xref: /openbmc/linux/drivers/s390/crypto/vfio_ap_ops.c (revision 3aa139aa9fdc138a84243dc49dc18d9b40e1c6e4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Adjunct processor matrix VFIO device driver callbacks.
4  *
5  * Copyright IBM Corp. 2018
6  *
7  * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
8  *	      Halil Pasic <pasic@linux.ibm.com>
9  *	      Pierre Morel <pmorel@linux.ibm.com>
10  */
11 #include <linux/string.h>
12 #include <linux/vfio.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/ctype.h>
16 #include <linux/bitops.h>
17 #include <linux/kvm_host.h>
18 #include <linux/module.h>
19 #include <asm/kvm.h>
20 #include <asm/zcrypt.h>
21 
22 #include "vfio_ap_private.h"
23 
24 #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
25 #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
26 
27 static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev);
28 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
29 
30 static int match_apqn(struct device *dev, const void *data)
31 {
32 	struct vfio_ap_queue *q = dev_get_drvdata(dev);
33 
34 	return (q->apqn == *(int *)(data)) ? 1 : 0;
35 }
36 
37 /**
38  * vfio_ap_get_queue: Retrieve a queue with a specific APQN from a list
39  * @matrix_mdev: the associated mediated matrix
40  * @apqn: The queue APQN
41  *
42  * Retrieve a queue with a specific APQN from the list of the
43  * devices of the vfio_ap_drv.
44  * Verify that the APID and the APQI are set in the matrix.
45  *
46  * Returns the pointer to the associated vfio_ap_queue
47  */
48 static struct vfio_ap_queue *vfio_ap_get_queue(
49 					struct ap_matrix_mdev *matrix_mdev,
50 					int apqn)
51 {
52 	struct vfio_ap_queue *q;
53 
54 	if (!test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm))
55 		return NULL;
56 	if (!test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm))
57 		return NULL;
58 
59 	q = vfio_ap_find_queue(apqn);
60 	if (q)
61 		q->matrix_mdev = matrix_mdev;
62 
63 	return q;
64 }
65 
66 /**
67  * vfio_ap_wait_for_irqclear
68  * @apqn: The AP Queue number
69  *
70  * Checks the IRQ bit for the status of this APQN using ap_tapq.
71  * Returns if the ap_tapq function succeeded and the bit is clear.
72  * Returns if ap_tapq function failed with invalid, deconfigured or
73  * checkstopped AP.
74  * Otherwise retries up to 5 times after waiting 20ms.
75  *
76  */
77 static void vfio_ap_wait_for_irqclear(int apqn)
78 {
79 	struct ap_queue_status status;
80 	int retry = 5;
81 
82 	do {
83 		status = ap_tapq(apqn, NULL);
84 		switch (status.response_code) {
85 		case AP_RESPONSE_NORMAL:
86 		case AP_RESPONSE_RESET_IN_PROGRESS:
87 			if (!status.irq_enabled)
88 				return;
89 			fallthrough;
90 		case AP_RESPONSE_BUSY:
91 			msleep(20);
92 			break;
93 		case AP_RESPONSE_Q_NOT_AVAIL:
94 		case AP_RESPONSE_DECONFIGURED:
95 		case AP_RESPONSE_CHECKSTOPPED:
96 		default:
97 			WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
98 				  status.response_code, apqn);
99 			return;
100 		}
101 	} while (--retry);
102 
103 	WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
104 		  __func__, status.response_code, apqn);
105 }
106 
107 /**
108  * vfio_ap_free_aqic_resources
109  * @q: The vfio_ap_queue
110  *
111  * Unregisters the ISC in the GIB when the saved ISC not invalid.
112  * Unpin the guest's page holding the NIB when it exist.
113  * Reset the saved_pfn and saved_isc to invalid values.
114  *
115  */
116 static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
117 {
118 	if (!q)
119 		return;
120 	if (q->saved_isc != VFIO_AP_ISC_INVALID &&
121 	    !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
122 		kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
123 		q->saved_isc = VFIO_AP_ISC_INVALID;
124 	}
125 	if (q->saved_pfn && !WARN_ON(!q->matrix_mdev)) {
126 		vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev),
127 				 &q->saved_pfn, 1);
128 		q->saved_pfn = 0;
129 	}
130 }
131 
132 /**
133  * vfio_ap_irq_disable
134  * @q: The vfio_ap_queue
135  *
136  * Uses ap_aqic to disable the interruption and in case of success, reset
137  * in progress or IRQ disable command already proceeded: calls
138  * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
139  * and calls vfio_ap_free_aqic_resources() to free the resources associated
140  * with the AP interrupt handling.
141  *
142  * In the case the AP is busy, or a reset is in progress,
143  * retries after 20ms, up to 5 times.
144  *
145  * Returns if ap_aqic function failed with invalid, deconfigured or
146  * checkstopped AP.
147  */
148 static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
149 {
150 	struct ap_qirq_ctrl aqic_gisa = {};
151 	struct ap_queue_status status;
152 	int retries = 5;
153 
154 	do {
155 		status = ap_aqic(q->apqn, aqic_gisa, NULL);
156 		switch (status.response_code) {
157 		case AP_RESPONSE_OTHERWISE_CHANGED:
158 		case AP_RESPONSE_NORMAL:
159 			vfio_ap_wait_for_irqclear(q->apqn);
160 			goto end_free;
161 		case AP_RESPONSE_RESET_IN_PROGRESS:
162 		case AP_RESPONSE_BUSY:
163 			msleep(20);
164 			break;
165 		case AP_RESPONSE_Q_NOT_AVAIL:
166 		case AP_RESPONSE_DECONFIGURED:
167 		case AP_RESPONSE_CHECKSTOPPED:
168 		case AP_RESPONSE_INVALID_ADDRESS:
169 		default:
170 			/* All cases in default means AP not operational */
171 			WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
172 				  status.response_code);
173 			goto end_free;
174 		}
175 	} while (retries--);
176 
177 	WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
178 		  status.response_code);
179 end_free:
180 	vfio_ap_free_aqic_resources(q);
181 	q->matrix_mdev = NULL;
182 	return status;
183 }
184 
185 /**
186  * vfio_ap_setirq: Enable Interruption for a APQN
187  *
188  * @dev: the device associated with the ap_queue
189  * @q:	 the vfio_ap_queue holding AQIC parameters
190  *
191  * Pin the NIB saved in *q
192  * Register the guest ISC to GIB interface and retrieve the
193  * host ISC to issue the host side PQAP/AQIC
194  *
195  * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
196  * vfio_pin_pages failed.
