xref: /openbmc/linux/drivers/scsi/aacraid/dpcsup.c (revision 89661adaaee2f85116b399e642129ccd4dafd195)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  dpcsup.c
26  *
27  * Abstract: All DPC processing routines for the cyclone board occur here.
28  *
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/completion.h>
38 #include <linux/blkdev.h>
39 #include <asm/semaphore.h>
40 
41 #include "aacraid.h"
42 
43 /**
44  *	aac_response_normal	-	Handle command replies
45  *	@q: Queue to read from
46  *
47  *	This DPC routine will be run when the adapter interrupts us to let us
48  *	know there is a response on our normal priority queue. We will pull off
49  *	all QE there are and wake up all the waiters before exiting. We will
50  *	take a spinlock out on the queue before operating on it.
51  */
52 
53 unsigned int aac_response_normal(struct aac_queue * q)
54 {
55 	struct aac_dev * dev = q->dev;
56 	struct aac_entry *entry;
57 	struct hw_fib * hwfib;
58 	struct fib * fib;
59 	int consumed = 0;
60 	unsigned long flags;
61 
62 	spin_lock_irqsave(q->lock, flags);
63 	/*
64 	 *	Keep pulling response QEs off the response queue and waking
65 	 *	up the waiters until there are no more QEs. We then return
66 	 *	back to the system. If no response was requesed we just
67 	 *	deallocate the Fib here and continue.
68 	 */
69 	while(aac_consumer_get(dev, q, &entry))
70 	{
71 		int fast;
72 		u32 index = le32_to_cpu(entry->addr);
73 		fast = index & 0x01;
74 		fib = &dev->fibs[index >> 2];
75 		hwfib = fib->hw_fib;
76 
77 		aac_consumer_free(dev, q, HostNormRespQueue);
78 		/*
79 		 *	Remove this fib from the Outstanding I/O queue.
80 		 *	But only if it has not already been timed out.
81 		 *
82 		 *	If the fib has been timed out already, then just
83 		 *	continue. The caller has already been notified that
84 		 *	the fib timed out.
85 		 */
86 		if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
87 			dev->queues->queue[AdapNormCmdQueue].numpending--;
88 		else {
89 			printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
90 			printk(KERN_DEBUG"aacraid: hwfib=%p fib index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
91 			continue;
92 		}
93 		spin_unlock_irqrestore(q->lock, flags);
94 
95 		if (fast) {
96 			/*
97 			 *	Doctor the fib
98 			 */
99 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
100 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
101 		}
102 
103 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
104 
105 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
106 		{
107 			__le32 *pstatus = (__le32 *)hwfib->data;
108 			if (*pstatus & cpu_to_le32(0xffff0000))
109 				*pstatus = cpu_to_le32(ST_OK);
110 		}
111 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
112 		{
113 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
114 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
115 			else
116 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
117 			/*
118 			 *	NOTE:  we cannot touch the fib after this
119 			 *	    call, because it may have been deallocated.
120 			 */
121 			fib->callback(fib->callback_data, fib);
122 		} else {
123 			unsigned long flagv;
124 			spin_lock_irqsave(&fib->event_lock, flagv);
125 			if (!fib->done)
126 				fib->done = 1;
127 			up(&fib->event_wait);
128 			spin_unlock_irqrestore(&fib->event_lock, flagv);
129 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
130 			if (fib->done == 2) {
131 				aac_fib_complete(fib);
132 				aac_fib_free(fib);
133 			}
134 		}
135 		consumed++;
136 		spin_lock_irqsave(q->lock, flags);
137 	}
138 
139 	if (consumed > aac_config.peak_fibs)
140 		aac_config.peak_fibs = consumed;
141 	if (consumed == 0)
142 		aac_config.zero_fibs++;
143 
144 	spin_unlock_irqrestore(q->lock, flags);
145 	return 0;
146 }
147 
148 
149 /**
150  *	aac_command_normal	-	handle commands
151  *	@q: queue to process
152  *
153  *	This DPC routine will be queued when the adapter interrupts us to
154  *	let us know there is a command on our normal priority queue. We will
155  *	pull off all QE there are and wake up all the waiters before exiting.
156  *	We will take a spinlock out on the queue before operating on it.
157  */
158 
159 unsigned int aac_command_normal(struct aac_queue *q)
160 {
161 	struct aac_dev * dev = q->dev;
162 	struct aac_entry *entry;
163 	unsigned long flags;
164 
165 	spin_lock_irqsave(q->lock, flags);
166 
167 	/*
168 	 *	Keep pulling response QEs off the response queue and waking
169 	 *	up the waiters until there are no more QEs. We then return
170 	 *	back to the system.
