xref: /openbmc/linux/drivers/scsi/aacraid/commctrl.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commctrl.c
26  *
27  * Abstract: Contains all routines for control of the AFA comm layer
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/pci.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/completion.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h> /* ssleep prototype */
41 #include <linux/kthread.h>
42 #include <asm/semaphore.h>
43 #include <asm/uaccess.h>
44 
45 #include "aacraid.h"
46 
47 /**
48  *	ioctl_send_fib	-	send a FIB from userspace
49  *	@dev:	adapter is being processed
50  *	@arg:	arguments to the ioctl call
51  *
52  *	This routine sends a fib to the adapter on behalf of a user level
53  *	program.
54  */
55 # define AAC_DEBUG_PREAMBLE	KERN_INFO
56 # define AAC_DEBUG_POSTAMBLE
57 
58 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
59 {
60 	struct hw_fib * kfib;
61 	struct fib *fibptr;
62 	struct hw_fib * hw_fib = (struct hw_fib *)0;
63 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
64 	unsigned size;
65 	int retval;
66 
67 	if (dev->in_reset) {
68 		return -EBUSY;
69 	}
70 	fibptr = aac_fib_alloc(dev);
71 	if(fibptr == NULL) {
72 		return -ENOMEM;
73 	}
74 
75 	kfib = fibptr->hw_fib_va;
76 	/*
77 	 *	First copy in the header so that we can check the size field.
78 	 */
79 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
80 		aac_fib_free(fibptr);
81 		return -EFAULT;
82 	}
83 	/*
84 	 *	Since we copy based on the fib header size, make sure that we
85 	 *	will not overrun the buffer when we copy the memory. Return
86 	 *	an error if we would.
87 	 */
88 	size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr);
89 	if (size < le16_to_cpu(kfib->header.SenderSize))
90 		size = le16_to_cpu(kfib->header.SenderSize);
91 	if (size > dev->max_fib_size) {
92 		if (size > 2048) {
93 			retval = -EINVAL;
94 			goto cleanup;
95 		}
96 		/* Highjack the hw_fib */
97 		hw_fib = fibptr->hw_fib_va;
98 		hw_fib_pa = fibptr->hw_fib_pa;
99 		fibptr->hw_fib_va = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa);
100 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
101 		memcpy(kfib, hw_fib, dev->max_fib_size);
102 	}
103 
104 	if (copy_from_user(kfib, arg, size)) {
105 		retval = -EFAULT;
106 		goto cleanup;
107 	}
108 
109 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
110 		aac_adapter_interrupt(dev);
111 		/*
112 		 * Since we didn't really send a fib, zero out the state to allow
113 		 * cleanup code not to assert.
114 		 */
115 		kfib->header.XferState = 0;
116 	} else {
117 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
118 				le16_to_cpu(kfib->header.Size) , FsaNormal,
119 				1, 1, NULL, NULL);
120 		if (retval) {
121 			goto cleanup;
122 		}
123 		if (aac_fib_complete(fibptr) != 0) {
124 			retval = -EINVAL;
125 			goto cleanup;
126 		}
127 	}
128 	/*
129 	 *	Make sure that the size returned by the adapter (which includes
130 	 *	the header) is less than or equal to the size of a fib, so we
131 	 *	don't corrupt application data. Then copy that size to the user
132 	 *	buffer. (Don't try to add the header information again, since it
133 	 *	was already included by the adapter.)
134 	 */
135 
136 	retval = 0;
137 	if (copy_to_user(arg, (void *)kfib, size))
138 		retval = -EFAULT;
139 cleanup:
140 	if (hw_fib) {
141 		pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
142 		fibptr->hw_fib_pa = hw_fib_pa;
143 		fibptr->hw_fib_va = hw_fib;
144 	}
145 	if (retval != -EINTR)
146 		aac_fib_free(fibptr);
147 	return retval;
148 }
149 
150 /**
151  *	open_getadapter_fib	-	Get the next fib
152  *
153  *	This routine will get the next Fib, if available, from the AdapterFibContext
154  *	passed in from the user.
