xref: /openbmc/linux/drivers/s390/cio/cmf.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * linux/drivers/s390/cio/cmf.c
3  *
4  * Linux on zSeries Channel Measurement Facility support
5  *
6  * Copyright 2000,2006 IBM Corporation
7  *
8  * Authors: Arnd Bergmann <arndb@de.ibm.com>
9  *	    Cornelia Huck <cornelia.huck@de.ibm.com>
10  *
11  * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 
28 #include <linux/bootmem.h>
29 #include <linux/device.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/slab.h>
35 #include <linux/timex.h>	/* get_clock() */
36 
37 #include <asm/ccwdev.h>
38 #include <asm/cio.h>
39 #include <asm/cmb.h>
40 #include <asm/div64.h>
41 
42 #include "cio.h"
43 #include "css.h"
44 #include "device.h"
45 #include "ioasm.h"
46 #include "chsc.h"
47 
48 /*
49  * parameter to enable cmf during boot, possible uses are:
50  *  "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be
51  *               used on any subchannel
52  *  "s390cmf=<num>" -- enable cmf and allocate enough memory to measure
53  *                     <num> subchannel, where <num> is an integer
54  *                     between 1 and 65535, default is 1024
55  */
56 #define ARGSTRING "s390cmf"
57 
58 /* indices for READCMB */
59 enum cmb_index {
60  /* basic and exended format: */
61 	cmb_ssch_rsch_count,
62 	cmb_sample_count,
63 	cmb_device_connect_time,
64 	cmb_function_pending_time,
65 	cmb_device_disconnect_time,
66 	cmb_control_unit_queuing_time,
67 	cmb_device_active_only_time,
68  /* extended format only: */
69 	cmb_device_busy_time,
70 	cmb_initial_command_response_time,
71 };
72 
73 /**
74  * enum cmb_format - types of supported measurement block formats
75  *
76  * @CMF_BASIC:      traditional channel measurement blocks supported
77  *		    by all machines that we run on
78  * @CMF_EXTENDED:   improved format that was introduced with the z990
79  *		    machine
80  * @CMF_AUTODETECT: default: use extended format when running on a machine
81  *		    supporting extended format, otherwise fall back to
82  *		    basic format
83  */
84 enum cmb_format {
85 	CMF_BASIC,
86 	CMF_EXTENDED,
87 	CMF_AUTODETECT = -1,
88 };
89 
90 /*
91  * format - actual format for all measurement blocks
92  *
93  * The format module parameter can be set to a value of 0 (zero)
94  * or 1, indicating basic or extended format as described for
95  * enum cmb_format.
96  */
97 static int format = CMF_AUTODETECT;
98 module_param(format, bool, 0444);
99 
100 /**
101  * struct cmb_operations - functions to use depending on cmb_format
102  *
103  * Most of these functions operate on a struct ccw_device. There is only
104  * one instance of struct cmb_operations because the format of the measurement
105  * data is guaranteed to be the same for every ccw_device.
106  *
107  * @alloc:	allocate memory for a channel measurement block,
108  *		either with the help of a special pool or with kmalloc
109  * @free:	free memory allocated with @alloc
110  * @set:	enable or disable measurement
111  * @read:	read a measurement entry at an index
112  * @readall:	read a measurement block in a common format
113  * @reset:	clear the data in the associated measurement block and
114  *		reset its time stamp
115  * @align:	align an allocated block so that the hardware can use it
116  */
117 struct cmb_operations {
118 	int  (*alloc)  (struct ccw_device *);
119 	void (*free)   (struct ccw_device *);
120 	int  (*set)    (struct ccw_device *, u32);
121 	u64  (*read)   (struct ccw_device *, int);
122 	int  (*readall)(struct ccw_device *, struct cmbdata *);
123 	void (*reset)  (struct ccw_device *);
124 	void *(*align) (void *);
125 /* private: */
126 	struct attribute_group *attr_group;
127 };
128 static struct cmb_operations *cmbops;
129 
130 struct cmb_data {
131 	void *hw_block;   /* Pointer to block updated by hardware */
132 	void *last_block; /* Last changed block copied from hardware block */
133 	int size;	  /* Size of hw_block and last_block */
134 	unsigned long long last_update;  /* when last_block was updated */
135 };
136 
137 /*
138  * Our user interface is designed in terms of nanoseconds,
139  * while the hardware measures total times in its own
140  * unit.
141  */
142 static inline u64 time_to_nsec(u32 value)
143 {
144 	return ((u64)value) * 128000ull;
145 }
146 
147 /*
148  * Users are usually interested in average times,
149  * not accumulated time.
150  * This also helps us with atomicity problems
151  * when reading sinlge values.
152  */
153 static inline u64 time_to_avg_nsec(u32 value, u32 count)
154 {
155 	u64 ret;
156 
157 	/* no samples yet, avoid division by 0 */
158 	if (count == 0)
159 		return 0;
160 
161 	/* value comes in units of 128 µsec */
162 	ret = time_to_nsec(value);
163 	do_div(ret, count);
164 
165 	return ret;
166 }
167 
168 /*
169  * Activate or deactivate the channel monitor. When area is NULL,
170  * the monitor is deactivated. The channel monitor needs to
171  * be active in order to measure subchannels, which also need
172  * to be enabled.
