1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commctrl.c 26 * 27 * Abstract: Contains all routines for control of the AFA comm layer 28 * 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/types.h> 34 #include <linux/pci.h> 35 #include <linux/spinlock.h> 36 #include <linux/slab.h> 37 #include <linux/completion.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/blkdev.h> 40 #include <linux/delay.h> /* ssleep prototype */ 41 #include <linux/kthread.h> 42 #include <asm/semaphore.h> 43 #include <asm/uaccess.h> 44 45 #include "aacraid.h" 46 47 /** 48 * ioctl_send_fib - send a FIB from userspace 49 * @dev: adapter is being processed 50 * @arg: arguments to the ioctl call 51 * 52 * This routine sends a fib to the adapter on behalf of a user level 53 * program. 54 */ 55 # define AAC_DEBUG_PREAMBLE KERN_INFO 56 # define AAC_DEBUG_POSTAMBLE 57 58 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg) 59 { 60 struct hw_fib * kfib; 61 struct fib *fibptr; 62 struct hw_fib * hw_fib = (struct hw_fib *)0; 63 dma_addr_t hw_fib_pa = (dma_addr_t)0LL; 64 unsigned size; 65 int retval; 66 67 if (dev->in_reset) { 68 return -EBUSY; 69 } 70 fibptr = aac_fib_alloc(dev); 71 if(fibptr == NULL) { 72 return -ENOMEM; 73 } 74 75 kfib = fibptr->hw_fib_va; 76 /* 77 * First copy in the header so that we can check the size field. 78 */ 79 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) { 80 aac_fib_free(fibptr); 81 return -EFAULT; 82 } 83 /* 84 * Since we copy based on the fib header size, make sure that we 85 * will not overrun the buffer when we copy the memory. Return 86 * an error if we would. 87 */ 88 size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr); 89 if (size < le16_to_cpu(kfib->header.SenderSize)) 90 size = le16_to_cpu(kfib->header.SenderSize); 91 if (size > dev->max_fib_size) { 92 if (size > 2048) { 93 retval = -EINVAL; 94 goto cleanup; 95 } 96 /* Highjack the hw_fib */ 97 hw_fib = fibptr->hw_fib_va; 98 hw_fib_pa = fibptr->hw_fib_pa; 99 fibptr->hw_fib_va = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa); 100 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size); 101 memcpy(kfib, hw_fib, dev->max_fib_size); 102 } 103 104 if (copy_from_user(kfib, arg, size)) { 105 retval = -EFAULT; 106 goto cleanup; 107 } 108 109 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) { 110 aac_adapter_interrupt(dev); 111 /* 112 * Since we didn't really send a fib, zero out the state to allow 113 * cleanup code not to assert. 114 */ 115 kfib->header.XferState = 0; 116 } else { 117 retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr, 118 le16_to_cpu(kfib->header.Size) , FsaNormal, 119 1, 1, NULL, NULL); 120 if (retval) { 121 goto cleanup; 122 } 123 if (aac_fib_complete(fibptr) != 0) { 124 retval = -EINVAL; 125 goto cleanup; 126 } 127 } 128 /* 129 * Make sure that the size returned by the adapter (which includes 130 * the header) is less than or equal to the size of a fib, so we 131 * don't corrupt application data. Then copy that size to the user 132 * buffer. (Don't try to add the header information again, since it 133 * was already included by the adapter.) 134 */ 135 136 retval = 0; 137 if (copy_to_user(arg, (void *)kfib, size)) 138 retval = -EFAULT; 139 cleanup: 140 if (hw_fib) { 141 pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa); 142 fibptr->hw_fib_pa = hw_fib_pa; 143 fibptr->hw_fib_va = hw_fib; 144 } 145 if (retval != -EINTR) 146 aac_fib_free(fibptr); 147 return retval; 148 } 149 150 /** 151 * open_getadapter_fib - Get the next fib 152 * 153 * This routine will get the next Fib, if available, from the AdapterFibContext 154 * passed in from the user. 155 */ 156 157 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg) 158 { 159 struct aac_fib_context * fibctx; 160 int status; 161 162 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL); 163 if (fibctx == NULL) { 164 status = -ENOMEM; 165 } else { 166 unsigned long flags; 167 struct list_head * entry; 168 struct aac_fib_context * context; 169 170 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT; 171 fibctx->size = sizeof(struct aac_fib_context); 172 /* 173 * Yes yes, I know this could be an index, but we have a 174 * better guarantee of uniqueness for the locked loop below. 