155  */
156 
157 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
158 {
159 	struct aac_fib_context * fibctx;
160 	int status;
161 
162 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
163 	if (fibctx == NULL) {
164 		status = -ENOMEM;
165 	} else {
166 		unsigned long flags;
167 		struct list_head * entry;
168 		struct aac_fib_context * context;
169 
170 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
171 		fibctx->size = sizeof(struct aac_fib_context);
172  		/*
173 		 *	Yes yes, I know this could be an index, but we have a
174 		 * better guarantee of uniqueness for the locked loop below.
175 		 * Without the aid of a persistent history, this also helps
176 		 * reduce the chance that the opaque context would be reused.
177 		 */
178 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
179 		/*
180 		 *	Initialize the mutex used to wait for the next AIF.
181 		 */
182 		init_MUTEX_LOCKED(&fibctx->wait_sem);
183 		fibctx->wait = 0;
184 		/*
185 		 *	Initialize the fibs and set the count of fibs on
186 		 *	the list to 0.
187 		 */
188 		fibctx->count = 0;
189 		INIT_LIST_HEAD(&fibctx->fib_list);
190 		fibctx->jiffies = jiffies/HZ;
191 		/*
192 		 *	Now add this context onto the adapter's
193 		 *	AdapterFibContext list.
194 		 */
195 		spin_lock_irqsave(&dev->fib_lock, flags);
196 		/* Ensure that we have a unique identifier */
197 		entry = dev->fib_list.next;
198 		while (entry != &dev->fib_list) {
199 			context = list_entry(entry, struct aac_fib_context, next);
200 			if (context->unique == fibctx->unique) {
201 				/* Not unique (32 bits) */
202 				fibctx->unique++;
203 				entry = dev->fib_list.next;
204 			} else {
205 				entry = entry->next;
206 			}
207 		}
208 		list_add_tail(&fibctx->next, &dev->fib_list);
209 		spin_unlock_irqrestore(&dev->fib_lock, flags);
210 		if (copy_to_user(arg,  &fibctx->unique,
211 						sizeof(fibctx->unique))) {
212 			status = -EFAULT;
213 		} else {
214 			status = 0;
215 		}
216 	}
217 	return status;
218 }
219 
220 /**
221  *	next_getadapter_fib	-	get the next fib
222  *	@dev: adapter to use
223  *	@arg: ioctl argument
224  *
225  * 	This routine will get the next Fib, if available, from the AdapterFibContext
226  *	passed in from the user.
227  */
228 
229 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
230 {
231 	struct fib_ioctl f;
232 	struct fib *fib;
233 	struct aac_fib_context *fibctx;
234 	int status;
235 	struct list_head * entry;
236 	unsigned long flags;
237 
238 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
239 		return -EFAULT;
240 	/*
241 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
242 	 *
243 	 *	Search the list of AdapterFibContext addresses on the adapter
244 	 *	to be sure this is a valid address
245 	 */
246 	entry = dev->fib_list.next;
247 	fibctx = NULL;
248 
249 	while (entry != &dev->fib_list) {
250 		fibctx = list_entry(entry, struct aac_fib_context, next);
251 		/*
252 		 *	Extract the AdapterFibContext from the Input parameters.
253 		 */
254 		if (fibctx->unique == f.fibctx) {   /* We found a winner */
255 			break;
256 		}
257 		entry = entry->next;
258 		fibctx = NULL;
259 	}
260 	if (!fibctx) {
261 		dprintk ((KERN_INFO "Fib Context not found\n"));
262 		return -EINVAL;
263 	}
264 
265 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
266 		 (fibctx->size != sizeof(struct aac_fib_context))) {
267 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
268 		return -EINVAL;
269 	}
270 	status = 0;
271 	spin_lock_irqsave(&dev->fib_lock, flags);
272 	/*
273 	 *	If there are no fibs to send back, then either wait or return
274 	 *	-EAGAIN
275 	 */
276 return_fib:
277 	if (!list_empty(&fibctx->fib_list)) {
278 		struct list_head * entry;
279 		/*
280 		 *	Pull the next fib from the fibs
281 		 */
282 		entry = fibctx->fib_list.next;
283 		list_del(entry);
284 
285 		fib = list_entry(entry, struct fib, fiblink);
286 		fibctx->count--;
287 		spin_unlock_irqrestore(&dev->fib_lock, flags);
288 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
289 			kfree(fib->hw_fib_va);
290 			kfree(fib);
291 			return -EFAULT;
292 		}
293 		/*
294 		 *	Free the space occupied by this copy of the fib.
