /* reserved */
7099 		break;
7100 		default:
7101 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
7102 				cmd);
7103 			BUG();
7104 		}
7105 	} else {
7106 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7107 		BUG();
7108 	}
7109 
7110 	switch (GET_DIR(c->Request.type_attr_dir)) {
7111 	case XFER_READ:
7112 		pci_dir = PCI_DMA_FROMDEVICE;
7113 		break;
7114 	case XFER_WRITE:
7115 		pci_dir = PCI_DMA_TODEVICE;
7116 		break;
7117 	case XFER_NONE:
7118 		pci_dir = PCI_DMA_NONE;
7119 		break;
7120 	default:
7121 		pci_dir = PCI_DMA_BIDIRECTIONAL;
7122 	}
7123 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7124 		return -1;
7125 	return 0;
7126 }
7127 
7128 /*
7129  * Map (physical) PCI mem into (virtual) kernel space
7130  */
7131 static void __iomem *remap_pci_mem(ulong base, ulong size)
7132 {
7133 	ulong page_base = ((ulong) base) & PAGE_MASK;
7134 	ulong page_offs = ((ulong) base) - page_base;
7135 	void __iomem *page_remapped = ioremap_nocache(page_base,
7136 		page_offs + size);
7137 
7138 	return page_remapped ? (page_remapped + page_offs) : NULL;
7139 }
7140 
7141 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7142 {
7143 	return h->access.command_completed(h, q);
7144 }
7145 
7146 static inline bool interrupt_pending(struct ctlr_info *h)
7147 {
7148 	return h->access.intr_pending(h);
7149 }
7150 
7151 static inline long interrupt_not_for_us(struct ctlr_info *h)
7152 {
7153 	return (h->access.intr_pending(h) == 0) ||
7154 		(h->interrupts_enabled == 0);
7155 }
7156 
7157 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7158 	u32 raw_tag)
7159 {
7160 	if (unlikely(tag_index >= h->nr_cmds)) {
7161 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7162 		return 1;
7163 	}
7164 	return 0;
7165 }
7166 
7167 static inline void finish_cmd(struct CommandList *c)
7168 {
7169 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7170 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7171 			|| c->cmd_type == CMD_IOACCEL2))
7172 		complete_scsi_command(c);
7173 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7174 		complete(c->waiting);
7175 }
7176 
7177 /* process completion of an indexed ("direct lookup") command */
7178 static inline void process_indexed_cmd(struct ctlr_info *h,
7179 	u32 raw_tag)
7180 {
7181 	u32 tag_index;
7182 	struct CommandList *c;
7183 
7184 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7185 	if (!bad_tag(h, tag_index, raw_tag)) {
7186 		c = h->cmd_pool + tag_index;
7187 		finish_cmd(c);
7188 	}
7189 }
7190 
7191 /* Some controllers, like p400, will give us one interrupt
7192  * after a soft reset, even if we turned interrupts off.
7193  * Only need to check for this in the hpsa_xxx_discard_completions
7194  * functions.
7195  */
7196 static int ignore_bogus_interrupt(struct ctlr_info *h)
7197 {
7198 	if (likely(!reset_devices))
7199 		return 0;
7200 
7201 	if (likely(h->interrupts_enabled))
7202 		return 0;
7203 
7204 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7205 		"(known firmware bug.)  Ignoring.\n");
7206 
7207 	return 1;
7208 }
7209 
7210 /*
7211  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7212  * Relies on (h-q[x] == x) being true for x such that
7213  * 0 <= x < MAX_REPLY_QUEUES.
7214  */
7215 static struct ctlr_info *queue_to_hba(u8 *queue)
7216 {
7217 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7218 }
7219 
7220 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7221 {
7222 	struct ctlr_info *h = queue_to_hba(queue);
7223 	u8 q = *(u8 *) queue;
7224 	u32 raw_tag;
7225 
7226 	if (ignore_bogus_interrupt(h))
7227 		return IRQ_NONE;
7228 
7229 	if (interrupt_not_for_us(h))
7230 		return IRQ_NONE;
7231 	h->last_intr_timestamp = get_jiffies_64();
7232 	while (interrupt_pending(h)) {
7233 		raw_tag = get_next_completion(h, q);
7234 		while (raw_tag != FIFO_EMPTY)
7235 			raw_tag = next_command(h, q);
7236 	}
7237 	return IRQ_HANDLED;
7238 }
7239 
7240 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7241 {
7242 	struct ctlr_info *h = queue_to_hba(queue);
7243 	u32 raw_tag;
7244 	u8 q = *(u8 *) queue;
7245 
7246 	if (ignore_bogus_interrupt(h))
7247 		return IRQ_NONE;
7248 
7249 	h->last_intr_timestamp = get_jiffies_64();
7250 	raw_tag = get_next_completion(h, q);
7251 	while (raw_tag != FIFO_EMPTY)
7252 		raw_tag = next_command(h, q);
7253 	return IRQ_HANDLED;
7254 }
7255 
7256 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7257 {
7258 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7259 	u32 raw_tag;
7260 	u8 q = *(u8 *) queue;
7261 
7262 	if (interrupt_not_for_us(h))
7263 		return IRQ_NONE;
7264 	h->last_intr_timestamp = get_jiffies_64();
7265 	while (interrupt_pending(h)) {
7266 		raw_tag = get_next_completion(h, q);
7267 		while (raw_tag != FIFO_EMPTY) {
7268 			process_indexed_cmd(h, raw_tag);
7269 			raw_tag = next_command(h, q);
7270 		}
7271 	}
7272 	return IRQ_HANDLED;
7273 }
7274 
7275 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7276 {
7277 	struct ctlr_info *h = queue_to_hba(queue);
7278 	u32 raw_tag;
7279 	u8 q = *(u8 *) queue;
7280 
7281 	h->last_intr_timestamp = get_jiffies_64();
7282 	raw_tag = get_next_completion(h, q);
7283 	while (raw_tag != FIFO_EMPTY) {
7284 		process_indexed_cmd(h, raw_tag);
7285 		raw_tag = next_command(h, q);
7286 	}
7287 	return IRQ_HANDLED;
7288 }
7289 
7290 /* Send a message CDB to the firmware. Careful, this only works
7291  * in simple mode, not performant mode due to the tag lookup.
7292  * We only ever use this immediately after a controller reset.
7293  */
7294 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7295 			unsigned char type)
7296 {
7297 	struct Command {
7298 		struct CommandListHeader CommandHeader;
7299 		struct RequestBlock Request;
7300 		struct ErrDescriptor ErrorDescriptor;
7301 	};
7302 	struct Command *cmd;
7303 	static const size_t cmd_sz = sizeof(*cmd) +
7304 					sizeof(cmd->ErrorDescriptor);
7305 	dma_addr_t paddr64;
7306 	__le32 paddr32;
7307 	u32 tag;
7308 	void __iomem *vaddr;
7309 	int i, err;
7310 
7311 	vaddr = pci_ioremap_bar(pdev, 0);
7312 	if (vaddr == NULL)
7313 		return -ENOMEM;
7314 
7315 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7316 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7317 	 * memory.
7318 	 */
7319 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7320 	if (err) {
7321 		iounmap(vaddr);
7322 		return err;
7323 	}
7324 
7325 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7326 	if (cmd == NULL) {
7327 		iounmap(vaddr);
7328 		return -ENOMEM;
7329 	}
7330 
7331 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7332 	 * although there's no guarantee, we assume that the address is at
7333 	 * least 4-byte aligned (most likely, it's page-aligned).
7334 	 */
7335 	paddr32 = cpu_to_le32(paddr64);
7336 
7337 	cmd->CommandHeader.ReplyQueue = 0;
7338 	cmd->CommandHeader.SGList = 0;
7339 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7340 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7341 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7342 
7343 	cmd->Request.CDBLen = 16;
7344 	cmd->Request.type_attr_dir =
7345 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7346 	cmd->Request.Timeout = 0; /* Don't time out */
7347 	cmd->Request.CDB[0] = opcode;
7348 	cmd->Request.CDB[1] = type;
7349 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7350 	cmd->ErrorDescriptor.Addr =
7351 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7352 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7353 
7354 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7355 
7356 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7357 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7358 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7359 			break;
7360 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7361 	}
7362 
7363 	iounmap(vaddr);
7364 
7365 	/* we leak the DMA buffer here ... no choice since the controller could
7366 	 *  still complete the command.
7367 	 */
7368 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7369 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7370 			opcode, type);
7371 		return -ETIMEDOUT;
7372 	}
7373 
7374 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7375 
7376 	if (tag & HPSA_ERROR_BIT) {
7377 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7378 			opcode, type);
7379 		return -EIO;
7380 	}
7381 
7382 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7383 		opcode, type);
7384 	return 0;
7385 }
7386 
7387 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7388 
7389 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7390 	void __iomem *vaddr, u32 use_doorbell)
7391 {
7392 
7393 	if (use_doorbell) {
7394 		/* For everything after the P600, the PCI power state method
7395 		 * of resetting the controller doesn't work, so we have this
7396 		 * other way using the doorbell register.
7397 		 */
7398 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7399 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7400 
7401 		/* PMC hardware guys tell us we need a 10 second delay after
7402 		 * doorbell reset and before any attempt to talk to the board
7403 		 * at all to ensure that this actually works and doesn't fall
7404 		 * over in some weird corner cases.
7405 		 */
7406 		msleep(10000);
7407 	} else { /* Try to do it the PCI power state way */
7408 
7409 		/* Quoting from the Open CISS Specification: "The Power
7410 		 * Management Control/Status Register (CSR) controls the power
7411 		 * state of the device.  The normal operating state is D0,
7412 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7413 		 * the controller, place the interface device in D3 then to D0,
7414 		 * this causes a secondary PCI reset which will reset the
7415 		 * controller." */
7416 
7417 		int rc = 0;
7418 
7419 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7420 
7421 		/* enter the D3hot power management state */
7422 		rc = pci_set_power_state(pdev, PCI_D3hot);
7423 		if (rc)
7424 			return rc;
7425 
7426 		msleep(500);
7427 
7428 		/* enter the D0 power management state */
7429 		rc = pci_set_power_state(pdev, PCI_D0);
7430 		if (rc)
7431 			return rc;
7432 
7433 		/*
7434 		 * The P600 requires a small delay when changing states.
7435 		 * Otherwise we may think the board did not reset and we bail.
7436 		 * This for kdump only and is particular to the P600.
7437 		 */
7438 		msleep(500);
7439 	}
7440 	return 0;
7441 }
7442 
7443 static void init_driver_version(char *driver_version, int len)
7444 {
7445 	memset(driver_version, 0, len);
7446 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7447 }
7448 
7449 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7450 {
7451 	char *driver_version;
7452 	int i, size = sizeof(cfgtable->driver_version);
7453 
7454 	driver_version = kmalloc(size, GFP_KERNEL);
7455 	if (!driver_version)
7456 		return -ENOMEM;
7457 
7458 	init_driver_version(driver_version, size);
7459 	for (i = 0; i < size; i++)
7460 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7461 	kfree(driver_version);
7462 	return 0;
7463 }
7464 
7465 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7466 					  unsigned char *driver_ver)
7467 {
7468 	int i;
7469 
7470 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7471 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7472 }
7473 
7474 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7475 {
7476 
7477 	char *driver_ver, *old_driver_ver;
7478 	int rc, size = sizeof(cfgtable->driver_version);
7479 
7480 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7481 	if (!old_driver_ver)
7482 		return -ENOMEM;
7483 	driver_ver = old_driver_ver + size;
7484 
7485 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7486 	 * should have been changed, otherwise we know the reset failed.
