1 /* 2 * linux/drivers/s390/cio/cmf.c 3 * 4 * Linux on zSeries Channel Measurement Facility support 5 * 6 * Copyright 2000,2006 IBM Corporation 7 * 8 * Authors: Arnd Bergmann <arndb@de.ibm.com> 9 * Cornelia Huck <cornelia.huck@de.ibm.com> 10 * 11 * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com> 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 28 #include <linux/bootmem.h> 29 #include <linux/device.h> 30 #include <linux/init.h> 31 #include <linux/list.h> 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/slab.h> 35 #include <linux/timex.h> /* get_clock() */ 36 37 #include <asm/ccwdev.h> 38 #include <asm/cio.h> 39 #include <asm/cmb.h> 40 #include <asm/div64.h> 41 42 #include "cio.h" 43 #include "css.h" 44 #include "device.h" 45 #include "ioasm.h" 46 #include "chsc.h" 47 48 /* 49 * parameter to enable cmf during boot, possible uses are: 50 * "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be 51 * used on any subchannel 52 * "s390cmf=<num>" -- enable cmf and allocate enough memory to measure 53 * <num> subchannel, where <num> is an integer 54 * between 1 and 65535, default is 1024 55 */ 56 #define ARGSTRING "s390cmf" 57 58 /* indices for READCMB */ 59 enum cmb_index { 60 /* basic and exended format: */ 61 cmb_ssch_rsch_count, 62 cmb_sample_count, 63 cmb_device_connect_time, 64 cmb_function_pending_time, 65 cmb_device_disconnect_time, 66 cmb_control_unit_queuing_time, 67 cmb_device_active_only_time, 68 /* extended format only: */ 69 cmb_device_busy_time, 70 cmb_initial_command_response_time, 71 }; 72 73 /** 74 * enum cmb_format - types of supported measurement block formats 75 * 76 * @CMF_BASIC: traditional channel measurement blocks supported 77 * by all machines that we run on 78 * @CMF_EXTENDED: improved format that was introduced with the z990 79 * machine 80 * @CMF_AUTODETECT: default: use extended format when running on a machine 81 * supporting extended format, otherwise fall back to 82 * basic format 83 */ 84 enum cmb_format { 85 CMF_BASIC, 86 CMF_EXTENDED, 87 CMF_AUTODETECT = -1, 88 }; 89 90 /* 91 * format - actual format for all measurement blocks 92 * 93 * The format module parameter can be set to a value of 0 (zero) 94 * or 1, indicating basic or extended format as described for 95 * enum cmb_format. 96 */ 97 static int format = CMF_AUTODETECT; 98 module_param(format, bool, 0444); 99 100 /** 101 * struct cmb_operations - functions to use depending on cmb_format 102 * 103 * Most of these functions operate on a struct ccw_device. There is only 104 * one instance of struct cmb_operations because the format of the measurement 105 * data is guaranteed to be the same for every ccw_device. 106 * 107 * @alloc: allocate memory for a channel measurement block, 108 * either with the help of a special pool or with kmalloc 109 * @free: free memory allocated with @alloc 110 * @set: enable or disable measurement 111 * @read: read a measurement entry at an index 112 * @readall: read a measurement block in a common format 113 * @reset: clear the data in the associated measurement block and 114 * reset its time stamp 115 * @align: align an allocated block so that the hardware can use it 116 */ 117 struct cmb_operations { 118 int (*alloc) (struct ccw_device *); 119 void (*free) (struct ccw_device *); 120 int (*set) (struct ccw_device *, u32); 121 u64 (*read) (struct ccw_device *, int); 122 int (*readall)(struct ccw_device *, struct cmbdata *); 123 void (*reset) (struct ccw_device *); 124 void *(*align) (void *); 125 /* private: */ 126 struct attribute_group *attr_group; 127 }; 128 static struct cmb_operations *cmbops; 129 130 struct cmb_data { 131 void *hw_block; /* Pointer to block updated by hardware */ 132 void *last_block; /* Last changed block copied from hardware block */ 133 int size; /* Size of hw_block and last_block */ 134 unsigned long long last_update; /* when last_block was updated */ 135 }; 136 137 /* 138 * Our user interface is designed in terms of nanoseconds, 139 * while the hardware measures total times in its own 140 * unit. 141 */ 142 static inline u64 time_to_nsec(u32 value) 143 { 144 return ((u64)value) * 128000ull; 145 } 146 147 /* 148 * Users are usually interested in average times, 149 * not accumulated time. 150 * This also helps us with atomicity problems 151 * when reading sinlge values. 152 */ 153 static inline u64 time_to_avg_nsec(u32 value, u32 count) 154 { 155 u64 ret; 156 157 /* no samples yet, avoid division by 0 */ 158 if (count == 0) 159 return 0; 160 161 /* value comes in units of 128 µsec */ 162 ret = time_to_nsec(value); 163 do_div(ret, count); 164 165 return ret; 166 } 167 168 /* 169 * Activate or deactivate the channel monitor. When area is NULL, 170 * the monitor is deactivated. The channel monitor needs to 171 * be active in order to measure subchannels, which also need 172 * to be enabled. 