197  *
198  * Otherwise return the ap_queue_status returned by the ap_aqic(),
199  * all retry handling will be done by the guest.
200  */
201 static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
202 						 int isc,
203 						 unsigned long nib)
204 {
205 	struct ap_qirq_ctrl aqic_gisa = {};
206 	struct ap_queue_status status = {};
207 	struct kvm_s390_gisa *gisa;
208 	struct kvm *kvm;
209 	unsigned long h_nib, g_pfn, h_pfn;
210 	int ret;
211 
212 	g_pfn = nib >> PAGE_SHIFT;
213 	ret = vfio_pin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1,
214 			     IOMMU_READ | IOMMU_WRITE, &h_pfn);
215 	switch (ret) {
216 	case 1:
217 		break;
218 	default:
219 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
220 		return status;
221 	}
222 
223 	kvm = q->matrix_mdev->kvm;
224 	gisa = kvm->arch.gisa_int.origin;
225 
226 	h_nib = (h_pfn << PAGE_SHIFT) | (nib & ~PAGE_MASK);
227 	aqic_gisa.gisc = isc;
228 	aqic_gisa.isc = kvm_s390_gisc_register(kvm, isc);
229 	aqic_gisa.ir = 1;
230 	aqic_gisa.gisa = (uint64_t)gisa >> 4;
231 
232 	status = ap_aqic(q->apqn, aqic_gisa, (void *)h_nib);
233 	switch (status.response_code) {
234 	case AP_RESPONSE_NORMAL:
235 		/* See if we did clear older IRQ configuration */
236 		vfio_ap_free_aqic_resources(q);
237 		q->saved_pfn = g_pfn;
238 		q->saved_isc = isc;
239 		break;
240 	case AP_RESPONSE_OTHERWISE_CHANGED:
241 		/* We could not modify IRQ setings: clear new configuration */
242 		vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1);
243 		kvm_s390_gisc_unregister(kvm, isc);
244 		break;
245 	default:
246 		pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
247 			status.response_code);
248 		vfio_ap_irq_disable(q);
249 		break;
250 	}
251 
252 	return status;
253 }
254 
255 /**
256  * handle_pqap: PQAP instruction callback
257  *
258  * @vcpu: The vcpu on which we received the PQAP instruction
259  *
260  * Get the general register contents to initialize internal variables.
261  * REG[0]: APQN
262  * REG[1]: IR and ISC
263  * REG[2]: NIB
264  *
265  * Response.status may be set to following Response Code:
266  * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
267  * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
268  * - AP_RESPONSE_NORMAL (0) : in case of successs
269  *   Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
270  * We take the matrix_dev lock to ensure serialization on queues and
271  * mediated device access.
272  *
273  * Return 0 if we could handle the request inside KVM.
274  * otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
275  */
276 static int handle_pqap(struct kvm_vcpu *vcpu)
277 {
278 	uint64_t status;
279 	uint16_t apqn;
280 	struct vfio_ap_queue *q;
281 	struct ap_queue_status qstatus = {
282 			       .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
283 	struct ap_matrix_mdev *matrix_mdev;
284 
285 	/* If we do not use the AIV facility just go to userland */
286 	if (!(vcpu->arch.sie_block->eca & ECA_AIV))
287 		return -EOPNOTSUPP;
288 
289 	apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
290 	mutex_lock(&matrix_dev->lock);
291 
292 	if (!vcpu->kvm->arch.crypto.pqap_hook)
293 		goto out_unlock;
294 	matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
295 				   struct ap_matrix_mdev, pqap_hook);
296 
297 	/*
298 	 * If the KVM pointer is in the process of being set, wait until the
299 	 * process has completed.
300 	 */
301 	wait_event_cmd(matrix_mdev->wait_for_kvm,
302 		       !matrix_mdev->kvm_busy,
303 		       mutex_unlock(&matrix_dev->lock),
304 		       mutex_lock(&matrix_dev->lock));
305 
306 	/* If the there is no guest using the mdev, there is nothing to do */
307 	if (!matrix_mdev->kvm)
308 		goto out_unlock;
309 
310 	q = vfio_ap_get_queue(matrix_mdev, apqn);
311 	if (!q)
312 		goto out_unlock;
313 
314 	status = vcpu->run->s.regs.gprs[1];
315 
316 	/* If IR bit(16) is set we enable the interrupt */
317 	if ((status >> (63 - 16)) & 0x01)
318 		qstatus = vfio_ap_irq_enable(q, status & 0x07,
319 					     vcpu->run->s.regs.gprs[2]);
320 	else
321 		qstatus = vfio_ap_irq_disable(q);
322 
323 out_unlock:
324 	memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
325 	vcpu->run->s.regs.gprs[1] >>= 32;
326 	mutex_unlock(&matrix_dev->lock);
327 	return 0;
328 }
329 
330 static void vfio_ap_matrix_init(struct ap_config_info *info,
331 				struct ap_matrix *matrix)
332 {
333 	matrix->apm_max = info->apxa ? info->Na : 63;
334 	matrix->aqm_max = info->apxa ? info->Nd : 15;
335 	matrix->adm_max = info->apxa ? info->Nd : 15;
336 }
337 
338 static int vfio_ap_mdev_create(struct kobject *kobj, struct mdev_device *mdev)
339 {
340 	struct ap_matrix_mdev *matrix_mdev;
341 
342 	if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
343 		return -EPERM;
344 
345 	matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
346 	if (!matrix_mdev) {
347 		atomic_inc(&matrix_dev->available_instances);
348 		return -ENOMEM;
349 	}
350 
351 	matrix_mdev->mdev = mdev;
352 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
353 	init_waitqueue_head(&matrix_mdev->wait_for_kvm);
354 	mdev_set_drvdata(mdev, matrix_mdev);
355 	matrix_mdev->pqap_hook.hook = handle_pqap;
356 	matrix_mdev->pqap_hook.owner = THIS_MODULE;
357 	mutex_lock(&matrix_dev->lock);
358 	list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
359 	mutex_unlock(&matrix_dev->lock);
360 
361 	return 0;
362 }
363 
364 static int vfio_ap_mdev_remove(struct mdev_device *mdev)
365 {
366 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
367 
368 	mutex_lock(&matrix_dev->lock);
369 
370 	/*
371 	 * If the KVM pointer is in flux or the guest is running, disallow
372 	 * un-assignment of control domain.