295 		 */
296 		kfree(fib->hw_fib_va);
297 		kfree(fib);
298 		status = 0;
299 	} else {
300 		spin_unlock_irqrestore(&dev->fib_lock, flags);
301 		/* If someone killed the AIF aacraid thread, restart it */
302 		status = !dev->aif_thread;
303 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
304 			/* Be paranoid, be very paranoid! */
305 			kthread_stop(dev->thread);
306 			ssleep(1);
307 			dev->aif_thread = 0;
308 			dev->thread = kthread_run(aac_command_thread, dev, dev->name);
309 			ssleep(1);
310 		}
311 		if (f.wait) {
312 			if(down_interruptible(&fibctx->wait_sem) < 0) {
313 				status = -EINTR;
314 			} else {
315 				/* Lock again and retry */
316 				spin_lock_irqsave(&dev->fib_lock, flags);
317 				goto return_fib;
318 			}
319 		} else {
320 			status = -EAGAIN;
321 		}
322 	}
323 	fibctx->jiffies = jiffies/HZ;
324 	return status;
325 }
326 
327 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
328 {
329 	struct fib *fib;
330 
331 	/*
332 	 *	First free any FIBs that have not been consumed.
333 	 */
334 	while (!list_empty(&fibctx->fib_list)) {
335 		struct list_head * entry;
336 		/*
337 		 *	Pull the next fib from the fibs
338 		 */
339 		entry = fibctx->fib_list.next;
340 		list_del(entry);
341 		fib = list_entry(entry, struct fib, fiblink);
342 		fibctx->count--;
343 		/*
344 		 *	Free the space occupied by this copy of the fib.
345 		 */
346 		kfree(fib->hw_fib_va);
347 		kfree(fib);
348 	}
349 	/*
350 	 *	Remove the Context from the AdapterFibContext List
351 	 */
352 	list_del(&fibctx->next);
353 	/*
354 	 *	Invalidate context
355 	 */
356 	fibctx->type = 0;
357 	/*
358 	 *	Free the space occupied by the Context
359 	 */
360 	kfree(fibctx);
361 	return 0;
362 }
363 
364 /**
365  *	close_getadapter_fib	-	close down user fib context
366  *	@dev: adapter
367  *	@arg: ioctl arguments
368  *
369  *	This routine will close down the fibctx passed in from the user.
370  */
371 
372 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
373 {
374 	struct aac_fib_context *fibctx;
375 	int status;
376 	unsigned long flags;
377 	struct list_head * entry;
378 
379 	/*
380 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
381 	 *
382 	 *	Search the list of AdapterFibContext addresses on the adapter
383 	 *	to be sure this is a valid address
384 	 */
385 
386 	entry = dev->fib_list.next;
387 	fibctx = NULL;
388 
389 	while(entry != &dev->fib_list) {
390 		fibctx = list_entry(entry, struct aac_fib_context, next);
391 		/*
392 		 *	Extract the fibctx from the input parameters
393 		 */
394 		if (fibctx->unique == (u32)(ptrdiff_t)arg) /* We found a winner */
395 			break;
396 		entry = entry->next;
397 		fibctx = NULL;
398 	}
399 
400 	if (!fibctx)
401 		return 0; /* Already gone */
402 
403 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
404 		 (fibctx->size != sizeof(struct aac_fib_context)))
405 		return -EINVAL;
406 	spin_lock_irqsave(&dev->fib_lock, flags);
407 	status = aac_close_fib_context(dev, fibctx);
408 	spin_unlock_irqrestore(&dev->fib_lock, flags);
409 	return status;
410 }
411 
412 /**
413  *	check_revision	-	close down user fib context
414  *	@dev: adapter
415  *	@arg: ioctl arguments
416  *
417  *	This routine returns the driver version.
418  *      Under Linux, there have been no version incompatibilities, so this is
419  *      simple!