173 */ 174 static inline void cmf_activate(void *area, unsigned int onoff) 175 { 176 register void * __gpr2 asm("2"); 177 register long __gpr1 asm("1"); 178 179 __gpr2 = area; 180 __gpr1 = onoff ? 2 : 0; 181 /* activate channel measurement */ 182 asm("schm" : : "d" (__gpr2), "d" (__gpr1) ); 183 } 184 185 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc, 186 unsigned long address) 187 { 188 int ret; 189 int retry; 190 struct subchannel *sch; 191 struct schib *schib; 192 193 sch = to_subchannel(cdev->dev.parent); 194 schib = &sch->schib; 195 /* msch can silently fail, so do it again if necessary */ 196 for (retry = 0; retry < 3; retry++) { 197 /* prepare schib */ 198 stsch(sch->schid, schib); 199 schib->pmcw.mme = mme; 200 schib->pmcw.mbfc = mbfc; 201 /* address can be either a block address or a block index */ 202 if (mbfc) 203 schib->mba = address; 204 else 205 schib->pmcw.mbi = address; 206 207 /* try to submit it */ 208 switch(ret = msch_err(sch->schid, schib)) { 209 case 0: 210 break; 211 case 1: 212 case 2: /* in I/O or status pending */ 213 ret = -EBUSY; 214 break; 215 case 3: /* subchannel is no longer valid */ 216 ret = -ENODEV; 217 break; 218 default: /* msch caught an exception */ 219 ret = -EINVAL; 220 break; 221 } 222 stsch(sch->schid, schib); /* restore the schib */ 223 224 if (ret) 225 break; 226 227 /* check if it worked */ 228 if (schib->pmcw.mme == mme && 229 schib->pmcw.mbfc == mbfc && 230 (mbfc ? (schib->mba == address) 231 : (schib->pmcw.mbi == address))) 232 return 0; 233 234 ret = -EINVAL; 235 } 236 237 return ret; 238 } 239 240 struct set_schib_struct { 241 u32 mme; 242 int mbfc; 243 unsigned long address; 244 wait_queue_head_t wait; 245 int ret; 246 struct kref kref; 247 }; 248 249 static void cmf_set_schib_release(struct kref *kref) 250 { 251 struct set_schib_struct *set_data; 252 253 set_data = container_of(kref, struct set_schib_struct, kref); 254 kfree(set_data); 255 } 256 257 #define CMF_PENDING 1 258 259 static int set_schib_wait(struct ccw_device *cdev, u32 mme, 260 int mbfc, unsigned long address) 261 { 262 struct set_schib_struct *set_data; 263 int ret; 264 265 spin_lock_irq(cdev->ccwlock); 266 if (!cdev->private->cmb) { 267 ret = -ENODEV; 268 goto out; 269 } 270 set_data = kzalloc(sizeof(struct set_schib_struct), GFP_ATOMIC); 271 if (!set_data) { 272 ret = -ENOMEM; 273 goto out; 274 } 275 init_waitqueue_head(&set_data->wait); 276 kref_init(&set_data->kref); 277 set_data->mme = mme; 278 set_data->mbfc = mbfc; 279 set_data->address = address; 280 281 ret = set_schib(cdev, mme, mbfc, address); 282 if (ret != -EBUSY) 283 goto out_put; 284 285 if (cdev->private->state != DEV_STATE_ONLINE) { 286 /* if the device is not online, don't even try again */ 287 ret = -EBUSY; 288 goto out_put; 289 } 290 291 cdev->private->state = DEV_STATE_CMFCHANGE; 292 set_data->ret = CMF_PENDING; 293 cdev->private->cmb_wait = set_data; 294 295 spin_unlock_irq(cdev->ccwlock); 296 if (wait_event_interruptible(set_data->wait, 297 set_data->ret != CMF_PENDING)) { 298 spin_lock_irq(cdev->ccwlock); 299 if (set_data->ret == CMF_PENDING) { 300 set_data->ret = -ERESTARTSYS; 301 if (cdev->private->state == DEV_STATE_CMFCHANGE) 302 cdev->private->state = DEV_STATE_ONLINE; 303 } 304 spin_unlock_irq(cdev->ccwlock); 305 } 306 spin_lock_irq(cdev->ccwlock); 307 cdev->private->cmb_wait = NULL; 308 ret = set_data->ret; 309 out_put: 310 kref_put(&set_data->kref, cmf_set_schib_release); 311 out: 312 spin_unlock_irq(cdev->ccwlock); 313 return ret; 314 } 315 316 void retry_set_schib(struct ccw_device *cdev) 317 { 318 struct set_schib_struct *set_data; 319 320 set_data = cdev->private->cmb_wait; 321 if (!set_data) { 322 WARN_ON(1); 323 return; 324 } 325 kref_get(&set_data->kref); 326 set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc, 327 set_data->address); 328 wake_up(&set_data->wait); 329 kref_put(&set_data->kref, cmf_set_schib_release); 330 } 331 332 static int cmf_copy_block(struct ccw_device *cdev) 333 { 334 struct subchannel *sch; 335 void *reference_buf; 336 void *hw_block; 337 struct cmb_data *cmb_data; 338 339 sch = to_subchannel(cdev->dev.parent); 340 341 if (stsch(sch->schid, &sch->schib)) 342 return -ENODEV; 343 344 if (sch->schib.scsw.fctl & SCSW_FCTL_START_FUNC) { 345 /* Don't copy if a start function is in progress. */ 346 if ((!sch->schib.scsw.actl & SCSW_ACTL_SUSPENDED) && 347 (sch->schib.scsw.actl & 348 (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) && 349 (!sch->schib.scsw.stctl & SCSW_STCTL_SEC_STATUS)) 350 return -EBUSY; 351 } 352 cmb_data = cdev->private->cmb; 353 hw_block = cmbops->align(cmb_data->hw_block); 354 if (!memcmp(cmb_data->last_block, hw_block, cmb_data->size)) 355 /* No need