373 	 */
374 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
375 		mutex_unlock(&matrix_dev->lock);
376 		return -EBUSY;
377 	}
378 
379 	vfio_ap_mdev_reset_queues(mdev);
380 	list_del(&matrix_mdev->node);
381 	kfree(matrix_mdev);
382 	mdev_set_drvdata(mdev, NULL);
383 	atomic_inc(&matrix_dev->available_instances);
384 	mutex_unlock(&matrix_dev->lock);
385 
386 	return 0;
387 }
388 
389 static ssize_t name_show(struct kobject *kobj, struct device *dev, char *buf)
390 {
391 	return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
392 }
393 
394 static MDEV_TYPE_ATTR_RO(name);
395 
396 static ssize_t available_instances_show(struct kobject *kobj,
397 					struct device *dev, char *buf)
398 {
399 	return sprintf(buf, "%d\n",
400 		       atomic_read(&matrix_dev->available_instances));
401 }
402 
403 static MDEV_TYPE_ATTR_RO(available_instances);
404 
405 static ssize_t device_api_show(struct kobject *kobj, struct device *dev,
406 			       char *buf)
407 {
408 	return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
409 }
410 
411 static MDEV_TYPE_ATTR_RO(device_api);
412 
413 static struct attribute *vfio_ap_mdev_type_attrs[] = {
414 	&mdev_type_attr_name.attr,
415 	&mdev_type_attr_device_api.attr,
416 	&mdev_type_attr_available_instances.attr,
417 	NULL,
418 };
419 
420 static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
421 	.name = VFIO_AP_MDEV_TYPE_HWVIRT,
422 	.attrs = vfio_ap_mdev_type_attrs,
423 };
424 
425 static struct attribute_group *vfio_ap_mdev_type_groups[] = {
426 	&vfio_ap_mdev_hwvirt_type_group,
427 	NULL,
428 };
429 
430 struct vfio_ap_queue_reserved {
431 	unsigned long *apid;
432 	unsigned long *apqi;
433 	bool reserved;
434 };
435 
436 /**
437  * vfio_ap_has_queue
438  *
439  * @dev: an AP queue device
440  * @data: a struct vfio_ap_queue_reserved reference
441  *
442  * Flags whether the AP queue device (@dev) has a queue ID containing the APQN,
443  * apid or apqi specified in @data:
444  *
445  * - If @data contains both an apid and apqi value, then @data will be flagged
446  *   as reserved if the APID and APQI fields for the AP queue device matches
447  *
448  * - If @data contains only an apid value, @data will be flagged as
449  *   reserved if the APID field in the AP queue device matches
450  *
451  * - If @data contains only an apqi value, @data will be flagged as
452  *   reserved if the APQI field in the AP queue device matches
453  *
454  * Returns 0 to indicate the input to function succeeded. Returns -EINVAL if
455  * @data does not contain either an apid or apqi.
456  */
457 static int vfio_ap_has_queue(struct device *dev, void *data)
458 {
459 	struct vfio_ap_queue_reserved *qres = data;
460 	struct ap_queue *ap_queue = to_ap_queue(dev);
461 	ap_qid_t qid;
462 	unsigned long id;
463 
464 	if (qres->apid && qres->apqi) {
465 		qid = AP_MKQID(*qres->apid, *qres->apqi);
466 		if (qid == ap_queue->qid)
467 			qres->reserved = true;
468 	} else if (qres->apid && !qres->apqi) {
469 		id = AP_QID_CARD(ap_queue->qid);
470 		if (id == *qres->apid)
471 			qres->reserved = true;
472 	} else if (!qres->apid && qres->apqi) {
473 		id = AP_QID_QUEUE(ap_queue->qid);
474 		if (id == *qres->apqi)
475 			qres->reserved = true;
476 	} else {
477 		return -EINVAL;
478 	}
479 
480 	return 0;
481 }
482 
483 /**
484  * vfio_ap_verify_queue_reserved
485  *
486  * @matrix_dev: a mediated matrix device
487  * @apid: an AP adapter ID
488  * @apqi: an AP queue index
489  *
490  * Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device
491  * driver according to the following rules:
492  *
493  * - If both @apid and @apqi are not NULL, then there must be an AP queue
494  *   device bound to the vfio_ap driver with the APQN identified by @apid and
495  *   @apqi
496  *
497  * - If only @apid is not NULL, then there must be an AP queue device bound
498  *   to the vfio_ap driver with an APQN containing @apid
499  *
500  * - If only @apqi is not NULL, then there must be an AP queue device bound
501  *   to the vfio_ap driver with an APQN containing @apqi
502  *
503  * Returns 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL.
504  */
505 static int vfio_ap_verify_queue_reserved(unsigned long *apid,
506 					 unsigned long *apqi)
507 {
508 	int ret;
509 	struct vfio_ap_queue_reserved qres;
510 
511 	qres.apid = apid;
512 	qres.apqi = apqi;
513 	qres.reserved = false;
514 
515 	ret = driver_for_each_device(&matrix_dev->vfio_ap_drv->driver, NULL,
516 				     &qres, vfio_ap_has_queue);
517 	if (ret)
518 		return ret;
519 
520 	if (qres.reserved)
521 		return 0;
522 
523 	return -EADDRNOTAVAIL;
524 }
525 
526 static int
527 vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev,
528 					     unsigned long apid)
529 {
530 	int ret;
531 	unsigned long apqi;
532 	unsigned long nbits = matrix_mdev->matrix.aqm_max + 1;
533 
534 	if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits)
535 		return vfio_ap_verify_queue_reserved(&apid, NULL);
536 
537 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) {
538 		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
539 		if (ret)
540 			return ret;
541 	}
542 
543 	return 0;
544 }
545 
546 /**
547  * vfio_ap_mdev_verify_no_sharing
548  *
549  * Verifies that the APQNs derived from the cross product of the AP adapter IDs
550  * and AP queue indexes comprising the AP matrix are not configured for another
551  * mediated device. AP queue sharing is not allowed.