7487 	 */
7488 	init_driver_version(old_driver_ver, size);
7489 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7490 	rc = !memcmp(driver_ver, old_driver_ver, size);
7491 	kfree(old_driver_ver);
7492 	return rc;
7493 }
7494 /* This does a hard reset of the controller using PCI power management
7495  * states or the using the doorbell register.
7496  */
7497 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7498 {
7499 	u64 cfg_offset;
7500 	u32 cfg_base_addr;
7501 	u64 cfg_base_addr_index;
7502 	void __iomem *vaddr;
7503 	unsigned long paddr;
7504 	u32 misc_fw_support;
7505 	int rc;
7506 	struct CfgTable __iomem *cfgtable;
7507 	u32 use_doorbell;
7508 	u16 command_register;
7509 
7510 	/* For controllers as old as the P600, this is very nearly
7511 	 * the same thing as
7512 	 *
7513 	 * pci_save_state(pci_dev);
7514 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7515 	 * pci_set_power_state(pci_dev, PCI_D0);
7516 	 * pci_restore_state(pci_dev);
7517 	 *
7518 	 * For controllers newer than the P600, the pci power state
7519 	 * method of resetting doesn't work so we have another way
7520 	 * using the doorbell register.
7521 	 */
7522 
7523 	if (!ctlr_is_resettable(board_id)) {
7524 		dev_warn(&pdev->dev, "Controller not resettable\n");
7525 		return -ENODEV;
7526 	}
7527 
7528 	/* if controller is soft- but not hard resettable... */
7529 	if (!ctlr_is_hard_resettable(board_id))
7530 		return -ENOTSUPP; /* try soft reset later. */
7531 
7532 	/* Save the PCI command register */
7533 	pci_read_config_word(pdev, 4, &command_register);
7534 	pci_save_state(pdev);
7535 
7536 	/* find the first memory BAR, so we can find the cfg table */
7537 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7538 	if (rc)
7539 		return rc;
7540 	vaddr = remap_pci_mem(paddr, 0x250);
7541 	if (!vaddr)
7542 		return -ENOMEM;
7543 
7544 	/* find cfgtable in order to check if reset via doorbell is supported */
7545 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7546 					&cfg_base_addr_index, &cfg_offset);
7547 	if (rc)
7548 		goto unmap_vaddr;
7549 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7550 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7551 	if (!cfgtable) {
7552 		rc = -ENOMEM;
7553 		goto unmap_vaddr;
7554 	}
7555 	rc = write_driver_ver_to_cfgtable(cfgtable);
7556 	if (rc)
7557 		goto unmap_cfgtable;
7558 
7559 	/* If reset via doorbell register is supported, use that.
7560 	 * There are two such methods.  Favor the newest method.
7561 	 */
7562 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7563 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7564 	if (use_doorbell) {
7565 		use_doorbell = DOORBELL_CTLR_RESET2;
7566 	} else {
7567 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7568 		if (use_doorbell) {
7569 			dev_warn(&pdev->dev,
7570 				"Soft reset not supported. Firmware update is required.\n");
7571 			rc = -ENOTSUPP; /* try soft reset */
7572 			goto unmap_cfgtable;
7573 		}
7574 	}
7575 
7576 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7577 	if (rc)
7578 		goto unmap_cfgtable;
7579 
7580 	pci_restore_state(pdev);
7581 	pci_write_config_word(pdev, 4, command_register);
7582 
7583 	/* Some devices (notably the HP Smart Array 5i Controller)
7584 	   need a little pause here */
7585 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7586 
7587 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7588 	if (rc) {
7589 		dev_warn(&pdev->dev,
7590 			"Failed waiting for board to become ready after hard reset\n");
7591 		goto unmap_cfgtable;
7592 	}
7593 
7594 	rc = controller_reset_failed(vaddr);
7595 	if (rc < 0)
7596 		goto unmap_cfgtable;
7597 	if (rc) {
7598 		dev_warn(&pdev->dev, "Unable to successfully reset "
7599 			"controller. Will try soft reset.\n");
7600 		rc = -ENOTSUPP;
7601 	} else {
7602 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7603 	}
7604 
7605 unmap_cfgtable:
7606 	iounmap(cfgtable);
7607 
7608 unmap_vaddr:
7609 	iounmap(vaddr);
7610 	return rc;
7611 }
7612 
7613 /*
7614  *  We cannot read the structure directly, for portability we must use
7615  *   the io functions.
7616  *   This is for debug only.
7617  */
7618 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7619 {
7620 #ifdef HPSA_DEBUG
7621 	int i;
7622 	char temp_name[17];
7623 
7624 	dev_info(dev, "Controller Configuration information\n");
7625 	dev_info(dev, "------------------------------------\n");
7626 	for (i = 0; i < 4; i++)
7627 		temp_name[i] = readb(&(tb->Signature[i]));
7628 	temp_name[4] = '\0';
7629 	dev_info(dev, "   Signature = %s\n", temp_name);
7630 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7631 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7632 	       readl(&(tb->TransportSupport)));
7633 	dev_info(dev, "   Transport methods active = 0x%x\n",
7634 	       readl(&(tb->TransportActive)));
7635 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7636 	       readl(&(tb->HostWrite.TransportRequest)));
7637 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7638 	       readl(&(tb->HostWrite.CoalIntDelay)));
7639 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7640 	       readl(&(tb->HostWrite.CoalIntCount)));
7641 	dev_info(dev, "   Max outstanding commands = %d\n",
7642 	       readl(&(tb->CmdsOutMax)));
7643 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7644 	for (i = 0; i < 16; i++)
7645 		temp_name[i] = readb(&(tb->ServerName[i]));
7646 	temp_name[16] = '\0';
7647 	dev_info(dev, "   Server Name = %s\n", temp_name);
7648 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7649 		readl(&(tb->HeartBeat)));
7650 #endif				/* HPSA_DEBUG */
7651 }
7652 
7653 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7654 {
7655 	int i, offset, mem_type, bar_type;
7656 
7657 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7658 		return 0;
7659 	offset = 0;
7660 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7661 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7662 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7663 			offset += 4;
7664 		else {
7665 			mem_type = pci_resource_flags(pdev, i) &
7666 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7667 			switch (mem_type) {
7668 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7669 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7670 				offset += 4;	/* 32 bit */
7671 				break;
7672 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7673 				offset += 8;
7674 				break;
7675 			default:	/* reserved in PCI 2.2 */
7676 				dev_warn(&pdev->dev,
7677 				       "base address is invalid\n");
7678 				return -1;
7679 				break;
7680 			}
7681 		}
7682 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7683 			return i + 1;
7684 	}
7685 	return -1;
7686 }
7687 
7688 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7689 {
7690 	pci_free_irq_vectors(h->pdev);
7691 	h->msix_vectors = 0;
7692 }
7693 
7694 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7695  * controllers that are capable. If not, we use legacy INTx mode.
7696  */
7697 static int hpsa_interrupt_mode(struct ctlr_info *h)
7698 {
7699 	unsigned int flags = PCI_IRQ_LEGACY;
7700 	int ret;
7701 
7702 	/* Some boards advertise MSI but don't really support it */
7703 	switch (h->board_id) {
7704 	case 0x40700E11:
7705 	case 0x40800E11:
7706 	case 0x40820E11:
7707 	case 0x40830E11:
7708 		break;
7709 	default:
7710 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7711 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7712 		if (ret > 0) {
7713 			h->msix_vectors = ret;
7714 			return 0;
7715 		}
7716 
7717 		flags |= PCI_IRQ_MSI;
7718 		break;
7719 	}
7720 
7721 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7722 	if (ret < 0)
7723 		return ret;
7724 	return 0;
7725 }
7726 
7727 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7728 {
7729 	int i;
7730 	u32 subsystem_vendor_id, subsystem_device_id;
7731 
7732 	subsystem_vendor_id = pdev->subsystem_vendor;
7733 	subsystem_device_id = pdev->subsystem_device;
7734 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7735 		    subsystem_vendor_id;
7736 
7737 	for (i = 0; i < ARRAY_SIZE(products); i++)
7738 		if (*board_id == products[i].board_id)
7739 			return i;
7740 
7741 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7742 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7743 		!hpsa_allow_any) {
7744 		dev_warn(&pdev->dev, "unrecognized board ID: "
7745 			"0x%08x, ignoring.\n", *board_id);
7746 			return -ENODEV;
7747 	}
7748 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7749 }
7750 
7751 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7752 				    unsigned long *memory_bar)
7753 {
7754 	int i;
7755 
7756 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7757 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7758 			/* addressing mode bits already removed */
7759 			*memory_bar = pci_resource_start(pdev, i);
7760 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7761 				*memory_bar);
7762 			return 0;
7763 		}
7764 	dev_warn(&pdev->dev, "no memory BAR found\n");
7765 	return -ENODEV;
7766 }
7767 
7768 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7769 				     int wait_for_ready)
7770 {
7771 	int i, iterations;
7772 	u32 scratchpad;
7773 	if (wait_for_ready)
7774 		iterations = HPSA_BOARD_READY_ITERATIONS;
7775 	else
7776 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7777 
7778 	for (i = 0; i < iterations; i++) {
7779 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7780 		if (wait_for_ready) {
7781 			if (scratchpad == HPSA_FIRMWARE_READY)
7782 				return 0;
7783 		} else {
7784 			if (scratchpad != HPSA_FIRMWARE_READY)
7785 				return 0;
7786 		}
7787 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7788 	}
7789 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7790 	return -ENODEV;
7791 }
7792 
7793 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7794 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7795 			       u64 *cfg_offset)
7796 {
7797 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7798 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7799 	*cfg_base_addr &= (u32) 0x0000ffff;
7800 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7801 	if (*cfg_base_addr_index == -1) {
7802 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7803 		return -ENODEV;
7804 	}
7805 	return 0;
7806 }
7807 
7808 static void hpsa_free_cfgtables(struct ctlr_info *h)
7809 {
7810 	if (h->transtable) {
7811 		iounmap(h->transtable);
7812 		h->transtable = NULL;
7813 	}
7814 	if (h->cfgtable) {
7815 		iounmap(h->cfgtable);
7816 		h->cfgtable = NULL;
7817 	}
7818 }
7819 
7820 /* Find and map CISS config table and transfer table
7821 + * several items must be unmapped (freed) later
7822 + * */
7823 static int hpsa_find_cfgtables(struct ctlr_info *h)
7824 {
7825 	u64 cfg_offset;
7826 	u32 cfg_base_addr;
7827 	u64 cfg_base_addr_index;
7828 	u32 trans_offset;
7829 	int rc;
7830 
7831 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7832 		&cfg_base_addr_index, &cfg_offset);
7833 	if (rc)
7834 		return rc;
7835 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7836 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7837 	if (!h->cfgtable) {
7838 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7839 		return -ENOMEM;
7840 	}
7841 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7842 	if (rc)
7843 		return rc;
7844 	/* Find performant mode table. */
7845 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7846 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7847 				cfg_base_addr_index)+cfg_offset+trans_offset,
7848 				sizeof(*h->transtable));
7849 	if (!h->transtable) {
7850 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7851 		hpsa_free_cfgtables(h);
7852 		return -ENOMEM;
7853 	}
7854 	return 0;
7855 }
7856 
7857 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7858 {
7859 #define MIN_MAX_COMMANDS 16
7860 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7861 
7862 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7863 
7864 	/* Limit commands in memory limited kdump scenario. */
7865 	if (reset_devices && h->max_commands > 32)
7866 		h->max_commands = 32;
7867 
7868 	if (h->max_commands < MIN_MAX_COMMANDS) {
7869 		dev_warn(&h->pdev->dev,
7870 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7871 			h->max_commands,
7872 			MIN_MAX_COMMANDS);
7873 		h->max_commands = MIN_MAX_COMMANDS;
7874 	}
7875 }
7876 
7877 /* If the controller reports that the total max sg entries is greater than 512,
7878  * then we know that chained SG blocks work.  (Original smart arrays did not
7879  * support chained SG blocks and would return zero for max sg entries.)
