1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 */ 25 26 #include <linux/kernel.h> 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/pci.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/completion.h> 33 #include <linux/blkdev.h> 34 #include <linux/dma-mapping.h> 35 #include <asm/semaphore.h> 36 #include <asm/uaccess.h> 37 38 #include <scsi/scsi.h> 39 #include <scsi/scsi_cmnd.h> 40 #include <scsi/scsi_device.h> 41 #include <scsi/scsi_host.h> 42 43 #include "aacraid.h" 44 45 /* values for inqd_pdt: Peripheral device type in plain English */ 46 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 47 #define INQD_PDT_PROC 0x03 /* Processor device */ 48 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 49 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 50 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 51 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 52 53 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 54 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 55 56 /* 57 * Sense codes 58 */ 59 60 #define SENCODE_NO_SENSE 0x00 61 #define SENCODE_END_OF_DATA 0x00 62 #define SENCODE_BECOMING_READY 0x04 63 #define SENCODE_INIT_CMD_REQUIRED 0x04 64 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 65 #define SENCODE_INVALID_COMMAND 0x20 66 #define SENCODE_LBA_OUT_OF_RANGE 0x21 67 #define SENCODE_INVALID_CDB_FIELD 0x24 68 #define SENCODE_LUN_NOT_SUPPORTED 0x25 69 #define SENCODE_INVALID_PARAM_FIELD 0x26 70 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 71 #define SENCODE_PARAM_VALUE_INVALID 0x26 72 #define SENCODE_RESET_OCCURRED 0x29 73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 74 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 76 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 77 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 78 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 79 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 80 #define SENCODE_OVERLAPPED_COMMAND 0x4E 81 82 /* 83 * Additional sense codes 84 */ 85 86 #define ASENCODE_NO_SENSE 0x00 87 #define ASENCODE_END_OF_DATA 0x05 88 #define ASENCODE_BECOMING_READY 0x01 89 #define ASENCODE_INIT_CMD_REQUIRED 0x02 90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 91 #define ASENCODE_INVALID_COMMAND 0x00 92 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 93 #define ASENCODE_INVALID_CDB_FIELD 0x00 94 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 95 #define ASENCODE_INVALID_PARAM_FIELD 0x00 96 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 97 #define ASENCODE_PARAM_VALUE_INVALID 0x02 98 #define ASENCODE_RESET_OCCURRED 0x00 99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 100 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 102 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 103 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 104 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 105 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 106 #define ASENCODE_OVERLAPPED_COMMAND 0x00 107 108 #define BYTE0(x) (unsigned char)(x) 109 #define BYTE1(x) (unsigned char)((x) >> 8) 110 #define BYTE2(x) (unsigned char)((x) >> 16) 111 #define BYTE3(x) (unsigned char)((x) >> 24) 112 113 /*------------------------------------------------------------------------------ 114 * S T R U C T S / T Y P E D E F S 115 *----------------------------------------------------------------------------*/ 116 /* SCSI inquiry data */ 117 struct inquiry_data { 118 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 119 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 120 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 121 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 122 u8 inqd_len; /* Additional length (n-4) */ 123 u8 inqd_pad1[2];/* Reserved - must be zero */ 124 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 125 u8 inqd_vid[8]; /* Vendor ID */ 126 u8 inqd_pid[16];/* Product ID */ 127 u8 inqd_prl[4]; /* Product Revision Level */ 128 }; 129 130 /* 131 * M O D U L E G L O B A L S 132 */ 133 134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap); 135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg); 136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg); 137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 138 #ifdef AAC_DETAILED_STATUS_INFO 139 static char *aac_get_status_string(u32 status); 140 #endif 141 142 /* 143 * Non dasd selection is handled entirely in aachba now 144 */ 145 146 static int nondasd = -1; 147 static int dacmode = -1; 148 149 int aac_commit = -1; 150 int startup_timeout = 180; 151 int aif_timeout = 120; 152 153 module_param(nondasd, int, S_IRUGO|S_IWUSR); 154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on"); 155 module_param(dacmode, int, S_IRUGO|S_IWUSR); 156 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on"); 157 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 158 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on"); 159 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 160 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS."); 161 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 162 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems."); 163 164 int numacb = -1; 165 module_param(numacb, int, S_IRUGO|S_IWUSR); 166 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware."); 167 168 int acbsize = -1; 169 module_param(acbsize, int, S_IRUGO|S_IWUSR); 170 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware."); 171 172 int update_interval = 30 * 60; 173 module_param(update_interval, int, S_IRUGO|S_IWUSR); 174 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync updates issued to adapter."); 175 176 int check_interval = 24 * 60 * 60; 177 module_param(check_interval, int, S_IRUGO|S_IWUSR); 178 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health checks."); 179 180 int aac_check_reset = 1; 181 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 182 MODULE_PARM_DESC(aac_check_reset, "If adapter fails health check, reset the adapter."); 183 184 int expose_physicals = -1; 185 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 186 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. -1=protect 0=off, 1=on"); 187 188 int aac_reset_devices = 0; 189 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 190 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 191 192 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 193 struct fib *fibptr) { 194 struct scsi_device *device; 195 196 if (unlikely(!scsicmd || !scsicmd->scsi_done )) { 197 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 198 aac_fib_complete(fibptr); 199 aac_fib_free(fibptr); 200 return 0; 201 } 202 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 203 device = scsicmd->device; 204 if (unlikely(!device || !scsi_device_online(device))) { 205 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 206 aac_fib_complete(fibptr); 207 aac_fib_free(fibptr); 208 return 0; 209 } 210 return 1; 211 } 212 213 /** 214 * aac_get_config_status - check the adapter configuration 215 * @common: adapter to query 216 * 217 * Query config status, and commit the configuration if needed. 218 */ 219 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 220 { 221 int status = 0; 222 struct fib * fibptr; 223 224 if (!(fibptr = aac_fib_alloc(dev))) 225 return -ENOMEM; 226 227 aac_fib_init(fibptr); 228 { 229 struct aac_get_config_status *dinfo; 230 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 231 232 dinfo->command = cpu_to_le32(VM_ContainerConfig); 233 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 234 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 235 } 236 237 status = aac_fib_send(ContainerCommand, 238 fibptr, 239 sizeof (struct aac_get_config_status), 240 FsaNormal, 241 1, 1, 242 NULL, NULL); 243 if (status < 0 ) { 244 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 245 } else { 246 struct aac_get_config_status_resp *reply 247 = (struct aac_get_config_status_resp *) fib_data(fibptr); 248 dprintk((KERN_WARNING 249 "aac_get_config_status: response=%d status=%d action=%d\n", 250 le32_to_cpu(reply->response), 251 le32_to_cpu(reply->status), 252 le32_to_cpu(reply->data.action))); 253 if ((le32_to_cpu(reply->response) != ST_OK) || 254 (le32_to_cpu(reply->status) != CT_OK) || 255 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 256 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 257 status = -EINVAL; 258 } 259 } 260 aac_fib_complete(fibptr); 261 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 262 if (status >= 0) { 263 if ((aac_commit == 1) || commit_flag) { 264 struct aac_commit_config * dinfo; 265 aac_fib_init(fibptr); 266 dinfo = (struct aac_commit_config *) fib_data(fibptr); 267 268 dinfo->command = cpu_to_le32(VM_ContainerConfig); 269 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 270 271 status = aac_fib_send(ContainerCommand, 272 fibptr, 273 sizeof (struct aac_commit_config), 274 FsaNormal, 275 1, 1, 276 NULL, NULL); 277 aac_fib_complete(fibptr); 278 } else if (aac_commit == 0) { 279 printk(KERN_WARNING 280 "aac_get_config_status: Foreign device configurations are being ignored\n"); 281 } 282 } 283 aac_fib_free(fibptr); 284 return status; 285 } 286 287 /** 288 * aac_get_containers - list containers 289 * @common: adapter to probe 290 * 291 * Make a list of all containers on this controller 292 */ 293 int aac_get_containers(struct aac_dev *dev) 294 { 295 struct fsa_dev_info *fsa_dev_ptr; 296 u32 index; 297 int status = 0; 298 struct fib * fibptr; 299 struct aac_get_container_count *dinfo; 300 struct aac_get_container_count_resp *dresp; 301 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 302 303 if (!(fibptr = aac_fib_alloc(dev))) 304 return -ENOMEM; 305 306 aac_fib_init(fibptr); 307 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 308 dinfo->command = cpu_to_le32(VM_ContainerConfig); 309 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 310 311 status = aac_fib_send(ContainerCommand, 312 fibptr, 313 sizeof (struct aac_get_container_count), 314 FsaNormal, 315 1, 1, 316 NULL, NULL); 317 if (status >= 0) { 318 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 319 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 320 aac_fib_complete(fibptr); 321 } 322 aac_fib_free(fibptr); 323 324 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 325 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 326 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers, 327 GFP_KERNEL); 328 if (!fsa_dev_ptr) 329 return -ENOMEM; 330 331 dev->fsa_dev = fsa_dev_ptr; 332 dev->maximum_num_containers = maximum_num_containers; 333 334 for (index = 0; index < dev->maximum_num_containers; ) { 335 fsa_dev_ptr[index].devname[0] = '\0'; 336 337 status = aac_probe_container(dev, index); 338 339 if (status < 0) { 340 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 341 break; 342 } 343 344 /* 345 * If there are no more containers, then stop asking. 