552  *
553  * @matrix_mdev: the mediated matrix device
554  *
555  * Returns 0 if the APQNs are not shared, otherwise; returns -EADDRINUSE.
556  */
557 static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev)
558 {
559 	struct ap_matrix_mdev *lstdev;
560 	DECLARE_BITMAP(apm, AP_DEVICES);
561 	DECLARE_BITMAP(aqm, AP_DOMAINS);
562 
563 	list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) {
564 		if (matrix_mdev == lstdev)
565 			continue;
566 
567 		memset(apm, 0, sizeof(apm));
568 		memset(aqm, 0, sizeof(aqm));
569 
570 		/*
571 		 * We work on full longs, as we can only exclude the leftover
572 		 * bits in non-inverse order. The leftover is all zeros.
573 		 */
574 		if (!bitmap_and(apm, matrix_mdev->matrix.apm,
575 				lstdev->matrix.apm, AP_DEVICES))
576 			continue;
577 
578 		if (!bitmap_and(aqm, matrix_mdev->matrix.aqm,
579 				lstdev->matrix.aqm, AP_DOMAINS))
580 			continue;
581 
582 		return -EADDRINUSE;
583 	}
584 
585 	return 0;
586 }
587 
588 /**
589  * assign_adapter_store
590  *
591  * @dev:	the matrix device
592  * @attr:	the mediated matrix device's assign_adapter attribute
593  * @buf:	a buffer containing the AP adapter number (APID) to
594  *		be assigned
595  * @count:	the number of bytes in @buf
596  *
597  * Parses the APID from @buf and sets the corresponding bit in the mediated
598  * matrix device's APM.
599  *
600  * Returns the number of bytes processed if the APID is valid; otherwise,
601  * returns one of the following errors:
602  *
603  *	1. -EINVAL
604  *	   The APID is not a valid number
605  *
606  *	2. -ENODEV
607  *	   The APID exceeds the maximum value configured for the system
608  *
609  *	3. -EADDRNOTAVAIL
610  *	   An APQN derived from the cross product of the APID being assigned
611  *	   and the APQIs previously assigned is not bound to the vfio_ap device
612  *	   driver; or, if no APQIs have yet been assigned, the APID is not
613  *	   contained in an APQN bound to the vfio_ap device driver.
614  *
615  *	4. -EADDRINUSE
616  *	   An APQN derived from the cross product of the APID being assigned
617  *	   and the APQIs previously assigned is being used by another mediated
618  *	   matrix device
619  */
620 static ssize_t assign_adapter_store(struct device *dev,
621 				    struct device_attribute *attr,
622 				    const char *buf, size_t count)
623 {
624 	int ret;
625 	unsigned long apid;
626 	struct mdev_device *mdev = mdev_from_dev(dev);
627 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
628 
629 	mutex_lock(&matrix_dev->lock);
630 
631 	/*
632 	 * If the KVM pointer is in flux or the guest is running, disallow
633 	 * un-assignment of adapter
634 	 */
635 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
636 		ret = -EBUSY;
637 		goto done;
638 	}
639 
640 	ret = kstrtoul(buf, 0, &apid);
641 	if (ret)
642 		goto done;
643 
644 	if (apid > matrix_mdev->matrix.apm_max) {
645 		ret = -ENODEV;
646 		goto done;
647 	}
648 
649 	/*
650 	 * Set the bit in the AP mask (APM) corresponding to the AP adapter
651 	 * number (APID). The bits in the mask, from most significant to least
652 	 * significant bit, correspond to APIDs 0-255.
653 	 */
654 	ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid);
655 	if (ret)
656 		goto done;
657 
658 	set_bit_inv(apid, matrix_mdev->matrix.apm);
659 
660 	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
661 	if (ret)
662 		goto share_err;
663 
664 	ret = count;
665 	goto done;
666 
667 share_err:
668 	clear_bit_inv(apid, matrix_mdev->matrix.apm);
669 done:
670 	mutex_unlock(&matrix_dev->lock);
671 
672 	return ret;
673 }
674 static DEVICE_ATTR_WO(assign_adapter);
675 
676 /**
677  * unassign_adapter_store
678  *
679  * @dev:	the matrix device
680  * @attr:	the mediated matrix device's unassign_adapter attribute
681  * @buf:	a buffer containing the adapter number (APID) to be unassigned
682  * @count:	the number of bytes in @buf
683  *
684  * Parses the APID from @buf and clears the corresponding bit in the mediated
685  * matrix device's APM.
686  *
687  * Returns the number of bytes processed if the APID is valid; otherwise,
688  * returns one of the following errors:
689  *	-EINVAL if the APID is not a number
690  *	-ENODEV if the APID it exceeds the maximum value configured for the
691  *		system
692  */
693 static ssize_t unassign_adapter_store(struct device *dev,
694 				      struct device_attribute *attr,
695 				      const char *buf, size_t count)
696 {
697 	int ret;
698 	unsigned long apid;
699 	struct mdev_device *mdev = mdev_from_dev(dev);
700 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
701 
702 	mutex_lock(&matrix_dev->lock);
703 
704 	/*
705 	 * If the KVM pointer is in flux or the guest is running, disallow
706 	 * un-assignment of adapter
707 	 */
708 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
709 		ret = -EBUSY;
710 		goto done;
711 	}
712 
713 	ret = kstrtoul(buf, 0, &apid);
714 	if (ret)
715 		goto done;
716 
717 	if (apid > matrix_mdev->matrix.apm_max) {
718 		ret = -ENODEV;
719 		goto done;
720 	}
721 
722 	clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
723 	ret = count;
724 done:
725 	mutex_unlock(&matrix_dev->lock);
726 	return ret;
727 }
728 static DEVICE_ATTR_WO(unassign_adapter);
729 
730 static int
731 vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev,
732 					     unsigned long apqi)
733 {
734 	int ret;
735 	unsigned long apid;
736 	unsigned long nbits = matrix_mdev->matrix.apm_max + 1;
737 
738 	if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits)
739 		return vfio_ap_verify_queue_reserved(NULL, &apqi);
740 
741 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) {
742 		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
743 		if (ret)
744 			return ret;
745 	}
746 
747 	return 0;
748 }
749 
750 /**
751  * assign_domain_store
752  *
753  * @dev:	the matrix device
754  * @attr:	the mediated matrix device's assign_domain attribute
755  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
756  *		be assigned
757  * @count:	the number of bytes in @buf
758  *
759  * Parses the APQI from @buf and sets the corresponding bit in the mediated
760  * matrix device's AQM.