7880  */
7881 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7882 {
7883 	return h->maxsgentries > 512;
7884 }
7885 
7886 /* Interrogate the hardware for some limits:
7887  * max commands, max SG elements without chaining, and with chaining,
7888  * SG chain block size, etc.
7889  */
7890 static void hpsa_find_board_params(struct ctlr_info *h)
7891 {
7892 	hpsa_get_max_perf_mode_cmds(h);
7893 	h->nr_cmds = h->max_commands;
7894 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7895 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7896 	if (hpsa_supports_chained_sg_blocks(h)) {
7897 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7898 		h->max_cmd_sg_entries = 32;
7899 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7900 		h->maxsgentries--; /* save one for chain pointer */
7901 	} else {
7902 		/*
7903 		 * Original smart arrays supported at most 31 s/g entries
7904 		 * embedded inline in the command (trying to use more
7905 		 * would lock up the controller)
7906 		 */
7907 		h->max_cmd_sg_entries = 31;
7908 		h->maxsgentries = 31; /* default to traditional values */
7909 		h->chainsize = 0;
7910 	}
7911 
7912 	/* Find out what task management functions are supported and cache */
7913 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7914 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7915 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7916 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7917 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7918 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7919 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7920 }
7921 
7922 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7923 {
7924 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7925 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7926 		return false;
7927 	}
7928 	return true;
7929 }
7930 
7931 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7932 {
7933 	u32 driver_support;
7934 
7935 	driver_support = readl(&(h->cfgtable->driver_support));
7936 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7937 #ifdef CONFIG_X86
7938 	driver_support |= ENABLE_SCSI_PREFETCH;
7939 #endif
7940 	driver_support |= ENABLE_UNIT_ATTN;
7941 	writel(driver_support, &(h->cfgtable->driver_support));
7942 }
7943 
7944 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7945  * in a prefetch beyond physical memory.
7946  */
7947 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7948 {
7949 	u32 dma_prefetch;
7950 
7951 	if (h->board_id != 0x3225103C)
7952 		return;
7953 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7954 	dma_prefetch |= 0x8000;
7955 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7956 }
7957 
7958 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7959 {
7960 	int i;
7961 	u32 doorbell_value;
7962 	unsigned long flags;
7963 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7964 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7965 		spin_lock_irqsave(&h->lock, flags);
7966 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7967 		spin_unlock_irqrestore(&h->lock, flags);
7968 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7969 			goto done;
7970 		/* delay and try again */
7971 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7972 	}
7973 	return -ENODEV;
7974 done:
7975 	return 0;
7976 }
7977 
7978 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7979 {
7980 	int i;
7981 	u32 doorbell_value;
7982 	unsigned long flags;
7983 
7984 	/* under certain very rare conditions, this can take awhile.
7985 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7986 	 * as we enter this code.)
7987 	 */
7988 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7989 		if (h->remove_in_progress)
7990 			goto done;
7991 		spin_lock_irqsave(&h->lock, flags);
7992 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7993 		spin_unlock_irqrestore(&h->lock, flags);
7994 		if (!(doorbell_value & CFGTBL_ChangeReq))
7995 			goto done;
7996 		/* delay and try again */
7997 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7998 	}
7999 	return -ENODEV;
8000 done:
8001 	return 0;
8002 }
8003 
8004 /* return -ENODEV or other reason on error, 0 on success */
8005 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8006 {
8007 	u32 trans_support;
8008 
8009 	trans_support = readl(&(h->cfgtable->TransportSupport));
8010 	if (!(trans_support & SIMPLE_MODE))
8011 		return -ENOTSUPP;
8012 
8013 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8014 
8015 	/* Update the field, and then ring the doorbell */
8016 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8017 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8018 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8019 	if (hpsa_wait_for_mode_change_ack(h))
8020 		goto error;
8021 	print_cfg_table(&h->pdev->dev, h->cfgtable);
8022 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8023 		goto error;
8024 	h->transMethod = CFGTBL_Trans_Simple;
8025 	return 0;
8026 error:
8027 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8028 	return -ENODEV;
8029 }
8030 
8031 /* free items allocated or mapped by hpsa_pci_init */
8032 static void hpsa_free_pci_init(struct ctlr_info *h)
8033 {
8034 	hpsa_free_cfgtables(h);			/* pci_init 4 */
8035 	iounmap(h->vaddr);			/* pci_init 3 */
8036 	h->vaddr = NULL;
8037 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8038 	/*
8039 	 * call pci_disable_device before pci_release_regions per
8040 	 * Documentation/PCI/pci.txt
8041 	 */
8042 	pci_disable_device(h->pdev);		/* pci_init 1 */
8043 	pci_release_regions(h->pdev);		/* pci_init 2 */
8044 }
8045 
8046 /* several items must be freed later */
8047 static int hpsa_pci_init(struct ctlr_info *h)
8048 {
8049 	int prod_index, err;
8050 
8051 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8052 	if (prod_index < 0)
8053 		return prod_index;
8054 	h->product_name = products[prod_index].product_name;
8055 	h->access = *(products[prod_index].access);
8056 
8057 	h->needs_abort_tags_swizzled =
8058 		ctlr_needs_abort_tags_swizzled(h->board_id);
8059 
8060 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8061 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8062 
8063 	err = pci_enable_device(h->pdev);
8064 	if (err) {
8065 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8066 		pci_disable_device(h->pdev);
8067 		return err;
8068 	}
8069 
8070 	err = pci_request_regions(h->pdev, HPSA);
8071 	if (err) {
8072 		dev_err(&h->pdev->dev,
8073 			"failed to obtain PCI resources\n");
8074 		pci_disable_device(h->pdev);
8075 		return err;
8076 	}
8077 
8078 	pci_set_master(h->pdev);
8079 
8080 	err = hpsa_interrupt_mode(h);
8081 	if (err)
8082 		goto clean1;
8083 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8084 	if (err)
8085 		goto clean2;	/* intmode+region, pci */
8086 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
8087 	if (!h->vaddr) {
8088 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8089 		err = -ENOMEM;
8090 		goto clean2;	/* intmode+region, pci */
8091 	}
8092 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8093 	if (err)
8094 		goto clean3;	/* vaddr, intmode+region, pci */
8095 	err = hpsa_find_cfgtables(h);
8096 	if (err)
8097 		goto clean3;	/* vaddr, intmode+region, pci */
8098 	hpsa_find_board_params(h);
8099 
8100 	if (!hpsa_CISS_signature_present(h)) {
8101 		err = -ENODEV;
8102 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8103 	}
8104 	hpsa_set_driver_support_bits(h);
8105 	hpsa_p600_dma_prefetch_quirk(h);
8106 	err = hpsa_enter_simple_mode(h);
8107 	if (err)
8108 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8109 	return 0;
8110 
8111 clean4:	/* cfgtables, vaddr, intmode+region, pci */
8112 	hpsa_free_cfgtables(h);
8113 clean3:	/* vaddr, intmode+region, pci */
8114 	iounmap(h->vaddr);
8115 	h->vaddr = NULL;
8116 clean2:	/* intmode+region, pci */
8117 	hpsa_disable_interrupt_mode(h);
8118 clean1:
8119 	/*
8120 	 * call pci_disable_device before pci_release_regions per
8121 	 * Documentation/PCI/pci.txt
8122 	 */
8123 	pci_disable_device(h->pdev);
8124 	pci_release_regions(h->pdev);
8125 	return err;
8126 }
8127 
8128 static void hpsa_hba_inquiry(struct ctlr_info *h)
8129 {
8130 	int rc;
8131 
8132 #define HBA_INQUIRY_BYTE_COUNT 64
8133 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8134 	if (!h->hba_inquiry_data)
8135 		return;
8136 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8137 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8138 	if (rc != 0) {
8139 		kfree(h->hba_inquiry_data);
8140 		h->hba_inquiry_data = NULL;
8141 	}
8142 }
8143 
8144 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8145 {
8146 	int rc, i;
8147 	void __iomem *vaddr;
8148 
8149 	if (!reset_devices)
8150 		return 0;
8151 
8152 	/* kdump kernel is loading, we don't know in which state is
8153 	 * the pci interface. The dev->enable_cnt is equal zero
8154 	 * so we call enable+disable, wait a while and switch it on.
8155 	 */
8156 	rc = pci_enable_device(pdev);
8157 	if (rc) {
8158 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8159 		return -ENODEV;
8160 	}
8161 	pci_disable_device(pdev);
8162 	msleep(260);			/* a randomly chosen number */
8163 	rc = pci_enable_device(pdev);
8164 	if (rc) {
8165 		dev_warn(&pdev->dev, "failed to enable device.\n");
8166 		return -ENODEV;
8167 	}
8168 
8169 	pci_set_master(pdev);
8170 
8171 	vaddr = pci_ioremap_bar(pdev, 0);
8172 	if (vaddr == NULL) {
8173 		rc = -ENOMEM;
8174 		goto out_disable;
8175 	}
8176 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8177 	iounmap(vaddr);
8178 
8179 	/* Reset the controller with a PCI power-cycle or via doorbell */
8180 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8181 
8182 	/* -ENOTSUPP here means we cannot reset the controller
8183 	 * but it's already (and still) up and running in
8184 	 * "performant mode".  Or, it might be 640x, which can't reset
8185 	 * due to concerns about shared bbwc between 6402/6404 pair.
8186 	 */
8187 	if (rc)
8188 		goto out_disable;
8189 
8190 	/* Now try to get the controller to respond to a no-op */
8191 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8192 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8193 		if (hpsa_noop(pdev) == 0)
8194 			break;
8195 		else
8196 			dev_warn(&pdev->dev, "no-op failed%s\n",
8197 					(i < 11 ? "; re-trying" : ""));
8198 	}
8199 
8200 out_disable:
8201 
8202 	pci_disable_device(pdev);
8203 	return rc;
8204 }
8205 
8206 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8207 {
8208 	kfree(h->cmd_pool_bits);
8209 	h->cmd_pool_bits = NULL;
8210 	if (h->cmd_pool) {
8211 		pci_free_consistent(h->pdev,
8212 				h->nr_cmds * sizeof(struct CommandList),
8213 				h->cmd_pool,
8214 				h->cmd_pool_dhandle);
8215 		h->cmd_pool = NULL;
8216 		h->cmd_pool_dhandle = 0;
8217 	}
8218 	if (h->errinfo_pool) {
8219 		pci_free_consistent(h->pdev,
8220 				h->nr_cmds * sizeof(struct ErrorInfo),
8221 				h->errinfo_pool,
8222 				h->errinfo_pool_dhandle);
8223 		h->errinfo_pool = NULL;
8224 		h->errinfo_pool_dhandle = 0;
8225 	}
8226 }
8227 
8228 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8229 {
8230 	h->cmd_pool_bits = kzalloc(
8231 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8232 		sizeof(unsigned long), GFP_KERNEL);
8233 	h->cmd_pool = pci_alloc_consistent(h->pdev,
8234 		    h->nr_cmds * sizeof(*h->cmd_pool),
8235 		    &(h->cmd_pool_dhandle));
8236 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
8237 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8238 		    &(h->errinfo_pool_dhandle));
8239 	if ((h->cmd_pool_bits == NULL)
8240 	    || (h->cmd_pool == NULL)
8241 	    || (h->errinfo_pool == NULL)) {
8242 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8243 		goto clean_up;
8244 	}
8245 	hpsa_preinitialize_commands(h);
8246 	return 0;
8247 clean_up:
8248 	hpsa_free_cmd_pool(h);
8249 	return -ENOMEM;
8250 }
8251 
8252 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8253 static void hpsa_free_irqs(struct ctlr_info *h)
8254 {
8255 	int i;
8256 
8257 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8258 		/* Single reply queue, only one irq to free */
8259 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8260 		h->q[h->intr_mode] = 0;
8261 		return;
8262 	}
8263 
8264 	for (i = 0; i < h->msix_vectors; i++) {
8265 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8266 		h->q[i] = 0;
8267 	}
8268 	for (; i < MAX_REPLY_QUEUES; i++)
8269 		h->q[i] = 0;
8270 }
8271 
8272 /* returns 0 on success; cleans up and returns -Enn on error */
8273 static int hpsa_request_irqs(struct ctlr_info *h,
8274 	irqreturn_t (*msixhandler)(int, void *),
8275 	irqreturn_t (*intxhandler)(int, void *))
8276 {
8277 	int rc, i;
8278 
8279 	/*
8280 	 * initialize h->q[x] = x so that interrupt handlers know which
8281 	 * queue to process.