to copy. */ 356 return 0; 357 reference_buf = kzalloc(cmb_data->size, GFP_ATOMIC); 358 if (!reference_buf) 359 return -ENOMEM; 360 /* Ensure consistency of block copied from hardware. */ 361 do { 362 memcpy(cmb_data->last_block, hw_block, cmb_data->size); 363 memcpy(reference_buf, hw_block, cmb_data->size); 364 } while (memcmp(cmb_data->last_block, reference_buf, cmb_data->size)); 365 cmb_data->last_update = get_clock(); 366 kfree(reference_buf); 367 return 0; 368 } 369 370 struct copy_block_struct { 371 wait_queue_head_t wait; 372 int ret; 373 struct kref kref; 374 }; 375 376 static void cmf_copy_block_release(struct kref *kref) 377 { 378 struct copy_block_struct *copy_block; 379 380 copy_block = container_of(kref, struct copy_block_struct, kref); 381 kfree(copy_block); 382 } 383 384 static int cmf_cmb_copy_wait(struct ccw_device *cdev) 385 { 386 struct copy_block_struct *copy_block; 387 int ret; 388 unsigned long flags; 389 390 spin_lock_irqsave(cdev->ccwlock, flags); 391 if (!cdev->private->cmb) { 392 ret = -ENODEV; 393 goto out; 394 } 395 copy_block = kzalloc(sizeof(struct copy_block_struct), GFP_ATOMIC); 396 if (!copy_block) { 397 ret = -ENOMEM; 398 goto out; 399 } 400 init_waitqueue_head(©_block->wait); 401 kref_init(©_block->kref); 402 403 ret = cmf_copy_block(cdev); 404 if (ret != -EBUSY) 405 goto out_put; 406 407 if (cdev->private->state != DEV_STATE_ONLINE) { 408 ret = -EBUSY; 409 goto out_put; 410 } 411 412 cdev->private->state = DEV_STATE_CMFUPDATE; 413 copy_block->ret = CMF_PENDING; 414 cdev->private->cmb_wait = copy_block; 415 416 spin_unlock_irqrestore(cdev->ccwlock, flags); 417 if (wait_event_interruptible(copy_block->wait, 418 copy_block->ret != CMF_PENDING)) { 419 spin_lock_irqsave(cdev->ccwlock, flags); 420 if (copy_block->ret == CMF_PENDING) { 421 copy_block->ret = -ERESTARTSYS; 422 if (cdev->private->state == DEV_STATE_CMFUPDATE) 423 cdev->private->state = DEV_STATE_ONLINE; 424 } 425 spin_unlock_irqrestore(cdev->ccwlock, flags); 426 } 427 spin_lock_irqsave(cdev->ccwlock, flags); 428 cdev->private->cmb_wait = NULL; 429 ret = copy_block->ret; 430 out_put: 431 kref_put(©_block->kref, cmf_copy_block_release); 432 out: 433 spin_unlock_irqrestore(cdev->ccwlock, flags); 434 return ret; 435 } 436 437 void cmf_retry_copy_block(struct ccw_device *cdev) 438 { 439 struct copy_block_struct *copy_block; 440 441 copy_block = cdev->private->cmb_wait; 442 if (!copy_block) { 443 WARN_ON(1); 444 return; 445 } 446 kref_get(©_block->kref); 447 copy_block->ret = cmf_copy_block(cdev); 448 wake_up(©_block->wait); 449 kref_put(©_block->kref, cmf_copy_block_release); 450 } 451 452 static void cmf_generic_reset(struct ccw_device *cdev) 453 { 454 struct cmb_data *cmb_data; 455 456 spin_lock_irq(cdev->ccwlock); 457 cmb_data = cdev->private->cmb; 458 if (cmb_data) { 459 memset(cmb_data->last_block, 0, cmb_data->size); 460 /* 461 * Need to reset hw block as well to make the hardware start 462 * from 0 again. 463 */ 464 memset(cmbops->align(cmb_data->hw_block), 0, cmb_data->size); 465 cmb_data->last_update = 0; 466 } 467 cdev->private->cmb_start_time = get_clock(); 468 spin_unlock_irq(cdev->ccwlock); 469 } 470 471 /** 472 * struct cmb_area - container for global cmb data 473 * 474 * @mem: pointer to CMBs (only in basic measurement mode) 475 * @list: contains a linked list of all subchannels 476 * @num_channels: number of channels to be measured 477 * @lock: protect concurrent access to @mem and @list 478 */ 479 struct cmb_area { 480 struct cmb *mem; 481 struct list_head list; 482 int num_channels; 483 spinlock_t lock; 484 }; 485 486 static struct cmb_area cmb_area = { 487 .lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock), 488 .list = LIST_HEAD_INIT(cmb_area.list), 489 .num_channels = 1024, 490 }; 491 492 /* ****** old style CMB handling ********/ 493 494 /* 495 * Basic channel measurement blocks are allocated in one contiguous 496 * block of memory, which can not be moved as long as any channel 497 * is active. Therefore, a maximum number of subchannels needs to 498 * be defined somewhere. This is a module parameter, defaulting to 499 * a resonable value of 1024, or 32 kb of memory. 500 * Current kernels don't allow kmalloc with more than 128kb, so the 501 * maximum is 4096. 502 */ 503 504 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444); 505 506 /** 507 * struct cmb - basic channel measurement block 508 * @ssch_rsch_count: number of ssch and rsch 509 * @sample_count: number of samples 510 * @device_connect_time: time of device connect 511 * @function_pending_time: time of function pending 512 * @device_disconnect_time: time of device disconnect 513 * @control_unit_queuing_time: time of control unit queuing 514 * @device_active_only_time: time of device active only 515 * @reserved: unused in basic measurement mode 516 * 517 * The measurement block as used by the hardware. The fields are described 518 * further in z/Architecture Principles of Operation, chapter 17. 