173  */
174 static inline void cmf_activate(void *area, unsigned int onoff)
175 {
176 	register void * __gpr2 asm("2");
177 	register long __gpr1 asm("1");
178 
179 	__gpr2 = area;
180 	__gpr1 = onoff ? 2 : 0;
181 	/* activate channel measurement */
182 	asm("schm" : : "d" (__gpr2), "d" (__gpr1) );
183 }
184 
185 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc,
186 		     unsigned long address)
187 {
188 	int ret;
189 	int retry;
190 	struct subchannel *sch;
191 	struct schib *schib;
192 
193 	sch = to_subchannel(cdev->dev.parent);
194 	schib = &sch->schib;
195 	/* msch can silently fail, so do it again if necessary */
196 	for (retry = 0; retry < 3; retry++) {
197 		/* prepare schib */
198 		stsch(sch->schid, schib);
199 		schib->pmcw.mme  = mme;
200 		schib->pmcw.mbfc = mbfc;
201 		/* address can be either a block address or a block index */
202 		if (mbfc)
203 			schib->mba = address;
204 		else
205 			schib->pmcw.mbi = address;
206 
207 		/* try to submit it */
208 		switch(ret = msch_err(sch->schid, schib)) {
209 			case 0:
210 				break;
211 			case 1:
212 			case 2: /* in I/O or status pending */
213 				ret = -EBUSY;
214 				break;
215 			case 3: /* subchannel is no longer valid */
216 				ret = -ENODEV;
217 				break;
218 			default: /* msch caught an exception */
219 				ret = -EINVAL;
220 				break;
221 		}
222 		stsch(sch->schid, schib); /* restore the schib */
223 
224 		if (ret)
225 			break;
226 
227 		/* check if it worked */
228 		if (schib->pmcw.mme  == mme &&
229 		    schib->pmcw.mbfc == mbfc &&
230 		    (mbfc ? (schib->mba == address)
231 			  : (schib->pmcw.mbi == address)))
232 			return 0;
233 
234 		ret = -EINVAL;
235 	}
236 
237 	return ret;
238 }
239 
240 struct set_schib_struct {
241 	u32 mme;
242 	int mbfc;
243 	unsigned long address;
244 	wait_queue_head_t wait;
245 	int ret;
246 	struct kref kref;
247 };
248 
249 static void cmf_set_schib_release(struct kref *kref)
250 {
251 	struct set_schib_struct *set_data;
252 
253 	set_data = container_of(kref, struct set_schib_struct, kref);
254 	kfree(set_data);
255 }
256 
257 #define CMF_PENDING 1
258 
259 static int set_schib_wait(struct ccw_device *cdev, u32 mme,
260 				int mbfc, unsigned long address)
261 {
262 	struct set_schib_struct *set_data;
263 	int ret;
264 
265 	spin_lock_irq(cdev->ccwlock);
266 	if (!cdev->private->cmb) {
267 		ret = -ENODEV;
268 		goto out;
269 	}
270 	set_data = kzalloc(sizeof(struct set_schib_struct), GFP_ATOMIC);
271 	if (!set_data) {
272 		ret = -ENOMEM;
273 		goto out;
274 	}
275 	init_waitqueue_head(&set_data->wait);
276 	kref_init(&set_data->kref);
277 	set_data->mme = mme;
278 	set_data->mbfc = mbfc;
279 	set_data->address = address;
280 
281 	ret = set_schib(cdev, mme, mbfc, address);
282 	if (ret != -EBUSY)
283 		goto out_put;
284 
285 	if (cdev->private->state != DEV_STATE_ONLINE) {
286 		/* if the device is not online, don't even try again */
287 		ret = -EBUSY;
288 		goto out_put;
289 	}
290 
291 	cdev->private->state = DEV_STATE_CMFCHANGE;
292 	set_data->ret = CMF_PENDING;
293 	cdev->private->cmb_wait = set_data;
294 
295 	spin_unlock_irq(cdev->ccwlock);
296 	if (wait_event_interruptible(set_data->wait,
297 				     set_data->ret != CMF_PENDING)) {
298 		spin_lock_irq(cdev->ccwlock);
299 		if (set_data->ret == CMF_PENDING) {
300 			set_data->ret = -ERESTARTSYS;
301 			if (cdev->private->state == DEV_STATE_CMFCHANGE)
302 				cdev->private->state = DEV_STATE_ONLINE;
303 		}
304 		spin_unlock_irq(cdev->ccwlock);
305 	}
306 	spin_lock_irq(cdev->ccwlock);
307 	cdev->private->cmb_wait = NULL;
308 	ret = set_data->ret;
309 out_put:
310 	kref_put(&set_data->kref, cmf_set_schib_release);
311 out:
312 	spin_unlock_irq(cdev->ccwlock);
313 	return ret;
314 }
315 
316 void retry_set_schib(struct ccw_device *cdev)
317 {
318 	struct set_schib_struct *set_data;
319 
320 	set_data = cdev->private->cmb_wait;
321 	if (!set_data) {
322 		WARN_ON(1);
323 		return;
324 	}
325 	kref_get(&set_data->kref);
326 	set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc,
327 				  set_data->address);
328 	wake_up(&set_data->wait);
329 	kref_put(&set_data->kref, cmf_set_schib_release);
330 }
331 
332 static int cmf_copy_block(struct ccw_device *cdev)
333 {
334 	struct subchannel *sch;
335 	void *reference_buf;
336 	void *hw_block;
337 	struct cmb_data *cmb_data;
338 
339 	sch = to_subchannel(cdev->dev.parent);
340 
341 	if (stsch(sch->schid, &sch->schib))
342 		return -ENODEV;
343 
344 	if (sch->schib.scsw.fctl & SCSW_FCTL_START_FUNC) {
345 		/* Don't copy if a start function is in progress. */
346 		if ((!sch->schib.scsw.actl & SCSW_ACTL_SUSPENDED) &&
347 		    (sch->schib.scsw.actl &