761  *
762  * Returns the number of bytes processed if the APQI is valid; otherwise returns
763  * one of the following errors:
764  *
765  *	1. -EINVAL
766  *	   The APQI is not a valid number
767  *
768  *	2. -ENODEV
769  *	   The APQI exceeds the maximum value configured for the system
770  *
771  *	3. -EADDRNOTAVAIL
772  *	   An APQN derived from the cross product of the APQI being assigned
773  *	   and the APIDs previously assigned is not bound to the vfio_ap device
774  *	   driver; or, if no APIDs have yet been assigned, the APQI is not
775  *	   contained in an APQN bound to the vfio_ap device driver.
776  *
777  *	4. -EADDRINUSE
778  *	   An APQN derived from the cross product of the APQI being assigned
779  *	   and the APIDs previously assigned is being used by another mediated
780  *	   matrix device
781  */
782 static ssize_t assign_domain_store(struct device *dev,
783 				   struct device_attribute *attr,
784 				   const char *buf, size_t count)
785 {
786 	int ret;
787 	unsigned long apqi;
788 	struct mdev_device *mdev = mdev_from_dev(dev);
789 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
790 	unsigned long max_apqi = matrix_mdev->matrix.aqm_max;
791 
792 	mutex_lock(&matrix_dev->lock);
793 
794 	/*
795 	 * If the KVM pointer is in flux or the guest is running, disallow
796 	 * assignment of domain
797 	 */
798 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
799 		ret = -EBUSY;
800 		goto done;
801 	}
802 
803 	ret = kstrtoul(buf, 0, &apqi);
804 	if (ret)
805 		goto done;
806 	if (apqi > max_apqi) {
807 		ret = -ENODEV;
808 		goto done;
809 	}
810 
811 	ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi);
812 	if (ret)
813 		goto done;
814 
815 	set_bit_inv(apqi, matrix_mdev->matrix.aqm);
816 
817 	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
818 	if (ret)
819 		goto share_err;
820 
821 	ret = count;
822 	goto done;
823 
824 share_err:
825 	clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
826 done:
827 	mutex_unlock(&matrix_dev->lock);
828 
829 	return ret;
830 }
831 static DEVICE_ATTR_WO(assign_domain);
832 
833 
834 /**
835  * unassign_domain_store
836  *
837  * @dev:	the matrix device
838  * @attr:	the mediated matrix device's unassign_domain attribute
839  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
840  *		be unassigned
841  * @count:	the number of bytes in @buf
842  *
843  * Parses the APQI from @buf and clears the corresponding bit in the
844  * mediated matrix device's AQM.
845  *
846  * Returns the number of bytes processed if the APQI is valid; otherwise,
847  * returns one of the following errors:
848  *	-EINVAL if the APQI is not a number
849  *	-ENODEV if the APQI exceeds the maximum value configured for the system
850  */
851 static ssize_t unassign_domain_store(struct device *dev,
852 				     struct device_attribute *attr,
853 				     const char *buf, size_t count)
854 {
855 	int ret;
856 	unsigned long apqi;
857 	struct mdev_device *mdev = mdev_from_dev(dev);
858 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
859 
860 	mutex_lock(&matrix_dev->lock);
861 
862 	/*
863 	 * If the KVM pointer is in flux or the guest is running, disallow
864 	 * un-assignment of domain
865 	 */
866 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
867 		ret = -EBUSY;
868 		goto done;
869 	}
870 
871 	ret = kstrtoul(buf, 0, &apqi);
872 	if (ret)
873 		goto done;
874 
875 	if (apqi > matrix_mdev->matrix.aqm_max) {
876 		ret = -ENODEV;
877 		goto done;
878 	}
879 
880 	clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
881 	ret = count;
882 
883 done:
884 	mutex_unlock(&matrix_dev->lock);
885 	return ret;
886 }
887 static DEVICE_ATTR_WO(unassign_domain);
888 
889 /**
890  * assign_control_domain_store
891  *
892  * @dev:	the matrix device
893  * @attr:	the mediated matrix device's assign_control_domain attribute
894  * @buf:	a buffer containing the domain ID to be assigned
895  * @count:	the number of bytes in @buf
896  *
897  * Parses the domain ID from @buf and sets the corresponding bit in the mediated
898  * matrix device's ADM.
899  *
900  * Returns the number of bytes processed if the domain ID is valid; otherwise,
901  * returns one of the following errors:
902  *	-EINVAL if the ID is not a number
903  *	-ENODEV if the ID exceeds the maximum value configured for the system
904  */
905 static ssize_t assign_control_domain_store(struct device *dev,
906 					   struct device_attribute *attr,
907 					   const char *buf, size_t count)
908 {
909 	int ret;
910 	unsigned long id;
911 	struct mdev_device *mdev = mdev_from_dev(dev);
912 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
913 
914 	mutex_lock(&matrix_dev->lock);
915 
916 	/*
917 	 * If the KVM pointer is in flux or the guest is running, disallow
918 	 * assignment of control domain.
919 	 */
920 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
921 		ret = -EBUSY;
922 		goto done;
923 	}
924 
925 	ret = kstrtoul(buf, 0, &id);
926 	if (ret)
927 		goto done;
928 
929 	if (id > matrix_mdev->matrix.adm_max) {
930 		ret = -ENODEV;
931 		goto done;
932 	}
933 
934 	/* Set the bit in the ADM (bitmask) corresponding to the AP control
935 	 * domain number (id). The bits in the mask, from most significant to
936 	 * least significant, correspond to IDs 0 up to the one less than the
937 	 * number of control domains that can be assigned.
