1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * dpcsup.c 26 * 27 * Abstract: All DPC processing routines for the cyclone board occur here. 28 * 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/spinlock.h> 36 #include <linux/slab.h> 37 #include <linux/completion.h> 38 #include <linux/blkdev.h> 39 #include <asm/semaphore.h> 40 41 #include "aacraid.h" 42 43 /** 44 * aac_response_normal - Handle command replies 45 * @q: Queue to read from 46 * 47 * This DPC routine will be run when the adapter interrupts us to let us 48 * know there is a response on our normal priority queue. We will pull off 49 * all QE there are and wake up all the waiters before exiting. We will 50 * take a spinlock out on the queue before operating on it. 51 */ 52 53 unsigned int aac_response_normal(struct aac_queue * q) 54 { 55 struct aac_dev * dev = q->dev; 56 struct aac_entry *entry; 57 struct hw_fib * hwfib; 58 struct fib * fib; 59 int consumed = 0; 60 unsigned long flags; 61 62 spin_lock_irqsave(q->lock, flags); 63 /* 64 * Keep pulling response QEs off the response queue and waking 65 * up the waiters until there are no more QEs. We then return 66 * back to the system. If no response was requesed we just 67 * deallocate the Fib here and continue. 68 */ 69 while(aac_consumer_get(dev, q, &entry)) 70 { 71 int fast; 72 u32 index = le32_to_cpu(entry->addr); 73 fast = index & 0x01; 74 fib = &dev->fibs[index >> 2]; 75 hwfib = fib->hw_fib_va; 76 77 aac_consumer_free(dev, q, HostNormRespQueue); 78 /* 79 * Remove this fib from the Outstanding I/O queue. 80 * But only if it has not already been timed out. 81 * 82 * If the fib has been timed out already, then just 83 * continue. The caller has already been notified that 84 * the fib timed out. 85 */ 86 dev->queues->queue[AdapNormCmdQueue].numpending--; 87 88 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { 89 spin_unlock_irqrestore(q->lock, flags); 90 aac_fib_complete(fib); 91 aac_fib_free(fib); 92 spin_lock_irqsave(q->lock, flags); 93 continue; 94 } 95 spin_unlock_irqrestore(q->lock, flags); 96 97 if (fast) { 98 /* 99 * Doctor the fib 100 */ 101 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); 102 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); 103 } 104 105 FIB_COUNTER_INCREMENT(aac_config.FibRecved); 106 107 if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) 108 { 109 __le32 *pstatus = (__le32 *)hwfib->data; 110 if (*pstatus & cpu_to_le32(0xffff0000)) 111 *pstatus = cpu_to_le32(ST_OK); 112 } 113 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 114 { 115 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) 116 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); 117 else 118 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); 119 /* 120 * NOTE: we cannot touch the fib after this 121 * call, because it may have been deallocated. 122 */ 123 fib->callback(fib->callback_data, fib); 124 } else { 125 unsigned long flagv; 126 spin_lock_irqsave(&fib->event_lock, flagv); 127 if (!fib->done) 128 fib->done = 1; 129 up(&fib->event_wait); 130 spin_unlock_irqrestore(&fib->event_lock, flagv); 131 FIB_COUNTER_INCREMENT(aac_config.NormalRecved); 132 if (fib->done == 2) { 133 aac_fib_complete(fib); 134 aac_fib_free(fib); 135 } 136 } 137 consumed++; 138 spin_lock_irqsave(q->lock, flags); 139 } 140 141 if (consumed > aac_config.peak_fibs) 142 aac_config.peak_fibs = consumed; 143 if (consumed == 0) 144 aac_config.zero_fibs++; 145 146 spin_unlock_irqrestore(q->lock, flags); 147 return 0; 148 } 149 150 151 /** 152 * aac_command_normal - handle commands 153 * @q: queue to process 154 * 155 * This DPC routine will be queued when the adapter interrupts us to 156 * let us know there is a command on our normal priority queue. We will 157 * pull off all QE there are and wake up all the waiters before exiting. 158 * We will take a spinlock out on the queue before operating on it. 159 */ 160 161 unsigned int aac_command_normal(struct aac_queue *q) 162 { 163 struct aac_dev * dev = q->dev; 164 struct aac_entry *entry; 165 unsigned long flags; 166 167 spin_lock_irqsave(q->lock, flags); 168 169 /* 170 * Keep pulling response QEs off the response queue and waking 171 * up the waiters until there are no more QEs. We then return 172 * back to the system. 