xref: /openbmc/linux/drivers/sbus/char/bbc_envctrl.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2  * bbc_envctrl.c: UltraSPARC-III environment control driver.
3  *
4  * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <asm/oplib.h>
12 #include <asm/ebus.h>
13 #define __KERNEL_SYSCALLS__
14 static int errno;
15 #include <asm/unistd.h>
16 
17 #include "bbc_i2c.h"
18 #include "max1617.h"
19 
20 #undef ENVCTRL_TRACE
21 
22 /* WARNING: Making changes to this driver is very dangerous.
23  *          If you misprogram the sensor chips they can
24  *          cut the power on you instantly.
25  */
26 
27 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
28  * Both are implemented using max1617 i2c devices.  Each max1617
29  * monitors 2 temperatures, one for one of the cpu dies and the other
30  * for the ambient temperature.
31  *
32  * The max1617 is capable of being programmed with power-off
33  * temperature values, one low limit and one high limit.  These
34  * can be controlled independently for the cpu or ambient temperature.
35  * If a limit is violated, the power is simply shut off.  The frequency
36  * with which the max1617 does temperature sampling can be controlled
37  * as well.
38  *
39  * Three fans exist inside the machine, all three are controlled with
40  * an i2c digital to analog converter.  There is a fan directed at the
41  * two processor slots, another for the rest of the enclosure, and the
42  * third is for the power supply.  The first two fans may be speed
43  * controlled by changing the voltage fed to them.  The third fan may
44  * only be completely off or on.  The third fan is meant to only be
45  * disabled/enabled when entering/exiting the lowest power-saving
46  * mode of the machine.
47  *
48  * An environmental control kernel thread periodically monitors all
49  * temperature sensors.  Based upon the samples it will adjust the
50  * fan speeds to try and keep the system within a certain temperature
51  * range (the goal being to make the fans as quiet as possible without
52  * allowing the system to get too hot).
53  *
54  * If the temperature begins to rise/fall outside of the acceptable
55  * operating range, a periodic warning will be sent to the kernel log.
56  * The fans will be put on full blast to attempt to deal with this
57  * situation.  After exceeding the acceptable operating range by a
58  * certain threshold, the kernel thread will shut down the system.
59  * Here, the thread is attempting to shut the machine down cleanly
60  * before the hardware based power-off event is triggered.
61  */
62 
63 /* These settings are in Celsius.  We use these defaults only
64  * if we cannot interrogate the cpu-fru SEEPROM.
65  */
66 struct temp_limits {
67 	s8 high_pwroff, high_shutdown, high_warn;
68 	s8 low_warn, low_shutdown, low_pwroff;
69 };
70 
71 static struct temp_limits cpu_temp_limits[2] = {
72 	{ 100, 85, 80, 5, -5, -10 },
73 	{ 100, 85, 80, 5, -5, -10 },
74 };
75 
76 static struct temp_limits amb_temp_limits[2] = {
77 	{ 65, 55, 40, 5, -5, -10 },
78 	{ 65, 55, 40, 5, -5, -10 },
79 };
80 
81 enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
82 
83 struct bbc_cpu_temperature {
84 	struct bbc_cpu_temperature	*next;
85 
86 	struct bbc_i2c_client		*client;
87 	int				index;
88 
89 	/* Current readings, and history. */
90 	s8				curr_cpu_temp;
91 	s8				curr_amb_temp;
92 	s8				prev_cpu_temp;
93 	s8				prev_amb_temp;
94 	s8				avg_cpu_temp;
95 	s8				avg_amb_temp;
96 
97 	int				sample_tick;
98 
99 	enum fan_action			fan_todo[2];
100 #define FAN_AMBIENT	0
101 #define FAN_CPU		1
102 };
103 
104 struct bbc_cpu_temperature *all_bbc_temps;
105 
106 struct bbc_fan_control {
107 	struct bbc_fan_control 	*next;
108 
109 	struct bbc_i2c_client 	*client;
110 	int 			index;
111 
112 	int			psupply_fan_on;
113 	int			cpu_fan_speed;
114 	int			system_fan_speed;
115 };
116 
117 struct bbc_fan_control *all_bbc_fans;
118 
119 #define CPU_FAN_REG	0xf0
120 #define SYS_FAN_REG	0xf2
121 #define PSUPPLY_FAN_REG	0xf4
122 
123 #define FAN_SPEED_MIN	0x0c
124 #define FAN_SPEED_MAX	0x3f
125 
126 #define PSUPPLY_FAN_ON	0x1f
127 #define PSUPPLY_FAN_OFF	0x00
128 
129 static void set_fan_speeds(struct bbc_fan_control *fp)
130 {
131 	/* Put temperatures into range so we don't mis-program
132 	 * the hardware.