938 	 */
939 	set_bit_inv(id, matrix_mdev->matrix.adm);
940 	ret = count;
941 done:
942 	mutex_unlock(&matrix_dev->lock);
943 	return ret;
944 }
945 static DEVICE_ATTR_WO(assign_control_domain);
946 
947 /**
948  * unassign_control_domain_store
949  *
950  * @dev:	the matrix device
951  * @attr:	the mediated matrix device's unassign_control_domain attribute
952  * @buf:	a buffer containing the domain ID to be unassigned
953  * @count:	the number of bytes in @buf
954  *
955  * Parses the domain ID from @buf and clears the corresponding bit in the
956  * mediated matrix device's ADM.
957  *
958  * Returns the number of bytes processed if the domain ID is valid; otherwise,
959  * returns one of the following errors:
960  *	-EINVAL if the ID is not a number
961  *	-ENODEV if the ID exceeds the maximum value configured for the system
962  */
963 static ssize_t unassign_control_domain_store(struct device *dev,
964 					     struct device_attribute *attr,
965 					     const char *buf, size_t count)
966 {
967 	int ret;
968 	unsigned long domid;
969 	struct mdev_device *mdev = mdev_from_dev(dev);
970 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
971 	unsigned long max_domid =  matrix_mdev->matrix.adm_max;
972 
973 	mutex_lock(&matrix_dev->lock);
974 
975 	/*
976 	 * If the KVM pointer is in flux or the guest is running, disallow
977 	 * un-assignment of control domain.
978 	 */
979 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
980 		ret = -EBUSY;
981 		goto done;
982 	}
983 
984 	ret = kstrtoul(buf, 0, &domid);
985 	if (ret)
986 		goto done;
987 	if (domid > max_domid) {
988 		ret = -ENODEV;
989 		goto done;
990 	}
991 
992 	clear_bit_inv(domid, matrix_mdev->matrix.adm);
993 	ret = count;
994 done:
995 	mutex_unlock(&matrix_dev->lock);
996 	return ret;
997 }
998 static DEVICE_ATTR_WO(unassign_control_domain);
999 
1000 static ssize_t control_domains_show(struct device *dev,
1001 				    struct device_attribute *dev_attr,
1002 				    char *buf)
1003 {
1004 	unsigned long id;
1005 	int nchars = 0;
1006 	int n;
1007 	char *bufpos = buf;
1008 	struct mdev_device *mdev = mdev_from_dev(dev);
1009 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1010 	unsigned long max_domid = matrix_mdev->matrix.adm_max;
1011 
1012 	mutex_lock(&matrix_dev->lock);
1013 	for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
1014 		n = sprintf(bufpos, "%04lx\n", id);
1015 		bufpos += n;
1016 		nchars += n;
1017 	}
1018 	mutex_unlock(&matrix_dev->lock);
1019 
1020 	return nchars;
1021 }
1022 static DEVICE_ATTR_RO(control_domains);
1023 
1024 static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
1025 			   char *buf)
1026 {
1027 	struct mdev_device *mdev = mdev_from_dev(dev);
1028 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1029 	char *bufpos = buf;
1030 	unsigned long apid;
1031 	unsigned long apqi;
1032 	unsigned long apid1;
1033 	unsigned long apqi1;
1034 	unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
1035 	unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
1036 	int nchars = 0;
1037 	int n;
1038 
1039 	apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
1040 	apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);
1041 
1042 	mutex_lock(&matrix_dev->lock);
1043 
1044 	if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
1045 		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
1046 			for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
1047 					     naqm_bits) {
1048 				n = sprintf(bufpos, "%02lx.%04lx\n", apid,
1049 					    apqi);
1050 				bufpos += n;
1051 				nchars += n;
1052 			}
1053 		}
1054 	} else if (apid1 < napm_bits) {
1055 		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
1056 			n = sprintf(bufpos, "%02lx.\n", apid);
1057 			bufpos += n;
1058 			nchars += n;
1059 		}
1060 	} else if (apqi1 < naqm_bits) {
1061 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
1062 			n = sprintf(bufpos, ".%04lx\n", apqi);
1063 			bufpos += n;
1064 			nchars += n;
1065 		}
1066 	}
1067 
1068 	mutex_unlock(&matrix_dev->lock);
1069 
1070 	return nchars;
1071 }
1072 static DEVICE_ATTR_RO(matrix);
1073 
1074 static struct attribute *vfio_ap_mdev_attrs[] = {
1075 	&dev_attr_assign_adapter.attr,
1076 	&dev_attr_unassign_adapter.attr,
1077 	&dev_attr_assign_domain.attr,
1078 	&dev_attr_unassign_domain.attr,
1079 	&dev_attr_assign_control_domain.attr,
1080 	&dev_attr_unassign_control_domain.attr,
1081 	&dev_attr_control_domains.attr,
1082 	&dev_attr_matrix.attr,
1083 	NULL,
1084 };
1085 
1086 static struct attribute_group vfio_ap_mdev_attr_group = {
1087 	.attrs = vfio_ap_mdev_attrs
1088 };
1089 
1090 static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
1091 	&vfio_ap_mdev_attr_group,
1092 	NULL
1093 };
1094 
1095 /**
1096  * vfio_ap_mdev_set_kvm
1097  *
1098  * @matrix_mdev: a mediated matrix device
1099  * @kvm: reference to KVM instance
1100  *
1101  * Sets all data for @matrix_mdev that are needed to manage AP resources
1102  * for the guest whose state is represented by @kvm.
1103  *
1104  * Note: The matrix_dev->lock must be taken prior to calling
1105  * this function; however, the lock will be temporarily released while the
1106  * guest's AP configuration is set to avoid a potential lockdep splat.
1107  * The kvm->lock is taken to set the guest's AP configuration which, under
1108  * certain circumstances, will result in a circular lock dependency if this is
1109  * done under the @matrix_mdev->lock.
1110  *
1111  * Return 0 if no other mediated matrix device has a reference to @kvm;
1112  * otherwise, returns an -EPERM.