8282 	 */
8283 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8284 		h->q[i] = (u8) i;
8285 
8286 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8287 		/* If performant mode and MSI-X, use multiple reply queues */
8288 		for (i = 0; i < h->msix_vectors; i++) {
8289 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8290 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8291 					0, h->intrname[i],
8292 					&h->q[i]);
8293 			if (rc) {
8294 				int j;
8295 
8296 				dev_err(&h->pdev->dev,
8297 					"failed to get irq %d for %s\n",
8298 				       pci_irq_vector(h->pdev, i), h->devname);
8299 				for (j = 0; j < i; j++) {
8300 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8301 					h->q[j] = 0;
8302 				}
8303 				for (; j < MAX_REPLY_QUEUES; j++)
8304 					h->q[j] = 0;
8305 				return rc;
8306 			}
8307 		}
8308 	} else {
8309 		/* Use single reply pool */
8310 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8311 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8312 				h->msix_vectors ? "x" : "");
8313 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8314 				msixhandler, 0,
8315 				h->intrname[0],
8316 				&h->q[h->intr_mode]);
8317 		} else {
8318 			sprintf(h->intrname[h->intr_mode],
8319 				"%s-intx", h->devname);
8320 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8321 				intxhandler, IRQF_SHARED,
8322 				h->intrname[0],
8323 				&h->q[h->intr_mode]);
8324 		}
8325 	}
8326 	if (rc) {
8327 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8328 		       pci_irq_vector(h->pdev, 0), h->devname);
8329 		hpsa_free_irqs(h);
8330 		return -ENODEV;
8331 	}
8332 	return 0;
8333 }
8334 
8335 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8336 {
8337 	int rc;
8338 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8339 
8340 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8341 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8342 	if (rc) {
8343 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8344 		return rc;
8345 	}
8346 
8347 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8348 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8349 	if (rc) {
8350 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8351 			"after soft reset.\n");
8352 		return rc;
8353 	}
8354 
8355 	return 0;
8356 }
8357 
8358 static void hpsa_free_reply_queues(struct ctlr_info *h)
8359 {
8360 	int i;
8361 
8362 	for (i = 0; i < h->nreply_queues; i++) {
8363 		if (!h->reply_queue[i].head)
8364 			continue;
8365 		pci_free_consistent(h->pdev,
8366 					h->reply_queue_size,
8367 					h->reply_queue[i].head,
8368 					h->reply_queue[i].busaddr);
8369 		h->reply_queue[i].head = NULL;
8370 		h->reply_queue[i].busaddr = 0;
8371 	}
8372 	h->reply_queue_size = 0;
8373 }
8374 
8375 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8376 {
8377 	hpsa_free_performant_mode(h);		/* init_one 7 */
8378 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8379 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8380 	hpsa_free_irqs(h);			/* init_one 4 */
8381 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8382 	h->scsi_host = NULL;			/* init_one 3 */
8383 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8384 	free_percpu(h->lockup_detected);	/* init_one 2 */
8385 	h->lockup_detected = NULL;		/* init_one 2 */
8386 	if (h->resubmit_wq) {
8387 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8388 		h->resubmit_wq = NULL;
8389 	}
8390 	if (h->rescan_ctlr_wq) {
8391 		destroy_workqueue(h->rescan_ctlr_wq);
8392 		h->rescan_ctlr_wq = NULL;
8393 	}
8394 	kfree(h);				/* init_one 1 */
8395 }
8396 
8397 /* Called when controller lockup detected. */
8398 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8399 {
8400 	int i, refcount;
8401 	struct CommandList *c;
8402 	int failcount = 0;
8403 
8404 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8405 	for (i = 0; i < h->nr_cmds; i++) {
8406 		c = h->cmd_pool + i;
8407 		refcount = atomic_inc_return(&c->refcount);
8408 		if (refcount > 1) {
8409 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8410 			finish_cmd(c);
8411 			atomic_dec(&h->commands_outstanding);
8412 			failcount++;
8413 		}
8414 		cmd_free(h, c);
8415 	}
8416 	dev_warn(&h->pdev->dev,
8417 		"failed %d commands in fail_all\n", failcount);
8418 }
8419 
8420 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8421 {
8422 	int cpu;
8423 
8424 	for_each_online_cpu(cpu) {
8425 		u32 *lockup_detected;
8426 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8427 		*lockup_detected = value;
8428 	}
8429 	wmb(); /* be sure the per-cpu variables are out to memory */
8430 }
8431 
8432 static void controller_lockup_detected(struct ctlr_info *h)
8433 {
8434 	unsigned long flags;
8435 	u32 lockup_detected;
8436 
8437 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8438 	spin_lock_irqsave(&h->lock, flags);
8439 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8440 	if (!lockup_detected) {
8441 		/* no heartbeat, but controller gave us a zero. */
8442 		dev_warn(&h->pdev->dev,
8443 			"lockup detected after %d but scratchpad register is zero\n",
8444 			h->heartbeat_sample_interval / HZ);
8445 		lockup_detected = 0xffffffff;
8446 	}
8447 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8448 	spin_unlock_irqrestore(&h->lock, flags);
8449 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8450 			lockup_detected, h->heartbeat_sample_interval / HZ);
8451 	pci_disable_device(h->pdev);
8452 	fail_all_outstanding_cmds(h);
8453 }
8454 
8455 static int detect_controller_lockup(struct ctlr_info *h)
8456 {
8457 	u64 now;
8458 	u32 heartbeat;
8459 	unsigned long flags;
8460 
8461 	now = get_jiffies_64();
8462 	/* If we've received an interrupt recently, we're ok. */
8463 	if (time_after64(h->last_intr_timestamp +
8464 				(h->heartbeat_sample_interval), now))
8465 		return false;
8466 
8467 	/*
8468 	 * If we've already checked the heartbeat recently, we're ok.
8469 	 * This could happen if someone sends us a signal. We
8470 	 * otherwise don't care about signals in this thread.
8471 	 */
8472 	if (time_after64(h->last_heartbeat_timestamp +
8473 				(h->heartbeat_sample_interval), now))
8474 		return false;
8475 
8476 	/* If heartbeat has not changed since we last looked, we're not ok. */
8477 	spin_lock_irqsave(&h->lock, flags);
8478 	heartbeat = readl(&h->cfgtable->HeartBeat);
8479 	spin_unlock_irqrestore(&h->lock, flags);
8480 	if (h->last_heartbeat == heartbeat) {
8481 		controller_lockup_detected(h);
8482 		return true;
8483 	}
8484 
8485 	/* We're ok. */
8486 	h->last_heartbeat = heartbeat;
8487 	h->last_heartbeat_timestamp = now;
8488 	return false;
8489 }
8490 
8491 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8492 {
8493 	int i;
8494 	char *event_type;
8495 
8496 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8497 		return;
8498 
8499 	/* Ask the controller to clear the events we're handling. */
8500 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8501 			| CFGTBL_Trans_io_accel2)) &&
8502 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8503 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8504 
8505 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8506 			event_type = "state change";
8507 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8508 			event_type = "configuration change";
8509 		/* Stop sending new RAID offload reqs via the IO accelerator */
8510 		scsi_block_requests(h->scsi_host);
8511 		for (i = 0; i < h->ndevices; i++) {
8512 			h->dev[i]->offload_enabled = 0;
8513 			h->dev[i]->offload_to_be_enabled = 0;
8514 		}
8515 		hpsa_drain_accel_commands(h);
8516 		/* Set 'accelerator path config change' bit */
8517 		dev_warn(&h->pdev->dev,
8518 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8519 			h->events, event_type);
8520 		writel(h->events, &(h->cfgtable->clear_event_notify));
8521 		/* Set the "clear event notify field update" bit 6 */
8522 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8523 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8524 		hpsa_wait_for_clear_event_notify_ack(h);
8525 		scsi_unblock_requests(h->scsi_host);
8526 	} else {
8527 		/* Acknowledge controller notification events. */
8528 		writel(h->events, &(h->cfgtable->clear_event_notify));
8529 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8530 		hpsa_wait_for_clear_event_notify_ack(h);
8531 #if 0
8532 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8533 		hpsa_wait_for_mode_change_ack(h);
8534 #endif
8535 	}
8536 	return;
8537 }
8538 
8539 /* Check a register on the controller to see if there are configuration
8540  * changes (added/changed/removed logical drives, etc.) which mean that
8541  * we should rescan the controller for devices.
8542  * Also check flag for driver-initiated rescan.
8543  */
8544 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8545 {
8546 	if (h->drv_req_rescan) {
8547 		h->drv_req_rescan = 0;
8548 		return 1;
8549 	}
8550 
8551 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8552 		return 0;
8553 
8554 	h->events = readl(&(h->cfgtable->event_notify));
8555 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8556 }
8557 
8558 /*
8559  * Check if any of the offline devices have become ready
8560  */
8561 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8562 {
8563 	unsigned long flags;
8564 	struct offline_device_entry *d;
8565 	struct list_head *this, *tmp;
8566 
8567 	spin_lock_irqsave(&h->offline_device_lock, flags);
8568 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8569 		d = list_entry(this, struct offline_device_entry,
8570 				offline_list);
8571 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8572 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8573 			spin_lock_irqsave(&h->offline_device_lock, flags);
8574 			list_del(&d->offline_list);
8575 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8576 			return 1;
8577 		}
8578 		spin_lock_irqsave(&h->offline_device_lock, flags);
8579 	}
8580 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8581 	return 0;
8582 }
8583 
8584 static int hpsa_luns_changed(struct ctlr_info *h)
8585 {
8586 	int rc = 1; /* assume there are changes */
8587 	struct ReportLUNdata *logdev = NULL;
8588 
8589 	/* if we can't find out if lun data has changed,
8590 	 * assume that it has.