519 * 520 * The cmb area made up from these blocks must be a contiguous array and may 521 * not be reallocated or freed. 522 * Only one cmb area can be present in the system. 523 */ 524 struct cmb { 525 u16 ssch_rsch_count; 526 u16 sample_count; 527 u32 device_connect_time; 528 u32 function_pending_time; 529 u32 device_disconnect_time; 530 u32 control_unit_queuing_time; 531 u32 device_active_only_time; 532 u32 reserved[2]; 533 }; 534 535 /* 536 * Insert a single device into the cmb_area list. 537 * Called with cmb_area.lock held from alloc_cmb. 538 */ 539 static int alloc_cmb_single(struct ccw_device *cdev, 540 struct cmb_data *cmb_data) 541 { 542 struct cmb *cmb; 543 struct ccw_device_private *node; 544 int ret; 545 546 spin_lock_irq(cdev->ccwlock); 547 if (!list_empty(&cdev->private->cmb_list)) { 548 ret = -EBUSY; 549 goto out; 550 } 551 552 /* 553 * Find first unused cmb in cmb_area.mem. 554 * This is a little tricky: cmb_area.list 555 * remains sorted by ->cmb->hw_data pointers. 556 */ 557 cmb = cmb_area.mem; 558 list_for_each_entry(node, &cmb_area.list, cmb_list) { 559 struct cmb_data *data; 560 data = node->cmb; 561 if ((struct cmb*)data->hw_block > cmb) 562 break; 563 cmb++; 564 } 565 if (cmb - cmb_area.mem >= cmb_area.num_channels) { 566 ret = -ENOMEM; 567 goto out; 568 } 569 570 /* insert new cmb */ 571 list_add_tail(&cdev->private->cmb_list, &node->cmb_list); 572 cmb_data->hw_block = cmb; 573 cdev->private->cmb = cmb_data; 574 ret = 0; 575 out: 576 spin_unlock_irq(cdev->ccwlock); 577 return ret; 578 } 579 580 static int alloc_cmb(struct ccw_device *cdev) 581 { 582 int ret; 583 struct cmb *mem; 584 ssize_t size; 585 struct cmb_data *cmb_data; 586 587 /* Allocate private cmb_data. */ 588 cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); 589 if (!cmb_data) 590 return -ENOMEM; 591 592 cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL); 593 if (!cmb_data->last_block) { 594 kfree(cmb_data); 595 return -ENOMEM; 596 } 597 cmb_data->size = sizeof(struct cmb); 598 spin_lock(&cmb_area.lock); 599 600 if (!cmb_area.mem) { 601 /* there is no user yet, so we need a new area */ 602 size = sizeof(struct cmb) * cmb_area.num_channels; 603 WARN_ON(!list_empty(&cmb_area.list)); 604 605 spin_unlock(&cmb_area.lock); 606 mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA, 607 get_order(size)); 608 spin_lock(&cmb_area.lock); 609 610 if (cmb_area.mem) { 611 /* ok, another thread was faster */ 612 free_pages((unsigned long)mem, get_order(size)); 613 } else if (!mem) { 614 /* no luck */ 615 printk(KERN_WARNING "cio: failed to allocate area " 616 "for measuring %d subchannels\n", 617 cmb_area.num_channels); 618 ret = -ENOMEM; 619 goto out; 620 } else { 621 /* everything ok */ 622 memset(mem, 0, size); 623 cmb_area.mem = mem; 624 cmf_activate(cmb_area.mem, 1); 625 } 626 } 627 628 /* do the actual allocation */ 629 ret = alloc_cmb_single(cdev, cmb_data); 630 out: 631 spin_unlock(&cmb_area.lock); 632 if (ret) { 633 kfree(cmb_data->last_block); 634 kfree(cmb_data); 635 } 636 return ret; 637 } 638 639 static void free_cmb(struct ccw_device *cdev) 640 { 641 struct ccw_device_private *priv; 642 struct cmb_data *cmb_data; 643 644 spin_lock(&cmb_area.lock); 645 spin_lock_irq(cdev->ccwlock); 646 647 priv = cdev->private; 648 649 if (list_empty(&priv->cmb_list)) { 650 /* already freed */ 651 goto out; 652 } 653 654 cmb_data = priv->cmb; 655 priv->cmb = NULL; 656 if (cmb_data) 657 kfree(cmb_data->last_block); 658 kfree(cmb_data); 659 list_del_init(&priv->cmb_list); 660 661 if (list_empty(&cmb_area.list)) { 662 ssize_t size; 663 size = sizeof(struct cmb) * cmb_area.num_channels; 664 cmf_activate(NULL, 0); 665 free_pages((unsigned long)cmb_area.mem, get_order(size)); 666 cmb_area.mem = NULL; 667 } 668 out: 669 spin_unlock_irq(cdev->ccwlock); 670 spin_unlock(&cmb_area.lock); 671 } 672 673 static int set_cmb(struct ccw_device *cdev, u32 mme) 674 { 675 u16 offset; 676 struct cmb_data *cmb_data; 677 unsigned long flags; 678 679 spin_lock_irqsave(cdev->ccwlock, flags); 680 if (!cdev->private->cmb) { 681 spin_unlock_irqrestore(cdev->ccwlock, flags); 682 return -EINVAL; 683 } 684 cmb_data = cdev->private->cmb; 685 offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0; 686 spin_unlock_irqrestore(cdev->ccwlock, flags); 687 688 return set_schib_wait(cdev, mme, 0, offset); 689 } 690 691 static u64 read_cmb(struct ccw_device *cdev, int index) 692 { 693 struct cmb *cmb; 694 u32 val; 695 int ret; 696 unsigned long flags; 697 698 ret = cmf_cmb_copy_wait(cdev); 699 if (ret < 0) 700 return 0; 701 702 