133 	 */
134 	if (fp->cpu_fan_speed < FAN_SPEED_MIN)
135 		fp->cpu_fan_speed = FAN_SPEED_MIN;
136 	if (fp->cpu_fan_speed > FAN_SPEED_MAX)
137 		fp->cpu_fan_speed = FAN_SPEED_MAX;
138 	if (fp->system_fan_speed < FAN_SPEED_MIN)
139 		fp->system_fan_speed = FAN_SPEED_MIN;
140 	if (fp->system_fan_speed > FAN_SPEED_MAX)
141 		fp->system_fan_speed = FAN_SPEED_MAX;
142 #ifdef ENVCTRL_TRACE
143 	printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
144 	       fp->index,
145 	       fp->cpu_fan_speed, fp->system_fan_speed);
146 #endif
147 
148 	bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
149 	bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
150 	bbc_i2c_writeb(fp->client,
151 		       (fp->psupply_fan_on ?
152 			PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
153 		       PSUPPLY_FAN_REG);
154 }
155 
156 static void get_current_temps(struct bbc_cpu_temperature *tp)
157 {
158 	tp->prev_amb_temp = tp->curr_amb_temp;
159 	bbc_i2c_readb(tp->client,
160 		      (unsigned char *) &tp->curr_amb_temp,
161 		      MAX1617_AMB_TEMP);
162 	tp->prev_cpu_temp = tp->curr_cpu_temp;
163 	bbc_i2c_readb(tp->client,
164 		      (unsigned char *) &tp->curr_cpu_temp,
165 		      MAX1617_CPU_TEMP);
166 #ifdef ENVCTRL_TRACE
167 	printk("temp%d: cpu(%d C) amb(%d C)\n",
168 	       tp->index,
169 	       (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
170 #endif
171 }
172 
173 
174 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
175 {
176 	static int shutting_down = 0;
177 	static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
178 	char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
179 	char *type = "???";
180 	s8 val = -1;
181 
182 	if (shutting_down != 0)
183 		return;
184 
185 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
186 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
187 		type = "ambient";
188 		val = tp->curr_amb_temp;
189 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
190 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
191 		type = "CPU";
192 		val = tp->curr_cpu_temp;
193 	}
194 
195 	printk(KERN_CRIT "temp%d: Outside of safe %s "
196 	       "operating temperature, %d C.\n",
197 	       tp->index, type, val);
198 
199 	printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
200 
201 	shutting_down = 1;
202 	if (execve("/sbin/shutdown", argv, envp) < 0)
203 		printk(KERN_CRIT "envctrl: shutdown execution failed\n");
204 }
205 
206 #define WARN_INTERVAL	(30 * HZ)
207 
208 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
209 {
210 	int ret = 0;
211 
212 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
213 		if (tp->curr_amb_temp >=
214 		    amb_temp_limits[tp->index].high_warn) {
215 			printk(KERN_WARNING "temp%d: "
216 			       "Above safe ambient operating temperature, %d C.\n",
217 			       tp->index, (int) tp->curr_amb_temp);
218 			ret = 1;
219 		} else if (tp->curr_amb_temp <
220 			   amb_temp_limits[tp->index].low_warn) {
221 			printk(KERN_WARNING "temp%d: "
222 			       "Below safe ambient operating temperature, %d C.\n",
223 			       tp->index, (int) tp->curr_amb_temp);
224 			ret = 1;
225 		}
226 		if (ret)
227 			*last_warn = jiffies;
228 	} else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
229 		   tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
230 		ret = 1;
231 
232 	/* Now check the shutdown limits. */
233 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
234 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
235 		do_envctrl_shutdown(tp);
236 		ret = 1;
237 	}
238 
239 	if (ret) {
240 		tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
241 	} else if ((tick & (8 - 1)) == 0) {
242 		s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
243 		s8 amb_goal_lo;
244 
245 		amb_goal_lo = amb_goal_hi - 3;
246 
247 		/* We do not try to avoid 'too cold' events.  Basically we
248 		 * only try to deal with over-heating and fan noise reduction.