175 * Without the aid of a persistent history, this also helps 176 * reduce the chance that the opaque context would be reused. 177 */ 178 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF); 179 /* 180 * Initialize the mutex used to wait for the next AIF. 181 */ 182 init_MUTEX_LOCKED(&fibctx->wait_sem); 183 fibctx->wait = 0; 184 /* 185 * Initialize the fibs and set the count of fibs on 186 * the list to 0. 187 */ 188 fibctx->count = 0; 189 INIT_LIST_HEAD(&fibctx->fib_list); 190 fibctx->jiffies = jiffies/HZ; 191 /* 192 * Now add this context onto the adapter's 193 * AdapterFibContext list. 194 */ 195 spin_lock_irqsave(&dev->fib_lock, flags); 196 /* Ensure that we have a unique identifier */ 197 entry = dev->fib_list.next; 198 while (entry != &dev->fib_list) { 199 context = list_entry(entry, struct aac_fib_context, next); 200 if (context->unique == fibctx->unique) { 201 /* Not unique (32 bits) */ 202 fibctx->unique++; 203 entry = dev->fib_list.next; 204 } else { 205 entry = entry->next; 206 } 207 } 208 list_add_tail(&fibctx->next, &dev->fib_list); 209 spin_unlock_irqrestore(&dev->fib_lock, flags); 210 if (copy_to_user(arg, &fibctx->unique, 211 sizeof(fibctx->unique))) { 212 status = -EFAULT; 213 } else { 214 status = 0; 215 } 216 } 217 return status; 218 } 219 220 /** 221 * next_getadapter_fib - get the next fib 222 * @dev: adapter to use 223 * @arg: ioctl argument 224 * 225 * This routine will get the next Fib, if available, from the AdapterFibContext 226 * passed in from the user. 227 */ 228 229 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg) 230 { 231 struct fib_ioctl f; 232 struct fib *fib; 233 struct aac_fib_context *fibctx; 234 int status; 235 struct list_head * entry; 236 unsigned long flags; 237 238 if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl))) 239 return -EFAULT; 240 /* 241 * Verify that the HANDLE passed in was a valid AdapterFibContext 242 * 243 * Search the list of AdapterFibContext addresses on the adapter 244 * to be sure this is a valid address 245 */ 246 entry = dev->fib_list.next; 247 fibctx = NULL; 248 249 while (entry != &dev->fib_list) { 250 fibctx = list_entry(entry, struct aac_fib_context, next); 251 /* 252 * Extract the AdapterFibContext from the Input parameters. 253 */ 254 if (fibctx->unique == f.fibctx) { /* We found a winner */ 255 break; 256 } 257 entry = entry->next; 258 fibctx = NULL; 259 } 260 if (!fibctx) { 261 dprintk ((KERN_INFO "Fib Context not found\n")); 262 return -EINVAL; 263 } 264 265 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 266 (fibctx->size != sizeof(struct aac_fib_context))) { 267 dprintk ((KERN_INFO "Fib Context corrupt?\n")); 268 return -EINVAL; 269 } 270 status = 0; 271 spin_lock_irqsave(&dev->fib_lock, flags); 272 /* 273 * If there are no fibs to send back, then either wait or return 274 * -EAGAIN 275 */ 276 return_fib: 277 if (!list_empty(&fibctx->fib_list)) { 278 struct list_head * entry; 279 /* 280 * Pull the next fib from the fibs 281 */ 282 entry = fibctx->fib_list.next; 283 list_del(entry); 284 285 fib = list_entry(entry, struct fib, fiblink); 286 fibctx->count--; 287 spin_unlock_irqrestore(&dev->fib_lock, flags); 288 if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) { 289 kfree(fib->hw_fib_va); 290 kfree(fib); 291 return -EFAULT; 292 } 293 /* 294 * Free the space occupied by this copy of the fib. 295 */ 296 kfree(fib->hw_fib_va); 297 kfree(fib); 298 status = 0; 299 } else { 300 spin_unlock_irqrestore(&dev->fib_lock, flags); 301 /* If someone killed the AIF aacraid thread, restart it */ 302 status = !dev->aif_thread; 303 if (status && !dev->in_reset && dev->queues && dev->fsa_dev) { 304 /* Be paranoid, be very paranoid! */ 305 kthread_stop(dev->thread); 306 ssleep(1); 307 dev->aif_thread = 0; 308 dev->thread = kthread_run(aac_command_thread, dev, dev->name); 309 ssleep(1); 310 } 311 if (f.wait) { 312 if(down_interruptible(&fibctx->wait_sem) < 0) { 313 status = -EINTR; 314 } else { 315 /* Lock again and retry */ 316 spin_lock_irqsave(&dev->fib_lock, flags); 317 goto return_fib; 318 } 319 } else { 320 status = -EAGAIN; 321 } 322 } 323 fibctx->jiffies = jiffies/HZ; 324 return status; 325 } 326 327 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx) 328 { 329 struct fib *fib; 330 331 /* 332 * First free any FIBs that have not been consumed. 333 */ 334 while (!list_empty(&fibctx->fib_list)) { 335 struct list_head * entry; 336 /* 337 * Pull the next fib from the fibs 338 */ 339 entry = fibctx->fib_list.next; 340 list_del(entry); 341 fib = list_entry(entry, struct fib, fiblink); 342 fibctx->count--; 343 /* 344 * Free the space occupied by this copy of the fib. 345 */ 346 kfree(fib->hw_fib_va); 347 kfree(fib); 348 } 349 /* 350 * Remove the Context from the AdapterFibContext List 351 */ 352 list_del(&fibctx->next); 353 /* 354 * Invalidate context 355 */ 356 fibctx->type = 0; 357 /* 358 * Free the space occupied by the Context 359 */ 360 kfree(fibctx); 361 return 0; 362 } 363 364 /** 365 * close_getadapter_fib - close down user fib context 366 * @dev: adapter 367 * @arg: ioctl arguments 368 * 369 * This routine will close down the fibctx passed in from the user. 370 */ 371 372 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg) 373 { 374 struct aac_fib_context *fibctx; 375 int status; 376 unsigned long flags; 377 struct list_head * entry; 378 379 /* 380 * Verify that the HANDLE passed in was a valid AdapterFibContext 381 * 382 * Search the list of AdapterFibContext addresses on the adapter 383 * to be sure this is a valid address 384 */ 385 386 entry = dev->fib_list.next; 387 fibctx = NULL; 388 389 while(entry != &dev->fib_list) { 390 fibctx = list_entry(entry, struct aac_fib_context, next); 391 /* 392 * Extract the fibctx from the input parameters 393 */ 394 if (fibctx->unique == (u32)(ptrdiff_t)arg) /* We found a winner */ 395 break; 396 entry = entry->next; 397 fibctx = NULL; 398 } 399 400 if (!fibctx) 401 return 0; /* Already gone */ 402 403 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 404 (fibctx->size != sizeof(struct aac_fib_context))) 405 return -EINVAL; 406 spin_lock_irqsave(&dev->fib_lock, flags); 407 status = aac_close_fib_context(dev, fibctx); 408 spin_unlock_irqrestore(&dev->fib_lock, flags); 409 return status; 410 } 411 412 /** 413 * check_revision - close down user fib context 414 * @dev: adapter 415 * @arg: ioctl arguments 416 * 417 * This routine returns the driver version. 418 * Under Linux, there have been no version incompatibilities, so this is 419 * simple! 420 */ 421 422 static int check_revision(struct aac_dev *dev, void __user *arg) 423 { 424 struct revision response; 425 char *driver_version = aac_driver_version; 426 u32 version; 427 428 response.compat = 1; 429 version = (simple_strtol(driver_version, 430 &driver_version, 10) << 24) | 0x00000400; 431 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16; 432 version += simple_strtol(driver_version + 1, NULL, 10); 433 response.version = cpu_to_le32(version); 434 # if (defined(AAC_DRIVER_BUILD)) 435 response.build = cpu_to_le32(AAC_DRIVER_BUILD); 436 # else 437 response.build = cpu_to_le32(9999); 438 # endif 439 440 if (copy_to_user(arg, &response, sizeof(response))) 441 return -EFAULT; 442 return 0; 443 } 444 445 446 /** 447 * 448 * aac_send_raw_scb 449 * 450 */ 451 452 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg) 453 { 454 struct fib* srbfib; 455 int status; 456 struct aac_srb *srbcmd = NULL; 457 struct user_aac_srb *user_srbcmd = NULL; 458 struct user_aac_srb __user *user_srb = arg; 459 struct aac_srb_reply __user *user_reply; 460 struct aac_srb_reply* reply; 461 u32 fibsize = 0; 462 u32 flags = 0; 463 s32 rcode = 0; 464 u32 data_dir; 465 void __user *sg_user[32]; 466 void *sg_list[32]; 467 u32 sg_indx = 0; 468 u32 byte_count = 0; 469 u32 actual_fibsize64, actual_fibsize = 0; 470 int i; 471 472 473 if (dev->in_reset) { 474 dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n")); 475 return -EBUSY; 476 } 477 if (!capable(CAP_SYS_ADMIN)){ 478 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n")); 479 return -EPERM; 480 } 481 /* 482 * Allocate and initialize a Fib then setup a SRB command 483 */ 484 if (!(srbfib = aac_fib_alloc(dev))) { 485 return -ENOMEM; 486 } 487 aac_fib_init(srbfib); 488 489 srbcmd = (struct aac_srb*) fib_data(srbfib); 490 491 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */ 492 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){ 493 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n")); 494 rcode = -EFAULT; 495 goto cleanup; 496 } 497 498 if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) { 499 rcode = -EINVAL; 500 goto cleanup; 501 } 502 503 user_srbcmd = kmalloc(fibsize, GFP_KERNEL); 504 if (!user_srbcmd) { 505 dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n")); 506 rcode = -ENOMEM; 507 goto cleanup; 508 } 509 if(copy_from_user(user_srbcmd, user_srb,fibsize)){ 510 dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n")); 511 rcode = -EFAULT; 512 goto cleanup; 513 } 514 515 user_reply = arg+fibsize; 516 517 flags = user_srbcmd->flags; /* from user in cpu order */ 518 // Fix up srb for endian and force some values 519 520 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this 521 srbcmd->channel = cpu_to_le32(user_srbcmd->channel); 522 srbcmd->id = cpu_to_le32(user_srbcmd->id); 523 srbcmd->lun = cpu_to_le32(user_srbcmd->lun); 524 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout); 525 srbcmd->flags = cpu_to_le32(flags); 526 srbcmd->retry_limit = 0; // Obsolete parameter 527 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size); 528 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb)); 529 530 switch (flags & (SRB_DataIn | SRB_DataOut)) { 531 case SRB_DataOut: 532 data_dir = DMA_TO_DEVICE; 533 break; 534 case (SRB_DataIn | SRB_DataOut): 535 data_dir = DMA_BIDIRECTIONAL; 536 break; 537 case SRB_DataIn: 538 data_dir = DMA_FROM_DEVICE; 539 break; 540 default: 541 data_dir = DMA_NONE; 542 } 543 if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) { 544 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n", 545 le32_to_cpu(srbcmd->sg.count))); 546 rcode = -EINVAL; 547 goto cleanup; 548 } 549 actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 550 ((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry)); 551 actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) * 552 (sizeof(struct sgentry64) - sizeof(struct sgentry)); 553 /* User made a mistake - should not continue */ 554 if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) { 555 dprintk((KERN_DEBUG"aacraid: Bad Size specified in " 556 "Raw SRB command calculated fibsize=%lu;%lu " 557 "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu " 558 "issued fibsize=%d\n", 559 actual_fibsize, actual_fibsize64, user_srbcmd->sg.count, 560 sizeof(struct aac_srb), sizeof(struct sgentry), 561 sizeof(struct sgentry64), fibsize)); 562 rcode = -EINVAL; 563 goto cleanup; 564 } 565 if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) { 566 dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n")); 567 rcode = -EINVAL; 