346 */ 347 if (++index >= status) 348 break; 349 } 350 return status; 351 } 352 353 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len) 354 { 355 void *buf; 356 int transfer_len; 357 struct scatterlist *sg = scsi_sglist(scsicmd); 358 359 buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset; 360 transfer_len = min(sg->length, len + offset); 361 362 transfer_len -= offset; 363 if (buf && transfer_len > 0) 364 memcpy(buf + offset, data, transfer_len); 365 366 kunmap_atomic(buf - sg->offset, KM_IRQ0); 367 368 } 369 370 static void get_container_name_callback(void *context, struct fib * fibptr) 371 { 372 struct aac_get_name_resp * get_name_reply; 373 struct scsi_cmnd * scsicmd; 374 375 scsicmd = (struct scsi_cmnd *) context; 376 377 if (!aac_valid_context(scsicmd, fibptr)) 378 return; 379 380 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 381 BUG_ON(fibptr == NULL); 382 383 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 384 /* Failure is irrelevant, using default value instead */ 385 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 386 && (get_name_reply->data[0] != '\0')) { 387 char *sp = get_name_reply->data; 388 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0'; 389 while (*sp == ' ') 390 ++sp; 391 if (*sp) { 392 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 393 int count = sizeof(d); 394 char *dp = d; 395 do { 396 *dp++ = (*sp) ? *sp++ : ' '; 397 } while (--count > 0); 398 aac_internal_transfer(scsicmd, d, 399 offsetof(struct inquiry_data, inqd_pid), sizeof(d)); 400 } 401 } 402 403 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 404 405 aac_fib_complete(fibptr); 406 aac_fib_free(fibptr); 407 scsicmd->scsi_done(scsicmd); 408 } 409 410 /** 411 * aac_get_container_name - get container name, none blocking. 412 */ 413 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 414 { 415 int status; 416 struct aac_get_name *dinfo; 417 struct fib * cmd_fibcontext; 418 struct aac_dev * dev; 419 420 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 421 422 if (!(cmd_fibcontext = aac_fib_alloc(dev))) 423 return -ENOMEM; 424 425 aac_fib_init(cmd_fibcontext); 426 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 427 428 dinfo->command = cpu_to_le32(VM_ContainerConfig); 429 dinfo->type = cpu_to_le32(CT_READ_NAME); 430 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 431 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data)); 432 433 status = aac_fib_send(ContainerCommand, 434 cmd_fibcontext, 435 sizeof (struct aac_get_name), 436 FsaNormal, 437 0, 1, 438 (fib_callback) get_container_name_callback, 439 (void *) scsicmd); 440 441 /* 442 * Check that the command queued to the controller 443 */ 444 if (status == -EINPROGRESS) { 445 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 446 return 0; 447 } 448 449 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 450 aac_fib_complete(cmd_fibcontext); 451 aac_fib_free(cmd_fibcontext); 452 return -1; 453 } 454 455 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 456 { 457 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 458 459 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 460 return aac_scsi_cmd(scsicmd); 461 462 scsicmd->result = DID_NO_CONNECT << 16; 463 scsicmd->scsi_done(scsicmd); 464 return 0; 465 } 466 467 static void _aac_probe_container2(void * context, struct fib * fibptr) 468 { 469 struct fsa_dev_info *fsa_dev_ptr; 470 int (*callback)(struct scsi_cmnd *); 471 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 472 473 474 if (!aac_valid_context(scsicmd, fibptr)) 475 return; 476 477 scsicmd->SCp.Status = 0; 478 fsa_dev_ptr = fibptr->dev->fsa_dev; 479 if (fsa_dev_ptr) { 480 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 481 fsa_dev_ptr += scmd_id(scsicmd); 482 483 if ((le32_to_cpu(dresp->status) == ST_OK) && 484 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 485 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 486 fsa_dev_ptr->valid = 1; 487 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 488 fsa_dev_ptr->size 489 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 490 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 491 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 492 } 493 if ((fsa_dev_ptr->valid & 1) == 0) 494 fsa_dev_ptr->valid = 0; 495 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 496 } 497 aac_fib_complete(fibptr); 498 aac_fib_free(fibptr); 499 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 500 scsicmd->SCp.ptr = NULL; 501 (*callback)(scsicmd); 502 return; 503 } 504 505 static void _aac_probe_container1(void * context, struct fib * fibptr) 506 { 507 struct scsi_cmnd * scsicmd; 508 struct aac_mount * dresp; 509 struct aac_query_mount *dinfo; 510 int status; 511 512 dresp = (struct aac_mount *) fib_data(fibptr); 513 dresp->mnt[0].capacityhigh = 0; 514 if ((le32_to_cpu(dresp->status) != ST_OK) || 515 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 516 _aac_probe_container2(context, fibptr); 517 return; 518 } 519 scsicmd = (struct scsi_cmnd *) context; 520 521 if (!aac_valid_context(scsicmd, fibptr)) 522 return; 523 524 aac_fib_init(fibptr); 525 526 dinfo = (struct aac_query_mount *)fib_data(fibptr); 527 528 dinfo->command = cpu_to_le32(VM_NameServe64); 529 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 530 dinfo->type = cpu_to_le32(FT_FILESYS); 531 532 status = aac_fib_send(ContainerCommand, 533 fibptr, 534 sizeof(struct aac_query_mount), 535 FsaNormal, 536 0, 1, 537 _aac_probe_container2, 538 (void *) scsicmd); 539 /* 540 * Check that the command queued to the controller 541 */ 542 if (status == -EINPROGRESS) 543 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 544 else if (status < 0) { 545 /* Inherit results from VM_NameServe, if any */ 546 dresp->status = cpu_to_le32(ST_OK); 547 _aac_probe_container2(context, fibptr); 548 } 549 } 550 551 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 552 { 553 struct fib * fibptr; 554 int status = -ENOMEM; 555 556 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 557 struct aac_query_mount *dinfo; 558 559 aac_fib_init(fibptr); 560 561 dinfo = (struct aac_query_mount *)fib_data(fibptr); 562 563 dinfo->command = cpu_to_le32(VM_NameServe); 564 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 565 dinfo->type = cpu_to_le32(FT_FILESYS); 566 scsicmd->SCp.ptr = (char *)callback; 567 568 status = aac_fib_send(ContainerCommand, 569 fibptr, 570 sizeof(struct aac_query_mount), 571 FsaNormal, 572 0, 1, 573 _aac_probe_container1, 574 (void *) scsicmd); 575 /* 576 * Check that the command queued to the controller 577 */ 578 if (status == -EINPROGRESS) { 579 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 580 return 0; 581 } 582 if (status < 0) { 583 scsicmd->SCp.ptr = NULL; 584 aac_fib_complete(fibptr); 585 aac_fib_free(fibptr); 586 } 587 } 588 if (status < 0) { 589 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 590 if (fsa_dev_ptr) { 591 fsa_dev_ptr += scmd_id(scsicmd); 592 if ((fsa_dev_ptr->valid & 1) == 0) { 593 fsa_dev_ptr->valid = 0; 594 return (*callback)(scsicmd); 595 } 596 } 597 } 598 return status; 599 } 600 601 /** 602 * aac_probe_container - query a logical volume 603 * @dev: device to query 604 * @cid: container identifier 605 * 606 * Queries the controller about the given volume. The volume information 607 * is updated in the struct fsa_dev_info structure rather than returned. 608 */ 609 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 610 { 611 scsicmd->device = NULL; 612 return 0; 613 } 614 615 int aac_probe_container(struct aac_dev *dev, int cid) 616 { 617 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 618 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 619 int status; 620 621 if (!scsicmd || !scsidev) { 622 kfree(scsicmd); 623 kfree(scsidev); 624 return -ENOMEM; 625 } 626 scsicmd->list.next = NULL; 627 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1; 628 629 scsicmd->device = scsidev; 630 scsidev->sdev_state = 0; 631 scsidev->id = cid; 632 scsidev->host = dev->scsi_host_ptr; 633 634 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 635 while (scsicmd->device == scsidev) 636 schedule(); 637 kfree(scsidev); 638 status = scsicmd->SCp.Status; 639 kfree(scsicmd); 640 return status; 641 } 642 643 /* Local Structure to set SCSI inquiry data strings */ 644 struct scsi_inq { 645 char vid[8]; /* Vendor ID */ 646 char pid[16]; /* Product ID */ 647 char prl[4]; /* Product Revision Level */ 648 }; 649 650 /** 651 * InqStrCopy - string merge 652 * @a: string to copy from 653 * @b: string to copy to 654 * 655 * Copy a String from one location to another 656 * without copying \0 657 */ 658 659 static void inqstrcpy(char *a, char *b) 660 { 661 662 while(*a != (char)0) 663 *b++ = *a++; 664 } 665 666 static char *container_types[] = { 667 "None", 668 "Volume", 669 "Mirror", 670 "Stripe", 671 "RAID5", 672 "SSRW", 673 "SSRO", 674 "Morph", 675 "Legacy", 676 "RAID4", 677 "RAID10", 678 "RAID00", 679 "V-MIRRORS", 680 "PSEUDO R4", 681 "RAID50", 682 "RAID5D", 683 "RAID5D0", 684 "RAID1E", 685 "RAID6", 686 "RAID60", 687 "Unknown" 688 }; 689 690 691 692 /* Function: setinqstr 693 * 694 * Arguments: [1] pointer to void [1] int 695 * 696 * Purpose: Sets SCSI inquiry data strings for vendor, product 697 * and revision level. Allows strings to be set in platform dependant 698 * files instead of in OS dependant driver source. 