348 		     (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) &&
349 		    (!sch->schib.scsw.stctl & SCSW_STCTL_SEC_STATUS))
350 			return -EBUSY;
351 	}
352 	cmb_data = cdev->private->cmb;
353 	hw_block = cmbops->align(cmb_data->hw_block);
354 	if (!memcmp(cmb_data->last_block, hw_block, cmb_data->size))
355 		/* No need to copy. */
356 		return 0;
357 	reference_buf = kzalloc(cmb_data->size, GFP_ATOMIC);
358 	if (!reference_buf)
359 		return -ENOMEM;
360 	/* Ensure consistency of block copied from hardware. */
361 	do {
362 		memcpy(cmb_data->last_block, hw_block, cmb_data->size);
363 		memcpy(reference_buf, hw_block, cmb_data->size);
364 	} while (memcmp(cmb_data->last_block, reference_buf, cmb_data->size));
365 	cmb_data->last_update = get_clock();
366 	kfree(reference_buf);
367 	return 0;
368 }
369 
370 struct copy_block_struct {
371 	wait_queue_head_t wait;
372 	int ret;
373 	struct kref kref;
374 };
375 
376 static void cmf_copy_block_release(struct kref *kref)
377 {
378 	struct copy_block_struct *copy_block;
379 
380 	copy_block = container_of(kref, struct copy_block_struct, kref);
381 	kfree(copy_block);
382 }
383 
384 static int cmf_cmb_copy_wait(struct ccw_device *cdev)
385 {
386 	struct copy_block_struct *copy_block;
387 	int ret;
388 	unsigned long flags;
389 
390 	spin_lock_irqsave(cdev->ccwlock, flags);
391 	if (!cdev->private->cmb) {
392 		ret = -ENODEV;
393 		goto out;
394 	}
395 	copy_block = kzalloc(sizeof(struct copy_block_struct), GFP_ATOMIC);
396 	if (!copy_block) {
397 		ret = -ENOMEM;
398 		goto out;
399 	}
400 	init_waitqueue_head(&copy_block->wait);
401 	kref_init(&copy_block->kref);
402 
403 	ret = cmf_copy_block(cdev);
404 	if (ret != -EBUSY)
405 		goto out_put;
406 
407 	if (cdev->private->state != DEV_STATE_ONLINE) {
408 		ret = -EBUSY;
409 		goto out_put;
410 	}
411 
412 	cdev->private->state = DEV_STATE_CMFUPDATE;
413 	copy_block->ret = CMF_PENDING;
414 	cdev->private->cmb_wait = copy_block;
415 
416 	spin_unlock_irqrestore(cdev->ccwlock, flags);
417 	if (wait_event_interruptible(copy_block->wait,
418 				     copy_block->ret != CMF_PENDING)) {
419 		spin_lock_irqsave(cdev->ccwlock, flags);
420 		if (copy_block->ret == CMF_PENDING) {
421 			copy_block->ret = -ERESTARTSYS;
422 			if (cdev->private->state == DEV_STATE_CMFUPDATE)
423 				cdev->private->state = DEV_STATE_ONLINE;
424 		}
425 		spin_unlock_irqrestore(cdev->ccwlock, flags);
426 	}
427 	spin_lock_irqsave(cdev->ccwlock, flags);
428 	cdev->private->cmb_wait = NULL;
429 	ret = copy_block->ret;
430 out_put:
431 	kref_put(&copy_block->kref, cmf_copy_block_release);
432 out:
433 	spin_unlock_irqrestore(cdev->ccwlock, flags);
434 	return ret;
435 }
436 
437 void cmf_retry_copy_block(struct ccw_device *cdev)
438 {
439 	struct copy_block_struct *copy_block;
440 
441 	copy_block = cdev->private->cmb_wait;
442 	if (!copy_block) {
443 		WARN_ON(1);
444 		return;
445 	}
446 	kref_get(&copy_block->kref);
447 	copy_block->ret = cmf_copy_block(cdev);
448 	wake_up(&copy_block->wait);
449 	kref_put(&copy_block->kref, cmf_copy_block_release);
450 }
451 
452 static void cmf_generic_reset(struct ccw_device *cdev)
453 {
454 	struct cmb_data *cmb_data;
455 
456 	spin_lock_irq(cdev->ccwlock);
457 	cmb_data = cdev->private->cmb;
458 	if (cmb_data) {
459 		memset(cmb_data->last_block, 0, cmb_data->size);
460 		/*
461 		 * Need to reset hw block as well to make the hardware start
462 		 * from 0 again.
463 		 */
464 		memset(cmbops->align(cmb_data->hw_block), 0, cmb_data->size);
465 		cmb_data->last_update = 0;
466 	}
467 	cdev->private->cmb_start_time = get_clock();
468 	spin_unlock_irq(cdev->ccwlock);
469 }
470 
471 /**
472  * struct cmb_area - container for global cmb data
473  *
474  * @mem:	pointer to CMBs (only in basic measurement mode)
475  * @list:	contains a linked list of all subchannels
476  * @num_channels: number of channels to be measured
477  * @lock:	protect concurrent access to @mem and @list
478  */
479 struct cmb_area {
480 	struct cmb *mem;
481 	struct list_head list;
482 	int num_channels;
483 	spinlock_t lock;
484 };
485 
486 static struct cmb_area cmb_area = {
487 	.lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock),
488 	.list = LIST_HEAD_INIT(cmb_area.list),
489 	.num_channels  = 1024,
490 };
491 
492 /* ****** old style CMB handling ********/
493 
494 /*
495  * Basic channel measurement blocks are allocated in one contiguous
496  * block of memory, which can not be moved as long as any channel
497  * is active. Therefore, a maximum number of subchannels needs to
498  * be defined somewhere. This is a module parameter, defaulting to
499  * a resonable value of 1024, or 32 kb of memory.