spin_lock_irqsave(cdev->ccwlock, flags); 703 if (!cdev->private->cmb) { 704 ret = 0; 705 goto out; 706 } 707 cmb = ((struct cmb_data *)cdev->private->cmb)->last_block; 708 709 switch (index) { 710 case cmb_ssch_rsch_count: 711 ret = cmb->ssch_rsch_count; 712 goto out; 713 case cmb_sample_count: 714 ret = cmb->sample_count; 715 goto out; 716 case cmb_device_connect_time: 717 val = cmb->device_connect_time; 718 break; 719 case cmb_function_pending_time: 720 val = cmb->function_pending_time; 721 break; 722 case cmb_device_disconnect_time: 723 val = cmb->device_disconnect_time; 724 break; 725 case cmb_control_unit_queuing_time: 726 val = cmb->control_unit_queuing_time; 727 break; 728 case cmb_device_active_only_time: 729 val = cmb->device_active_only_time; 730 break; 731 default: 732 ret = 0; 733 goto out; 734 } 735 ret = time_to_avg_nsec(val, cmb->sample_count); 736 out: 737 spin_unlock_irqrestore(cdev->ccwlock, flags); 738 return ret; 739 } 740 741 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data) 742 { 743 struct cmb *cmb; 744 struct cmb_data *cmb_data; 745 u64 time; 746 unsigned long flags; 747 int ret; 748 749 ret = cmf_cmb_copy_wait(cdev); 750 if (ret < 0) 751 return ret; 752 spin_lock_irqsave(cdev->ccwlock, flags); 753 cmb_data = cdev->private->cmb; 754 if (!cmb_data) { 755 ret = -ENODEV; 756 goto out; 757 } 758 if (cmb_data->last_update == 0) { 759 ret = -EAGAIN; 760 goto out; 761 } 762 cmb = cmb_data->last_block; 763 time = cmb_data->last_update - cdev->private->cmb_start_time; 764 765 memset(data, 0, sizeof(struct cmbdata)); 766 767 /* we only know values before device_busy_time */ 768 data->size = offsetof(struct cmbdata, device_busy_time); 769 770 /* convert to nanoseconds */ 771 data->elapsed_time = (time * 1000) >> 12; 772 773 /* copy data to new structure */ 774 data->ssch_rsch_count = cmb->ssch_rsch_count; 775 data->sample_count = cmb->sample_count; 776 777 /* time fields are converted to nanoseconds while copying */ 778 data->device_connect_time = time_to_nsec(cmb->device_connect_time); 779 data->function_pending_time = time_to_nsec(cmb->function_pending_time); 780 data->device_disconnect_time = 781 time_to_nsec(cmb->device_disconnect_time); 782 data->control_unit_queuing_time 783 = time_to_nsec(cmb->control_unit_queuing_time); 784 data->device_active_only_time 785 = time_to_nsec(cmb->device_active_only_time); 786 ret = 0; 787 out: 788 spin_unlock_irqrestore(cdev->ccwlock, flags); 789 return ret; 790 } 791 792 static void reset_cmb(struct ccw_device *cdev) 793 { 794 cmf_generic_reset(cdev); 795 } 796 797 static void * align_cmb(void *area) 798 { 799 return area; 800 } 801 802 static struct attribute_group cmf_attr_group; 803 804 static struct cmb_operations cmbops_basic = { 805 .alloc = alloc_cmb, 806 .free = free_cmb, 807 .set = set_cmb, 808 .read = read_cmb, 809 .readall = readall_cmb, 810 .reset = reset_cmb, 811 .align = align_cmb, 812 .attr_group = &cmf_attr_group, 813 }; 814 815 /* ******** extended cmb handling ********/ 816 817 /** 818 * struct cmbe - extended channel measurement block 819 * @ssch_rsch_count: number of ssch and rsch 820 * @sample_count: number of samples 821 * @device_connect_time: time of device connect 822 * @function_pending_time: time of function pending 823 * @device_disconnect_time: time of device disconnect 824 * @control_unit_queuing_time: time of control unit queuing 825 * @device_active_only_time: time of device active only 826 * @device_busy_time: time of device busy 827 * @initial_command_response_time: initial command response time 828 * @reserved: unused 829 * 830 * The measurement block as used by the hardware. May be in any 64 bit physical 831 * location. 832 * The fields are described further in z/Architecture Principles of Operation, 833 * third edition, chapter 17. 834 */ 835 struct cmbe { 836 u32 ssch_rsch_count; 837 u32 sample_count; 838 u32 device_connect_time; 839 u32 function_pending_time; 840 u32 device_disconnect_time; 841 u32 control_unit_queuing_time; 842 u32 device_active_only_time; 843 u32 device_busy_time; 844 u32 initial_command_response_time; 845 u32 reserved[7]; 846 }; 847 848 /* 849 * kmalloc only guarantees 8 byte alignment, but we need cmbe 850 * pointers to be naturally aligned. Make sure to allocate 851 * enough space for two cmbes. 