8591 	 */
8592 
8593 	if (!h->lastlogicals)
8594 		goto out;
8595 
8596 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8597 	if (!logdev) {
8598 		dev_warn(&h->pdev->dev,
8599 			"Out of memory, can't track lun changes.\n");
8600 		goto out;
8601 	}
8602 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8603 		dev_warn(&h->pdev->dev,
8604 			"report luns failed, can't track lun changes.\n");
8605 		goto out;
8606 	}
8607 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8608 		dev_info(&h->pdev->dev,
8609 			"Lun changes detected.\n");
8610 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8611 		goto out;
8612 	} else
8613 		rc = 0; /* no changes detected. */
8614 out:
8615 	kfree(logdev);
8616 	return rc;
8617 }
8618 
8619 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8620 {
8621 	unsigned long flags;
8622 	struct ctlr_info *h = container_of(to_delayed_work(work),
8623 					struct ctlr_info, rescan_ctlr_work);
8624 
8625 
8626 	if (h->remove_in_progress)
8627 		return;
8628 
8629 	/*
8630 	 * Do the scan after the reset
8631 	 */
8632 	if (h->reset_in_progress) {
8633 		h->drv_req_rescan = 1;
8634 		return;
8635 	}
8636 
8637 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8638 		scsi_host_get(h->scsi_host);
8639 		hpsa_ack_ctlr_events(h);
8640 		hpsa_scan_start(h->scsi_host);
8641 		scsi_host_put(h->scsi_host);
8642 	} else if (h->discovery_polling) {
8643 		hpsa_disable_rld_caching(h);
8644 		if (hpsa_luns_changed(h)) {
8645 			struct Scsi_Host *sh = NULL;
8646 
8647 			dev_info(&h->pdev->dev,
8648 				"driver discovery polling rescan.\n");
8649 			sh = scsi_host_get(h->scsi_host);
8650 			if (sh != NULL) {
8651 				hpsa_scan_start(sh);
8652 				scsi_host_put(sh);
8653 			}
8654 		}
8655 	}
8656 	spin_lock_irqsave(&h->lock, flags);
8657 	if (!h->remove_in_progress)
8658 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8659 				h->heartbeat_sample_interval);
8660 	spin_unlock_irqrestore(&h->lock, flags);
8661 }
8662 
8663 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8664 {
8665 	unsigned long flags;
8666 	struct ctlr_info *h = container_of(to_delayed_work(work),
8667 					struct ctlr_info, monitor_ctlr_work);
8668 
8669 	detect_controller_lockup(h);
8670 	if (lockup_detected(h))
8671 		return;
8672 
8673 	spin_lock_irqsave(&h->lock, flags);
8674 	if (!h->remove_in_progress)
8675 		schedule_delayed_work(&h->monitor_ctlr_work,
8676 				h->heartbeat_sample_interval);
8677 	spin_unlock_irqrestore(&h->lock, flags);
8678 }
8679 
8680 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8681 						char *name)
8682 {
8683 	struct workqueue_struct *wq = NULL;
8684 
8685 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8686 	if (!wq)
8687 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8688 
8689 	return wq;
8690 }
8691 
8692 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8693 {
8694 	int dac, rc;
8695 	struct ctlr_info *h;
8696 	int try_soft_reset = 0;
8697 	unsigned long flags;
8698 	u32 board_id;
8699 
8700 	if (number_of_controllers == 0)
8701 		printk(KERN_INFO DRIVER_NAME "\n");
8702 
8703 	rc = hpsa_lookup_board_id(pdev, &board_id);
8704 	if (rc < 0) {
8705 		dev_warn(&pdev->dev, "Board ID not found\n");
8706 		return rc;
8707 	}
8708 
8709 	rc = hpsa_init_reset_devices(pdev, board_id);
8710 	if (rc) {
8711 		if (rc != -ENOTSUPP)
8712 			return rc;
8713 		/* If the reset fails in a particular way (it has no way to do
8714 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8715 		 * a soft reset once we get the controller configured up to the
8716 		 * point that it can accept a command.
8717 		 */
8718 		try_soft_reset = 1;
8719 		rc = 0;
8720 	}
8721 
8722 reinit_after_soft_reset:
8723 
8724 	/* Command structures must be aligned on a 32-byte boundary because
8725 	 * the 5 lower bits of the address are used by the hardware. and by
8726 	 * the driver.  See comments in hpsa.h for more info.
8727 	 */
8728 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8729 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8730 	if (!h) {
8731 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8732 		return -ENOMEM;
8733 	}
8734 
8735 	h->pdev = pdev;
8736 
8737 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8738 	INIT_LIST_HEAD(&h->offline_device_list);
8739 	spin_lock_init(&h->lock);
8740 	spin_lock_init(&h->offline_device_lock);
8741 	spin_lock_init(&h->scan_lock);
8742 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8743 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8744 
8745 	/* Allocate and clear per-cpu variable lockup_detected */
8746 	h->lockup_detected = alloc_percpu(u32);
8747 	if (!h->lockup_detected) {
8748 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8749 		rc = -ENOMEM;
8750 		goto clean1;	/* aer/h */
8751 	}
8752 	set_lockup_detected_for_all_cpus(h, 0);
8753 
8754 	rc = hpsa_pci_init(h);
8755 	if (rc)
8756 		goto clean2;	/* lu, aer/h */
8757 
8758 	/* relies on h-> settings made by hpsa_pci_init, including
8759 	 * interrupt_mode h->intr */
8760 	rc = hpsa_scsi_host_alloc(h);
8761 	if (rc)
8762 		goto clean2_5;	/* pci, lu, aer/h */
8763 
8764 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8765 	h->ctlr = number_of_controllers;
8766 	number_of_controllers++;
8767 
8768 	/* configure PCI DMA stuff */
8769 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8770 	if (rc == 0) {
8771 		dac = 1;
8772 	} else {
8773 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8774 		if (rc == 0) {
8775 			dac = 0;
8776 		} else {
8777 			dev_err(&pdev->dev, "no suitable DMA available\n");
8778 			goto clean3;	/* shost, pci, lu, aer/h */
8779 		}
8780 	}
8781 
8782 	/* make sure the board interrupts are off */
8783 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8784 
8785 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8786 	if (rc)
8787 		goto clean3;	/* shost, pci, lu, aer/h */
8788 	rc = hpsa_alloc_cmd_pool(h);
8789 	if (rc)
8790 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8791 	rc = hpsa_alloc_sg_chain_blocks(h);
8792 	if (rc)
8793 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8794 	init_waitqueue_head(&h->scan_wait_queue);
8795 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8796 	init_waitqueue_head(&h->event_sync_wait_queue);
8797 	mutex_init(&h->reset_mutex);
8798 	h->scan_finished = 1; /* no scan currently in progress */
8799 
8800 	pci_set_drvdata(pdev, h);
8801 	h->ndevices = 0;
8802 
8803 	spin_lock_init(&h->devlock);
8804 	rc = hpsa_put_ctlr_into_performant_mode(h);
8805 	if (rc)
8806 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8807 
8808 	/* create the resubmit workqueue */
8809 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8810 	if (!h->rescan_ctlr_wq) {
8811 		rc = -ENOMEM;
8812 		goto clean7;
8813 	}
8814 
8815 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8816 	if (!h->resubmit_wq) {
8817 		rc = -ENOMEM;
8818 		goto clean7;	/* aer/h */
8819 	}
8820 
8821 	/*
8822 	 * At this point, the controller is ready to take commands.
8823 	 * Now, if reset_devices and the hard reset didn't work, try
8824 	 * the soft reset and see if that works.
8825 	 */
8826 	if (try_soft_reset) {
8827 
8828 		/* This is kind of gross.  We may or may not get a completion
8829 		 * from the soft reset command, and if we do, then the value
8830 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8831 		 * after the reset throwing away any completions we get during
8832 		 * that time.  Unregister the interrupt handler and register
8833 		 * fake ones to scoop up any residual completions.
8834 		 */
8835 		spin_lock_irqsave(&h->lock, flags);
8836 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8837 		spin_unlock_irqrestore(&h->lock, flags);
8838 		hpsa_free_irqs(h);
8839 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8840 					hpsa_intx_discard_completions);
8841 		if (rc) {
8842 			dev_warn(&h->pdev->dev,
8843 				"Failed to request_irq after soft reset.\n");
8844 			/*
8845 			 * cannot goto clean7 or free_irqs will be called
8846 			 * again. Instead, do its work
8847 			 */
8848 			hpsa_free_performant_mode(h);	/* clean7 */
8849 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8850 			hpsa_free_cmd_pool(h);		/* clean5 */
8851 			/*
8852 			 * skip hpsa_free_irqs(h) clean4 since that
8853 			 * was just called before request_irqs failed
8854 			 */
8855 			goto clean3;
8856 		}
8857 
8858 		rc = hpsa_kdump_soft_reset(h);
8859 		if (rc)
8860 			/* Neither hard nor soft reset worked, we're hosed. */
8861 			goto clean7;
8862 
8863 		dev_info(&h->pdev->dev, "Board READY.\n");
8864 		dev_info(&h->pdev->dev,
8865 			"Waiting for stale completions to drain.\n");
8866 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8867 		msleep(10000);
8868 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8869 
8870 		rc = controller_reset_failed(h->cfgtable);
8871 		if (rc)
8872 			dev_info(&h->pdev->dev,
8873 				"Soft reset appears to have failed.\n");
8874 
8875 		/* since the controller's reset, we have to go back and re-init
8876 		 * everything.  Easiest to just forget what we've done and do it
8877 		 * all over again.
8878 		 */
8879 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8880 		try_soft_reset = 0;
8881 		if (rc)
8882 			/* don't goto clean, we already unallocated */
8883 			return -ENODEV;
8884 
8885 		goto reinit_after_soft_reset;
8886 	}
8887 
8888 	/* Enable Accelerated IO path at driver layer */
8889 	h->acciopath_status = 1;
8890 	/* Disable discovery polling.*/
8891 	h->discovery_polling = 0;
8892 
8893 
8894 	/* Turn the interrupts on so we can service requests */
8895 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8896 
8897 	hpsa_hba_inquiry(h);
8898 
8899 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8900 	if (!h->lastlogicals)
8901 		dev_info(&h->pdev->dev,
8902 			"Can't track change to report lun data\n");
8903 
8904 	/* hook into SCSI subsystem */
8905 	rc = hpsa_scsi_add_host(h);
8906 	if (rc)
8907 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8908 
8909 	/* Monitor the controller for firmware lockups */
8910 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8911 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8912 	schedule_delayed_work(&h->monitor_ctlr_work,
8913 				h->heartbeat_sample_interval);
8914 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8915 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8916 				h->heartbeat_sample_interval);
8917 	return 0;
8918 
8919 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8920 	hpsa_free_performant_mode(h);
8921 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8922 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8923 	hpsa_free_sg_chain_blocks(h);
8924 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8925 	hpsa_free_cmd_pool(h);
8926 clean4: /* irq, shost, pci, lu, aer/h */
8927 	hpsa_free_irqs(h);
8928 clean3: /* shost, pci, lu, aer/h */
8929 	scsi_host_put(h->scsi_host);
8930 	h->scsi_host = NULL;
8931 clean2_5: /* pci, lu, aer/h */
8932 	hpsa_free_pci_init(h);
8933 clean2: /* lu, aer/h */
8934 	if (h->lockup_detected) {
8935 		free_percpu(h->lockup_detected);
8936 		h->lockup_detected = NULL;
8937 	}
8938 clean1:	/* wq/aer/h */
8939 	if (h->resubmit_wq) {
8940 		destroy_workqueue(h->resubmit_wq);
8941 		h->resubmit_wq = NULL;
8942 	}
8943 	if (h->rescan_ctlr_wq) {
8944 		destroy_workqueue(h->rescan_ctlr_wq);
8945 		h->rescan_ctlr_wq = NULL;
8946 	}
8947 	kfree(h);
8948 	return rc;
8949 }
8950 
8951 static void hpsa_flush_cache(struct ctlr_info *h)
8952 {
8953 	char *flush_buf;
8954 	struct CommandList *c;
8955 	int rc;
8956 
8957 	if (unlikely(lockup_detected(h)))
8958 		return;
8959 	flush_buf = kzalloc(4, GFP_KERNEL);
8960 	if (!flush_buf)
8961 		return;
8962 
8963 	c = cmd_alloc(h);
8964 
8965 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8966 		RAID_CTLR_LUNID, TYPE_CMD)) {
8967 		goto out;
8968 	}
8969 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8970 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8971 	if (rc)
8972 		goto out;
8973 	if (c->err_info->CommandStatus != 0)
8974 out:
8975 		dev_warn(&h->pdev->dev,
8976 			"error flushing cache on controller\n");
8977 	cmd_free(h, c);
8978 	kfree(flush_buf);
8979 }
8980 
8981 /* Make controller gather fresh report lun data each time we
8982  * send down a report luns request
8983  */
8984 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8985 {
8986 	u32 *options;
8987 	struct CommandList *c;
8988 	int rc;
8989 
8990 	/* Don't bother trying to set diag options if locked up */
8991 	if (unlikely(h->lockup_detected))
8992 		return;
8993 
8994 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8995 	if (!options) {
8996 		dev_err(&h->pdev->dev,
8997 			"Error: failed to disable rld caching, during alloc.\n");
8998 		return;
8999 	}
9000 
9001 	c = cmd_alloc(h);
9002 
9003 	/* first, get the current diag options settings */
9004 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9005 		RAID_CTLR_LUNID, TYPE_CMD))
9006 		goto errout;
9007 
9008 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9009 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9010 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
9011 		goto errout;
9012 
9013 	/* Now, set the bit for disabling the RLD caching */
9014 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9015 
9016 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9017 		RAID_CTLR_LUNID, TYPE_CMD))
9018 		goto errout;
9019 
9020 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9021 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9022 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9023 		goto errout;
9024 
9025 	/* Now verify that it got set: */
9026 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9027 		RAID_CTLR_LUNID, TYPE_CMD))
9028 		goto errout;
9029 
9030 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9031 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9032 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9033 		goto errout;
9034 
9035 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9036 		goto out;
9037 
9038 errout:
9039 	dev_err(&h->pdev->dev,
9040 			"Error: failed to disable report lun data caching.\n");
9041 out:
9042 	cmd_free(h, c);
9043 	kfree(options);
9044 }
9045 
9046 static void hpsa_shutdown(struct pci_dev *pdev)
9047 {
9048 	struct ctlr_info *h;
9049 
9050 	h = pci_get_drvdata(pdev);
9051 	/* Turn board interrupts off  and send the flush cache command
9052 	 * sendcmd will turn off interrupt, and send the flush...