500  * Current kernels don't allow kmalloc with more than 128kb, so the
501  * maximum is 4096.
502  */
503 
504 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444);
505 
506 /**
507  * struct cmb - basic channel measurement block
508  * @ssch_rsch_count: number of ssch and rsch
509  * @sample_count: number of samples
510  * @device_connect_time: time of device connect
511  * @function_pending_time: time of function pending
512  * @device_disconnect_time: time of device disconnect
513  * @control_unit_queuing_time: time of control unit queuing
514  * @device_active_only_time: time of device active only
515  * @reserved: unused in basic measurement mode
516  *
517  * The measurement block as used by the hardware. The fields are described
518  * further in z/Architecture Principles of Operation, chapter 17.
519  *
520  * The cmb area made up from these blocks must be a contiguous array and may
521  * not be reallocated or freed.
522  * Only one cmb area can be present in the system.
523  */
524 struct cmb {
525 	u16 ssch_rsch_count;
526 	u16 sample_count;
527 	u32 device_connect_time;
528 	u32 function_pending_time;
529 	u32 device_disconnect_time;
530 	u32 control_unit_queuing_time;
531 	u32 device_active_only_time;
532 	u32 reserved[2];
533 };
534 
535 /*
536  * Insert a single device into the cmb_area list.
537  * Called with cmb_area.lock held from alloc_cmb.
538  */
539 static int alloc_cmb_single(struct ccw_device *cdev,
540 			    struct cmb_data *cmb_data)
541 {
542 	struct cmb *cmb;
543 	struct ccw_device_private *node;
544 	int ret;
545 
546 	spin_lock_irq(cdev->ccwlock);
547 	if (!list_empty(&cdev->private->cmb_list)) {
548 		ret = -EBUSY;
549 		goto out;
550 	}
551 
552 	/*
553 	 * Find first unused cmb in cmb_area.mem.
554 	 * This is a little tricky: cmb_area.list
555 	 * remains sorted by ->cmb->hw_data pointers.
556 	 */
557 	cmb = cmb_area.mem;
558 	list_for_each_entry(node, &cmb_area.list, cmb_list) {
559 		struct cmb_data *data;
560 		data = node->cmb;
561 		if ((struct cmb*)data->hw_block > cmb)
562 			break;
563 		cmb++;
564 	}
565 	if (cmb - cmb_area.mem >= cmb_area.num_channels) {
566 		ret = -ENOMEM;
567 		goto out;
568 	}
569 
570 	/* insert new cmb */
571 	list_add_tail(&cdev->private->cmb_list, &node->cmb_list);
572 	cmb_data->hw_block = cmb;
573 	cdev->private->cmb = cmb_data;
574 	ret = 0;
575 out:
576 	spin_unlock_irq(cdev->ccwlock);
577 	return ret;
578 }
579 
580 static int alloc_cmb(struct ccw_device *cdev)
581 {
582 	int ret;
583 	struct cmb *mem;
584 	ssize_t size;
585 	struct cmb_data *cmb_data;
586 
587 	/* Allocate private cmb_data. */
588 	cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL);
589 	if (!cmb_data)
590 		return -ENOMEM;
591 
592 	cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL);
593 	if (!cmb_data->last_block) {
594 		kfree(cmb_data);
595 		return -ENOMEM;
596 	}
597 	cmb_data->size = sizeof(struct cmb);
598 	spin_lock(&cmb_area.lock);
599 
600 	if (!cmb_area.mem) {
601 		/* there is no user yet, so we need a new area */
602 		size = sizeof(struct cmb) * cmb_area.num_channels;
603 		WARN_ON(!list_empty(&cmb_area.list));
604 
605 		spin_unlock(&cmb_area.lock);
606 		mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA,
607 				 get_order(size));
608 		spin_lock(&cmb_area.lock);
609 
610 		if (cmb_area.mem) {
611 			/* ok, another thread was faster */
612 			free_pages((unsigned long)mem, get_order(size));
613 		} else if (!mem) {
614 			/* no luck */
615 			printk(KERN_WARNING "cio: failed to allocate area "
616 			       "for measuring %d subchannels\n",
617 			       cmb_area.num_channels);
618 			ret = -ENOMEM;
619 			goto out;
620 		} else {
621 			/* everything ok */
622 			memset(mem, 0, size);
623 			cmb_area.mem = mem;
624 			cmf_activate(cmb_area.mem, 1);
625 		}
626 	}
627 
628 	/* do the actual allocation */
629 	ret = alloc_cmb_single(cdev, cmb_data);
630 out:
631 	spin_unlock(&cmb_area.lock);
632 	if (ret) {
633 		kfree(cmb_data->last_block);
634 		kfree(cmb_data);
635 	}
636 	return ret;
637 }
638 
639 static void free_cmb(struct ccw_device *cdev)
640 {
641 	struct ccw_device_private *priv;
642 	struct cmb_data *cmb_data;
643 
644 	spin_lock(&cmb_area.lock);
645 	spin_lock_irq(cdev->ccwlock);
646 
647 	priv = cdev->private;
648 
649 	if (list_empty(&priv->cmb_list)) {
650 		/* already freed */
651 		goto out;
652 	}
653 
654 	cmb_data = priv->cmb;
655 	priv->cmb = NULL;
656 	if (cmb_data)
657 		kfree(cmb_data->last_block);
658 	kfree(cmb_data);
659 	list_del_init(&priv->cmb_list);
660 
661 	if (list_empty(&cmb_area.list)) {
662 		ssize_t size;
663 		size = sizeof(struct cmb) * cmb_area.num_channels;
664 		cmf_activate(NULL, 0);