1113  */
1114 static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
1115 				struct kvm *kvm)
1116 {
1117 	struct ap_matrix_mdev *m;
1118 
1119 	if (kvm->arch.crypto.crycbd) {
1120 		list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1121 			if (m != matrix_mdev && m->kvm == kvm)
1122 				return -EPERM;
1123 		}
1124 
1125 		kvm_get_kvm(kvm);
1126 		matrix_mdev->kvm_busy = true;
1127 		mutex_unlock(&matrix_dev->lock);
1128 		kvm_arch_crypto_set_masks(kvm,
1129 					  matrix_mdev->matrix.apm,
1130 					  matrix_mdev->matrix.aqm,
1131 					  matrix_mdev->matrix.adm);
1132 		mutex_lock(&matrix_dev->lock);
1133 		kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
1134 		matrix_mdev->kvm = kvm;
1135 		matrix_mdev->kvm_busy = false;
1136 		wake_up_all(&matrix_mdev->wait_for_kvm);
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 /*
1143  * vfio_ap_mdev_iommu_notifier: IOMMU notifier callback
1144  *
1145  * @nb: The notifier block
1146  * @action: Action to be taken
1147  * @data: data associated with the request
1148  *
1149  * For an UNMAP request, unpin the guest IOVA (the NIB guest address we
1150  * pinned before). Other requests are ignored.
1151  *
1152  */
1153 static int vfio_ap_mdev_iommu_notifier(struct notifier_block *nb,
1154 				       unsigned long action, void *data)
1155 {
1156 	struct ap_matrix_mdev *matrix_mdev;
1157 
1158 	matrix_mdev = container_of(nb, struct ap_matrix_mdev, iommu_notifier);
1159 
1160 	if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) {
1161 		struct vfio_iommu_type1_dma_unmap *unmap = data;
1162 		unsigned long g_pfn = unmap->iova >> PAGE_SHIFT;
1163 
1164 		vfio_unpin_pages(mdev_dev(matrix_mdev->mdev), &g_pfn, 1);
1165 		return NOTIFY_OK;
1166 	}
1167 
1168 	return NOTIFY_DONE;
1169 }
1170 
1171 /**
1172  * vfio_ap_mdev_unset_kvm
1173  *
1174  * @matrix_mdev: a matrix mediated device
1175  *
1176  * Performs clean-up of resources no longer needed by @matrix_mdev.
1177  *
1178  * Note: The matrix_dev->lock must be taken prior to calling
1179  * this function; however, the lock will be temporarily released while the
1180  * guest's AP configuration is cleared to avoid a potential lockdep splat.
1181  * The kvm->lock is taken to clear the guest's AP configuration which, under
1182  * certain circumstances, will result in a circular lock dependency if this is
1183  * done under the @matrix_mdev->lock.
1184  *
1185  */
1186 static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
1187 {
1188 	/*
1189 	 * If the KVM pointer is in the process of being set, wait until the
1190 	 * process has completed.
1191 	 */
1192 	wait_event_cmd(matrix_mdev->wait_for_kvm,
1193 		       !matrix_mdev->kvm_busy,
1194 		       mutex_unlock(&matrix_dev->lock),
1195 		       mutex_lock(&matrix_dev->lock));
1196 
1197 	if (matrix_mdev->kvm) {
1198 		matrix_mdev->kvm_busy = true;
1199 		mutex_unlock(&matrix_dev->lock);
1200 		kvm_arch_crypto_clear_masks(matrix_mdev->kvm);
1201 		mutex_lock(&matrix_dev->lock);
1202 		vfio_ap_mdev_reset_queues(matrix_mdev->mdev);
1203 		matrix_mdev->kvm->arch.crypto.pqap_hook = NULL;
1204 		kvm_put_kvm(matrix_mdev->kvm);
1205 		matrix_mdev->kvm = NULL;
1206 		matrix_mdev->kvm_busy = false;
1207 		wake_up_all(&matrix_mdev->wait_for_kvm);
1208 	}
1209 }
1210 
1211 static int vfio_ap_mdev_group_notifier(struct notifier_block *nb,
1212 				       unsigned long action, void *data)
1213 {
1214 	int notify_rc = NOTIFY_OK;
1215 	struct ap_matrix_mdev *matrix_mdev;
1216 
1217 	if (action != VFIO_GROUP_NOTIFY_SET_KVM)
1218 		return NOTIFY_OK;
1219 
1220 	mutex_lock(&matrix_dev->lock);
1221 	matrix_mdev = container_of(nb, struct ap_matrix_mdev, group_notifier);
1222 
1223 	if (!data)
1224 		vfio_ap_mdev_unset_kvm(matrix_mdev);
1225 	else if (vfio_ap_mdev_set_kvm(matrix_mdev, data))
1226 		notify_rc = NOTIFY_DONE;
1227 
1228 	mutex_unlock(&matrix_dev->lock);
1229 
1230 	return notify_rc;
1231 }
1232 
1233 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
1234 {
1235 	struct device *dev;
1236 	struct vfio_ap_queue *q = NULL;
1237 
1238 	dev = driver_find_device(&matrix_dev->vfio_ap_drv->driver, NULL,
1239 				 &apqn, match_apqn);
1240 	if (dev) {
1241 		q = dev_get_drvdata(dev);
1242 		put_device(dev);
1243 	}
1244 
1245 	return q;
1246 }
1247 
1248 int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q,
1249 			     unsigned int retry)
1250 {
1251 	struct ap_queue_status status;
1252 	int ret;
1253 	int retry2 = 2;
1254 
1255 	if (!q)
1256 		return 0;
1257 
1258 retry_zapq:
1259 	status = ap_zapq(q->apqn);
1260 	switch (status.response_code) {
1261 	case AP_RESPONSE_NORMAL:
1262 		ret = 0;
1263 		break;
1264 	case AP_RESPONSE_RESET_IN_PROGRESS:
1265 		if (retry--) {
1266 			msleep(20);
1267 			goto retry_zapq;
1268 		}
1269 		ret = -EBUSY;
1270 		break;
1271 	case AP_RESPONSE_Q_NOT_AVAIL:
1272 	case AP_RESPONSE_DECONFIGURED:
1273 	case AP_RESPONSE_CHECKSTOPPED:
1274 		WARN_ON_ONCE(status.irq_enabled);
1275 		ret = -EBUSY;
1276 		goto free_resources;
1277 	default:
1278 		/* things are really broken, give up */
1279 		WARN(true, "PQAP/ZAPQ completed with invalid rc (%x)\n",
1280 		     status.response_code);
1281 		return -EIO;
1282 	}
1283 
1284 	/* wait for the reset to take effect */
1285 	while (retry2--) {
1286 		if (status.queue_empty && !status.irq_enabled)
1287 			break;
1288 		msleep(20);
1289 		status = ap_tapq(q->apqn, NULL);
1290 	}
1291 	WARN_ON_ONCE(retry2 <= 0);
1292 
1293 free_resources:
1294 	vfio_ap_free_aqic_resources(q);
1295 
1296 	return ret;
1297 }
1298 
1299 static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev)
1300 {
1301 	int ret;
1302 	int rc = 0;
1303 	unsigned long apid, apqi;
1304 	struct vfio_ap_queue *q;
1305 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1306 
1307 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm,
1308 			     matrix_mdev->matrix.apm_max + 1) {
1309 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
1310 				     matrix_mdev->matrix.aqm_max + 1) {
1311 			q = vfio_ap_find_queue(AP_MKQID(apid, apqi));
1312 			ret = vfio_ap_mdev_reset_queue(q, 1);
1313 			/*
1314 			 * Regardless whether a queue turns out to be busy, or
1315 			 * is not operational, we need to continue resetting
1316 			 * the remaining queues.