9053 	 * To write all data in the battery backed cache to disks
9054 	 */
9055 	hpsa_flush_cache(h);
9056 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9057 	hpsa_free_irqs(h);			/* init_one 4 */
9058 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9059 }
9060 
9061 static void hpsa_free_device_info(struct ctlr_info *h)
9062 {
9063 	int i;
9064 
9065 	for (i = 0; i < h->ndevices; i++) {
9066 		kfree(h->dev[i]);
9067 		h->dev[i] = NULL;
9068 	}
9069 }
9070 
9071 static void hpsa_remove_one(struct pci_dev *pdev)
9072 {
9073 	struct ctlr_info *h;
9074 	unsigned long flags;
9075 
9076 	if (pci_get_drvdata(pdev) == NULL) {
9077 		dev_err(&pdev->dev, "unable to remove device\n");
9078 		return;
9079 	}
9080 	h = pci_get_drvdata(pdev);
9081 
9082 	/* Get rid of any controller monitoring work items */
9083 	spin_lock_irqsave(&h->lock, flags);
9084 	h->remove_in_progress = 1;
9085 	spin_unlock_irqrestore(&h->lock, flags);
9086 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9087 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9088 	destroy_workqueue(h->rescan_ctlr_wq);
9089 	destroy_workqueue(h->resubmit_wq);
9090 
9091 	/*
9092 	 * Call before disabling interrupts.
9093 	 * scsi_remove_host can trigger I/O operations especially
9094 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9095 	 * operations which cannot complete and will hang the system.
9096 	 */
9097 	if (h->scsi_host)
9098 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9099 	/* includes hpsa_free_irqs - init_one 4 */
9100 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9101 	hpsa_shutdown(pdev);
9102 
9103 	hpsa_free_device_info(h);		/* scan */
9104 
9105 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9106 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9107 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9108 	hpsa_free_performant_mode(h);			/* init_one 7 */
9109 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9110 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9111 	kfree(h->lastlogicals);
9112 
9113 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9114 
9115 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9116 	h->scsi_host = NULL;				/* init_one 3 */
9117 
9118 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9119 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9120 
9121 	free_percpu(h->lockup_detected);		/* init_one 2 */
9122 	h->lockup_detected = NULL;			/* init_one 2 */
9123 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9124 
9125 	hpsa_delete_sas_host(h);
9126 
9127 	kfree(h);					/* init_one 1 */
9128 }
9129 
9130 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9131 	__attribute__((unused)) pm_message_t state)
9132 {
9133 	return -ENOSYS;
9134 }
9135 
9136 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9137 {
9138 	return -ENOSYS;
9139 }
9140 
9141 static struct pci_driver hpsa_pci_driver = {
9142 	.name = HPSA,
9143 	.probe = hpsa_init_one,
9144 	.remove = hpsa_remove_one,
9145 	.id_table = hpsa_pci_device_id,	/* id_table */
9146 	.shutdown = hpsa_shutdown,
9147 	.suspend = hpsa_suspend,
9148 	.resume = hpsa_resume,
9149 };
9150 
9151 /* Fill in bucket_map[], given nsgs (the max number of
9152  * scatter gather elements supported) and bucket[],
9153  * which is an array of 8 integers.  The bucket[] array
9154  * contains 8 different DMA transfer sizes (in 16
9155  * byte increments) which the controller uses to fetch
9156  * commands.  This function fills in bucket_map[], which
9157  * maps a given number of scatter gather elements to one of
9158  * the 8 DMA transfer sizes.  The point of it is to allow the
9159  * controller to only do as much DMA as needed to fetch the
9160  * command, with the DMA transfer size encoded in the lower
9161  * bits of the command address.
9162  */
9163 static void  calc_bucket_map(int bucket[], int num_buckets,
9164 	int nsgs, int min_blocks, u32 *bucket_map)
9165 {
9166 	int i, j, b, size;
9167 
9168 	/* Note, bucket_map must have nsgs+1 entries. */
9169 	for (i = 0; i <= nsgs; i++) {
9170 		/* Compute size of a command with i SG entries */
9171 		size = i + min_blocks;
9172 		b = num_buckets; /* Assume the biggest bucket */
9173 		/* Find the bucket that is just big enough */
9174 		for (j = 0; j < num_buckets; j++) {
9175 			if (bucket[j] >= size) {
9176 				b = j;
9177 				break;
9178 			}
9179 		}
9180 		/* for a command with i SG entries, use bucket b. */
9181 		bucket_map[i] = b;
9182 	}
9183 }
9184 
9185 /*
9186  * return -ENODEV on err, 0 on success (or no action)
9187  * allocates numerous items that must be freed later
9188  */
9189 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9190 {
9191 	int i;
9192 	unsigned long register_value;
9193 	unsigned long transMethod = CFGTBL_Trans_Performant |
9194 			(trans_support & CFGTBL_Trans_use_short_tags) |
9195 				CFGTBL_Trans_enable_directed_msix |
9196 			(trans_support & (CFGTBL_Trans_io_accel1 |
9197 				CFGTBL_Trans_io_accel2));
9198 	struct access_method access = SA5_performant_access;
9199 
9200 	/* This is a bit complicated.  There are 8 registers on
9201 	 * the controller which we write to to tell it 8 different
9202 	 * sizes of commands which there may be.  It's a way of
9203 	 * reducing the DMA done to fetch each command.  Encoded into
9204 	 * each command's tag are 3 bits which communicate to the controller
9205 	 * which of the eight sizes that command fits within.  The size of
9206 	 * each command depends on how many scatter gather entries there are.
9207 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9208 	 * with the number of 16-byte blocks a command of that size requires.
9209 	 * The smallest command possible requires 5 such 16 byte blocks.
9210 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9211 	 * blocks.  Note, this only extends to the SG entries contained
9212 	 * within the command block, and does not extend to chained blocks
9213 	 * of SG elements.   bft[] contains the eight values we write to
9214 	 * the registers.  They are not evenly distributed, but have more
9215 	 * sizes for small commands, and fewer sizes for larger commands.
9216 	 */
9217 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9218 #define MIN_IOACCEL2_BFT_ENTRY 5
9219 #define HPSA_IOACCEL2_HEADER_SZ 4
9220 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9221 			13, 14, 15, 16, 17, 18, 19,
9222 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9223 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9224 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9225 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9226 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9227 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9228 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9229 	/*  5 = 1 s/g entry or 4k
9230 	 *  6 = 2 s/g entry or 8k
9231 	 *  8 = 4 s/g entry or 16k
9232 	 * 10 = 6 s/g entry or 24k
9233 	 */
9234 
9235 	/* If the controller supports either ioaccel method then
9236 	 * we can also use the RAID stack submit path that does not
9237 	 * perform the superfluous readl() after each command submission.
9238 	 */
9239 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9240 		access = SA5_performant_access_no_read;
9241 
9242 	/* Controller spec: zero out this buffer. */
9243 	for (i = 0; i < h->nreply_queues; i++)
9244 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9245 
9246 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9247 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9248 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9249 	for (i = 0; i < 8; i++)
9250 		writel(bft[i], &h->transtable->BlockFetch[i]);
9251 
9252 	/* size of controller ring buffer */
9253 	writel(h->max_commands, &h->transtable->RepQSize);
9254 	writel(h->nreply_queues, &h->transtable->RepQCount);
9255 	writel(0, &h->transtable->RepQCtrAddrLow32);
9256 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9257 
9258 	for (i = 0; i < h->nreply_queues; i++) {
9259 		writel(0, &h->transtable->RepQAddr[i].upper);
9260 		writel(h->reply_queue[i].busaddr,
9261 			&h->transtable->RepQAddr[i].lower);
9262 	}
9263 
9264 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9265 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9266 	/*
9267 	 * enable outbound interrupt coalescing in accelerator mode;
9268 	 */
9269 	if (trans_support & CFGTBL_Trans_io_accel1) {
9270 		access = SA5_ioaccel_mode1_access;
9271 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9272 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9273 	} else {
9274 		if (trans_support & CFGTBL_Trans_io_accel2) {
9275 			access = SA5_ioaccel_mode2_access;
9276 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9277 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9278 		}
9279 	}
9280 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9281 	if (hpsa_wait_for_mode_change_ack(h)) {
9282 		dev_err(&h->pdev->dev,
9283 			"performant mode problem - doorbell timeout\n");
9284 		return -ENODEV;
9285 	}
9286 	register_value = readl(&(h->cfgtable->TransportActive));
9287 	if (!(register_value & CFGTBL_Trans_Performant)) {
9288 		dev_err(&h->pdev->dev,
9289 			"performant mode problem - transport not active\n");
9290 		return -ENODEV;
9291 	}
9292 	/* Change the access methods to the performant access methods */
9293 	h->access = access;
9294 	h->transMethod = transMethod;
9295 
9296 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9297 		(trans_support & CFGTBL_Trans_io_accel2)))
9298 		return 0;
9299 
9300 	if (trans_support & CFGTBL_Trans_io_accel1) {
9301 		/* Set up I/O accelerator mode */
9302 		for (i = 0; i < h->nreply_queues; i++) {
9303 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9304 			h->reply_queue[i].current_entry =
9305 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9306 		}
9307 		bft[7] = h->ioaccel_maxsg + 8;
9308 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9309 				h->ioaccel1_blockFetchTable);
9310 
9311 		/* initialize all reply queue entries to unused */
9312 		for (i = 0; i < h->nreply_queues; i++)
9313 			memset(h->reply_queue[i].head,
9314 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9315 				h->reply_queue_size);
9316 
9317 		/* set all the constant fields in the accelerator command
9318 		 * frames once at init time to save CPU cycles later.