665 		free_pages((unsigned long)cmb_area.mem, get_order(size));
666 		cmb_area.mem = NULL;
667 	}
668 out:
669 	spin_unlock_irq(cdev->ccwlock);
670 	spin_unlock(&cmb_area.lock);
671 }
672 
673 static int set_cmb(struct ccw_device *cdev, u32 mme)
674 {
675 	u16 offset;
676 	struct cmb_data *cmb_data;
677 	unsigned long flags;
678 
679 	spin_lock_irqsave(cdev->ccwlock, flags);
680 	if (!cdev->private->cmb) {
681 		spin_unlock_irqrestore(cdev->ccwlock, flags);
682 		return -EINVAL;
683 	}
684 	cmb_data = cdev->private->cmb;
685 	offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0;
686 	spin_unlock_irqrestore(cdev->ccwlock, flags);
687 
688 	return set_schib_wait(cdev, mme, 0, offset);
689 }
690 
691 static u64 read_cmb(struct ccw_device *cdev, int index)
692 {
693 	struct cmb *cmb;
694 	u32 val;
695 	int ret;
696 	unsigned long flags;
697 
698 	ret = cmf_cmb_copy_wait(cdev);
699 	if (ret < 0)
700 		return 0;
701 
702 	spin_lock_irqsave(cdev->ccwlock, flags);
703 	if (!cdev->private->cmb) {
704 		ret = 0;
705 		goto out;
706 	}
707 	cmb = ((struct cmb_data *)cdev->private->cmb)->last_block;
708 
709 	switch (index) {
710 	case cmb_ssch_rsch_count:
711 		ret = cmb->ssch_rsch_count;
712 		goto out;
713 	case cmb_sample_count:
714 		ret = cmb->sample_count;
715 		goto out;
716 	case cmb_device_connect_time:
717 		val = cmb->device_connect_time;
718 		break;
719 	case cmb_function_pending_time:
720 		val = cmb->function_pending_time;
721 		break;
722 	case cmb_device_disconnect_time:
723 		val = cmb->device_disconnect_time;
724 		break;
725 	case cmb_control_unit_queuing_time:
726 		val = cmb->control_unit_queuing_time;
727 		break;
728 	case cmb_device_active_only_time:
729 		val = cmb->device_active_only_time;
730 		break;
731 	default:
732 		ret = 0;
733 		goto out;
734 	}
735 	ret = time_to_avg_nsec(val, cmb->sample_count);
736 out:
737 	spin_unlock_irqrestore(cdev->ccwlock, flags);
738 	return ret;
739 }
740 
741 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data)
742 {
743 	struct cmb *cmb;
744 	struct cmb_data *cmb_data;
745 	u64 time;
746 	unsigned long flags;
747 	int ret;
748 
749 	ret = cmf_cmb_copy_wait(cdev);
750 	if (ret < 0)
751 		return ret;
752 	spin_lock_irqsave(cdev->ccwlock, flags);
753 	cmb_data = cdev->private->cmb;
754 	if (!cmb_data) {
755 		ret = -ENODEV;
756 		goto out;
757 	}
758 	if (cmb_data->last_update == 0) {
759 		ret = -EAGAIN;
760 		goto out;
761 	}
762 	cmb = cmb_data->last_block;
763 	time = cmb_data->last_update - cdev->private->cmb_start_time;
764 
765 	memset(data, 0, sizeof(struct cmbdata));
766 
767 	/* we only know values before device_busy_time */
768 	data->size = offsetof(struct cmbdata, device_busy_time);
769 
770 	/* convert to nanoseconds */
771 	data->elapsed_time = (time * 1000) >> 12;
772 
773 	/* copy data to new structure */
774 	data->ssch_rsch_count = cmb->ssch_rsch_count;
775 	data->sample_count = cmb->sample_count;
776 
777 	/* time fields are converted to nanoseconds while copying */
778 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
779 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
780 	data->device_disconnect_time =
781 		time_to_nsec(cmb->device_disconnect_time);
782 	data->control_unit_queuing_time
783 		= time_to_nsec(cmb->control_unit_queuing_time);
784 	data->device_active_only_time
785 		= time_to_nsec(cmb->device_active_only_time);
786 	ret = 0;
787 out:
788 	spin_unlock_irqrestore(cdev->ccwlock, flags);
789 	return ret;
790 }
791 
792 static void reset_cmb(struct ccw_device *cdev)
793 {
794 	cmf_generic_reset(cdev);
795 }
796 
797 static void * align_cmb(void *area)
798 {
799 	return area;
800 }
801 
802 static struct attribute_group cmf_attr_group;
803 
804 static struct cmb_operations cmbops_basic = {
805 	.alloc	= alloc_cmb,
806 	.free	= free_cmb,
807 	.set	= set_cmb,
808 	.read	= read_cmb,
809 	.readall    = readall_cmb,
810 	.reset	    = reset_cmb,
811 	.align	    = align_cmb,
812 	.attr_group = &cmf_attr_group,
813 };
814 
815 /* ******** extended cmb handling ********/
816 
817 /**
818  * struct cmbe - extended channel measurement block
819  * @ssch_rsch_count: number of ssch and rsch
820  * @sample_count: number of samples
821  * @device_connect_time: time of device connect
822  * @function_pending_time: time of function pending
823  * @device_disconnect_time: time of device disconnect
824  * @control_unit_queuing_time: time of control unit queuing
825  * @device_active_only_time: time of device active only
826  * @device_busy_time: time of device busy
827  * @initial_command_response_time: initial command response time
828  * @reserved: unused
829  *
830  * The measurement block as used by the hardware. May be in any 64 bit physical
831  * location.