699 */ 700 701 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 702 { 703 struct scsi_inq *str; 704 705 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 706 memset(str, ' ', sizeof(*str)); 707 708 if (dev->supplement_adapter_info.AdapterTypeText[0]) { 709 char * cp = dev->supplement_adapter_info.AdapterTypeText; 710 int c = sizeof(str->vid); 711 while (*cp && *cp != ' ' && --c) 712 ++cp; 713 c = *cp; 714 *cp = '\0'; 715 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText, 716 str->vid); 717 *cp = c; 718 while (*cp && *cp != ' ') 719 ++cp; 720 while (*cp == ' ') 721 ++cp; 722 /* last six chars reserved for vol type */ 723 c = 0; 724 if (strlen(cp) > sizeof(str->pid)) { 725 c = cp[sizeof(str->pid)]; 726 cp[sizeof(str->pid)] = '\0'; 727 } 728 inqstrcpy (cp, str->pid); 729 if (c) 730 cp[sizeof(str->pid)] = c; 731 } else { 732 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 733 734 inqstrcpy (mp->vname, str->vid); 735 /* last six chars reserved for vol type */ 736 inqstrcpy (mp->model, str->pid); 737 } 738 739 if (tindex < ARRAY_SIZE(container_types)){ 740 char *findit = str->pid; 741 742 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 743 /* RAID is superfluous in the context of a RAID device */ 744 if (memcmp(findit-4, "RAID", 4) == 0) 745 *(findit -= 4) = ' '; 746 if (((findit - str->pid) + strlen(container_types[tindex])) 747 < (sizeof(str->pid) + sizeof(str->prl))) 748 inqstrcpy (container_types[tindex], findit + 1); 749 } 750 inqstrcpy ("V1.0", str->prl); 751 } 752 753 static void get_container_serial_callback(void *context, struct fib * fibptr) 754 { 755 struct aac_get_serial_resp * get_serial_reply; 756 struct scsi_cmnd * scsicmd; 757 758 BUG_ON(fibptr == NULL); 759 760 scsicmd = (struct scsi_cmnd *) context; 761 if (!aac_valid_context(scsicmd, fibptr)) 762 return; 763 764 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 765 /* Failure is irrelevant, using default value instead */ 766 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 767 char sp[13]; 768 /* EVPD bit set */ 769 sp[0] = INQD_PDT_DA; 770 sp[1] = scsicmd->cmnd[2]; 771 sp[2] = 0; 772 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 773 le32_to_cpu(get_serial_reply->uid)); 774 aac_internal_transfer(scsicmd, sp, 0, sizeof(sp)); 775 } 776 777 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 778 779 aac_fib_complete(fibptr); 780 aac_fib_free(fibptr); 781 scsicmd->scsi_done(scsicmd); 782 } 783 784 /** 785 * aac_get_container_serial - get container serial, none blocking. 786 */ 787 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 788 { 789 int status; 790 struct aac_get_serial *dinfo; 791 struct fib * cmd_fibcontext; 792 struct aac_dev * dev; 793 794 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 795 796 if (!(cmd_fibcontext = aac_fib_alloc(dev))) 797 return -ENOMEM; 798 799 aac_fib_init(cmd_fibcontext); 800 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 801 802 dinfo->command = cpu_to_le32(VM_ContainerConfig); 803 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 804 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 805 806 status = aac_fib_send(ContainerCommand, 807 cmd_fibcontext, 808 sizeof (struct aac_get_serial), 809 FsaNormal, 810 0, 1, 811 (fib_callback) get_container_serial_callback, 812 (void *) scsicmd); 813 814 /* 815 * Check that the command queued to the controller 816 */ 817 if (status == -EINPROGRESS) { 818 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 819 return 0; 820 } 821 822 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 823 aac_fib_complete(cmd_fibcontext); 824 aac_fib_free(cmd_fibcontext); 825 return -1; 826 } 827 828 /* Function: setinqserial 829 * 830 * Arguments: [1] pointer to void [1] int 831 * 832 * Purpose: Sets SCSI Unit Serial number. 833 * This is a fake. We should read a proper 834 * serial number from the container. <SuSE>But 835 * without docs it's quite hard to do it :-) 836 * So this will have to do in the meantime.</SuSE> 837 */ 838 839 static int setinqserial(struct aac_dev *dev, void *data, int cid) 840 { 841 /* 842 * This breaks array migration. 843 */ 844 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 845 le32_to_cpu(dev->adapter_info.serial[0]), cid); 846 } 847 848 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code, 849 u8 a_sense_code, u8 incorrect_length, 850 u8 bit_pointer, u16 field_pointer, 851 u32 residue) 852 { 853 sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */ 854 sense_buf[1] = 0; /* Segment number, always zero */ 855 856 if (incorrect_length) { 857 sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */ 858 sense_buf[3] = BYTE3(residue); 859 sense_buf[4] = BYTE2(residue); 860 sense_buf[5] = BYTE1(residue); 861 sense_buf[6] = BYTE0(residue); 862 } else 863 sense_buf[2] = sense_key; /* Sense key */ 864 865 if (sense_key == ILLEGAL_REQUEST) 866 sense_buf[7] = 10; /* Additional sense length */ 867 else 868 sense_buf[7] = 6; /* Additional sense length */ 869 870 sense_buf[12] = sense_code; /* Additional sense code */ 871 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 872 if (sense_key == ILLEGAL_REQUEST) { 873 sense_buf[15] = 0; 874 875 if (sense_code == SENCODE_INVALID_PARAM_FIELD) 876 sense_buf[15] = 0x80;/* Std sense key specific field */ 877 /* Illegal parameter is in the parameter block */ 878 879 if (sense_code == SENCODE_INVALID_CDB_FIELD) 880 sense_buf[15] = 0xc0;/* Std sense key specific field */ 881 /* Illegal parameter is in the CDB block */ 882 sense_buf[15] |= bit_pointer; 883 sense_buf[16] = field_pointer >> 8; /* MSB */ 884 sense_buf[17] = field_pointer; /* LSB */ 885 } 886 } 887 888 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 889 { 890 if (lba & 0xffffffff00000000LL) { 891 int cid = scmd_id(cmd); 892 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 893 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 894 SAM_STAT_CHECK_CONDITION; 895 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 896 HARDWARE_ERROR, 897 SENCODE_INTERNAL_TARGET_FAILURE, 898 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 899 0, 0); 900 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 901 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer)) 902 ? sizeof(cmd->sense_buffer) 903 : sizeof(dev->fsa_dev[cid].sense_data)); 904 cmd->scsi_done(cmd); 905 return 1; 906 } 907 return 0; 908 } 909 910 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 911 { 912 return 0; 913 } 914 915 static void io_callback(void *context, struct fib * fibptr); 916 917 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 918 { 919 u16 fibsize; 920 struct aac_raw_io *readcmd; 921 aac_fib_init(fib); 922 readcmd = (struct aac_raw_io *) fib_data(fib); 923 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 924 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 925 readcmd->count = cpu_to_le32(count<<9); 926 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 927 readcmd->flags = cpu_to_le16(IO_TYPE_READ); 928 readcmd->bpTotal = 0; 929 readcmd->bpComplete = 0; 930 931 aac_build_sgraw(cmd, &readcmd->sg); 932 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw)); 933 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 934 /* 935 * Now send the Fib to the adapter 936 */ 937 return aac_fib_send(ContainerRawIo, 938 fib, 939 fibsize, 940 FsaNormal, 941 0, 1, 942 (fib_callback) io_callback, 943 (void *) cmd); 944 } 945 946 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 947 { 948 u16 fibsize; 949 struct aac_read64 *readcmd; 950 aac_fib_init(fib); 951 readcmd = (struct aac_read64 *) fib_data(fib); 952 readcmd->command = cpu_to_le32(VM_CtHostRead64); 953 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 954 readcmd->sector_count = cpu_to_le16(count); 955 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 956 readcmd->pad = 0; 957 readcmd->flags = 0; 958 959 aac_build_sg64(cmd, &readcmd->sg); 960 fibsize = sizeof(struct aac_read64) + 961 ((le32_to_cpu(readcmd->sg.count) - 1) * 962 sizeof (struct sgentry64)); 963 BUG_ON (fibsize > (fib->dev->max_fib_size - 964 sizeof(struct aac_fibhdr))); 965 /* 966 * Now send the Fib to the adapter 967 */ 968 return aac_fib_send(ContainerCommand64, 969 fib, 970 fibsize, 971 FsaNormal, 972 0, 1, 973 (fib_callback) io_callback, 974 (void *) cmd); 975 } 976 977 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 978 { 979 u16 fibsize; 980 struct aac_read *readcmd; 981 aac_fib_init(fib); 982 readcmd = (struct aac_read *) fib_data(fib); 983 readcmd->command = cpu_to_le32(VM_CtBlockRead); 984 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 985 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 986 readcmd->count = cpu_to_le32(count * 512); 987 988 aac_build_sg(cmd, &readcmd->sg); 989 fibsize = sizeof(struct aac_read) + 990 ((le32_to_cpu(readcmd->sg.count) - 1) * 991 sizeof (struct sgentry)); 992 BUG_ON (fibsize > (fib->dev->max_fib_size - 993 sizeof(struct aac_fibhdr))); 994 /* 995 * Now send the Fib to the adapter 996 */ 997 return aac_fib_send(ContainerCommand, 998 fib, 999 fibsize, 1000 FsaNormal, 1001 0, 1, 1002 (fib_callback) io_callback, 1003 (void *) cmd); 1004 } 1005 1006 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1007 { 1008 u16 fibsize; 1009 struct aac_raw_io *writecmd; 1010 aac_fib_init(fib); 1011 writecmd = (struct aac_raw_io *) fib_data(fib); 1012 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1013 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1014 writecmd->count = cpu_to_le32(count<<9); 1015 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1016 writecmd->flags = fua ? 