9319 		 */
9320 		for (i = 0; i < h->nr_cmds; i++) {
9321 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9322 
9323 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9324 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9325 					(i * sizeof(struct ErrorInfo)));
9326 			cp->err_info_len = sizeof(struct ErrorInfo);
9327 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9328 			cp->host_context_flags =
9329 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9330 			cp->timeout_sec = 0;
9331 			cp->ReplyQueue = 0;
9332 			cp->tag =
9333 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9334 			cp->host_addr =
9335 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9336 					(i * sizeof(struct io_accel1_cmd)));
9337 		}
9338 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9339 		u64 cfg_offset, cfg_base_addr_index;
9340 		u32 bft2_offset, cfg_base_addr;
9341 		int rc;
9342 
9343 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9344 			&cfg_base_addr_index, &cfg_offset);
9345 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9346 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9347 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9348 				4, h->ioaccel2_blockFetchTable);
9349 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9350 		BUILD_BUG_ON(offsetof(struct CfgTable,
9351 				io_accel_request_size_offset) != 0xb8);
9352 		h->ioaccel2_bft2_regs =
9353 			remap_pci_mem(pci_resource_start(h->pdev,
9354 					cfg_base_addr_index) +
9355 					cfg_offset + bft2_offset,
9356 					ARRAY_SIZE(bft2) *
9357 					sizeof(*h->ioaccel2_bft2_regs));
9358 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9359 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9360 	}
9361 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9362 	if (hpsa_wait_for_mode_change_ack(h)) {
9363 		dev_err(&h->pdev->dev,
9364 			"performant mode problem - enabling ioaccel mode\n");
9365 		return -ENODEV;
9366 	}
9367 	return 0;
9368 }
9369 
9370 /* Free ioaccel1 mode command blocks and block fetch table */
9371 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9372 {
9373 	if (h->ioaccel_cmd_pool) {
9374 		pci_free_consistent(h->pdev,
9375 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9376 			h->ioaccel_cmd_pool,
9377 			h->ioaccel_cmd_pool_dhandle);
9378 		h->ioaccel_cmd_pool = NULL;
9379 		h->ioaccel_cmd_pool_dhandle = 0;
9380 	}
9381 	kfree(h->ioaccel1_blockFetchTable);
9382 	h->ioaccel1_blockFetchTable = NULL;
9383 }
9384 
9385 /* Allocate ioaccel1 mode command blocks and block fetch table */
9386 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9387 {
9388 	h->ioaccel_maxsg =
9389 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9390 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9391 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9392 
9393 	/* Command structures must be aligned on a 128-byte boundary
9394 	 * because the 7 lower bits of the address are used by the
9395 	 * hardware.
9396 	 */
9397 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9398 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9399 	h->ioaccel_cmd_pool =
9400 		pci_alloc_consistent(h->pdev,
9401 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9402 			&(h->ioaccel_cmd_pool_dhandle));
9403 
9404 	h->ioaccel1_blockFetchTable =
9405 		kmalloc(((h->ioaccel_maxsg + 1) *
9406 				sizeof(u32)), GFP_KERNEL);
9407 
9408 	if ((h->ioaccel_cmd_pool == NULL) ||
9409 		(h->ioaccel1_blockFetchTable == NULL))
9410 		goto clean_up;
9411 
9412 	memset(h->ioaccel_cmd_pool, 0,
9413 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9414 	return 0;
9415 
9416 clean_up:
9417 	hpsa_free_ioaccel1_cmd_and_bft(h);
9418 	return -ENOMEM;
9419 }
9420 
9421 /* Free ioaccel2 mode command blocks and block fetch table */
9422 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9423 {
9424 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9425 
9426 	if (h->ioaccel2_cmd_pool) {
9427 		pci_free_consistent(h->pdev,
9428 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9429 			h->ioaccel2_cmd_pool,
9430 			h->ioaccel2_cmd_pool_dhandle);
9431 		h->ioaccel2_cmd_pool = NULL;
9432 		h->ioaccel2_cmd_pool_dhandle = 0;
9433 	}
9434 	kfree(h->ioaccel2_blockFetchTable);
9435 	h->ioaccel2_blockFetchTable = NULL;
9436 }
9437 
9438 /* Allocate ioaccel2 mode command blocks and block fetch table */
9439 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9440 {
9441 	int rc;
9442 
9443 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9444 
9445 	h->ioaccel_maxsg =
9446 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9447 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9448 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9449 
9450 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9451 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9452 	h->ioaccel2_cmd_pool =
9453 		pci_alloc_consistent(h->pdev,
9454 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9455 			&(h->ioaccel2_cmd_pool_dhandle));
9456 
9457 	h->ioaccel2_blockFetchTable =
9458 		kmalloc(((h->ioaccel_maxsg + 1) *
9459 				sizeof(u32)), GFP_KERNEL);
9460 
9461 	if ((h->ioaccel2_cmd_pool == NULL) ||
9462 		(h->ioaccel2_blockFetchTable == NULL)) {
9463 		rc = -ENOMEM;
9464 		goto clean_up;
9465 	}
9466 
9467 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9468 	if (rc)
9469 		goto clean_up;
9470 
9471 	memset(h->ioaccel2_cmd_pool, 0,
9472 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9473 	return 0;
9474 
9475 clean_up:
9476 	hpsa_free_ioaccel2_cmd_and_bft(h);
9477 	return rc;
9478 }
9479 
9480 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9481 static void hpsa_free_performant_mode(struct ctlr_info *h)
9482 {
9483 	kfree(h->blockFetchTable);
9484 	h->blockFetchTable = NULL;
9485 	hpsa_free_reply_queues(h);
9486 	hpsa_free_ioaccel1_cmd_and_bft(h);
9487 	hpsa_free_ioaccel2_cmd_and_bft(h);
9488 }
9489 
9490 /* return -ENODEV on error, 0 on success (or no action)
9491  * allocates numerous items that must be freed later
9492  */
9493 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9494 {
9495 	u32 trans_support;
9496 	unsigned long transMethod = CFGTBL_Trans_Performant |
9497 					CFGTBL_Trans_use_short_tags;
9498 	int i, rc;
9499 
9500 	if (hpsa_simple_mode)
9501 		return 0;
9502 
9503 	trans_support = readl(&(h->cfgtable->TransportSupport));
9504 	if (!(trans_support & PERFORMANT_MODE))
9505 		return 0;
9506 
9507 	/* Check for I/O accelerator mode support */
9508 	if (trans_support & CFGTBL_Trans_io_accel1) {
9509 		transMethod |= CFGTBL_Trans_io_accel1 |
9510 				CFGTBL_Trans_enable_directed_msix;
9511 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9512 		if (rc)
9513 			return rc;
9514 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9515 		transMethod |= CFGTBL_Trans_io_accel2 |
9516 				CFGTBL_Trans_enable_directed_msix;
9517 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9518 		if (rc)
9519 			return rc;
9520 	}
9521 
9522 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9523 	hpsa_get_max_perf_mode_cmds(h);
9524 	/* Performant mode ring buffer and supporting data structures */
9525 	h->reply_queue_size = h->max_commands * sizeof(u64);
9526 
9527 	for (i = 0; i < h->nreply_queues; i++) {
9528 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9529 						h->reply_queue_size,
9530 						&(h->reply_queue[i].busaddr));
9531 		if (!h->reply_queue[i].head) {
9532 			rc = -ENOMEM;
9533 			goto clean1;	/* rq, ioaccel */
9534 		}
9535 		h->reply_queue[i].size = h->max_commands;
9536 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9537 		h->reply_queue[i].current_entry = 0;
9538 	}
9539 
9540 	/* Need a block fetch table for performant mode */
9541 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9542 				sizeof(u32)), GFP_KERNEL);
9543 	if (!h->blockFetchTable) {
9544 		rc = -ENOMEM;
9545 		goto clean1;	/* rq, ioaccel */
9546 	}
9547 
9548 	rc = hpsa_enter_performant_mode(h, trans_support);
9549 	if (rc)
9550 		goto clean2;	/* bft, rq, ioaccel */
9551 	return 0;
9552 
9553 clean2:	/* bft, rq, ioaccel */
9554 	kfree(h->blockFetchTable);
9555 	h->blockFetchTable = NULL;
9556 clean1:	/* rq, ioaccel */
9557 	hpsa_free_reply_queues(h);
9558 	hpsa_free_ioaccel1_cmd_and_bft(h);
9559 	hpsa_free_ioaccel2_cmd_and_bft(h);
9560 	return rc;
9561 }
9562 
9563 static int is_accelerated_cmd(struct CommandList *c)
9564 {
9565 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9566 }
9567 
9568 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9569 {
9570 	struct CommandList *c = NULL;
9571 	int i, accel_cmds_out;
9572 	int refcount;
9573 
9574 	do { /* wait for all outstanding ioaccel commands to drain out */
9575 		accel_cmds_out = 0;
9576 		for (i = 0; i < h->nr_cmds; i++) {
9577 			c = h->cmd_pool + i;
9578 			refcount = atomic_inc_return(&c->refcount);
9579 			if (refcount > 1) /* Command is allocated */
9580 				accel_cmds_out += is_accelerated_cmd(c);
9581 			cmd_free(h, c);
9582 		}
9583 		if (accel_cmds_out <= 0)
9584 			break;
9585 		msleep(100);
9586 	} while (1);
9587 }
9588 
9589 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9590 				struct hpsa_sas_port *hpsa_sas_port)
9591 {
9592 	struct hpsa_sas_phy *hpsa_sas_phy;
9593 	struct sas_phy *phy;
9594 
9595 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9596 	if (!hpsa_sas_phy)
9597 		return NULL;
9598 
9599 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9600 		hpsa_sas_port->next_phy_index);
9601 	if (!phy) {
9602 		kfree(hpsa_sas_phy);
9603 		return NULL;
9604 	}
9605 
9606 	hpsa_sas_port->next_phy_index++;
9607 	hpsa_sas_phy->phy = phy;
9608 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9609 
9610 	return hpsa_sas_phy;
9611 }
9612 
9613 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9614 {
9615 	struct sas_phy *phy = hpsa_sas_phy->phy;
9616 
9617 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9618 	sas_phy_free(phy);
9619 	if (hpsa_sas_phy->added_to_port)
9620 		list_del(&hpsa_sas_phy->phy_list_entry);
9621 	kfree(hpsa_sas_phy);
9622 }
9623 
9624 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9625 {
9626 	int rc;
9627 	struct hpsa_sas_port *hpsa_sas_port;
9628 	struct sas_phy *phy;
9629 	struct sas_identify *identify;
9630 
9631 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9632 	phy = hpsa_sas_phy->phy;
9633 
9634 	identify = &phy->identify;
9635 	memset(identify, 0, sizeof(*identify));
9636 	identify->sas_address = hpsa_sas_port->sas_address;
9637 	identify->device_type = SAS_END_DEVICE;
9638 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9639 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9640 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9641 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9642 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9643 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9644 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9645 