249 		 */
250 		if (tp->avg_amb_temp < amb_goal_hi) {
251 			if (tp->avg_amb_temp >= amb_goal_lo)
252 				tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
253 			else
254 				tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
255 		} else {
256 			tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
257 		}
258 	} else {
259 		tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
260 	}
261 }
262 
263 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
264 {
265 	int ret = 0;
266 
267 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
268 		if (tp->curr_cpu_temp >=
269 		    cpu_temp_limits[tp->index].high_warn) {
270 			printk(KERN_WARNING "temp%d: "
271 			       "Above safe CPU operating temperature, %d C.\n",
272 			       tp->index, (int) tp->curr_cpu_temp);
273 			ret = 1;
274 		} else if (tp->curr_cpu_temp <
275 			   cpu_temp_limits[tp->index].low_warn) {
276 			printk(KERN_WARNING "temp%d: "
277 			       "Below safe CPU operating temperature, %d C.\n",
278 			       tp->index, (int) tp->curr_cpu_temp);
279 			ret = 1;
280 		}
281 		if (ret)
282 			*last_warn = jiffies;
283 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
284 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
285 		ret = 1;
286 
287 	/* Now check the shutdown limits. */
288 	if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
289 	    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
290 		do_envctrl_shutdown(tp);
291 		ret = 1;
292 	}
293 
294 	if (ret) {
295 		tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
296 	} else if ((tick & (8 - 1)) == 0) {
297 		s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
298 		s8 cpu_goal_lo;
299 
300 		cpu_goal_lo = cpu_goal_hi - 3;
301 
302 		/* We do not try to avoid 'too cold' events.  Basically we
303 		 * only try to deal with over-heating and fan noise reduction.
304 		 */
305 		if (tp->avg_cpu_temp < cpu_goal_hi) {
306 			if (tp->avg_cpu_temp >= cpu_goal_lo)
307 				tp->fan_todo[FAN_CPU] = FAN_SAME;
308 			else
309 				tp->fan_todo[FAN_CPU] = FAN_SLOWER;
310 		} else {
311 			tp->fan_todo[FAN_CPU] = FAN_FASTER;
312 		}
313 	} else {
314 		tp->fan_todo[FAN_CPU] = FAN_SAME;
315 	}
316 }
317 
318 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
319 {
320 	tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
321 	tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
322 
323 	analyze_ambient_temp(tp, last_warn, tp->sample_tick);
324 	analyze_cpu_temp(tp, last_warn, tp->sample_tick);
325 
326 	tp->sample_tick++;
327 }
328 
329 static enum fan_action prioritize_fan_action(int which_fan)
330 {
331 	struct bbc_cpu_temperature *tp;
332 	enum fan_action decision = FAN_STATE_MAX;
333 
334 	/* Basically, prioritize what the temperature sensors
335 	 * recommend we do, and perform that action on all the
336 	 * fans.