420  */
421 
422 static int check_revision(struct aac_dev *dev, void __user *arg)
423 {
424 	struct revision response;
425 	char *driver_version = aac_driver_version;
426 	u32 version;
427 
428 	response.compat = 1;
429 	version = (simple_strtol(driver_version,
430 				&driver_version, 10) << 24) | 0x00000400;
431 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
432 	version += simple_strtol(driver_version + 1, NULL, 10);
433 	response.version = cpu_to_le32(version);
434 #	if (defined(AAC_DRIVER_BUILD))
435 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
436 #	else
437 		response.build = cpu_to_le32(9999);
438 #	endif
439 
440 	if (copy_to_user(arg, &response, sizeof(response)))
441 		return -EFAULT;
442 	return 0;
443 }
444 
445 
446 /**
447  *
448  * aac_send_raw_scb
449  *
450  */
451 
452 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
453 {
454 	struct fib* srbfib;
455 	int status;
456 	struct aac_srb *srbcmd = NULL;
457 	struct user_aac_srb *user_srbcmd = NULL;
458 	struct user_aac_srb __user *user_srb = arg;
459 	struct aac_srb_reply __user *user_reply;
460 	struct aac_srb_reply* reply;
461 	u32 fibsize = 0;
462 	u32 flags = 0;
463 	s32 rcode = 0;
464 	u32 data_dir;
465 	void __user *sg_user[32];
466 	void *sg_list[32];
467 	u32   sg_indx = 0;
468 	u32 byte_count = 0;
469 	u32 actual_fibsize64, actual_fibsize = 0;
470 	int i;
471 
472 
473 	if (dev->in_reset) {
474 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
475 		return -EBUSY;
476 	}
477 	if (!capable(CAP_SYS_ADMIN)){
478 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
479 		return -EPERM;
480 	}
481 	/*
482 	 *	Allocate and initialize a Fib then setup a SRB command
483 	 */
484 	if (!(srbfib = aac_fib_alloc(dev))) {
485 		return -ENOMEM;
486 	}
487 	aac_fib_init(srbfib);
488 
489 	srbcmd = (struct aac_srb*) fib_data(srbfib);
490 
491 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
492 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
493 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
494 		rcode = -EFAULT;
495 		goto cleanup;
496 	}
497 
498 	if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) {
499 		rcode = -EINVAL;
500 		goto cleanup;
501 	}
502 
503 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
504 	if (!user_srbcmd) {
505 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
506 		rcode = -ENOMEM;
507 		goto cleanup;
508 	}
509 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
510 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
511 		rcode = -EFAULT;
512 		goto cleanup;
513 	}
514 
515 	user_reply = arg+fibsize;
516 
517 	flags = user_srbcmd->flags; /* from user in cpu order */
518 	// Fix up srb for endian and force some values
519 
520 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);	// Force this
521 	srbcmd->channel  = cpu_to_le32(user_srbcmd->channel);
522 	srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
523 	srbcmd->lun      = cpu_to_le32(user_srbcmd->lun);
524 	srbcmd->timeout  = cpu_to_le32(user_srbcmd->timeout);
525 	srbcmd->flags    = cpu_to_le32(flags);
526 	srbcmd->retry_limit = 0; // Obsolete parameter
527 	srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
528 	memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
529 
530 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
531 	case SRB_DataOut:
532 		data_dir = DMA_TO_DEVICE;
533 		break;
534 	case (SRB_DataIn | SRB_DataOut):
535 		data_dir = DMA_BIDIRECTIONAL;
536 		break;
537 	case SRB_DataIn:
538 		data_dir = DMA_FROM_DEVICE;
539 		break;
540 	default:
541 		data_dir = DMA_NONE;
542 	}
543 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
544 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
545 		  le32_to_cpu(srbcmd->sg.count)));
546 		rcode = -EINVAL;
547 		goto cleanup;
548 	}
549 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
550 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
551 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
552 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
553 	/* User made a mistake - should not continue */
554 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
555 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
556 		  "Raw SRB command calculated fibsize=%lu;%lu "
557 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
558 		  "issued fibsize=%d\n",