1017 cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) : 1018 cpu_to_le16(IO_TYPE_WRITE); 1019 writecmd->bpTotal = 0; 1020 writecmd->bpComplete = 0; 1021 1022 aac_build_sgraw(cmd, &writecmd->sg); 1023 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw)); 1024 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1025 /* 1026 * Now send the Fib to the adapter 1027 */ 1028 return aac_fib_send(ContainerRawIo, 1029 fib, 1030 fibsize, 1031 FsaNormal, 1032 0, 1, 1033 (fib_callback) io_callback, 1034 (void *) cmd); 1035 } 1036 1037 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1038 { 1039 u16 fibsize; 1040 struct aac_write64 *writecmd; 1041 aac_fib_init(fib); 1042 writecmd = (struct aac_write64 *) fib_data(fib); 1043 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1044 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1045 writecmd->sector_count = cpu_to_le16(count); 1046 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1047 writecmd->pad = 0; 1048 writecmd->flags = 0; 1049 1050 aac_build_sg64(cmd, &writecmd->sg); 1051 fibsize = sizeof(struct aac_write64) + 1052 ((le32_to_cpu(writecmd->sg.count) - 1) * 1053 sizeof (struct sgentry64)); 1054 BUG_ON (fibsize > (fib->dev->max_fib_size - 1055 sizeof(struct aac_fibhdr))); 1056 /* 1057 * Now send the Fib to the adapter 1058 */ 1059 return aac_fib_send(ContainerCommand64, 1060 fib, 1061 fibsize, 1062 FsaNormal, 1063 0, 1, 1064 (fib_callback) io_callback, 1065 (void *) cmd); 1066 } 1067 1068 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1069 { 1070 u16 fibsize; 1071 struct aac_write *writecmd; 1072 aac_fib_init(fib); 1073 writecmd = (struct aac_write *) fib_data(fib); 1074 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1075 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1076 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1077 writecmd->count = cpu_to_le32(count * 512); 1078 writecmd->sg.count = cpu_to_le32(1); 1079 /* ->stable is not used - it did mean which type of write */ 1080 1081 aac_build_sg(cmd, &writecmd->sg); 1082 fibsize = sizeof(struct aac_write) + 1083 ((le32_to_cpu(writecmd->sg.count) - 1) * 1084 sizeof (struct sgentry)); 1085 BUG_ON (fibsize > (fib->dev->max_fib_size - 1086 sizeof(struct aac_fibhdr))); 1087 /* 1088 * Now send the Fib to the adapter 1089 */ 1090 return aac_fib_send(ContainerCommand, 1091 fib, 1092 fibsize, 1093 FsaNormal, 1094 0, 1, 1095 (fib_callback) io_callback, 1096 (void *) cmd); 1097 } 1098 1099 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1100 { 1101 struct aac_srb * srbcmd; 1102 u32 flag; 1103 u32 timeout; 1104 1105 aac_fib_init(fib); 1106 switch(cmd->sc_data_direction){ 1107 case DMA_TO_DEVICE: 1108 flag = SRB_DataOut; 1109 break; 1110 case DMA_BIDIRECTIONAL: 1111 flag = SRB_DataIn | SRB_DataOut; 1112 break; 1113 case DMA_FROM_DEVICE: 1114 flag = SRB_DataIn; 1115 break; 1116 case DMA_NONE: 1117 default: /* shuts up some versions of gcc */ 1118 flag = SRB_NoDataXfer; 1119 break; 1120 } 1121 1122 srbcmd = (struct aac_srb*) fib_data(fib); 1123 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1124 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1125 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1126 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1127 srbcmd->flags = cpu_to_le32(flag); 1128 timeout = cmd->timeout_per_command/HZ; 1129 if (timeout == 0) 1130 timeout = 1; 1131 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1132 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1133 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1134 return srbcmd; 1135 } 1136 1137 static void aac_srb_callback(void *context, struct fib * fibptr); 1138 1139 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1140 { 1141 u16 fibsize; 1142 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1143 1144 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg); 1145 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1146 1147 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1148 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1149 /* 1150 * Build Scatter/Gather list 1151 */ 1152 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1153 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1154 sizeof (struct sgentry64)); 1155 BUG_ON (fibsize > (fib->dev->max_fib_size - 1156 sizeof(struct aac_fibhdr))); 1157 1158 /* 1159 * Now send the Fib to the adapter 1160 */ 1161 return aac_fib_send(ScsiPortCommand64, fib, 1162 fibsize, FsaNormal, 0, 1, 1163 (fib_callback) aac_srb_callback, 1164 (void *) cmd); 1165 } 1166 1167 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1168 { 1169 u16 fibsize; 1170 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1171 1172 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg); 1173 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1174 1175 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1176 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1177 /* 1178 * Build Scatter/Gather list 1179 */ 1180 fibsize = sizeof (struct aac_srb) + 1181 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1182 sizeof (struct sgentry)); 1183 BUG_ON (fibsize > (fib->dev->max_fib_size - 1184 sizeof(struct aac_fibhdr))); 1185 1186 /* 1187 * Now send the Fib to the adapter 1188 */ 1189 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1190 (fib_callback) aac_srb_callback, (void *) cmd); 1191 } 1192 1193 int aac_get_adapter_info(struct aac_dev* dev) 1194 { 1195 struct fib* fibptr; 1196 int rcode; 1197 u32 tmp; 1198 struct aac_adapter_info *info; 1199 struct aac_bus_info *command; 1200 struct aac_bus_info_response *bus_info; 1201 1202 if (!(fibptr = aac_fib_alloc(dev))) 1203 return -ENOMEM; 1204 1205 aac_fib_init(fibptr); 1206 info = (struct aac_adapter_info *) fib_data(fibptr); 1207 memset(info,0,sizeof(*info)); 1208 1209 rcode = aac_fib_send(RequestAdapterInfo, 1210 fibptr, 1211 sizeof(*info), 1212 FsaNormal, 1213 -1, 1, /* First `interrupt' command uses special wait */ 1214 NULL, 1215 NULL); 1216 1217 if (rcode < 0) { 1218 aac_fib_complete(fibptr); 1219 aac_fib_free(fibptr); 1220 return rcode; 1221 } 1222 memcpy(&dev->adapter_info, info, sizeof(*info)); 1223 1224 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 1225 struct aac_supplement_adapter_info * info; 1226 1227 aac_fib_init(fibptr); 1228 1229 info = (struct aac_supplement_adapter_info *) fib_data(fibptr); 1230 1231 memset(info,0,sizeof(*info)); 1232 1233 rcode = aac_fib_send(RequestSupplementAdapterInfo, 1234 fibptr, 1235 sizeof(*info), 1236 FsaNormal, 1237 1, 1, 1238 NULL, 1239 NULL); 1240 1241 if (rcode >= 0) 1242 memcpy(&dev->supplement_adapter_info, info, sizeof(*info)); 1243 } 1244 1245 1246 /* 1247 * GetBusInfo 1248 */ 1249 1250 aac_fib_init(fibptr); 1251 1252 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 1253 1254 memset(bus_info, 0, sizeof(*bus_info)); 1255 1256 command = (struct aac_bus_info *)bus_info; 1257 1258 command->Command = cpu_to_le32(VM_Ioctl); 1259 command->ObjType = cpu_to_le32(FT_DRIVE); 1260 command->MethodId = cpu_to_le32(1); 1261 command->CtlCmd = cpu_to_le32(GetBusInfo); 1262 1263 rcode = aac_fib_send(ContainerCommand, 1264 fibptr, 1265 sizeof (*bus_info), 1266 FsaNormal, 1267 1, 1, 1268 NULL, NULL); 1269 1270 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 1271 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 1272 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 1273 } 1274 1275 if (!dev->in_reset) { 1276 char buffer[16]; 1277 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1278 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 1279 dev->name, 1280 dev->id, 1281 tmp>>24, 1282 (tmp>>16)&0xff, 1283 tmp&0xff, 1284 le32_to_cpu(dev->adapter_info.kernelbuild), 1285 (int)sizeof(dev->supplement_adapter_info.BuildDate), 1286 dev->supplement_adapter_info.BuildDate); 1287 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1288 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 1289 dev->name, dev->id, 1290 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 1291 le32_to_cpu(dev->adapter_info.monitorbuild)); 1292 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1293 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 1294 dev->name, dev->id, 1295 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 1296 le32_to_cpu(dev->adapter_info.biosbuild)); 1297 buffer[0] = '\0'; 1298 if (aac_show_serial_number( 1299 shost_to_class(dev->scsi_host_ptr), buffer)) 1300 printk(KERN_INFO "%s%d: serial %s", 1301 dev->name, dev->id, buffer); 1302 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) { 1303 printk(KERN_INFO "%s%d: TSID %.*s\n", 1304 dev->name, dev->id, 1305 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid), 1306 dev->supplement_adapter_info.VpdInfo.Tsid); 1307 } 1308 if (!aac_check_reset || 1309 (dev->supplement_adapter_info.SupportedOptions2 & 1310 le32_to_cpu(AAC_OPTION_IGNORE_RESET))) { 1311 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 1312 dev->name, dev->id); 1313 } 1314 } 1315 1316 dev->nondasd_support = 0; 1317 dev->raid_scsi_mode = 0; 1318 if(dev->adapter_info.options & AAC_OPT_NONDASD){ 1319 dev->nondasd_support = 1; 1320 } 1321 1322 /* 1323 * If the firmware supports ROMB RAID/SCSI mode and we are currently 1324 * in RAID/SCSI mode, set the flag. For now if in this mode we will 1325 * force nondasd support on. If we decide to allow the non-dasd flag 1326 * additional changes changes will have to be made to support 1327 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 1328 * changed to support the new dev->raid_scsi_mode flag instead of 1329 * leaching off of the dev->nondasd_support flag. Also in linit.c the 1330 * function aac_detect will have to be modified where it sets up the 1331 * max number of channels based on the aac->nondasd_support flag only. 1332 */ 1333 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 1334 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 1335 dev->nondasd_support = 1; 1336 dev->raid_scsi_mode = 1; 1337 } 1338 if (dev->raid_scsi_mode != 0) 1339 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 1340 dev->name, dev->id); 1341 1342 if(nondasd != -1) { 1343 dev->nondasd_support = (nondasd!=0); 1344 } 1345 if(dev->nondasd_support != 0){ 1346 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 1347 } 1348 1349 dev->dac_support = 0; 1350 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){ 1351 printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id); 1352 dev->dac_support = 1; 1353 } 1354 1355 if(dacmode != -1) { 1356 dev->dac_support = (dacmode!=0); 1357 } 1358 if(dev->dac_support != 0) { 1359 if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) && 1360 !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) { 1361 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n", 1362 dev->name, dev->id); 1363 } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) && 1364 !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) { 1365 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n", 1366 dev->name, dev->id); 1367 dev->dac_support = 0; 1368 } else { 1369 printk(KERN_WARNING"%s%d: No suitable DMA available.\n", 1370 dev->name, dev->id); 1371 rcode = -ENOMEM; 1372 } 1373 } 1374 /* 1375 * Deal with configuring for the individualized limits of each packet 1376 * interface. 