852 */ 853 static inline struct cmbe *cmbe_align(struct cmbe *c) 854 { 855 unsigned long addr; 856 addr = ((unsigned long)c + sizeof (struct cmbe) - sizeof(long)) & 857 ~(sizeof (struct cmbe) - sizeof(long)); 858 return (struct cmbe*)addr; 859 } 860 861 static int alloc_cmbe(struct ccw_device *cdev) 862 { 863 struct cmbe *cmbe; 864 struct cmb_data *cmb_data; 865 int ret; 866 867 cmbe = kzalloc (sizeof (*cmbe) * 2, GFP_KERNEL); 868 if (!cmbe) 869 return -ENOMEM; 870 cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); 871 if (!cmb_data) { 872 ret = -ENOMEM; 873 goto out_free; 874 } 875 cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL); 876 if (!cmb_data->last_block) { 877 ret = -ENOMEM; 878 goto out_free; 879 } 880 cmb_data->size = sizeof(struct cmbe); 881 spin_lock_irq(cdev->ccwlock); 882 if (cdev->private->cmb) { 883 spin_unlock_irq(cdev->ccwlock); 884 ret = -EBUSY; 885 goto out_free; 886 } 887 cmb_data->hw_block = cmbe; 888 cdev->private->cmb = cmb_data; 889 spin_unlock_irq(cdev->ccwlock); 890 891 /* activate global measurement if this is the first channel */ 892 spin_lock(&cmb_area.lock); 893 if (list_empty(&cmb_area.list)) 894 cmf_activate(NULL, 1); 895 list_add_tail(&cdev->private->cmb_list, &cmb_area.list); 896 spin_unlock(&cmb_area.lock); 897 898 return 0; 899 out_free: 900 if (cmb_data) 901 kfree(cmb_data->last_block); 902 kfree(cmb_data); 903 kfree(cmbe); 904 return ret; 905 } 906 907 static void free_cmbe(struct ccw_device *cdev) 908 { 909 struct cmb_data *cmb_data; 910 911 spin_lock_irq(cdev->ccwlock); 912 cmb_data = cdev->private->cmb; 913 cdev->private->cmb = NULL; 914 if (cmb_data) 915 kfree(cmb_data->last_block); 916 kfree(cmb_data); 917 spin_unlock_irq(cdev->ccwlock); 918 919 /* deactivate global measurement if this is the last channel */ 920 spin_lock(&cmb_area.lock); 921 list_del_init(&cdev->private->cmb_list); 922 if (list_empty(&cmb_area.list)) 923 cmf_activate(NULL, 0); 924 spin_unlock(&cmb_area.lock); 925 } 926 927 static int set_cmbe(struct ccw_device *cdev, u32 mme) 928 { 929 unsigned long mba; 930 struct cmb_data *cmb_data; 931 unsigned long flags; 932 933 spin_lock_irqsave(cdev->ccwlock, flags); 934 if (!cdev->private->cmb) { 935 spin_unlock_irqrestore(cdev->ccwlock, flags); 936 return -EINVAL; 937 } 938 cmb_data = cdev->private->cmb; 939 mba = mme ? (unsigned long) cmbe_align(cmb_data->hw_block) : 0; 940 spin_unlock_irqrestore(cdev->ccwlock, flags); 941 942 return set_schib_wait(cdev, mme, 1, mba); 943 } 944 945 946 static u64 read_cmbe(struct ccw_device *cdev, int index) 947 { 948 struct cmbe *cmb; 949 struct cmb_data *cmb_data; 950 u32 val; 951 int ret; 952 unsigned long flags; 953 954 ret = cmf_cmb_copy_wait(cdev); 955 if (ret < 0) 956 return 0; 957 958 spin_lock_irqsave(cdev->ccwlock, flags); 959 cmb_data = cdev->private->cmb; 960 if (!cmb_data) { 961 ret = 0; 962 goto out; 963 } 964 cmb = cmb_data->last_block; 965 966 switch (index) { 967 case cmb_ssch_rsch_count: 968 ret = cmb->ssch_rsch_count; 969 goto out; 970 case cmb_sample_count: 971 ret = cmb->sample_count; 972 goto out; 973 case cmb_device_connect_time: 974 val = cmb->device_connect_time; 975 break; 976 case cmb_function_pending_time: 977 val = cmb->function_pending_time; 978 break; 979 case cmb_device_disconnect_time: 980 val = cmb->device_disconnect_time; 981 break; 982 case cmb_control_unit_queuing_time: 983 val = cmb->control_unit_queuing_time; 984 break; 985 case cmb_device_active_only_time: 986 val = cmb->device_active_only_time; 987 break; 988 case cmb_device_busy_time: 989 val = cmb->device_busy_time; 990 break; 991 case cmb_initial_command_response_time: 992 val = cmb->initial_command_response_time; 993 break; 994 default: 995 ret = 0; 996 goto out; 997 } 998 ret = time_to_avg_nsec(val, cmb->sample_count); 999 out: 1000 spin_unlock_irqrestore(cdev->ccwlock, flags); 1001 return ret; 1002 } 1003 1004 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data) 1005 { 1006 struct cmbe *cmb; 1007 struct cmb_data *cmb_data; 1008 u64 time; 1009 unsigned long flags; 1010 int ret; 1011 1012 ret = cmf_cmb_copy_wait(cdev); 1013 if (ret < 0) 1014 return ret; 1015 spin_lock_irqsave(cdev->ccwlock, flags); 1016 cmb_data = cdev->private->cmb; 1017 if (!cmb_data) { 1018 ret = -ENODEV; 1019 goto out; 1020 } 1021 if (cmb_data->last_update == 0) { 1022 ret = -EAGAIN; 1023 goto out; 1024 } 1025 time = cmb_data->last_update - cdev->private->cmb_start_time; 1026 1027 memset (data, 0, sizeof(struct cmbdata)); 1028 1029 /* we only know values before device_busy_time */ 1030 data->size = offsetof(struct cmbdata, device_busy_time); 1031 1032 /* conver to nanoseconds */ 1033 data->elapsed_time = (time * 1000) >> 12; 1034 1035 cmb = cmb_data->last_block; 1036 /* copy data to new structure */ 1037 data->ssch_rsch_count = cmb->ssch_rsch_count; 1038 data->sample_count = cmb->sample_count; 1039 1040 /* time fields are converted to nanoseconds while copying */ 1041 data->device_connect_time = time_to_nsec(cmb->device_connect_time); 1042 data->function_pending_time = time_to_nsec(cmb->function_pending_time); 1043 data->device_disconnect_time = 1044 time_to_nsec(cmb->device_disconnect_time); 1045 data->control_unit_queuing_time 1046 = time_to_nsec(cmb->control_unit_queuing_time); 