832  * The fields are described further in z/Architecture Principles of Operation,
833  * third edition, chapter 17.
834  */
835 struct cmbe {
836 	u32 ssch_rsch_count;
837 	u32 sample_count;
838 	u32 device_connect_time;
839 	u32 function_pending_time;
840 	u32 device_disconnect_time;
841 	u32 control_unit_queuing_time;
842 	u32 device_active_only_time;
843 	u32 device_busy_time;
844 	u32 initial_command_response_time;
845 	u32 reserved[7];
846 };
847 
848 /*
849  * kmalloc only guarantees 8 byte alignment, but we need cmbe
850  * pointers to be naturally aligned. Make sure to allocate
851  * enough space for two cmbes.
852  */
853 static inline struct cmbe *cmbe_align(struct cmbe *c)
854 {
855 	unsigned long addr;
856 	addr = ((unsigned long)c + sizeof (struct cmbe) - sizeof(long)) &
857 				 ~(sizeof (struct cmbe) - sizeof(long));
858 	return (struct cmbe*)addr;
859 }
860 
861 static int alloc_cmbe(struct ccw_device *cdev)
862 {
863 	struct cmbe *cmbe;
864 	struct cmb_data *cmb_data;
865 	int ret;
866 
867 	cmbe = kzalloc (sizeof (*cmbe) * 2, GFP_KERNEL);
868 	if (!cmbe)
869 		return -ENOMEM;
870 	cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL);
871 	if (!cmb_data) {
872 		ret = -ENOMEM;
873 		goto out_free;
874 	}
875 	cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL);
876 	if (!cmb_data->last_block) {
877 		ret = -ENOMEM;
878 		goto out_free;
879 	}
880 	cmb_data->size = sizeof(struct cmbe);
881 	spin_lock_irq(cdev->ccwlock);
882 	if (cdev->private->cmb) {
883 		spin_unlock_irq(cdev->ccwlock);
884 		ret = -EBUSY;
885 		goto out_free;
886 	}
887 	cmb_data->hw_block = cmbe;
888 	cdev->private->cmb = cmb_data;
889 	spin_unlock_irq(cdev->ccwlock);
890 
891 	/* activate global measurement if this is the first channel */
892 	spin_lock(&cmb_area.lock);
893 	if (list_empty(&cmb_area.list))
894 		cmf_activate(NULL, 1);
895 	list_add_tail(&cdev->private->cmb_list, &cmb_area.list);
896 	spin_unlock(&cmb_area.lock);
897 
898 	return 0;
899 out_free:
900 	if (cmb_data)
901 		kfree(cmb_data->last_block);
902 	kfree(cmb_data);
903 	kfree(cmbe);
904 	return ret;
905 }
906 
907 static void free_cmbe(struct ccw_device *cdev)
908 {
909 	struct cmb_data *cmb_data;
910 
911 	spin_lock_irq(cdev->ccwlock);
912 	cmb_data = cdev->private->cmb;
913 	cdev->private->cmb = NULL;
914 	if (cmb_data)
915 		kfree(cmb_data->last_block);
916 	kfree(cmb_data);
917 	spin_unlock_irq(cdev->ccwlock);
918 
919 	/* deactivate global measurement if this is the last channel */
920 	spin_lock(&cmb_area.lock);
921 	list_del_init(&cdev->private->cmb_list);
922 	if (list_empty(&cmb_area.list))
923 		cmf_activate(NULL, 0);
924 	spin_unlock(&cmb_area.lock);
925 }
926 
927 static int set_cmbe(struct ccw_device *cdev, u32 mme)
928 {
929 	unsigned long mba;
930 	struct cmb_data *cmb_data;
931 	unsigned long flags;
932 
933 	spin_lock_irqsave(cdev->ccwlock, flags);
934 	if (!cdev->private->cmb) {
935 		spin_unlock_irqrestore(cdev->ccwlock, flags);
936 		return -EINVAL;
937 	}
938 	cmb_data = cdev->private->cmb;
939 	mba = mme ? (unsigned long) cmbe_align(cmb_data->hw_block) : 0;
940 	spin_unlock_irqrestore(cdev->ccwlock, flags);
941 
942 	return set_schib_wait(cdev, mme, 1, mba);
943 }
944 
945 
946 static u64 read_cmbe(struct ccw_device *cdev, int index)
947 {
948 	struct cmbe *cmb;
949 	struct cmb_data *cmb_data;
950 	u32 val;
951 	int ret;
952 	unsigned long flags;
953 
954 	ret = cmf_cmb_copy_wait(cdev);
955 	if (ret < 0)
956 		return 0;
957 
958 	spin_lock_irqsave(cdev->ccwlock, flags);
959 	cmb_data = cdev->private->cmb;
960 	if (!cmb_data) {
961 		ret = 0;
962 		goto out;
963 	}
964 	cmb = cmb_data->last_block;
965 
966 	switch (index) {
967 	case cmb_ssch_rsch_count:
968 		ret = cmb->ssch_rsch_count;
969 		goto out;
970 	case cmb_sample_count:
971 		ret = cmb->sample_count;
972 		goto out;
973 	case cmb_device_connect_time:
974 		val = cmb->device_connect_time;
975 		break;
976 	case cmb_function_pending_time:
977 		val = cmb->function_pending_time;
978 		break;
979 	case cmb_device_disconnect_time:
980 		val = cmb->device_disconnect_time;
981 		break;
982 	case cmb_control_unit_queuing_time:
983 		val = cmb->control_unit_queuing_time;
984 		break;
985 	case cmb_device_active_only_time:
986 		val = cmb->device_active_only_time;
987 		break;
988 	case cmb_device_busy_time:
989 		val = cmb->device_busy_time;
990 		break;