1377 */ 1378 dev->a_ops.adapter_scsi = (dev->dac_support) 1379 ? aac_scsi_64 1380 : aac_scsi_32; 1381 if (dev->raw_io_interface) { 1382 dev->a_ops.adapter_bounds = (dev->raw_io_64) 1383 ? aac_bounds_64 1384 : aac_bounds_32; 1385 dev->a_ops.adapter_read = aac_read_raw_io; 1386 dev->a_ops.adapter_write = aac_write_raw_io; 1387 } else { 1388 dev->a_ops.adapter_bounds = aac_bounds_32; 1389 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 1390 sizeof(struct aac_fibhdr) - 1391 sizeof(struct aac_write) + sizeof(struct sgentry)) / 1392 sizeof(struct sgentry); 1393 if (dev->dac_support) { 1394 dev->a_ops.adapter_read = aac_read_block64; 1395 dev->a_ops.adapter_write = aac_write_block64; 1396 /* 1397 * 38 scatter gather elements 1398 */ 1399 dev->scsi_host_ptr->sg_tablesize = 1400 (dev->max_fib_size - 1401 sizeof(struct aac_fibhdr) - 1402 sizeof(struct aac_write64) + 1403 sizeof(struct sgentry64)) / 1404 sizeof(struct sgentry64); 1405 } else { 1406 dev->a_ops.adapter_read = aac_read_block; 1407 dev->a_ops.adapter_write = aac_write_block; 1408 } 1409 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 1410 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 1411 /* 1412 * Worst case size that could cause sg overflow when 1413 * we break up SG elements that are larger than 64KB. 1414 * Would be nice if we could tell the SCSI layer what 1415 * the maximum SG element size can be. Worst case is 1416 * (sg_tablesize-1) 4KB elements with one 64KB 1417 * element. 1418 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 1419 */ 1420 dev->scsi_host_ptr->max_sectors = 1421 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 1422 } 1423 } 1424 1425 aac_fib_complete(fibptr); 1426 aac_fib_free(fibptr); 1427 1428 return rcode; 1429 } 1430 1431 1432 static void io_callback(void *context, struct fib * fibptr) 1433 { 1434 struct aac_dev *dev; 1435 struct aac_read_reply *readreply; 1436 struct scsi_cmnd *scsicmd; 1437 u32 cid; 1438 1439 scsicmd = (struct scsi_cmnd *) context; 1440 1441 if (!aac_valid_context(scsicmd, fibptr)) 1442 return; 1443 1444 dev = fibptr->dev; 1445 cid = scmd_id(scsicmd); 1446 1447 if (nblank(dprintk(x))) { 1448 u64 lba; 1449 switch (scsicmd->cmnd[0]) { 1450 case WRITE_6: 1451 case READ_6: 1452 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 1453 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 1454 break; 1455 case WRITE_16: 1456 case READ_16: 1457 lba = ((u64)scsicmd->cmnd[2] << 56) | 1458 ((u64)scsicmd->cmnd[3] << 48) | 1459 ((u64)scsicmd->cmnd[4] << 40) | 1460 ((u64)scsicmd->cmnd[5] << 32) | 1461 ((u64)scsicmd->cmnd[6] << 24) | 1462 (scsicmd->cmnd[7] << 16) | 1463 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 1464 break; 1465 case WRITE_12: 1466 case READ_12: 1467 lba = ((u64)scsicmd->cmnd[2] << 24) | 1468 (scsicmd->cmnd[3] << 16) | 1469 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1470 break; 1471 default: 1472 lba = ((u64)scsicmd->cmnd[2] << 24) | 1473 (scsicmd->cmnd[3] << 16) | 1474 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1475 break; 1476 } 1477 printk(KERN_DEBUG 1478 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 1479 smp_processor_id(), (unsigned long long)lba, jiffies); 1480 } 1481 1482 BUG_ON(fibptr == NULL); 1483 1484 scsi_dma_unmap(scsicmd); 1485 1486 readreply = (struct aac_read_reply *)fib_data(fibptr); 1487 if (le32_to_cpu(readreply->status) == ST_OK) 1488 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1489 else { 1490 #ifdef AAC_DETAILED_STATUS_INFO 1491 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 1492 le32_to_cpu(readreply->status)); 1493 #endif 1494 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 1495 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 1496 HARDWARE_ERROR, 1497 SENCODE_INTERNAL_TARGET_FAILURE, 1498 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 1499 0, 0); 1500 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1501 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) 1502 ? sizeof(scsicmd->sense_buffer) 1503 : sizeof(dev->fsa_dev[cid].sense_data)); 1504 } 1505 aac_fib_complete(fibptr); 1506 aac_fib_free(fibptr); 1507 1508 scsicmd->scsi_done(scsicmd); 1509 } 1510 1511 static int aac_read(struct scsi_cmnd * scsicmd) 1512 { 1513 u64 lba; 1514 u32 count; 1515 int status; 1516 struct aac_dev *dev; 1517 struct fib * cmd_fibcontext; 1518 1519 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1520 /* 1521 * Get block address and transfer length 1522 */ 1523 switch (scsicmd->cmnd[0]) { 1524 case READ_6: 1525 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 1526 1527 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 1528 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 1529 count = scsicmd->cmnd[4]; 1530 1531 if (count == 0) 1532 count = 256; 1533 break; 1534 case READ_16: 1535 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 1536 1537 lba = ((u64)scsicmd->cmnd[2] << 56) | 1538 ((u64)scsicmd->cmnd[3] << 48) | 1539 ((u64)scsicmd->cmnd[4] << 40) | 1540 ((u64)scsicmd->cmnd[5] << 32) | 1541 ((u64)scsicmd->cmnd[6] << 24) | 1542 (scsicmd->cmnd[7] << 16) | 1543 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 1544 count = (scsicmd->cmnd[10] << 24) | 1545 (scsicmd->cmnd[11] << 16) | 1546 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 1547 break; 1548 case READ_12: 1549 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 1550 1551 lba = ((u64)scsicmd->cmnd[2] << 24) | 1552 (scsicmd->cmnd[3] << 16) | 1553 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1554 count = (scsicmd->cmnd[6] << 24) | 1555 (scsicmd->cmnd[7] << 16) | 1556 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 1557 break; 1558 default: 1559 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 1560 1561 lba = ((u64)scsicmd->cmnd[2] << 24) | 1562 (scsicmd->cmnd[3] << 16) | 1563 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1564 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 1565 break; 1566 } 1567 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 1568 smp_processor_id(), (unsigned long long)lba, jiffies)); 1569 if (aac_adapter_bounds(dev,scsicmd,lba)) 1570 return 0; 1571 /* 1572 * Alocate and initialize a Fib 1573 */ 1574 if (!(cmd_fibcontext = aac_fib_alloc(dev))) { 1575 return -1; 1576 } 1577 1578 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 1579 1580 /* 1581 * Check that the command queued to the controller 1582 */ 1583 if (status == -EINPROGRESS) { 1584 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1585 return 0; 1586 } 1587 1588 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 1589 /* 1590 * For some reason, the Fib didn't queue, return QUEUE_FULL 1591 */ 1592 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 1593 scsicmd->scsi_done(scsicmd); 1594 aac_fib_complete(cmd_fibcontext); 1595 aac_fib_free(cmd_fibcontext); 1596 return 0; 1597 } 1598 1599 static int aac_write(struct scsi_cmnd * scsicmd) 1600 { 1601 u64 lba; 1602 u32 count; 1603 int fua; 1604 int status; 1605 struct aac_dev *dev; 1606 struct fib * cmd_fibcontext; 1607 1608 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1609 /* 1610 * Get block address and transfer length 1611 */ 1612 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 1613 { 1614 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 1615 count = scsicmd->cmnd[4]; 1616 if (count == 0) 1617 count = 256; 1618 fua = 0; 1619 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 1620 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 1621 1622 lba = ((u64)scsicmd->cmnd[2] << 56) | 1623 ((u64)scsicmd->cmnd[3] << 48) | 1624 ((u64)scsicmd->cmnd[4] << 40) | 1625 ((u64)scsicmd->cmnd[5] << 32) | 1626 ((u64)scsicmd->cmnd[6] << 24) | 1627 (scsicmd->cmnd[7] << 16) | 1628 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 1629 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 1630 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 1631 fua = scsicmd->cmnd[1] & 0x8; 1632 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 1633 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 1634 1635 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 1636 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1637 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 1638 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 1639 fua = scsicmd->cmnd[1] & 0x8; 1640 } else { 1641 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 1642 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1643 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 1644 fua = scsicmd->cmnd[1] & 0x8; 1645 } 1646 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 1647 smp_processor_id(), (unsigned long long)lba, jiffies)); 1648 if (aac_adapter_bounds(dev,scsicmd,lba)) 1649 return 0; 1650 /* 1651 * Allocate and initialize a Fib then setup a BlockWrite command 1652 */ 1653 if (!(cmd_fibcontext = aac_fib_alloc(dev))) { 1654 scsicmd->result = DID_ERROR << 16; 1655 scsicmd->scsi_done(scsicmd); 1656 return 0; 1657 } 1658 1659 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 1660 1661 /* 1662 * Check that the command queued to the controller 1663 */ 1664 if (status == -EINPROGRESS) { 1665 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1666 return 0; 1667 } 1668 1669 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 1670 /* 1671 * For some reason, the Fib didn't queue, return QUEUE_FULL 1672 */ 1673 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 1674 scsicmd->scsi_done(scsicmd); 1675 1676 aac_fib_complete(cmd_fibcontext); 1677 aac_fib_free(cmd_fibcontext); 1678 return 0; 1679 } 1680 1681 static void synchronize_callback(void *context, struct fib *fibptr) 1682 { 1683 struct aac_synchronize_reply *synchronizereply; 1684 struct scsi_cmnd *cmd; 1685 1686 cmd = context; 1687 1688 if (!aac_valid_context(cmd, fibptr)) 1689 return; 1690 1691 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 1692 smp_processor_id(), jiffies)); 1693 BUG_ON(fibptr == NULL); 1694 1695 1696 synchronizereply = fib_data(fibptr); 1697 if (le32_to_cpu(synchronizereply->status) == CT_OK) 1698 cmd->result = DID_OK << 16 | 1699 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1700 else { 1701 struct scsi_device *sdev = cmd->device; 1702 struct aac_dev *dev = fibptr->dev; 1703 u32 cid = sdev_id(sdev); 1704 printk(KERN_WARNING 1705 "synchronize_callback: synchronize failed, status = %d\n", 1706 le32_to_cpu(synchronizereply->status)); 1707 cmd->result = DID_OK << 16 | 1708 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 1709 set_sense((u8 *)&dev->fsa_dev[cid].sense_data, 1710 HARDWARE_ERROR, 1711 SENCODE_INTERNAL_TARGET_FAILURE, 1712 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 1713 0, 0); 1714 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1715 min(sizeof(dev->fsa_dev[cid].sense_data), 1716 sizeof(cmd->sense_buffer))); 1717 } 1718 1719 aac_fib_complete(fibptr); 1720 aac_fib_free(fibptr); 1721 cmd->scsi_done(cmd); 1722 } 1723 1724 static int aac_synchronize(struct scsi_cmnd *scsicmd) 1725 { 1726 int status; 1727 struct fib *cmd_fibcontext; 1728 struct aac_synchronize *synchronizecmd; 1729 struct scsi_cmnd *cmd; 1730 struct scsi_device *sdev = scsicmd->device; 1731 int active = 0; 1732 struct aac_dev *aac; 1733 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | 1734 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1735 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 1736 unsigned long flags; 1737 1738 /* 1739 * Wait for all outstanding queued commands to complete to this 1740 * specific target (block). 