1317 			 */
1318 			if (ret)
1319 				rc = ret;
1320 		}
1321 	}
1322 
1323 	return rc;
1324 }
1325 
1326 static int vfio_ap_mdev_open(struct mdev_device *mdev)
1327 {
1328 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1329 	unsigned long events;
1330 	int ret;
1331 
1332 
1333 	if (!try_module_get(THIS_MODULE))
1334 		return -ENODEV;
1335 
1336 	matrix_mdev->group_notifier.notifier_call = vfio_ap_mdev_group_notifier;
1337 	events = VFIO_GROUP_NOTIFY_SET_KVM;
1338 
1339 	ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1340 				     &events, &matrix_mdev->group_notifier);
1341 	if (ret) {
1342 		module_put(THIS_MODULE);
1343 		return ret;
1344 	}
1345 
1346 	matrix_mdev->iommu_notifier.notifier_call = vfio_ap_mdev_iommu_notifier;
1347 	events = VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1348 	ret = vfio_register_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
1349 				     &events, &matrix_mdev->iommu_notifier);
1350 	if (!ret)
1351 		return ret;
1352 
1353 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1354 				 &matrix_mdev->group_notifier);
1355 	module_put(THIS_MODULE);
1356 	return ret;
1357 }
1358 
1359 static void vfio_ap_mdev_release(struct mdev_device *mdev)
1360 {
1361 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1362 
1363 	mutex_lock(&matrix_dev->lock);
1364 	vfio_ap_mdev_unset_kvm(matrix_mdev);
1365 	mutex_unlock(&matrix_dev->lock);
1366 
1367 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
1368 				 &matrix_mdev->iommu_notifier);
1369 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1370 				 &matrix_mdev->group_notifier);
1371 	module_put(THIS_MODULE);
1372 }
1373 
1374 static int vfio_ap_mdev_get_device_info(unsigned long arg)
1375 {
1376 	unsigned long minsz;
1377 	struct vfio_device_info info;
1378 
1379 	minsz = offsetofend(struct vfio_device_info, num_irqs);
1380 
1381 	if (copy_from_user(&info, (void __user *)arg, minsz))
1382 		return -EFAULT;
1383 
1384 	if (info.argsz < minsz)
1385 		return -EINVAL;
1386 
1387 	info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1388 	info.num_regions = 0;
1389 	info.num_irqs = 0;
1390 
1391 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1392 }
1393 
1394 static ssize_t vfio_ap_mdev_ioctl(struct mdev_device *mdev,
1395 				    unsigned int cmd, unsigned long arg)
1396 {
1397 	int ret;
1398 	struct ap_matrix_mdev *matrix_mdev;
1399 
1400 	mutex_lock(&matrix_dev->lock);
1401 	switch (cmd) {
1402 	case VFIO_DEVICE_GET_INFO:
1403 		ret = vfio_ap_mdev_get_device_info(arg);
1404 		break;
1405 	case VFIO_DEVICE_RESET:
1406 		matrix_mdev = mdev_get_drvdata(mdev);
1407 		if (WARN(!matrix_mdev, "Driver data missing from mdev!!")) {
1408 			ret = -EINVAL;
1409 			break;
1410 		}
1411 
1412 		/*
1413 		 * If the KVM pointer is in the process of being set, wait until
1414 		 * the process has completed.
1415 		 */
1416 		wait_event_cmd(matrix_mdev->wait_for_kvm,
1417 			       !matrix_mdev->kvm_busy,
1418 			       mutex_unlock(&matrix_dev->lock),
1419 			       mutex_lock(&matrix_dev->lock));
1420 
1421 		ret = vfio_ap_mdev_reset_queues(mdev);
1422 		break;
1423 	default:
1424 		ret = -EOPNOTSUPP;
1425 		break;
1426 	}
1427 	mutex_unlock(&matrix_dev->lock);
1428 
1429 	return ret;
1430 }
1431 
1432 static const struct mdev_parent_ops vfio_ap_matrix_ops = {
1433 	.owner			= THIS_MODULE,
1434 	.supported_type_groups	= vfio_ap_mdev_type_groups,
1435 	.mdev_attr_groups	= vfio_ap_mdev_attr_groups,
1436 	.create			= vfio_ap_mdev_create,
1437 	.remove			= vfio_ap_mdev_remove,
1438 	.open			= vfio_ap_mdev_open,
1439 	.release		= vfio_ap_mdev_release,
1440 	.ioctl			= vfio_ap_mdev_ioctl,
1441 };
1442 
1443 int vfio_ap_mdev_register(void)
1444 {
1445 	atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);
1446 
1447 	return mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_ops);
1448 }
1449 
1450 void vfio_ap_mdev_unregister(void)
1451 {
1452 	mdev_unregister_device(&matrix_dev->device);
1453 }
1454