568 goto cleanup; 569 } 570 byte_count = 0; 571 if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) { 572 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg; 573 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg; 574 575 /* 576 * This should also catch if user used the 32 bit sgmap 577 */ 578 if (actual_fibsize64 == fibsize) { 579 actual_fibsize = actual_fibsize64; 580 for (i = 0; i < upsg->count; i++) { 581 u64 addr; 582 void* p; 583 /* Does this really need to be GFP_DMA? */ 584 p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA); 585 if(p == 0) { 586 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 587 upsg->sg[i].count,i,upsg->count)); 588 rcode = -ENOMEM; 589 goto cleanup; 590 } 591 addr = (u64)upsg->sg[i].addr[0]; 592 addr += ((u64)upsg->sg[i].addr[1]) << 32; 593 sg_user[i] = (void __user *)(ptrdiff_t)addr; 594 sg_list[i] = p; // save so we can clean up later 595 sg_indx = i; 596 597 if( flags & SRB_DataOut ){ 598 if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){ 599 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 600 rcode = -EFAULT; 601 goto cleanup; 602 } 603 } 604 addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir); 605 606 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 607 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 608 byte_count += upsg->sg[i].count; 609 psg->sg[i].count = cpu_to_le32(upsg->sg[i].count); 610 } 611 } else { 612 struct user_sgmap* usg; 613 usg = kmalloc(actual_fibsize - sizeof(struct aac_srb) 614 + sizeof(struct sgmap), GFP_KERNEL); 615 if (!usg) { 616 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n")); 617 rcode = -ENOMEM; 618 goto cleanup; 619 } 620 memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb) 621 + sizeof(struct sgmap)); 622 actual_fibsize = actual_fibsize64; 623 624 for (i = 0; i < usg->count; i++) { 625 u64 addr; 626 void* p; 627 /* Does this really need to be GFP_DMA? */ 628 p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA); 629 if(p == 0) { 630 kfree (usg); 631 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 632 usg->sg[i].count,i,usg->count)); 633 rcode = -ENOMEM; 634 goto cleanup; 635 } 636 sg_user[i] = (void __user *)(ptrdiff_t)usg->sg[i].addr; 637 sg_list[i] = p; // save so we can clean up later 638 sg_indx = i; 639 640 if( flags & SRB_DataOut ){ 641 if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){ 642 kfree (usg); 643 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 644 rcode = -EFAULT; 645 goto cleanup; 646 } 647 } 648 addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir); 649 650 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 651 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 652 byte_count += usg->sg[i].count; 653 psg->sg[i].count = cpu_to_le32(usg->sg[i].count); 654 } 655 kfree (usg); 656 } 657 srbcmd->count = cpu_to_le32(byte_count); 658 psg->count = cpu_to_le32(sg_indx+1); 659 status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL); 660 } else { 661 struct user_sgmap* upsg = &user_srbcmd->sg; 662 struct sgmap* psg = &srbcmd->sg; 663 664 if (actual_fibsize64 == fibsize) { 665 struct user_sgmap64* usg = (struct user_sgmap64 *)upsg; 666 for (i = 0; i < upsg->count; i++) { 667 u64 addr; 668 void* p; 669 /* Does this really need to be GFP_DMA? */ 670 p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA); 671 if(p == 0) { 672 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 673 usg->sg[i].count,i,usg->count)); 674 rcode = -ENOMEM; 675 goto cleanup; 676 } 677 addr = (u64)usg->sg[i].addr[0]; 678 addr += ((u64)usg->sg[i].addr[1]) << 32; 679 sg_user[i] = (void __user *)(ptrdiff_t)addr; 680 sg_list[i] = p; // save so we can clean up later 681 sg_indx = i; 682 683 if( flags & SRB_DataOut ){ 684 if(copy_from_user(p,sg_user[i],usg->sg[i].count)){ 685 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 