1741 */ 1742 spin_lock_irqsave(&sdev->list_lock, flags); 1743 list_for_each_entry(cmd, &sdev->cmd_list, list) 1744 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) { 1745 u64 cmnd_lba; 1746 u32 cmnd_count; 1747 1748 if (cmd->cmnd[0] == WRITE_6) { 1749 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) | 1750 (cmd->cmnd[2] << 8) | 1751 cmd->cmnd[3]; 1752 cmnd_count = cmd->cmnd[4]; 1753 if (cmnd_count == 0) 1754 cmnd_count = 256; 1755 } else if (cmd->cmnd[0] == WRITE_16) { 1756 cmnd_lba = ((u64)cmd->cmnd[2] << 56) | 1757 ((u64)cmd->cmnd[3] << 48) | 1758 ((u64)cmd->cmnd[4] << 40) | 1759 ((u64)cmd->cmnd[5] << 32) | 1760 ((u64)cmd->cmnd[6] << 24) | 1761 (cmd->cmnd[7] << 16) | 1762 (cmd->cmnd[8] << 8) | 1763 cmd->cmnd[9]; 1764 cmnd_count = (cmd->cmnd[10] << 24) | 1765 (cmd->cmnd[11] << 16) | 1766 (cmd->cmnd[12] << 8) | 1767 cmd->cmnd[13]; 1768 } else if (cmd->cmnd[0] == WRITE_12) { 1769 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 1770 (cmd->cmnd[3] << 16) | 1771 (cmd->cmnd[4] << 8) | 1772 cmd->cmnd[5]; 1773 cmnd_count = (cmd->cmnd[6] << 24) | 1774 (cmd->cmnd[7] << 16) | 1775 (cmd->cmnd[8] << 8) | 1776 cmd->cmnd[9]; 1777 } else if (cmd->cmnd[0] == WRITE_10) { 1778 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 1779 (cmd->cmnd[3] << 16) | 1780 (cmd->cmnd[4] << 8) | 1781 cmd->cmnd[5]; 1782 cmnd_count = (cmd->cmnd[7] << 8) | 1783 cmd->cmnd[8]; 1784 } else 1785 continue; 1786 if (((cmnd_lba + cmnd_count) < lba) || 1787 (count && ((lba + count) < cmnd_lba))) 1788 continue; 1789 ++active; 1790 break; 1791 } 1792 1793 spin_unlock_irqrestore(&sdev->list_lock, flags); 1794 1795 /* 1796 * Yield the processor (requeue for later) 1797 */ 1798 if (active) 1799 return SCSI_MLQUEUE_DEVICE_BUSY; 1800 1801 aac = (struct aac_dev *)scsicmd->device->host->hostdata; 1802 if (aac->in_reset) 1803 return SCSI_MLQUEUE_HOST_BUSY; 1804 1805 /* 1806 * Allocate and initialize a Fib 1807 */ 1808 if (!(cmd_fibcontext = aac_fib_alloc(aac))) 1809 return SCSI_MLQUEUE_HOST_BUSY; 1810 1811 aac_fib_init(cmd_fibcontext); 1812 1813 synchronizecmd = fib_data(cmd_fibcontext); 1814 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 1815 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 1816 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 1817 synchronizecmd->count = 1818 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 1819 1820 /* 1821 * Now send the Fib to the adapter 1822 */ 1823 status = aac_fib_send(ContainerCommand, 1824 cmd_fibcontext, 1825 sizeof(struct aac_synchronize), 1826 FsaNormal, 1827 0, 1, 1828 (fib_callback)synchronize_callback, 1829 (void *)scsicmd); 1830 1831 /* 1832 * Check that the command queued to the controller 1833 */ 1834 if (status == -EINPROGRESS) { 1835 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1836 return 0; 1837 } 1838 1839 printk(KERN_WARNING 1840 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 1841 aac_fib_complete(cmd_fibcontext); 1842 aac_fib_free(cmd_fibcontext); 1843 return SCSI_MLQUEUE_HOST_BUSY; 1844 } 1845 1846 /** 1847 * aac_scsi_cmd() - Process SCSI command 1848 * @scsicmd: SCSI command block 1849 * 1850 * Emulate a SCSI command and queue the required request for the 1851 * aacraid firmware. 1852 */ 1853 1854 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 1855 { 1856 u32 cid; 1857 struct Scsi_Host *host = scsicmd->device->host; 1858 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 1859 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 1860 1861 if (fsa_dev_ptr == NULL) 1862 return -1; 1863 /* 1864 * If the bus, id or lun is out of range, return fail 1865 * Test does not apply to ID 16, the pseudo id for the controller 1866 * itself. 1867 */ 1868 cid = scmd_id(scsicmd); 1869 if (cid != host->this_id) { 1870 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 1871 if((cid >= dev->maximum_num_containers) || 1872 (scsicmd->device->lun != 0)) { 1873 scsicmd->result = DID_NO_CONNECT << 16; 1874 scsicmd->scsi_done(scsicmd); 1875 return 0; 1876 } 1877 1878 /* 1879 * If the target container doesn't exist, it may have 1880 * been newly created 1881 */ 1882 if ((fsa_dev_ptr[cid].valid & 1) == 0) { 1883 switch (scsicmd->cmnd[0]) { 1884 case SERVICE_ACTION_IN: 1885 if (!(dev->raw_io_interface) || 1886 !(dev->raw_io_64) || 1887 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 1888 break; 1889 case INQUIRY: 1890 case READ_CAPACITY: 1891 case TEST_UNIT_READY: 1892 if (dev->in_reset) 1893 return -1; 1894 return _aac_probe_container(scsicmd, 1895 aac_probe_container_callback2); 1896 default: 1897 break; 1898 } 1899 } 1900 } else { /* check for physical non-dasd devices */ 1901 if ((dev->nondasd_support == 1) || expose_physicals) { 1902 if (dev->in_reset) 1903 return -1; 1904 return aac_send_srb_fib(scsicmd); 1905 } else { 1906 scsicmd->result = DID_NO_CONNECT << 16; 1907 scsicmd->scsi_done(scsicmd); 1908 return 0; 1909 } 1910 } 1911 } 1912 /* 1913 * else Command for the controller itself 1914 */ 1915 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 1916 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 1917 { 1918 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 1919 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 1920 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 1921 ILLEGAL_REQUEST, 1922 SENCODE_INVALID_COMMAND, 1923 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0); 1924 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1925 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) 1926 ? sizeof(scsicmd->sense_buffer) 1927 : sizeof(dev->fsa_dev[cid].sense_data)); 1928 scsicmd->scsi_done(scsicmd); 1929 return 0; 1930 } 1931 1932 1933 /* Handle commands here that don't really require going out to the adapter */ 1934 switch (scsicmd->cmnd[0]) { 1935 case INQUIRY: 1936 { 1937 struct inquiry_data inq_data; 1938 1939 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 1940 memset(&inq_data, 0, sizeof (struct inquiry_data)); 1941 1942 if (scsicmd->cmnd[1] & 0x1 ) { 1943 char *arr = (char *)&inq_data; 1944 1945 /* EVPD bit set */ 1946 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 1947 INQD_PDT_PROC : INQD_PDT_DA; 1948 if (scsicmd->cmnd[2] == 0) { 1949 /* supported vital product data pages */ 1950 arr[3] = 2; 1951 arr[4] = 0x0; 1952 arr[5] = 0x80; 1953 arr[1] = scsicmd->cmnd[2]; 1954 aac_internal_transfer(scsicmd, &inq_data, 0, 1955 sizeof(inq_data)); 1956 scsicmd->result = DID_OK << 16 | 1957 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1958 } else if (scsicmd->cmnd[2] == 0x80) { 1959 /* unit serial number page */ 1960 arr[3] = setinqserial(dev, &arr[4], 1961 scmd_id(scsicmd)); 1962 arr[1] = scsicmd->cmnd[2]; 1963 aac_internal_transfer(scsicmd, &inq_data, 0, 1964 sizeof(inq_data)); 1965 return aac_get_container_serial(scsicmd); 1966 } else { 1967 /* vpd page not implemented */ 1968 scsicmd->result = DID_OK << 16 | 1969 COMMAND_COMPLETE << 8 | 1970 SAM_STAT_CHECK_CONDITION; 1971 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 1972 ILLEGAL_REQUEST, 1973 SENCODE_INVALID_CDB_FIELD, 1974 ASENCODE_NO_SENSE, 0, 7, 2, 0); 1975 memcpy(scsicmd->sense_buffer, 1976 &dev->fsa_dev[cid].sense_data, 1977 (sizeof(dev->fsa_dev[cid].sense_data) > 1978 sizeof(scsicmd->sense_buffer)) 1979 ? sizeof(scsicmd->sense_buffer) 1980 : sizeof(dev->fsa_dev[cid].sense_data)); 1981 } 1982 scsicmd->scsi_done(scsicmd); 1983 return 0; 1984 } 1985 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 1986 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 1987 inq_data.inqd_len = 31; 1988 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 1989 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 1990 /* 1991 * Set the Vendor, Product, and Revision Level 1992 * see: <vendor>.c i.e. aac.c 1993 */ 1994 if (cid == host->this_id) { 1995 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 1996 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 1997 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data)); 1998 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1999 scsicmd->scsi_done(scsicmd); 2000 return 0; 2001 } 2002 if (dev->in_reset) 2003 return -1; 2004 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2005 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2006 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data)); 2007 return aac_get_container_name(scsicmd); 2008 } 2009 case SERVICE_ACTION_IN: 2010 if (!(dev->raw_io_interface) || 2011 !