1047 data->device_active_only_time 1048 = time_to_nsec(cmb->device_active_only_time); 1049 data->device_busy_time = time_to_nsec(cmb->device_busy_time); 1050 data->initial_command_response_time 1051 = time_to_nsec(cmb->initial_command_response_time); 1052 1053 ret = 0; 1054 out: 1055 spin_unlock_irqrestore(cdev->ccwlock, flags); 1056 return ret; 1057 } 1058 1059 static void reset_cmbe(struct ccw_device *cdev) 1060 { 1061 cmf_generic_reset(cdev); 1062 } 1063 1064 static void * align_cmbe(void *area) 1065 { 1066 return cmbe_align(area); 1067 } 1068 1069 static struct attribute_group cmf_attr_group_ext; 1070 1071 static struct cmb_operations cmbops_extended = { 1072 .alloc = alloc_cmbe, 1073 .free = free_cmbe, 1074 .set = set_cmbe, 1075 .read = read_cmbe, 1076 .readall = readall_cmbe, 1077 .reset = reset_cmbe, 1078 .align = align_cmbe, 1079 .attr_group = &cmf_attr_group_ext, 1080 }; 1081 1082 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx) 1083 { 1084 return sprintf(buf, "%lld\n", 1085 (unsigned long long) cmf_read(to_ccwdev(dev), idx)); 1086 } 1087 1088 static ssize_t cmb_show_avg_sample_interval(struct device *dev, 1089 struct device_attribute *attr, 1090 char *buf) 1091 { 1092 struct ccw_device *cdev; 1093 long interval; 1094 unsigned long count; 1095 struct cmb_data *cmb_data; 1096 1097 cdev = to_ccwdev(dev); 1098 count = cmf_read(cdev, cmb_sample_count); 1099 spin_lock_irq(cdev->ccwlock); 1100 cmb_data = cdev->private->cmb; 1101 if (count) { 1102 interval = cmb_data->last_update - 1103 cdev->private->cmb_start_time; 1104 interval = (interval * 1000) >> 12; 1105 interval /= count; 1106 } else 1107 interval = -1; 1108 spin_unlock_irq(cdev->ccwlock); 1109 return sprintf(buf, "%ld\n", interval); 1110 } 1111 1112 static ssize_t cmb_show_avg_utilization(struct device *dev, 1113 struct device_attribute *attr, 1114 char *buf) 1115 { 1116 struct cmbdata data; 1117 u64 utilization; 1118 unsigned long t, u; 1119 int ret; 1120 1121 ret = cmf_readall(to_ccwdev(dev), &data); 1122 if (ret == -EAGAIN || ret == -ENODEV) 1123 /* No data (yet/currently) available to use for calculation. */ 1124 return sprintf(buf, "n/a\n"); 1125 else if (ret) 1126 return ret; 1127 1128 utilization = data.device_connect_time + 1129 data.function_pending_time + 1130 data.device_disconnect_time; 1131 1132 /* shift to avoid long long division */ 1133 while (-1ul < (data.elapsed_time | utilization)) { 1134 utilization >>= 8; 1135 data.elapsed_time >>= 8; 1136 } 1137 1138 /* calculate value in 0.1 percent units */ 1139 t = (unsigned long) data.elapsed_time / 1000; 1140 u = (unsigned long) utilization / t; 1141 1142 return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10); 1143 } 1144 1145 #define cmf_attr(name) \ 1146 static ssize_t show_##name(struct device *dev, \ 1147 struct device_attribute *attr, char *buf) \ 1148 { return cmb_show_attr((dev), buf, cmb_##name); } \ 1149 static DEVICE_ATTR(name, 0444, show_##name, NULL); 1150 1151 #define cmf_attr_avg(name) \ 1152 static ssize_t show_avg_##name(struct device *dev, \ 1153 struct device_attribute *attr, char *buf) \ 1154 { return cmb_show_attr((dev), buf, cmb_##name); } \ 1155 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL); 1156 1157 cmf_attr(ssch_rsch_count); 1158 cmf_attr(sample_count); 1159 cmf_attr_avg(device_connect_time); 1160 cmf_attr_avg(function_pending_time); 1161 cmf_attr_avg(device_disconnect_time); 1162 cmf_attr_avg(control_unit_queuing_time); 1163 cmf_attr_avg(device_active_only_time); 1164 cmf_attr_avg(device_busy_time); 1165 cmf_attr_avg(initial_command_response_time); 1166 1167 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval, 1168 NULL); 1169 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL); 1170 1171 static struct attribute *cmf_attributes[] = { 1172 &dev_attr_avg_sample_interval.attr, 1173 &dev_attr_avg_utilization.attr, 1174 &dev_attr_ssch_rsch_count.attr, 1175 &dev_attr_sample_count.attr, 1176 &dev_attr_avg_device_connect_time.attr, 1177 &dev_attr_avg_function_pending_time.attr, 1178 &dev_attr_avg_device_disconnect_time.attr, 1179 &dev_attr_avg_control_unit_queuing_time.attr, 1180 &dev_attr_avg_device_active_only_time.attr, 1181 NULL, 1182 }; 1183 1184 static struct attribute_group cmf_attr_group = { 1185 .name = "cmf", 1186 .attrs = cmf_attributes, 1187 }; 1188 1189 static struct attribute *cmf_attributes_ext[] = { 1190 &dev_attr_avg_sample_interval.attr, 1191 &dev_attr_avg_utilization.attr, 1192 &dev_attr_ssch_rsch_count.attr, 1193 &dev_attr_sample_count.attr, 1194 &dev_attr_avg_device_connect_time.attr, 1195 &dev_attr_avg_function_pending_time.attr, 1196 &dev_attr_avg_device_disconnect_time.attr, 1197 &dev_attr_avg_control_unit_queuing_time.attr, 1198 &dev_attr_avg_device_active_only_time.attr, 1199 &dev_attr_avg_device_busy_time.attr, 1200 &dev_attr_avg_initial_command_response_time.attr, 1201 NULL, 1202 }; 1203 1204 static struct attribute_group cmf_attr_group_ext = { 1205 .name = "cmf", 1206 .attrs = cmf_attributes_ext, 1207 }; 1208 1209 static ssize_t cmb_enable_show(struct device *dev, 1210 struct device_attribute *attr, 1211 char *buf) 1212 { 1213 return sprintf(buf, "%d\n", to_ccwdev(dev)->private->cmb ? 