686 rcode = -EFAULT; 687 goto cleanup; 688 } 689 } 690 addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir); 691 692 psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff); 693 byte_count += usg->sg[i].count; 694 psg->sg[i].count = cpu_to_le32(usg->sg[i].count); 695 } 696 } else { 697 for (i = 0; i < upsg->count; i++) { 698 dma_addr_t addr; 699 void* p; 700 p = kmalloc(upsg->sg[i].count, GFP_KERNEL); 701 if(p == 0) { 702 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 703 upsg->sg[i].count, i, upsg->count)); 704 rcode = -ENOMEM; 705 goto cleanup; 706 } 707 sg_user[i] = (void __user *)(ptrdiff_t)upsg->sg[i].addr; 708 sg_list[i] = p; // save so we can clean up later 709 sg_indx = i; 710 711 if( flags & SRB_DataOut ){ 712 if(copy_from_user(p, sg_user[i], 713 upsg->sg[i].count)) { 714 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 715 rcode = -EFAULT; 716 goto cleanup; 717 } 718 } 719 addr = pci_map_single(dev->pdev, p, 720 upsg->sg[i].count, data_dir); 721 722 psg->sg[i].addr = cpu_to_le32(addr); 723 byte_count += upsg->sg[i].count; 724 psg->sg[i].count = cpu_to_le32(upsg->sg[i].count); 725 } 726 } 727 srbcmd->count = cpu_to_le32(byte_count); 728 psg->count = cpu_to_le32(sg_indx+1); 729 status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL); 730 } 731 if (status == -EINTR) { 732 rcode = -EINTR; 733 goto cleanup; 734 } 735 736 if (status != 0){ 737 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n")); 738 rcode = -ENXIO; 739 goto cleanup; 740 } 741 742 if( flags & SRB_DataIn ) { 743 for(i = 0 ; i <= sg_indx; i++){ 744 byte_count = le32_to_cpu( 745 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) 746 ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count 747 : srbcmd->sg.sg[i].count); 748 if(copy_to_user(sg_user[i], sg_list[i], byte_count)){ 749 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n")); 750 rcode = -EFAULT; 751 goto cleanup; 752 753 } 754 } 755 } 756 757 reply = (struct aac_srb_reply *) fib_data(srbfib); 758 if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){ 759 dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n")); 760 rcode = -EFAULT; 761 goto cleanup; 762 } 763 764 cleanup: 765 kfree(user_srbcmd); 766 for(i=0; i <= sg_indx; i++){ 767 kfree(sg_list[i]); 768 } 769 if (rcode != -EINTR) { 770 aac_fib_complete(srbfib); 771 aac_fib_free(srbfib); 772 } 773 774 return rcode; 775 } 776 777 struct aac_pci_info { 778 u32 bus; 779 u32 slot; 780 }; 781 782 783 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg) 784 { 785 struct aac_pci_info pci_info; 786 787 pci_info.bus = dev->pdev->bus->number; 788 pci_info.slot = PCI_SLOT(dev->pdev->devfn); 789 790 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) { 791 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n")); 792 return -EFAULT; 793 } 794 return 0; 795 } 796 797 798 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg) 799 { 800 int status; 801 802 /* 803 * HBA gets first crack 804 */ 805 806 status = aac_dev_ioctl(dev, cmd, arg); 807 if(status != -ENOTTY) 808 return status; 809 810 switch (cmd) { 811 case FSACTL_MINIPORT_REV_CHECK: 812 status = check_revision(dev, arg); 813 break; 814 case FSACTL_SEND_LARGE_FIB: 815 case FSACTL_SENDFIB: 816 status = ioctl_send_fib(dev, arg); 817 break; 818 case FSACTL_OPEN_GET_ADAPTER_FIB: 819 status = open_getadapter_fib(dev, arg); 820 break; 821 case FSACTL_GET_NEXT_ADAPTER_FIB: 822 status = next_getadapter_fib(dev, arg); 823 break; 824 case FSACTL_CLOSE_GET_ADAPTER_FIB: 825 status = close_getadapter_fib(dev, arg); 826 break; 827 case FSACTL_SEND_RAW_SRB: 828 status = aac_send_raw_srb(dev,arg); 829 break; 830 case FSACTL_GET_PCI_INFO: 831 status = aac_get_pci_info(dev,arg); 832 break; 833 default: 834 status = -ENOTTY; 835 break; 836 } 837 return status; 838 } 839 840