171 	 */
172 	while(aac_consumer_get(dev, q, &entry))
173 	{
174 		struct fib fibctx;
175 		struct hw_fib * hw_fib;
176 		u32 index;
177 		struct fib *fib = &fibctx;
178 
179 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
180 		hw_fib = &dev->aif_base_va[index];
181 
182 		/*
183 		 *	Allocate a FIB at all costs. For non queued stuff
184 		 *	we can just use the stack so we are happy. We need
185 		 *	a fib object in order to manage the linked lists
186 		 */
187 		if (dev->aif_thread)
188 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
189 				fib = &fibctx;
190 
191 		memset(fib, 0, sizeof(struct fib));
192 		INIT_LIST_HEAD(&fib->fiblink);
193 		fib->type = FSAFS_NTC_FIB_CONTEXT;
194 		fib->size = sizeof(struct fib);
195 		fib->hw_fib = hw_fib;
196 		fib->data = hw_fib->data;
197 		fib->dev = dev;
198 
199 
200 		if (dev->aif_thread && fib != &fibctx) {
201 		        list_add_tail(&fib->fiblink, &q->cmdq);
202 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
203 		        wake_up_interruptible(&q->cmdready);
204 		} else {
205 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
206 			spin_unlock_irqrestore(q->lock, flags);
207 			/*
208 			 *	Set the status of this FIB
209 			 */
210 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
211 			aac_fib_adapter_complete(fib, sizeof(u32));
212 			spin_lock_irqsave(q->lock, flags);
213 		}
214 	}
215 	spin_unlock_irqrestore(q->lock, flags);
216 	return 0;
217 }
218 
219 
220 /**
221  *	aac_intr_normal	-	Handle command replies
222  *	@dev: Device
223  *	@index: completion reference
224  *
225  *	This DPC routine will be run when the adapter interrupts us to let us
226  *	know there is a response on our normal priority queue. We will pull off
227  *	all QE there are and wake up all the waiters before exiting.
228  */
229 
230 unsigned int aac_intr_normal(struct aac_dev * dev, u32 Index)
231 {
232 	u32 index = le32_to_cpu(Index);
233 
234 	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, Index));
235 	if ((index & 0x00000002L)) {
236 		struct hw_fib * hw_fib;
237 		struct fib * fib;
238 		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
239 		unsigned long flags;
240 
241 		if (index == 0xFFFFFFFEL) /* Special Case */
242 			return 0;	  /* Do nothing */
243 		/*
244 		 *	Allocate a FIB. For non queued stuff we can just use
245 		 * the stack so we are happy. We need a fib object in order to
246 		 * manage the linked lists.
247 		 */
248 		if ((!dev->aif_thread)
249 		 || (!(fib = kmalloc(sizeof(struct fib),GFP_ATOMIC))))
250 			return 1;
251 		if (!(hw_fib = kmalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
252 			kfree (fib);
253 			return 1;
254 		}
255 		memset(hw_fib, 0, sizeof(struct hw_fib));
256 		memcpy(hw_fib, (struct hw_fib *)(((unsigned long)(dev->regs.sa)) + (index & ~0x00000002L)), sizeof(struct hw_fib));
257 		memset(fib, 0, sizeof(struct fib));
258 		INIT_LIST_HEAD(&fib->fiblink);
259 		fib->type = FSAFS_NTC_FIB_CONTEXT;
260 		fib->size = sizeof(struct fib);
261 		fib->hw_fib = hw_fib;
262 		fib->data = hw_fib->data;
263 		fib->dev = dev;
264 
265 		spin_lock_irqsave(q->lock, flags);
266 		list_add_tail(&fib->fiblink, &q->cmdq);
267 	        wake_up_interruptible(&q->cmdready);
268 		spin_unlock_irqrestore(q->lock, flags);
269 		return 1;
270 	} else {
271 		int fast = index & 0x01;
272 		struct fib * fib = &dev->fibs[index >> 2];
273 		struct hw_fib * hwfib = fib->hw_fib;
274 
275 		/*
276 		 *	Remove this fib from the Outstanding I/O queue.
277 		 *	But only if it has not already been timed out.
278 		 *
279 		 *	If the fib has been timed out already, then just
280 		 *	continue. The caller has already been notified that
281 		 *	the fib timed out.
282 		 */
283 		if ((fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
284 			printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
285 			printk(KERN_DEBUG"aacraid: hwfib=%p index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
286 			return 0;
287 		}
288 
289 		dev->queues->queue[AdapNormCmdQueue].numpending--;
290 
291 		if (fast) {
292 			/*
293 			 *	Doctor the fib
294 			 */
295 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
296 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
297 		}
298 
299 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
300 
301 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
302 		{
303 			u32 *pstatus = (u32 *)hwfib->data;
304 			if (*pstatus & cpu_to_le32(0xffff0000))
305 				*pstatus = cpu_to_le32(ST_OK);
306 		}
307 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
308 		{
309 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
310 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
311 			else
312 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
313 			/*
314 			 *	NOTE:  we cannot touch the fib after this
315 			 *	    call, because it may have been deallocated.
316 			 */
317 			fib->callback(fib->callback_data, fib);
318 		} else {
319 			unsigned long flagv;
320 	  		dprintk((KERN_INFO "event_wait up\n"));
321 			spin_lock_irqsave(&fib->event_lock, flagv);
322 			if (!fib->done)
323 				fib->done = 1;
324 			up(&fib->event_wait);
325 			spin_unlock_irqrestore(&fib->event_lock, flagv);
326 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
327 		}
328 		return 0;
329 	}
330 }
331