(dev->raw_io_64) || 2012 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2013 break; 2014 { 2015 u64 capacity; 2016 char cp[13]; 2017 2018 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2019 capacity = fsa_dev_ptr[cid].size - 1; 2020 cp[0] = (capacity >> 56) & 0xff; 2021 cp[1] = (capacity >> 48) & 0xff; 2022 cp[2] = (capacity >> 40) & 0xff; 2023 cp[3] = (capacity >> 32) & 0xff; 2024 cp[4] = (capacity >> 24) & 0xff; 2025 cp[5] = (capacity >> 16) & 0xff; 2026 cp[6] = (capacity >> 8) & 0xff; 2027 cp[7] = (capacity >> 0) & 0xff; 2028 cp[8] = 0; 2029 cp[9] = 0; 2030 cp[10] = 2; 2031 cp[11] = 0; 2032 cp[12] = 0; 2033 aac_internal_transfer(scsicmd, cp, 0, 2034 min_t(size_t, scsicmd->cmnd[13], sizeof(cp))); 2035 if (sizeof(cp) < scsicmd->cmnd[13]) { 2036 unsigned int len, offset = sizeof(cp); 2037 2038 memset(cp, 0, offset); 2039 do { 2040 len = min_t(size_t, scsicmd->cmnd[13] - offset, 2041 sizeof(cp)); 2042 aac_internal_transfer(scsicmd, cp, offset, len); 2043 } while ((offset += len) < scsicmd->cmnd[13]); 2044 } 2045 2046 /* Do not cache partition table for arrays */ 2047 scsicmd->device->removable = 1; 2048 2049 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2050 scsicmd->scsi_done(scsicmd); 2051 2052 return 0; 2053 } 2054 2055 case READ_CAPACITY: 2056 { 2057 u32 capacity; 2058 char cp[8]; 2059 2060 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 2061 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 2062 capacity = fsa_dev_ptr[cid].size - 1; 2063 else 2064 capacity = (u32)-1; 2065 2066 cp[0] = (capacity >> 24) & 0xff; 2067 cp[1] = (capacity >> 16) & 0xff; 2068 cp[2] = (capacity >> 8) & 0xff; 2069 cp[3] = (capacity >> 0) & 0xff; 2070 cp[4] = 0; 2071 cp[5] = 0; 2072 cp[6] = 2; 2073 cp[7] = 0; 2074 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp)); 2075 /* Do not cache partition table for arrays */ 2076 scsicmd->device->removable = 1; 2077 2078 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2079 scsicmd->scsi_done(scsicmd); 2080 2081 return 0; 2082 } 2083 2084 case MODE_SENSE: 2085 { 2086 char mode_buf[7]; 2087 int mode_buf_length = 4; 2088 2089 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 2090 mode_buf[0] = 3; /* Mode data length */ 2091 mode_buf[1] = 0; /* Medium type - default */ 2092 mode_buf[2] = 0; /* Device-specific param, 2093 bit 8: 0/1 = write enabled/protected 2094 bit 4: 0/1 = FUA enabled */ 2095 if (dev->raw_io_interface) 2096 mode_buf[2] = 0x10; 2097 mode_buf[3] = 0; /* Block descriptor length */ 2098 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 2099 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 2100 mode_buf[0] = 6; 2101 mode_buf[4] = 8; 2102 mode_buf[5] = 1; 2103 mode_buf[6] = 0x04; /* WCE */ 2104 mode_buf_length = 7; 2105 if (mode_buf_length > scsicmd->cmnd[4]) 2106 mode_buf_length = scsicmd->cmnd[4]; 2107 } 2108 aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length); 2109 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2110 scsicmd->scsi_done(scsicmd); 2111 2112 return 0; 2113 } 2114 case MODE_SENSE_10: 2115 { 2116 char mode_buf[11]; 2117 int mode_buf_length = 8; 2118 2119 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 2120 mode_buf[0] = 0; /* Mode data length (MSB) */ 2121 mode_buf[1] = 6; /* Mode data length (LSB) */ 2122 mode_buf[2] = 0; /* Medium type - default */ 2123 mode_buf[3] = 0; /* Device-specific param, 2124 bit 8: 0/1 = write enabled/protected 2125 bit 4: 0/1 = FUA enabled */ 2126 if (dev->raw_io_interface) 2127 mode_buf[3] = 0x10; 2128 mode_buf[4] = 0; /* reserved */ 2129 mode_buf[5] = 0; /* reserved */ 2130 mode_buf[6] = 0; /* Block descriptor length (MSB) */ 2131 mode_buf[7] = 0; /* Block descriptor length (LSB) */ 2132 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 2133 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 2134 mode_buf[1] = 9; 2135 mode_buf[8] = 8; 2136 mode_buf[9] = 1; 2137 mode_buf[10] = 0x04; /* WCE */ 2138 mode_buf_length = 11; 2139 if (mode_buf_length > scsicmd->cmnd[8]) 2140 mode_buf_length = scsicmd->cmnd[8]; 2141 } 2142 aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length); 2143 2144 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2145 scsicmd->scsi_done(scsicmd); 2146 2147 return 0; 2148 } 2149 case REQUEST_SENSE: 2150 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 2151 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data)); 2152 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data)); 2153 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2154 scsicmd->scsi_done(scsicmd); 2155 return 0; 2156 2157 case ALLOW_MEDIUM_REMOVAL: 2158 dprintk((KERN_DEBUG "LOCK command.\n")); 2159 if (scsicmd->cmnd[4]) 2160 fsa_dev_ptr[cid].locked = 1; 2161 else 2162 fsa_dev_ptr[cid].locked = 0; 2163 2164 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2165 scsicmd->scsi_done(scsicmd); 2166 return 0; 2167 /* 2168 * These commands are all No-Ops 2169 */ 2170 case TEST_UNIT_READY: 2171 case RESERVE: 2172 case RELEASE: 2173 case REZERO_UNIT: 2174 case REASSIGN_BLOCKS: 2175 case SEEK_10: 2176 case START_STOP: 2177 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2178 scsicmd->scsi_done(scsicmd); 2179 return 0; 2180 } 2181 2182 switch (scsicmd->cmnd[0]) 2183 { 2184 case READ_6: 2185 case READ_10: 2186 case READ_12: 2187 case READ_16: 2188 if (dev->in_reset) 2189 return -1; 2190 /* 2191 * Hack to keep track of ordinal number of the device that 2192 * corresponds to a container. Needed to convert 2193 * containers to /dev/sd device names 2194 */ 2195 2196 if (scsicmd->request->rq_disk) 2197 strlcpy(fsa_dev_ptr[cid].devname, 2198 scsicmd->request->rq_disk->disk_name, 2199 min(sizeof(fsa_dev_ptr[cid].devname), 2200 sizeof(scsicmd->request->rq_disk->disk_name) + 1)); 2201 2202 return aac_read(scsicmd); 2203 2204 case WRITE_6: 2205 case WRITE_10: 2206 case WRITE_12: 2207 case WRITE_16: 2208 if (dev->in_reset) 2209 return -1; 2210 return aac_write(scsicmd); 2211 2212 case SYNCHRONIZE_CACHE: 2213 /* Issue FIB to tell Firmware to flush it's cache */ 2214 return aac_synchronize(scsicmd); 2215 2216 default: 2217 /* 2218 * Unhandled commands 2219 */ 2220 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0])); 2221 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2222 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 2223 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2224 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0); 2225 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2226 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) 2227 ? sizeof(scsicmd->sense_buffer) 2228 : sizeof(dev->fsa_dev[cid].sense_data)); 2229 scsicmd->scsi_done(scsicmd); 2230 return 0; 2231 } 2232 } 2233 2234 static int query_disk(struct aac_dev *dev, void __user *arg) 2235 { 2236 struct aac_query_disk qd; 2237 struct fsa_dev_info *fsa_dev_ptr; 2238 2239 fsa_dev_ptr = dev->fsa_dev; 2240 if (!fsa_dev_ptr) 2241 return -EBUSY; 2242 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 2243 return -EFAULT; 2244 if (qd.cnum == -1) 2245 qd.cnum = qd.id; 2246 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) 2247 { 2248 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 2249 return -EINVAL; 2250 qd.instance = dev->scsi_host_ptr->host_no; 2251 qd.bus = 0; 2252 qd.id = CONTAINER_TO_ID(qd.cnum); 2253 qd.lun = CONTAINER_TO_LUN(qd.cnum); 2254 } 2255 else return -EINVAL; 2256 2257 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 2258 qd.locked = fsa_dev_ptr[qd.cnum].locked; 2259 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 2260 2261 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 2262 qd.unmapped = 1; 2263 else 2264 qd.unmapped = 0; 2265 2266 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 2267 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 2268 2269 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 2270 return -EFAULT; 2271 return 0; 2272 } 2273 2274 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 2275 { 2276 struct aac_delete_disk dd; 2277 struct fsa_dev_info *fsa_dev_ptr; 2278 2279 fsa_dev_ptr = dev->fsa_dev; 2280 if (!fsa_dev_ptr) 2281 return -EBUSY; 2282 2283 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 2284 return -EFAULT; 2285 2286 if (dd.cnum >= dev->maximum_num_containers) 2287 return -EINVAL; 2288 /* 2289 * Mark this container as being deleted. 2290 */ 2291 fsa_dev_ptr[dd.cnum].deleted = 1; 2292 /* 2293 * Mark the container as no longer valid 2294 */ 2295 fsa_dev_ptr[dd.cnum].valid = 0; 2296 return 0; 2297 } 2298 2299 static int delete_disk(struct aac_dev *dev, void __user *arg) 2300 { 2301 struct aac_delete_disk dd; 2302 struct fsa_dev_info *fsa_dev_ptr; 2303 2304 fsa_dev_ptr = dev->fsa_dev; 2305 if (!fsa_dev_ptr) 2306 return -EBUSY; 2307 2308 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 2309 return -EFAULT; 2310 2311 if (dd.cnum >= dev->maximum_num_containers) 2312 return -EINVAL; 2313 /* 2314 * If the container is locked, it can not be deleted by the API. 2315 */ 2316 if (fsa_dev_ptr[dd.cnum].locked) 2317 return -EBUSY; 2318 else { 2319 /* 2320 * Mark the container as no longer being valid. 2321 */ 2322 fsa_dev_ptr[dd.cnum].valid = 0; 2323 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 2324 return 0; 2325 } 2326 } 2327 2328 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg) 2329 { 2330 switch (cmd) { 2331 case FSACTL_QUERY_DISK: 2332 return query_disk(dev, arg); 2333 case FSACTL_DELETE_DISK: 2334 return delete_disk(dev, arg); 2335 case FSACTL_FORCE_DELETE_DISK: 2336 return force_delete_disk(dev, arg); 2337 case FSACTL_GET_CONTAINERS: 2338 return aac_get_containers(dev); 2339 default: 2340 return -ENOTTY; 2341 } 2342 } 2343 2344 /** 2345 * 2346 * aac_srb_callback 2347 * @context: the context set in the fib - here it is scsi cmd 2348 * @fibptr: pointer to the fib 2349 * 2350 * Handles the completion of a scsi command to a non dasd device 2351 * 2352 */ 2353 2354 static void aac_srb_callback(void *context, struct fib * fibptr) 2355 { 2356 struct aac_dev *dev; 2357 struct aac_srb_reply *srbreply; 2358 struct scsi_cmnd *scsicmd; 2359 2360 scsicmd = (struct scsi_cmnd *) context; 2361 2362 if (!aac_valid_context(scsicmd, fibptr)) 2363 return; 2364 2365 BUG_ON(fibptr == NULL); 2366 2367 dev = fibptr->dev; 2368 2369 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 2370 2371 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 2372 /* 2373 * Calculate resid for sg 2374 */ 2375 2376 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 2377 - le32_to_cpu(srbreply->data_xfer_length)); 2378 2379 scsi_dma_unmap(scsicmd); 2380 2381 /* 2382 * First check the fib status 2383 */ 2384 2385 if (le32_to_cpu(srbreply->status) != ST_OK){ 2386 int len; 2387 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status)); 2388 len = (le32_to_cpu(srbreply->sense_data_size) > 2389 sizeof(scsicmd->sense_buffer)) ? 