9646 	rc = sas_phy_add(hpsa_sas_phy->phy);
9647 	if (rc)
9648 		return rc;
9649 
9650 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9651 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9652 			&hpsa_sas_port->phy_list_head);
9653 	hpsa_sas_phy->added_to_port = true;
9654 
9655 	return 0;
9656 }
9657 
9658 static int
9659 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9660 				struct sas_rphy *rphy)
9661 {
9662 	struct sas_identify *identify;
9663 
9664 	identify = &rphy->identify;
9665 	identify->sas_address = hpsa_sas_port->sas_address;
9666 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9667 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9668 
9669 	return sas_rphy_add(rphy);
9670 }
9671 
9672 static struct hpsa_sas_port
9673 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9674 				u64 sas_address)
9675 {
9676 	int rc;
9677 	struct hpsa_sas_port *hpsa_sas_port;
9678 	struct sas_port *port;
9679 
9680 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9681 	if (!hpsa_sas_port)
9682 		return NULL;
9683 
9684 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9685 	hpsa_sas_port->parent_node = hpsa_sas_node;
9686 
9687 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9688 	if (!port)
9689 		goto free_hpsa_port;
9690 
9691 	rc = sas_port_add(port);
9692 	if (rc)
9693 		goto free_sas_port;
9694 
9695 	hpsa_sas_port->port = port;
9696 	hpsa_sas_port->sas_address = sas_address;
9697 	list_add_tail(&hpsa_sas_port->port_list_entry,
9698 			&hpsa_sas_node->port_list_head);
9699 
9700 	return hpsa_sas_port;
9701 
9702 free_sas_port:
9703 	sas_port_free(port);
9704 free_hpsa_port:
9705 	kfree(hpsa_sas_port);
9706 
9707 	return NULL;
9708 }
9709 
9710 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9711 {
9712 	struct hpsa_sas_phy *hpsa_sas_phy;
9713 	struct hpsa_sas_phy *next;
9714 
9715 	list_for_each_entry_safe(hpsa_sas_phy, next,
9716 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9717 		hpsa_free_sas_phy(hpsa_sas_phy);
9718 
9719 	sas_port_delete(hpsa_sas_port->port);
9720 	list_del(&hpsa_sas_port->port_list_entry);
9721 	kfree(hpsa_sas_port);
9722 }
9723 
9724 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9725 {
9726 	struct hpsa_sas_node *hpsa_sas_node;
9727 
9728 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9729 	if (hpsa_sas_node) {
9730 		hpsa_sas_node->parent_dev = parent_dev;
9731 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9732 	}
9733 
9734 	return hpsa_sas_node;
9735 }
9736 
9737 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9738 {
9739 	struct hpsa_sas_port *hpsa_sas_port;
9740 	struct hpsa_sas_port *next;
9741 
9742 	if (!hpsa_sas_node)
9743 		return;
9744 
9745 	list_for_each_entry_safe(hpsa_sas_port, next,
9746 			&hpsa_sas_node->port_list_head, port_list_entry)
9747 		hpsa_free_sas_port(hpsa_sas_port);
9748 
9749 	kfree(hpsa_sas_node);
9750 }
9751 
9752 static struct hpsa_scsi_dev_t
9753 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9754 					struct sas_rphy *rphy)
9755 {
9756 	int i;
9757 	struct hpsa_scsi_dev_t *device;
9758 
9759 	for (i = 0; i < h->ndevices; i++) {
9760 		device = h->dev[i];
9761 		if (!device->sas_port)
9762 			continue;
9763 		if (device->sas_port->rphy == rphy)
9764 			return device;
9765 	}
9766 
9767 	return NULL;
9768 }
9769 
9770 static int hpsa_add_sas_host(struct ctlr_info *h)
9771 {
9772 	int rc;
9773 	struct device *parent_dev;
9774 	struct hpsa_sas_node *hpsa_sas_node;
9775 	struct hpsa_sas_port *hpsa_sas_port;
9776 	struct hpsa_sas_phy *hpsa_sas_phy;
9777 
9778 	parent_dev = &h->scsi_host->shost_gendev;
9779 
9780 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9781 	if (!hpsa_sas_node)
9782 		return -ENOMEM;
9783 
9784 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9785 	if (!hpsa_sas_port) {
9786 		rc = -ENODEV;
9787 		goto free_sas_node;
9788 	}
9789 
9790 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9791 	if (!hpsa_sas_phy) {
9792 		rc = -ENODEV;
9793 		goto free_sas_port;
9794 	}
9795 
9796 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9797 	if (rc)
9798 		goto free_sas_phy;
9799 
9800 	h->sas_host = hpsa_sas_node;
9801 
9802 	return 0;
9803 
9804 free_sas_phy:
9805 	hpsa_free_sas_phy(hpsa_sas_phy);
9806 free_sas_port:
9807 	hpsa_free_sas_port(hpsa_sas_port);
9808 free_sas_node:
9809 	hpsa_free_sas_node(hpsa_sas_node);
9810 
9811 	return rc;
9812 }
9813 
9814 static void hpsa_delete_sas_host(struct ctlr_info *h)
9815 {
9816 	hpsa_free_sas_node(h->sas_host);
9817 }
9818 
9819 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9820 				struct hpsa_scsi_dev_t *device)
9821 {
9822 	int rc;
9823 	struct hpsa_sas_port *hpsa_sas_port;
9824 	struct sas_rphy *rphy;
9825 
9826 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9827 	if (!hpsa_sas_port)
9828 		return -ENOMEM;
9829 
9830 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9831 	if (!rphy) {
9832 		rc = -ENODEV;
9833 		goto free_sas_port;
9834 	}
9835 
9836 	hpsa_sas_port->rphy = rphy;
9837 	device->sas_port = hpsa_sas_port;
9838 
9839 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9840 	if (rc)
9841 		goto free_sas_port;
9842 
9843 	return 0;
9844 
9845 free_sas_port:
9846 	hpsa_free_sas_port(hpsa_sas_port);
9847 	device->sas_port = NULL;
9848 
9849 	return rc;
9850 }
9851 
9852 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9853 {
9854 	if (device->sas_port) {
9855 		hpsa_free_sas_port(device->sas_port);
9856 		device->sas_port = NULL;
9857 	}
9858 }
9859 
9860 static int
9861 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9862 {
9863 	return 0;
9864 }
9865 
9866 static int
9867 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9868 {
9869 	*identifier = 0;
9870 	return 0;
9871 }
9872 
9873 static int
9874 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9875 {
9876 	return -ENXIO;
9877 }
9878 
9879 static int
9880 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9881 {
9882 	return 0;
9883 }
9884 
9885 static int
9886 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9887 {
9888 	return 0;
9889 }
9890 
9891 static int
9892 hpsa_sas_phy_setup(struct sas_phy *phy)
9893 {
9894 	return 0;
9895 }
9896 
9897 static void
9898 hpsa_sas_phy_release(struct sas_phy *phy)
9899 {
9900 }
9901 
9902 static int
9903 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9904 {
9905 	return -EINVAL;
9906 }
9907 
9908 /* SMP = Serial Management Protocol */
9909 static int
9910 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9911 struct request *req)
9912 {
9913 	return -EINVAL;
9914 }
9915 
9916 static struct sas_function_template hpsa_sas_transport_functions = {
9917 	.get_linkerrors = hpsa_sas_get_linkerrors,
9918 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9919 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9920 	.phy_reset = hpsa_sas_phy_reset,
9921 	.phy_enable = hpsa_sas_phy_enable,
9922 	.phy_setup = hpsa_sas_phy_setup,
9923 	.phy_release = hpsa_sas_phy_release,
9924 	.set_phy_speed = hpsa_sas_phy_speed,
9925 	.smp_handler = hpsa_sas_smp_handler,
9926 };
9927 
9928 /*
9929  *  This is it.  Register the PCI driver information for the cards we control
9930  *  the OS will call our registered routines when it finds one of our cards.
9931  */
9932 static int __init hpsa_init(void)
9933 {
9934 	int rc;
9935 
9936 	hpsa_sas_transport_template =
9937 		sas_attach_transport(&hpsa_sas_transport_functions);
9938 	if (!hpsa_sas_transport_template)
9939 		return -ENODEV;
9940 
9941 	rc = pci_register_driver(&hpsa_pci_driver);
9942 
9943 	if (rc)
9944 		sas_release_transport(hpsa_sas_transport_template);
9945 
9946 	return rc;
9947 }
9948 
9949 static void __exit hpsa_cleanup(void)
9950 {
9951 	pci_unregister_driver(&hpsa_pci_driver);
9952 	sas_release_transport(hpsa_sas_transport_template);
9953 }
9954 
9955 static void __attribute__((unused)) verify_offsets(void)
9956 {
9957 #define VERIFY_OFFSET(member, offset) \
9958 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9959 
9960 	VERIFY_OFFSET(structure_size, 0);
9961 	VERIFY_OFFSET(volume_blk_size, 4);
9962 	VERIFY_OFFSET(volume_blk_cnt, 8);
9963 	VERIFY_OFFSET(phys_blk_shift, 16);
9964 	VERIFY_OFFSET(parity_rotation_shift, 17);
9965 	VERIFY_OFFSET(strip_size, 18);
9966 	VERIFY_OFFSET(disk_starting_blk, 20);
9967 	VERIFY_OFFSET(disk_blk_cnt, 28);
9968 	VERIFY_OFFSET(data_disks_per_row, 36);
9969 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9970 	VERIFY_OFFSET(row_cnt, 40);
9971 	VERIFY_OFFSET(layout_map_count, 42);
9972 	VERIFY_OFFSET(flags, 44);
9973 	VERIFY_OFFSET(dekindex, 46);
9974 	/* VERIFY_OFFSET(reserved, 48 */
9975 	VERIFY_OFFSET(data, 64);
9976 
9977 #undef VERIFY_OFFSET
9978 
9979 #define VERIFY_OFFSET(member, offset) \
9980 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9981 
9982 	VERIFY_OFFSET(IU_type, 0);
9983 	VERIFY_OFFSET(direction, 1);
9984 	VERIFY_OFFSET(reply_queue, 2);
9985 	/* VERIFY_OFFSET(reserved1, 3);  */
9986 	VERIFY_OFFSET(scsi_nexus, 4);
9987 	VERIFY_OFFSET(Tag, 8);
9988 	VERIFY_OFFSET(cdb, 16);
9989 	VERIFY_OFFSET(cciss_lun, 32);
9990 	VERIFY_OFFSET(data_len, 40);
9991 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9992 	VERIFY_OFFSET(sg_count, 45);
9993 	/* VERIFY_OFFSET(reserved3 */
9994 	VERIFY_OFFSET(err_ptr, 48);
9995 	VERIFY_OFFSET(err_len, 56);
9996 	/* VERIFY_OFFSET(reserved4  */
9997 	VERIFY_OFFSET(sg, 64);
9998 
9999 #undef VERIFY_OFFSET
10000 
10001 #define VERIFY_OFFSET(member, offset) \
10002 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10003 
10004 	VERIFY_OFFSET(dev_handle, 0x00);
10005 	VERIFY_OFFSET(reserved1, 0x02);
10006 	VERIFY_OFFSET(function, 0x03);
10007 	VERIFY_OFFSET(reserved2, 0x04);
10008 	VERIFY_OFFSET(err_info, 0x0C);
10009 	VERIFY_OFFSET(reserved3, 0x10);
10010 	VERIFY_OFFSET(err_info_len, 0x12);
10011 	VERIFY_OFFSET(reserved4, 0x13);
10012 	VERIFY_OFFSET(sgl_offset, 0x14);
10013 	VERIFY_OFFSET(reserved5, 0x15);
10014 	VERIFY_OFFSET(transfer_len, 0x1C);
10015 	VERIFY_OFFSET(reserved6, 0x20);
10016 	VERIFY_OFFSET(io_flags, 0x24);
10017 	VERIFY_OFFSET(reserved7, 0x26);
10018 	VERIFY_OFFSET(LUN, 0x34);
10019 	VERIFY_OFFSET(control, 0x3C);
10020 	VERIFY_OFFSET(CDB, 0x40);
10021 	VERIFY_OFFSET(reserved8, 0x50);
10022 	VERIFY_OFFSET(host_context_flags, 0x60);
10023 	VERIFY_OFFSET(timeout_sec, 0x62);
10024 	VERIFY_OFFSET(ReplyQueue, 0x64);
10025 	VERIFY_OFFSET(reserved9, 0x65);
10026 	VERIFY_OFFSET(tag, 0x68);
10027 	VERIFY_OFFSET(host_addr, 0x70);
10028 	VERIFY_OFFSET(CISS_LUN, 0x78);
10029 	VERIFY_OFFSET(SG, 0x78 + 8);
10030 #undef VERIFY_OFFSET
10031 }
10032 
10033 module_init(hpsa_init);
10034 module_exit(hpsa_cleanup);
10035