559 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
560 		  sizeof(struct aac_srb), sizeof(struct sgentry),
561 		  sizeof(struct sgentry64), fibsize));
562 		rcode = -EINVAL;
563 		goto cleanup;
564 	}
565 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
566 		dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n"));
567 		rcode = -EINVAL;
568 		goto cleanup;
569 	}
570 	byte_count = 0;
571 	if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
572 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
573 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
574 
575 		/*
576 		 * This should also catch if user used the 32 bit sgmap
577 		 */
578 		if (actual_fibsize64 == fibsize) {
579 			actual_fibsize = actual_fibsize64;
580 			for (i = 0; i < upsg->count; i++) {
581 				u64 addr;
582 				void* p;
583 				/* Does this really need to be GFP_DMA? */
584 				p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA);
585 				if(p == 0) {
586 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
587 					  upsg->sg[i].count,i,upsg->count));
588 					rcode = -ENOMEM;
589 					goto cleanup;
590 				}
591 				addr = (u64)upsg->sg[i].addr[0];
592 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
593 				sg_user[i] = (void __user *)(ptrdiff_t)addr;
594 				sg_list[i] = p; // save so we can clean up later
595 				sg_indx = i;
596 
597 				if( flags & SRB_DataOut ){
598 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
599 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
600 						rcode = -EFAULT;
601 						goto cleanup;
602 					}
603 				}
604 				addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir);
605 
606 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
607 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
608 				byte_count += upsg->sg[i].count;
609 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
610 			}
611 		} else {
612 			struct user_sgmap* usg;
613 			usg = kmalloc(actual_fibsize - sizeof(struct aac_srb)
614 			  + sizeof(struct sgmap), GFP_KERNEL);
615 			if (!usg) {
616 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
617 				rcode = -ENOMEM;
618 				goto cleanup;
619 			}
620 			memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb)
621 			  + sizeof(struct sgmap));
622 			actual_fibsize = actual_fibsize64;
623 
624 			for (i = 0; i < usg->count; i++) {
625 				u64 addr;
626 				void* p;
627 				/* Does this really need to be GFP_DMA? */
628 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
629 				if(p == 0) {
630 					kfree (usg);
631 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
632 					  usg->sg[i].count,i,usg->count));
633 					rcode = -ENOMEM;
634 					goto cleanup;
635 				}
636 				sg_user[i] = (void __user *)(ptrdiff_t)usg->sg[i].addr;
637 				sg_list[i] = p; // save so we can clean up later
638 				sg_indx = i;
639 
640 				if( flags & SRB_DataOut ){
641 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
642 						kfree (usg);
643 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
644 						rcode = -EFAULT;
645 						goto cleanup;
646 					}
647 				}
648 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
649 
650 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
651 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
652 				byte_count += usg->sg[i].count;
653 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
654 			}
655 			kfree (usg);
656 		}
657 		srbcmd->count = cpu_to_le32(byte_count);
658 		psg->count = cpu_to_le32(sg_indx+1);
659 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
660 	} else {
661 		struct user_sgmap* upsg = &user_srbcmd->sg;
662 		struct sgmap* psg = &srbcmd->sg;
663 
664 		if (actual_fibsize64 == fibsize) {
665 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
666 			for (i = 0; i < upsg->count; i++) {
667 				u64 addr;
668 				void* p;
669 				/* Does this really need to be GFP_DMA? */
670 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
671 				if(p == 0) {
672 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
673 					  usg->sg[i].count,i,usg->count));
674 					rcode = -ENOMEM;
675 					goto cleanup;
676 				}
677 				addr = (u64)usg->sg[i].addr[0];
678 				addr += ((u64)usg->sg[i].addr[1]) << 32;
679 				sg_user[i] = (void __user *)(ptrdiff_t)addr;
680 				sg_list[i] = p; // save so we can clean up later