2390 sizeof(scsicmd->sense_buffer) : 2391 le32_to_cpu(srbreply->sense_data_size); 2392 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2393 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); 2394 } 2395 2396 /* 2397 * Next check the srb status 2398 */ 2399 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){ 2400 case SRB_STATUS_ERROR_RECOVERY: 2401 case SRB_STATUS_PENDING: 2402 case SRB_STATUS_SUCCESS: 2403 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 2404 break; 2405 case SRB_STATUS_DATA_OVERRUN: 2406 switch(scsicmd->cmnd[0]){ 2407 case READ_6: 2408 case WRITE_6: 2409 case READ_10: 2410 case WRITE_10: 2411 case READ_12: 2412 case WRITE_12: 2413 case READ_16: 2414 case WRITE_16: 2415 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) { 2416 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n"); 2417 } else { 2418 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n"); 2419 } 2420 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 2421 break; 2422 case INQUIRY: { 2423 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 2424 break; 2425 } 2426 default: 2427 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 2428 break; 2429 } 2430 break; 2431 case SRB_STATUS_ABORTED: 2432 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 2433 break; 2434 case SRB_STATUS_ABORT_FAILED: 2435 // Not sure about this one - but assuming the hba was trying to abort for some reason 2436 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 2437 break; 2438 case SRB_STATUS_PARITY_ERROR: 2439 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8; 2440 break; 2441 case SRB_STATUS_NO_DEVICE: 2442 case SRB_STATUS_INVALID_PATH_ID: 2443 case SRB_STATUS_INVALID_TARGET_ID: 2444 case SRB_STATUS_INVALID_LUN: 2445 case SRB_STATUS_SELECTION_TIMEOUT: 2446 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 2447 break; 2448 2449 case SRB_STATUS_COMMAND_TIMEOUT: 2450 case SRB_STATUS_TIMEOUT: 2451 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8; 2452 break; 2453 2454 case SRB_STATUS_BUSY: 2455 scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 2456 break; 2457 2458 case SRB_STATUS_BUS_RESET: 2459 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8; 2460 break; 2461 2462 case SRB_STATUS_MESSAGE_REJECTED: 2463 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 2464 break; 2465 case SRB_STATUS_REQUEST_FLUSHED: 2466 case SRB_STATUS_ERROR: 2467 case SRB_STATUS_INVALID_REQUEST: 2468 case SRB_STATUS_REQUEST_SENSE_FAILED: 2469 case SRB_STATUS_NO_HBA: 2470 case SRB_STATUS_UNEXPECTED_BUS_FREE: 2471 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 2472 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 2473 case SRB_STATUS_DELAYED_RETRY: 2474 case SRB_STATUS_BAD_FUNCTION: 2475 case SRB_STATUS_NOT_STARTED: 2476 case SRB_STATUS_NOT_IN_USE: 2477 case SRB_STATUS_FORCE_ABORT: 2478 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 2479 default: 2480 #ifdef AAC_DETAILED_STATUS_INFO 2481 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n", 2482 le32_to_cpu(srbreply->srb_status) & 0x3F, 2483 aac_get_status_string( 2484 le32_to_cpu(srbreply->srb_status) & 0x3F), 2485 scsicmd->cmnd[0], 2486 le32_to_cpu(srbreply->scsi_status)); 2487 #endif 2488 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 2489 break; 2490 } 2491 if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition 2492 int len; 2493 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 2494 len = (le32_to_cpu(srbreply->sense_data_size) > 2495 sizeof(scsicmd->sense_buffer)) ? 2496 sizeof(scsicmd->sense_buffer) : 2497 le32_to_cpu(srbreply->sense_data_size); 2498 #ifdef AAC_DETAILED_STATUS_INFO 2499 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n", 2500 le32_to_cpu(srbreply->status), len); 2501 #endif 2502 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); 2503 2504 } 2505 /* 2506 * OR in the scsi status (already shifted up a bit) 2507 */ 2508 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 2509 2510 aac_fib_complete(fibptr); 2511 aac_fib_free(fibptr); 2512 scsicmd->scsi_done(scsicmd); 2513 } 2514 2515 /** 2516 * 2517 * aac_send_scb_fib 2518 * @scsicmd: the scsi command block 2519 * 2520 * This routine will form a FIB and fill in the aac_srb from the 2521 * scsicmd passed in. 2522 */ 2523 2524 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 2525 { 2526 struct fib* cmd_fibcontext; 2527 struct aac_dev* dev; 2528 int status; 2529 2530 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2531 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 2532 scsicmd->device->lun > 7) { 2533 scsicmd->result = DID_NO_CONNECT << 16; 2534 scsicmd->scsi_done(scsicmd); 2535 return 0; 2536 } 2537 2538 /* 2539 * Allocate and initialize a Fib then setup a BlockWrite command 2540 */ 2541 if (!(cmd_fibcontext = aac_fib_alloc(dev))) { 2542 return -1; 2543 } 2544 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 2545 2546 /* 2547 * Check that the command queued to the controller 2548 */ 2549 if (status == -EINPROGRESS) { 2550 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2551 return 0; 2552 } 2553 2554 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 2555 aac_fib_complete(cmd_fibcontext); 2556 aac_fib_free(cmd_fibcontext); 2557 2558 return -1; 2559 } 2560 2561 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg) 2562 { 2563 struct aac_dev *dev; 2564 unsigned long byte_count = 0; 2565 int nseg; 2566 2567 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2568 // Get rid of old data 2569 psg->count = 0; 2570 psg->sg[0].addr = 0; 2571 psg->sg[0].count = 0; 2572 2573 nseg = scsi_dma_map(scsicmd); 2574 BUG_ON(nseg < 0); 2575 if (nseg) { 2576 struct scatterlist *sg; 2577 int i; 2578 2579 psg->count = cpu_to_le32(nseg); 2580 2581 scsi_for_each_sg(scsicmd, sg, nseg, i) { 2582 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 2583 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 2584 byte_count += sg_dma_len(sg); 2585 } 2586 /* hba wants the size to be exact */ 2587 if (byte_count > scsi_bufflen(scsicmd)) { 2588 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 2589 (byte_count - scsi_bufflen(scsicmd)); 2590 psg->sg[i-1].count = cpu_to_le32(temp); 2591 byte_count = scsi_bufflen(scsicmd); 2592 } 2593 /* Check for command underflow */ 2594 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ 2595 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 2596 byte_count, scsicmd->underflow); 2597 } 2598 } 2599 return byte_count; 2600 } 2601 2602 2603 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg) 2604 { 2605 struct aac_dev *dev; 2606 unsigned long byte_count = 0; 2607 u64 addr; 2608 int nseg; 2609 2610 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2611 // Get rid of old data 2612 psg->count = 0; 2613 psg->sg[0].addr[0] = 0; 2614 psg->sg[0].addr[1] = 0; 2615 psg->sg[0].count = 0; 2616 2617 nseg = scsi_dma_map(scsicmd); 2618 BUG_ON(nseg < 0); 2619 if (nseg) { 2620 struct scatterlist *sg; 2621 int i; 2622 2623 scsi_for_each_sg(scsicmd, sg, nseg, i) { 2624 int count = sg_dma_len(sg); 2625 addr = sg_dma_address(sg); 2626 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 2627 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 2628 psg->sg[i].count = cpu_to_le32(count); 2629 byte_count += count; 2630 } 2631 psg->count = cpu_to_le32(nseg); 2632 /* hba wants the size to be exact */ 2633 if (byte_count > scsi_bufflen(scsicmd)) { 2634 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 2635 (byte_count - scsi_bufflen(scsicmd)); 2636 psg->sg[i-1].count = cpu_to_le32(temp); 2637 byte_count = scsi_bufflen(scsicmd); 2638 } 2639 /* Check for command underflow */ 2640 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ 2641 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 2642 byte_count, scsicmd->underflow); 2643 } 2644 } 2645 return byte_count; 2646 } 2647 2648 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg) 2649 { 2650 unsigned long byte_count = 0; 2651 int nseg; 2652 2653 // Get rid of old data 2654 psg->count = 0; 2655 psg->sg[0].next = 0; 2656 psg->sg[0].prev = 0; 2657 psg->sg[0].addr[0] = 0; 2658 psg->sg[0].addr[1] = 0; 2659 psg->sg[0].count = 0; 2660 psg->sg[0].flags = 0; 2661 2662 nseg = scsi_dma_map(scsicmd); 2663 BUG_ON(nseg < 0); 2664 if (nseg) { 2665 struct scatterlist *sg; 2666 int i; 2667 2668 scsi_for_each_sg(scsicmd, sg, nseg, i) { 2669 int count = sg_dma_len(sg); 2670 u64 addr = sg_dma_address(sg); 2671 psg->sg[i].next = 0; 2672 psg->sg[i].prev = 0; 2673 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 2674 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2675 psg->sg[i].count = cpu_to_le32(count); 2676 psg->sg[i].flags = 0; 2677 byte_count += count; 2678 } 2679 psg->count = cpu_to_le32(nseg); 2680 /* hba wants the size to be exact */ 2681 if (byte_count > scsi_bufflen(scsicmd)) { 2682 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 2683 (byte_count - scsi_bufflen(scsicmd)); 2684 psg->sg[i-1].count = cpu_to_le32(temp); 2685 byte_count = scsi_bufflen(scsicmd); 2686 } 2687 /* Check for command underflow */ 2688 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ 2689 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 2690 byte_count, scsicmd->underflow); 2691 } 2692 } 2693 return byte_count; 2694 } 2695 2696 #ifdef AAC_DETAILED_STATUS_INFO 2697 2698 struct aac_srb_status_info { 2699 u32 status; 2700 char *str; 2701 }; 2702 2703 2704 static struct aac_srb_status_info srb_status_info[] = { 2705 { SRB_STATUS_PENDING, "Pending Status"}, 2706 { SRB_STATUS_SUCCESS, "Success"}, 2707 { SRB_STATUS_ABORTED, "Aborted Command"}, 2708 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 2709 { SRB_STATUS_ERROR, "Error Event"}, 2710 { SRB_STATUS_BUSY, "Device Busy"}, 2711 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 2712 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 2713 { SRB_STATUS_NO_DEVICE, "No Device"}, 2714 { SRB_STATUS_TIMEOUT, "Timeout"}, 2715 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 2716 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 2717 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 2718 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 2719 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 2720 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 2721 { SRB_STATUS_NO_HBA, "No HBA"}, 2722 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 2723 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 2724 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 2725 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 2726 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 2727 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 2728 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 2729 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 2730 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 2731 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 2732 { SRB_STATUS_NOT_STARTED, "Not Started"}, 2733 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 2734 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 2735 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 2736 { 0xff, "Unknown Error"} 2737 }; 2738 2739 char *aac_get_status_string(u32 status) 2740 { 2741 int i; 2742 2743 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 2744 if (srb_status_info[i].status == status) 2745 return srb_status_info[i].str; 2746 2747 return "Bad Status Code"; 2748 } 2749 2750 #endif 2751