1 : 0); 1214 } 1215 1216 static ssize_t cmb_enable_store(struct device *dev, 1217 struct device_attribute *attr, const char *buf, 1218 size_t c) 1219 { 1220 struct ccw_device *cdev; 1221 int ret; 1222 1223 cdev = to_ccwdev(dev); 1224 1225 switch (buf[0]) { 1226 case '0': 1227 ret = disable_cmf(cdev); 1228 if (ret) 1229 dev_info(&cdev->dev, "disable_cmf failed (%d)\n", ret); 1230 break; 1231 case '1': 1232 ret = enable_cmf(cdev); 1233 if (ret && ret != -EBUSY) 1234 dev_info(&cdev->dev, "enable_cmf failed (%d)\n", ret); 1235 break; 1236 } 1237 1238 return c; 1239 } 1240 1241 DEVICE_ATTR(cmb_enable, 0644, cmb_enable_show, cmb_enable_store); 1242 1243 /** 1244 * enable_cmf() - switch on the channel measurement for a specific device 1245 * @cdev: The ccw device to be enabled 1246 * 1247 * Returns %0 for success or a negative error value. 1248 * 1249 * Context: 1250 * non-atomic 1251 */ 1252 int enable_cmf(struct ccw_device *cdev) 1253 { 1254 int ret; 1255 1256 ret = cmbops->alloc(cdev); 1257 cmbops->reset(cdev); 1258 if (ret) 1259 return ret; 1260 ret = cmbops->set(cdev, 2); 1261 if (ret) { 1262 cmbops->free(cdev); 1263 return ret; 1264 } 1265 ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group); 1266 if (!ret) 1267 return 0; 1268 cmbops->set(cdev, 0); //FIXME: this can fail 1269 cmbops->free(cdev); 1270 return ret; 1271 } 1272 1273 /** 1274 * disable_cmf() - switch off the channel measurement for a specific device 1275 * @cdev: The ccw device to be disabled 1276 * 1277 * Returns %0 for success or a negative error value. 1278 * 1279 * Context: 1280 * non-atomic 1281 */ 1282 int disable_cmf(struct ccw_device *cdev) 1283 { 1284 int ret; 1285 1286 ret = cmbops->set(cdev, 0); 1287 if (ret) 1288 return ret; 1289 cmbops->free(cdev); 1290 sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group); 1291 return ret; 1292 } 1293 1294 /** 1295 * cmf_read() - read one value from the current channel measurement block 1296 * @cdev: the channel to be read 1297 * @index: the index of the value to be read 1298 * 1299 * Returns the value read or %0 if the value cannot be read. 1300 * 1301 * Context: 1302 * any 1303 */ 1304 u64 cmf_read(struct ccw_device *cdev, int index) 1305 { 1306 return cmbops->read(cdev, index); 1307 } 1308 1309 /** 1310 * cmf_readall() - read the current channel measurement block 1311 * @cdev: the channel to be read 1312 * @data: a pointer to a data block that will be filled 1313 * 1314 * Returns %0 on success, a negative error value otherwise. 1315 * 1316 * Context: 1317 * any 1318 */ 1319 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data) 1320 { 1321 return cmbops->readall(cdev, data); 1322 } 1323 1324 /* Reenable cmf when a disconnected device becomes available again. */ 1325 int cmf_reenable(struct ccw_device *cdev) 1326 { 1327 cmbops->reset(cdev); 1328 return cmbops->set(cdev, 2); 1329 } 1330 1331 static int __init init_cmf(void) 1332 { 1333 char *format_string; 1334 char *detect_string = "parameter"; 1335 1336 /* 1337 * If the user did not give a parameter, see if we are running on a 1338 * machine supporting extended measurement blocks, otherwise fall back 1339 * to basic mode. 1340 */ 1341 if (format == CMF_AUTODETECT) { 1342 if (!css_characteristics_avail || 1343 !css_general_characteristics.ext_mb) { 1344 format = CMF_BASIC; 1345 } else { 1346 format = CMF_EXTENDED; 1347 } 1348 detect_string = "autodetected"; 1349 } else { 1350 detect_string = "parameter"; 1351 } 1352 1353 switch (format) { 1354 case CMF_BASIC: 1355 format_string = "basic"; 1356 cmbops = &cmbops_basic; 1357 break; 1358 case CMF_EXTENDED: 1359 format_string = "extended"; 1360 cmbops = &cmbops_extended; 1361 break; 1362 default: 1363 printk(KERN_ERR "cio: Invalid format %d for channel " 1364 "measurement facility\n", format); 1365 return 1; 1366 } 1367 1368 printk(KERN_INFO "cio: Channel measurement facility using %s " 1369 "format (%s)\n", format_string, detect_string); 1370 return 0; 1371 } 1372 1373 module_init(init_cmf); 1374 1375 1376 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>"); 1377 MODULE_LICENSE("GPL"); 1378 MODULE_DESCRIPTION("channel measurement facility base driver\n" 1379 "Copyright 2003 IBM Corporation\n"); 1380 1381 EXPORT_SYMBOL_GPL(enable_cmf); 1382 EXPORT_SYMBOL_GPL(disable_cmf); 1383 EXPORT_SYMBOL_GPL(cmf_read); 1384 EXPORT_SYMBOL_GPL(cmf_readall); 1385