681 				sg_indx = i;
682 
683 				if( flags & SRB_DataOut ){
684 					if(copy_from_user(p,sg_user[i],usg->sg[i].count)){
685 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
686 						rcode = -EFAULT;
687 						goto cleanup;
688 					}
689 				}
690 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
691 
692 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
693 				byte_count += usg->sg[i].count;
694 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
695 			}
696 		} else {
697 			for (i = 0; i < upsg->count; i++) {
698 				dma_addr_t addr;
699 				void* p;
700 				p = kmalloc(upsg->sg[i].count, GFP_KERNEL);
701 				if(p == 0) {
702 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
703 					  upsg->sg[i].count, i, upsg->count));
704 					rcode = -ENOMEM;
705 					goto cleanup;
706 				}
707 				sg_user[i] = (void __user *)(ptrdiff_t)upsg->sg[i].addr;
708 				sg_list[i] = p; // save so we can clean up later
709 				sg_indx = i;
710 
711 				if( flags & SRB_DataOut ){
712 					if(copy_from_user(p, sg_user[i],
713 							upsg->sg[i].count)) {
714 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
715 						rcode = -EFAULT;
716 						goto cleanup;
717 					}
718 				}
719 				addr = pci_map_single(dev->pdev, p,
720 					upsg->sg[i].count, data_dir);
721 
722 				psg->sg[i].addr = cpu_to_le32(addr);
723 				byte_count += upsg->sg[i].count;
724 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
725 			}
726 		}
727 		srbcmd->count = cpu_to_le32(byte_count);
728 		psg->count = cpu_to_le32(sg_indx+1);
729 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
730 	}
731 	if (status == -EINTR) {
732 		rcode = -EINTR;
733 		goto cleanup;
734 	}
735 
736 	if (status != 0){
737 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
738 		rcode = -ENXIO;
739 		goto cleanup;
740 	}
741 
742 	if( flags & SRB_DataIn ) {
743 		for(i = 0 ; i <= sg_indx; i++){
744 			byte_count = le32_to_cpu(
745 			  (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)
746 			      ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count
747 			      : srbcmd->sg.sg[i].count);
748 			if(copy_to_user(sg_user[i], sg_list[i], byte_count)){
749 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
750 				rcode = -EFAULT;
751 				goto cleanup;
752 
753 			}
754 		}
755 	}
756 
757 	reply = (struct aac_srb_reply *) fib_data(srbfib);
758 	if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){
759 		dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n"));
760 		rcode = -EFAULT;
761 		goto cleanup;
762 	}
763 
764 cleanup:
765 	kfree(user_srbcmd);
766 	for(i=0; i <= sg_indx; i++){
767 		kfree(sg_list[i]);
768 	}
769 	if (rcode != -EINTR) {
770 		aac_fib_complete(srbfib);
771 		aac_fib_free(srbfib);
772 	}
773 
774 	return rcode;
775 }
776 
777 struct aac_pci_info {
778         u32 bus;
779         u32 slot;
780 };
781 
782 
783 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
784 {
785         struct aac_pci_info pci_info;
786 
787 	pci_info.bus = dev->pdev->bus->number;
788 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
789 
790        if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
791                dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
792                return -EFAULT;
793 	}
794         return 0;
795 }
796 
797 
798 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
799 {
800 	int status;
801 
802 	/*
803 	 *	HBA gets first crack
804 	 */
805 
806 	status = aac_dev_ioctl(dev, cmd, arg);
807 	if(status != -ENOTTY)
808 		return status;
809 
810 	switch (cmd) {
811 	case FSACTL_MINIPORT_REV_CHECK:
812 		status = check_revision(dev, arg);
813 		break;
814 	case FSACTL_SEND_LARGE_FIB:
815 	case FSACTL_SENDFIB:
816 		status = ioctl_send_fib(dev, arg);
817 		break;
818 	case FSACTL_OPEN_GET_ADAPTER_FIB:
819 		status = open_getadapter_fib(dev, arg);
820 		break;
821 	case FSACTL_GET_NEXT_ADAPTER_FIB:
822 		status = next_getadapter_fib(dev, arg);
823 		break;
824 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
825 		status = close_getadapter_fib(dev, arg);
826 		break;
827 	case FSACTL_SEND_RAW_SRB:
828 		status = aac_send_raw_srb(dev,arg);
829 		break;
830 	case FSACTL_GET_PCI_INFO:
831 		status = aac_get_pci_info(dev,arg);
832 		break;
833 	default:
834 		status = -ENOTTY;
835 	  	break;
836 	}
837 	return status;
838 }
839 
840