173 */ 174 while(aac_consumer_get(dev, q, &entry)) 175 { 176 struct fib fibctx; 177 struct hw_fib * hw_fib; 178 u32 index; 179 struct fib *fib = &fibctx; 180 181 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib); 182 hw_fib = &dev->aif_base_va[index]; 183 184 /* 185 * Allocate a FIB at all costs. For non queued stuff 186 * we can just use the stack so we are happy. We need 187 * a fib object in order to manage the linked lists 188 */ 189 if (dev->aif_thread) 190 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL) 191 fib = &fibctx; 192 193 memset(fib, 0, sizeof(struct fib)); 194 INIT_LIST_HEAD(&fib->fiblink); 195 fib->type = FSAFS_NTC_FIB_CONTEXT; 196 fib->size = sizeof(struct fib); 197 fib->hw_fib_va = hw_fib; 198 fib->data = hw_fib->data; 199 fib->dev = dev; 200 201 202 if (dev->aif_thread && fib != &fibctx) { 203 list_add_tail(&fib->fiblink, &q->cmdq); 204 aac_consumer_free(dev, q, HostNormCmdQueue); 205 wake_up_interruptible(&q->cmdready); 206 } else { 207 aac_consumer_free(dev, q, HostNormCmdQueue); 208 spin_unlock_irqrestore(q->lock, flags); 209 /* 210 * Set the status of this FIB 211 */ 212 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 213 aac_fib_adapter_complete(fib, sizeof(u32)); 214 spin_lock_irqsave(q->lock, flags); 215 } 216 } 217 spin_unlock_irqrestore(q->lock, flags); 218 return 0; 219 } 220 221 222 /** 223 * aac_intr_normal - Handle command replies 224 * @dev: Device 225 * @index: completion reference 226 * 227 * This DPC routine will be run when the adapter interrupts us to let us 228 * know there is a response on our normal priority queue. We will pull off 229 * all QE there are and wake up all the waiters before exiting. 230 */ 231 232 unsigned int aac_intr_normal(struct aac_dev * dev, u32 Index) 233 { 234 u32 index = le32_to_cpu(Index); 235 236 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, Index)); 237 if ((index & 0x00000002L)) { 238 struct hw_fib * hw_fib; 239 struct fib * fib; 240 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue]; 241 unsigned long flags; 242 243 if (index == 0xFFFFFFFEL) /* Special Case */ 244 return 0; /* Do nothing */ 245 /* 246 * Allocate a FIB. For non queued stuff we can just use 247 * the stack so we are happy. We need a fib object in order to 248 * manage the linked lists. 249 */ 250 if ((!dev->aif_thread) 251 || (!(fib = kmalloc(sizeof(struct fib),GFP_ATOMIC)))) 252 return 1; 253 if (!(hw_fib = kmalloc(sizeof(struct hw_fib),GFP_ATOMIC))) { 254 kfree (fib); 255 return 1; 256 } 257 memset(hw_fib, 0, sizeof(struct hw_fib)); 258 memcpy(hw_fib, (struct hw_fib *)(((ptrdiff_t)(dev->regs.sa)) + 259 (index & ~0x00000002L)), sizeof(struct hw_fib)); 260 memset(fib, 0, sizeof(struct fib)); 261 INIT_LIST_HEAD(&fib->fiblink); 262 fib->type = FSAFS_NTC_FIB_CONTEXT; 263 fib->size = sizeof(struct fib); 264 fib->hw_fib_va = hw_fib; 265 fib->data = hw_fib->data; 266 fib->dev = dev; 267 268 spin_lock_irqsave(q->lock, flags); 269 list_add_tail(&fib->fiblink, &q->cmdq); 270 wake_up_interruptible(&q->cmdready); 271 spin_unlock_irqrestore(q->lock, flags); 272 return 1; 273 } else { 274 int fast = index & 0x01; 275 struct fib * fib = &dev->fibs[index >> 2]; 276 struct hw_fib * hwfib = fib->hw_fib_va; 277 278 /* 279 * Remove this fib from the Outstanding I/O queue. 280 * But only if it has not already been timed out. 281 * 282 * If the fib has been timed out already, then just 283 * continue. The caller has already been notified that 284 * the fib timed out. 285 */ 286 dev->queues->queue[AdapNormCmdQueue].numpending--; 287 288 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { 289 aac_fib_complete(fib); 290 aac_fib_free(fib); 291 return 0; 292 } 293 294 if (fast) { 295 /* 296 * Doctor the fib 297 */ 298 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); 299 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); 300 } 301 302 FIB_COUNTER_INCREMENT(aac_config.FibRecved); 303 304 if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) 305 { 306 u32 *pstatus = (u32 *)hwfib->data; 307 if (*pstatus & cpu_to_le32(0xffff0000)) 308 *pstatus = cpu_to_le32(ST_OK); 309 } 310 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 311 { 312 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) 313 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); 314 else 315 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); 316 /* 317 * NOTE: we cannot touch the fib after this 318 * call, because it may have been deallocated. 319 */ 320 fib->callback(fib->callback_data, fib); 321 } else { 322 unsigned long flagv; 323 dprintk((KERN_INFO "event_wait up\n")); 324 spin_lock_irqsave(&fib->event_lock, flagv); 325 if (!fib->done) 326 fib->done = 1; 327 up(&fib->event_wait); 328 spin_unlock_irqrestore(&fib->event_lock, flagv); 329 FIB_COUNTER_INCREMENT(aac_config.NormalRecved); 330 } 331 return 0; 332 } 333 } 334