991 	case cmb_initial_command_response_time:
992 		val = cmb->initial_command_response_time;
993 		break;
994 	default:
995 		ret = 0;
996 		goto out;
997 	}
998 	ret = time_to_avg_nsec(val, cmb->sample_count);
999 out:
1000 	spin_unlock_irqrestore(cdev->ccwlock, flags);
1001 	return ret;
1002 }
1003 
1004 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data)
1005 {
1006 	struct cmbe *cmb;
1007 	struct cmb_data *cmb_data;
1008 	u64 time;
1009 	unsigned long flags;
1010 	int ret;
1011 
1012 	ret = cmf_cmb_copy_wait(cdev);
1013 	if (ret < 0)
1014 		return ret;
1015 	spin_lock_irqsave(cdev->ccwlock, flags);
1016 	cmb_data = cdev->private->cmb;
1017 	if (!cmb_data) {
1018 		ret = -ENODEV;
1019 		goto out;
1020 	}
1021 	if (cmb_data->last_update == 0) {
1022 		ret = -EAGAIN;
1023 		goto out;
1024 	}
1025 	time = cmb_data->last_update - cdev->private->cmb_start_time;
1026 
1027 	memset (data, 0, sizeof(struct cmbdata));
1028 
1029 	/* we only know values before device_busy_time */
1030 	data->size = offsetof(struct cmbdata, device_busy_time);
1031 
1032 	/* conver to nanoseconds */
1033 	data->elapsed_time = (time * 1000) >> 12;
1034 
1035 	cmb = cmb_data->last_block;
1036 	/* copy data to new structure */
1037 	data->ssch_rsch_count = cmb->ssch_rsch_count;
1038 	data->sample_count = cmb->sample_count;
1039 
1040 	/* time fields are converted to nanoseconds while copying */
1041 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
1042 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
1043 	data->device_disconnect_time =
1044 		time_to_nsec(cmb->device_disconnect_time);
1045 	data->control_unit_queuing_time
1046 		= time_to_nsec(cmb->control_unit_queuing_time);
1047 	data->device_active_only_time
1048 		= time_to_nsec(cmb->device_active_only_time);
1049 	data->device_busy_time = time_to_nsec(cmb->device_busy_time);
1050 	data->initial_command_response_time
1051 		= time_to_nsec(cmb->initial_command_response_time);
1052 
1053 	ret = 0;
1054 out:
1055 	spin_unlock_irqrestore(cdev->ccwlock, flags);
1056 	return ret;
1057 }
1058 
1059 static void reset_cmbe(struct ccw_device *cdev)
1060 {
1061 	cmf_generic_reset(cdev);
1062 }
1063 
1064 static void * align_cmbe(void *area)
1065 {
1066 	return cmbe_align(area);
1067 }
1068 
1069 static struct attribute_group cmf_attr_group_ext;
1070 
1071 static struct cmb_operations cmbops_extended = {
1072 	.alloc	    = alloc_cmbe,
1073 	.free	    = free_cmbe,
1074 	.set	    = set_cmbe,
1075 	.read	    = read_cmbe,
1076 	.readall    = readall_cmbe,
1077 	.reset	    = reset_cmbe,
1078 	.align	    = align_cmbe,
1079 	.attr_group = &cmf_attr_group_ext,
1080 };
1081 
1082 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx)
1083 {
1084 	return sprintf(buf, "%lld\n",
1085 		(unsigned long long) cmf_read(to_ccwdev(dev), idx));
1086 }
1087 
1088 static ssize_t cmb_show_avg_sample_interval(struct device *dev,
1089 					    struct device_attribute *attr,
1090 					    char *buf)
1091 {
1092 	struct ccw_device *cdev;
1093 	long interval;
1094 	unsigned long count;
1095 	struct cmb_data *cmb_data;
1096 
1097 	cdev = to_ccwdev(dev);
1098 	count = cmf_read(cdev, cmb_sample_count);
1099 	spin_lock_irq(cdev->ccwlock);
1100 	cmb_data = cdev->private->cmb;
1101 	if (count) {
1102 		interval = cmb_data->last_update -
1103 			cdev->private->cmb_start_time;
1104 		interval = (interval * 1000) >> 12;
1105 		interval /= count;
1106 	} else
1107 		interval = -1;
1108 	spin_unlock_irq(cdev->ccwlock);
1109 	return sprintf(buf, "%ld\n", interval);
1110 }
1111 
1112 static ssize_t cmb_show_avg_utilization(struct device *dev,
1113 					struct device_attribute *attr,
1114 					char *buf)
1115 {
1116 	struct cmbdata data;
1117 	u64 utilization;
1118 	unsigned long t, u;
1119 	int ret;
1120 
1121 	ret = cmf_readall(to_ccwdev(dev), &data);
1122 	if (ret == -EAGAIN || ret == -ENODEV)
1123 		/* No data (yet/currently) available to use for calculation. */
1124 		return sprintf(buf, "n/a\n");
1125 	else if (ret)
1126 		return ret;
1127 
1128 	utilization = data.device_connect_time +
1129 		      data.function_pending_time +
1130 		      data.device_disconnect_time;
1131 
1132 	/* shift to avoid long long division */
1133 	while (-1ul < (data.elapsed_time | utilization)) {
1134 		utilization >>= 8;
1135 		data.elapsed_time >>= 8;
1136 	}
1137 
1138 	/* calculate value in 0.1 percent units */
1139 	t = (unsigned long) data.elapsed_time / 1000;