337 	 */
338 	for (tp = all_bbc_temps; tp; tp = tp->next) {
339 		if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
340 			decision = FAN_FULLBLAST;
341 			break;
342 		}
343 		if (tp->fan_todo[which_fan] == FAN_SAME &&
344 		    decision != FAN_FASTER)
345 			decision = FAN_SAME;
346 		else if (tp->fan_todo[which_fan] == FAN_FASTER)
347 			decision = FAN_FASTER;
348 		else if (decision != FAN_FASTER &&
349 			 decision != FAN_SAME &&
350 			 tp->fan_todo[which_fan] == FAN_SLOWER)
351 			decision = FAN_SLOWER;
352 	}
353 	if (decision == FAN_STATE_MAX)
354 		decision = FAN_SAME;
355 
356 	return decision;
357 }
358 
359 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
360 {
361 	enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
362 	int ret;
363 
364 	if (decision == FAN_SAME)
365 		return 0;
366 
367 	ret = 1;
368 	if (decision == FAN_FULLBLAST) {
369 		if (fp->system_fan_speed >= FAN_SPEED_MAX)
370 			ret = 0;
371 		else
372 			fp->system_fan_speed = FAN_SPEED_MAX;
373 	} else {
374 		if (decision == FAN_FASTER) {
375 			if (fp->system_fan_speed >= FAN_SPEED_MAX)
376 				ret = 0;
377 			else
378 				fp->system_fan_speed += 2;
379 		} else {
380 			int orig_speed = fp->system_fan_speed;
381 
382 			if (orig_speed <= FAN_SPEED_MIN ||
383 			    orig_speed <= (fp->cpu_fan_speed - 3))
384 				ret = 0;
385 			else
386 				fp->system_fan_speed -= 1;
387 		}
388 	}
389 
390 	return ret;
391 }
392 
393 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
394 {
395 	enum fan_action decision = prioritize_fan_action(FAN_CPU);
396 	int ret;
397 
398 	if (decision == FAN_SAME)
399 		return 0;
400 
401 	ret = 1;
402 	if (decision == FAN_FULLBLAST) {
403 		if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
404 			ret = 0;
405 		else
406 			fp->cpu_fan_speed = FAN_SPEED_MAX;
407 	} else {
408 		if (decision == FAN_FASTER) {
409 			if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
410 				ret = 0;
411 			else {
412 				fp->cpu_fan_speed += 2;
413 				if (fp->system_fan_speed <
414 				    (fp->cpu_fan_speed - 3))
415 					fp->system_fan_speed =
416 						fp->cpu_fan_speed - 3;
417 			}
418 		} else {
419 			if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
420 				ret = 0;
421 			else
422 				fp->cpu_fan_speed -= 1;
423 		}
424 	}
425 
426 	return ret;
427 }
428 
429 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
430 {
431 	int new;
432 
433 	new  = maybe_new_ambient_fan_speed(fp);
434 	new |= maybe_new_cpu_fan_speed(fp);
435 
436 	if (new)
437 		set_fan_speeds(fp);
438 }
439 
440 static void fans_full_blast(void)
441 {
442 	struct bbc_fan_control *fp;
443 
444 	/* Since we will not be monitoring things anymore, put
445 	 * the fans on full blast.
446 	 */
447 	for (fp = all_bbc_fans; fp; fp = fp->next) {
448 		fp->cpu_fan_speed = FAN_SPEED_MAX;
449 		fp->system_fan_speed = FAN_SPEED_MAX;
450 		fp->psupply_fan_on = 1;
451 		set_fan_speeds(fp);
452 	}
453 }
454 
455 #define POLL_INTERVAL	(5 * 1000)
456 static unsigned long last_warning_jiffies;
457 static struct task_struct *kenvctrld_task;
458 
459 static int kenvctrld(void *__unused)
460 {
461 	daemonize("kenvctrld");
462 	allow_signal(SIGKILL);
463 	kenvctrld_task = current;
464 
465 	printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
466 	last_warning_jiffies = jiffies - WARN_INTERVAL;
467 	for (;;) {
468 		struct bbc_cpu_temperature *tp;
469 		struct bbc_fan_control *fp;
470 
471 		msleep_interruptible(POLL_INTERVAL);
472 		if (signal_pending(current))
473 			break;
474 
475 		for (tp = all_bbc_temps; tp; tp = tp->next) {
476 			get_current_temps(tp);
477 			analyze_temps(tp, &last_warning_jiffies);
478 		}
479 		for (fp = all_bbc_fans; fp; fp = fp->next)
480 			maybe_new_fan_speeds(fp);
481 	}
482 	printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
483 
484 	fans_full_blast();
485 
486 	return 0;
487 }
488 
489 static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
490 {
491 	struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
492 
493 	if (!tp)
494 		return;
495 	memset(tp, 0, sizeof(*tp));
496 	tp->client = bbc_i2c_attach(echild);
497 	if (!tp->client) {
498 		kfree(tp);
499 		return;
500 	}
501 
502 	tp->index = temp_idx;
503 	{
504 		struct bbc_cpu_temperature **tpp = &all_bbc_temps;
505 		while (*tpp)
506 			tpp = &((*tpp)->next);
507 		tp->next = NULL;
508 		*tpp = tp;
509 	}
510 
511 	/* Tell it to convert once every 5 seconds, clear all cfg
512 	 * bits.
