xref: /openbmc/linux/drivers/scsi/aacraid/dpcsup.c (revision 5a84d159061d914c8dd4aa372ac6e9529c2be453)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  dpcsup.c
26  *
27  * Abstract: All DPC processing routines for the cyclone board occur here.
28  *
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/pci.h>
36 #include <linux/spinlock.h>
37 #include <linux/slab.h>
38 #include <linux/completion.h>
39 #include <linux/blkdev.h>
40 #include <asm/semaphore.h>
41 
42 #include "aacraid.h"
43 
44 /**
45  *	aac_response_normal	-	Handle command replies
46  *	@q: Queue to read from
47  *
48  *	This DPC routine will be run when the adapter interrupts us to let us
49  *	know there is a response on our normal priority queue. We will pull off
50  *	all QE there are and wake up all the waiters before exiting. We will
51  *	take a spinlock out on the queue before operating on it.
52  */
53 
54 unsigned int aac_response_normal(struct aac_queue * q)
55 {
56 	struct aac_dev * dev = q->dev;
57 	struct aac_entry *entry;
58 	struct hw_fib * hwfib;
59 	struct fib * fib;
60 	int consumed = 0;
61 	unsigned long flags;
62 
63 	spin_lock_irqsave(q->lock, flags);
64 	/*
65 	 *	Keep pulling response QEs off the response queue and waking
66 	 *	up the waiters until there are no more QEs. We then return
67 	 *	back to the system. If no response was requesed we just
68 	 *	deallocate the Fib here and continue.
69 	 */
70 	while(aac_consumer_get(dev, q, &entry))
71 	{
72 		int fast;
73 		u32 index = le32_to_cpu(entry->addr);
74 		fast = index & 0x01;
75 		fib = &dev->fibs[index >> 2];
76 		hwfib = fib->hw_fib;
77 
78 		aac_consumer_free(dev, q, HostNormRespQueue);
79 		/*
80 		 *	Remove this fib from the Outstanding I/O queue.
81 		 *	But only if it has not already been timed out.
82 		 *
83 		 *	If the fib has been timed out already, then just
84 		 *	continue. The caller has already been notified that
85 		 *	the fib timed out.
86 		 */
87 		if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
88 			dev->queues->queue[AdapNormCmdQueue].numpending--;
89 		else {
90 			printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
91 			printk(KERN_DEBUG"aacraid: hwfib=%p fib index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
92 			continue;
93 		}
94 		spin_unlock_irqrestore(q->lock, flags);
95 
96 		if (fast) {
97 			/*
98 			 *	Doctor the fib
99 			 */
100 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
101 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
102 		}
103 
104 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
105 
106 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
107 		{
108 			__le32 *pstatus = (__le32 *)hwfib->data;
109 			if (*pstatus & cpu_to_le32(0xffff0000))
110 				*pstatus = cpu_to_le32(ST_OK);
111 		}
112 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
113 		{
114 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
115 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
116 			else
117 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
118 			/*
119 			 *	NOTE:  we cannot touch the fib after this
120 			 *	    call, because it may have been deallocated.
121 			 */
122 			fib->callback(fib->callback_data, fib);
123 		} else {
124 			unsigned long flagv;
125 			spin_lock_irqsave(&fib->event_lock, flagv);
126 			if (!fib->done)
127 				fib->done = 1;
128 			up(&fib->event_wait);
129 			spin_unlock_irqrestore(&fib->event_lock, flagv);
130 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
131 			if (fib->done == 2) {
132 				aac_fib_complete(fib);
133 				aac_fib_free(fib);
134 			}
135 		}
136 		consumed++;
137 		spin_lock_irqsave(q->lock, flags);
138 	}
139 
140 	if (consumed > aac_config.peak_fibs)
141 		aac_config.peak_fibs = consumed;
142 	if (consumed == 0)
143 		aac_config.zero_fibs++;
144 
145 	spin_unlock_irqrestore(q->lock, flags);
146 	return 0;
147 }
148 
149 
150 /**
151  *	aac_command_normal	-	handle commands
152  *	@q: queue to process
153  *
154  *	This DPC routine will be queued when the adapter interrupts us to
155  *	let us know there is a command on our normal priority queue. We will
156  *	pull off all QE there are and wake up all the waiters before exiting.
157  *	We will take a spinlock out on the queue before operating on it.
158  */
159 
160 unsigned int aac_command_normal(struct aac_queue *q)
161 {
162 	struct aac_dev * dev = q->dev;
163 	struct aac_entry *entry;
164 	unsigned long flags;
165 
166 	spin_lock_irqsave(q->lock, flags);
167 
168 	/*
169 	 *	Keep pulling response QEs off the response queue and waking
170 	 *	up the waiters until there are no more QEs. We then return
171 	 *	back to the system.