513 	 */
514 	bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
515 	bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
516 
517 	/* Program the hard temperature limits into the chip. */
518 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
519 		       MAX1617_WR_AMB_HIGHLIM);
520 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
521 		       MAX1617_WR_AMB_LOWLIM);
522 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
523 		       MAX1617_WR_CPU_HIGHLIM);
524 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
525 		       MAX1617_WR_CPU_LOWLIM);
526 
527 	get_current_temps(tp);
528 	tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
529 	tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
530 
531 	tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
532 	tp->fan_todo[FAN_CPU] = FAN_SAME;
533 }
534 
535 static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
536 {
537 	struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
538 
539 	if (!fp)
540 		return;
541 	memset(fp, 0, sizeof(*fp));
542 	fp->client = bbc_i2c_attach(echild);
543 	if (!fp->client) {
544 		kfree(fp);
545 		return;
546 	}
547 
548 	fp->index = fan_idx;
549 
550 	{
551 		struct bbc_fan_control **fpp = &all_bbc_fans;
552 		while (*fpp)
553 			fpp = &((*fpp)->next);
554 		fp->next = NULL;
555 		*fpp = fp;
556 	}
557 
558 	/* The i2c device controlling the fans is write-only.
559 	 * So the only way to keep track of the current power
560 	 * level fed to the fans is via software.  Choose half
561 	 * power for cpu/system and 'on' fo the powersupply fan
562 	 * and set it now.
563 	 */
564 	fp->psupply_fan_on = 1;
565 	fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
566 	fp->cpu_fan_speed += FAN_SPEED_MIN;
567 	fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
568 	fp->system_fan_speed += FAN_SPEED_MIN;
569 
570 	set_fan_speeds(fp);
571 }
572 
573 int bbc_envctrl_init(void)
574 {
575 	struct linux_ebus_child *echild;
576 	int temp_index = 0;
577 	int fan_index = 0;
578 	int devidx = 0;
579 	int err = 0;
580 
581 	while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
582 		if (!strcmp(echild->prom_name, "temperature"))
583 			attach_one_temp(echild, temp_index++);
584 		if (!strcmp(echild->prom_name, "fan-control"))
585 			attach_one_fan(echild, fan_index++);
586 	}
587 	if (temp_index != 0 && fan_index != 0)
588 		err = kernel_thread(kenvctrld, NULL, CLONE_FS | CLONE_FILES);
589 	return err;
590 }
591 
592 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
593 {
594 	bbc_i2c_detach(tp->client);
595 	kfree(tp);
596 }
597 
598 static void destroy_one_fan(struct bbc_fan_control *fp)
599 {
600 	bbc_i2c_detach(fp->client);
601 	kfree(fp);
602 }
603 
604 void bbc_envctrl_cleanup(void)
605 {
606 	struct bbc_cpu_temperature *tp;
607 	struct bbc_fan_control *fp;
608 
609 	if (kenvctrld_task != NULL) {
610 		force_sig(SIGKILL, kenvctrld_task);
611 		for (;;) {
612 			struct task_struct *p;
613 			int found = 0;
614 
615 			read_lock(&tasklist_lock);
616 			for_each_process(p) {
617 				if (p == kenvctrld_task) {
618 					found = 1;
619 					break;
620 				}
621 			}
622 			read_unlock(&tasklist_lock);
623 			if (!found)
624 				break;
625 			msleep(1000);
626 		}
627 		kenvctrld_task = NULL;
628 	}
629 
630 	tp = all_bbc_temps;
631 	while (tp != NULL) {
632 		struct bbc_cpu_temperature *next = tp->next;
633 		destroy_one_temp(tp);
634 		tp = next;
635 	}
636 	all_bbc_temps = NULL;
637 
638 	fp = all_bbc_fans;
639 	while (fp != NULL) {
640 		struct bbc_fan_control *next = fp->next;
641 		destroy_one_fan(fp);
642 		fp = next;
643 	}
644 	all_bbc_fans = NULL;
645 }
646