172 	 */
173 	while(aac_consumer_get(dev, q, &entry))
174 	{
175 		struct fib fibctx;
176 		struct hw_fib * hw_fib;
177 		u32 index;
178 		struct fib *fib = &fibctx;
179 
180 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
181 		hw_fib = &dev->aif_base_va[index];
182 
183 		/*
184 		 *	Allocate a FIB at all costs. For non queued stuff
185 		 *	we can just use the stack so we are happy. We need
186 		 *	a fib object in order to manage the linked lists
187 		 */
188 		if (dev->aif_thread)
189 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
190 				fib = &fibctx;
191 
192 		memset(fib, 0, sizeof(struct fib));
193 		INIT_LIST_HEAD(&fib->fiblink);
194 		fib->type = FSAFS_NTC_FIB_CONTEXT;
195 		fib->size = sizeof(struct fib);
196 		fib->hw_fib = hw_fib;
197 		fib->data = hw_fib->data;
198 		fib->dev = dev;
199 
200 
201 		if (dev->aif_thread && fib != &fibctx) {
202 		        list_add_tail(&fib->fiblink, &q->cmdq);
203 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
204 		        wake_up_interruptible(&q->cmdready);
205 		} else {
206 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
207 			spin_unlock_irqrestore(q->lock, flags);
208 			/*
209 			 *	Set the status of this FIB
210 			 */
211 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
212 			aac_fib_adapter_complete(fib, sizeof(u32));
213 			spin_lock_irqsave(q->lock, flags);
214 		}
215 	}
216 	spin_unlock_irqrestore(q->lock, flags);
217 	return 0;
218 }
219 
220 
221 /**
222  *	aac_intr_normal	-	Handle command replies
223  *	@dev: Device
224  *	@index: completion reference
225  *
226  *	This DPC routine will be run when the adapter interrupts us to let us
227  *	know there is a response on our normal priority queue. We will pull off
228  *	all QE there are and wake up all the waiters before exiting.
229  */
230 
231 unsigned int aac_intr_normal(struct aac_dev * dev, u32 Index)
232 {
233 	u32 index = le32_to_cpu(Index);
234 
235 	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, Index));
236 	if ((index & 0x00000002L)) {
237 		struct hw_fib * hw_fib;
238 		struct fib * fib;
239 		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
240 		unsigned long flags;
241 
242 		if (index == 0xFFFFFFFEL) /* Special Case */
243 			return 0;	  /* Do nothing */
244 		/*
245 		 *	Allocate a FIB. For non queued stuff we can just use
246 		 * the stack so we are happy. We need a fib object in order to
247 		 * manage the linked lists.
248 		 */
249 		if ((!dev->aif_thread)
250 		 || (!(fib = kmalloc(sizeof(struct fib),GFP_ATOMIC))))
251 			return 1;
252 		if (!(hw_fib = kmalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
253 			kfree (fib);
254 			return 1;
255 		}
256 		memset(hw_fib, 0, sizeof(struct hw_fib));
257 		memcpy(hw_fib, (struct hw_fib *)(((unsigned long)(dev->regs.sa)) + (index & ~0x00000002L)), sizeof(struct hw_fib));
258 		memset(fib, 0, sizeof(struct fib));
259 		INIT_LIST_HEAD(&fib->fiblink);
260 		fib->type = FSAFS_NTC_FIB_CONTEXT;
261 		fib->size = sizeof(struct fib);
262 		fib->hw_fib = hw_fib;
263 		fib->data = hw_fib->data;
264 		fib->dev = dev;
265 
266 		spin_lock_irqsave(q->lock, flags);
267 		list_add_tail(&fib->fiblink, &q->cmdq);
268 	        wake_up_interruptible(&q->cmdready);
269 		spin_unlock_irqrestore(q->lock, flags);
270 		return 1;
271 	} else {
272 		int fast = index & 0x01;
273 		struct fib * fib = &dev->fibs[index >> 2];
274 		struct hw_fib * hwfib = fib->hw_fib;
275 
276 		/*
277 		 *	Remove this fib from the Outstanding I/O queue.
278 		 *	But only if it has not already been timed out.
279 		 *
280 		 *	If the fib has been timed out already, then just
281 		 *	continue. The caller has already been notified that
282 		 *	the fib timed out.
283 		 */
284 		if ((fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
285 			printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
286 			printk(KERN_DEBUG"aacraid: hwfib=%p index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
287 			return 0;
288 		}
289 
290 		dev->queues->queue[AdapNormCmdQueue].numpending--;
291 
292 		if (fast) {
293 			/*
294 			 *	Doctor the fib
295 			 */
296 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
297 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
298 		}
299 
300 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
301 
302 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
303 		{
304 			u32 *pstatus = (u32 *)hwfib->data;
305 			if (*pstatus & cpu_to_le32(0xffff0000))
306 				*pstatus = cpu_to_le32(ST_OK);
307 		}
308 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
309 		{
310 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
311 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
312 			else
313 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
314 			/*
315 			 *	NOTE:  we cannot touch the fib after this
316 			 *	    call, because it may have been deallocated.
317 			 */
318 			fib->callback(fib->callback_data, fib);
319 		} else {
320 			unsigned long flagv;
321 	  		dprintk((KERN_INFO "event_wait up\n"));
322 			spin_lock_irqsave(&fib->event_lock, flagv);
323 			if (!fib->done)
324 				fib->done = 1;
325 			up(&fib->event_wait);
326 			spin_unlock_irqrestore(&fib->event_lock, flagv);
327 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
328 		}
329 		return 0;
330 	}
331 }
332