1140 	u = (unsigned long) utilization / t;
1141 
1142 	return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10);
1143 }
1144 
1145 #define cmf_attr(name) \
1146 static ssize_t show_##name(struct device *dev, \
1147 			   struct device_attribute *attr, char *buf)	\
1148 { return cmb_show_attr((dev), buf, cmb_##name); } \
1149 static DEVICE_ATTR(name, 0444, show_##name, NULL);
1150 
1151 #define cmf_attr_avg(name) \
1152 static ssize_t show_avg_##name(struct device *dev, \
1153 			       struct device_attribute *attr, char *buf) \
1154 { return cmb_show_attr((dev), buf, cmb_##name); } \
1155 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL);
1156 
1157 cmf_attr(ssch_rsch_count);
1158 cmf_attr(sample_count);
1159 cmf_attr_avg(device_connect_time);
1160 cmf_attr_avg(function_pending_time);
1161 cmf_attr_avg(device_disconnect_time);
1162 cmf_attr_avg(control_unit_queuing_time);
1163 cmf_attr_avg(device_active_only_time);
1164 cmf_attr_avg(device_busy_time);
1165 cmf_attr_avg(initial_command_response_time);
1166 
1167 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval,
1168 		   NULL);
1169 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL);
1170 
1171 static struct attribute *cmf_attributes[] = {
1172 	&dev_attr_avg_sample_interval.attr,
1173 	&dev_attr_avg_utilization.attr,
1174 	&dev_attr_ssch_rsch_count.attr,
1175 	&dev_attr_sample_count.attr,
1176 	&dev_attr_avg_device_connect_time.attr,
1177 	&dev_attr_avg_function_pending_time.attr,
1178 	&dev_attr_avg_device_disconnect_time.attr,
1179 	&dev_attr_avg_control_unit_queuing_time.attr,
1180 	&dev_attr_avg_device_active_only_time.attr,
1181 	NULL,
1182 };
1183 
1184 static struct attribute_group cmf_attr_group = {
1185 	.name  = "cmf",
1186 	.attrs = cmf_attributes,
1187 };
1188 
1189 static struct attribute *cmf_attributes_ext[] = {
1190 	&dev_attr_avg_sample_interval.attr,
1191 	&dev_attr_avg_utilization.attr,
1192 	&dev_attr_ssch_rsch_count.attr,
1193 	&dev_attr_sample_count.attr,
1194 	&dev_attr_avg_device_connect_time.attr,
1195 	&dev_attr_avg_function_pending_time.attr,
1196 	&dev_attr_avg_device_disconnect_time.attr,
1197 	&dev_attr_avg_control_unit_queuing_time.attr,
1198 	&dev_attr_avg_device_active_only_time.attr,
1199 	&dev_attr_avg_device_busy_time.attr,
1200 	&dev_attr_avg_initial_command_response_time.attr,
1201 	NULL,
1202 };
1203 
1204 static struct attribute_group cmf_attr_group_ext = {
1205 	.name  = "cmf",
1206 	.attrs = cmf_attributes_ext,
1207 };
1208 
1209 static ssize_t cmb_enable_show(struct device *dev,
1210 			       struct device_attribute *attr,
1211 			       char *buf)
1212 {
1213 	return sprintf(buf, "%d\n", to_ccwdev(dev)->private->cmb ? 1 : 0);
1214 }
1215 
1216 static ssize_t cmb_enable_store(struct device *dev,
1217 				struct device_attribute *attr, const char *buf,
1218 				size_t c)
1219 {
1220 	struct ccw_device *cdev;
1221 	int ret;
1222 
1223 	cdev = to_ccwdev(dev);
1224 
1225 	switch (buf[0]) {
1226 	case '0':
1227 		ret = disable_cmf(cdev);
1228 		if (ret)
1229 			dev_info(&cdev->dev, "disable_cmf failed (%d)\n", ret);
1230 		break;
1231 	case '1':
1232 		ret = enable_cmf(cdev);
1233 		if (ret && ret != -EBUSY)
1234 			dev_info(&cdev->dev, "enable_cmf failed (%d)\n", ret);
1235 		break;
1236 	}
1237 
1238 	return c;
1239 }
1240 
1241 DEVICE_ATTR(cmb_enable, 0644, cmb_enable_show, cmb_enable_store);
1242 
1243 /**
1244  * enable_cmf() - switch on the channel measurement for a specific device
1245  *  @cdev:	The ccw device to be enabled
1246  *
1247  *  Returns %0 for success or a negative error value.
1248  *
1249  *  Context:
1250  *    non-atomic
1251  */
1252 int enable_cmf(struct ccw_device *cdev)
1253 {
1254 	int ret;
1255 
1256 	ret = cmbops->alloc(cdev);
1257 	cmbops->reset(cdev);
1258 	if (ret)
1259 		return ret;
1260 	ret = cmbops->set(cdev, 2);
1261 	if (ret) {
1262 		cmbops->free(cdev);
1263 		return ret;
1264 	}
1265 	ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group);
1266 	if (!ret)
1267 		return 0;
1268 	cmbops->set(cdev, 0);  //FIXME: this can fail
1269 	cmbops->free(cdev);
1270 	return ret;
1271 }
1272 
1273 /**
1274  * disable_cmf() - switch off the channel measurement for a specific device
1275  *  @cdev:	The ccw device to be disabled
1276  *
1277  *  Returns %0 for success or a negative error value.
1278  *
1279  *  Context:
1280  *    non-atomic
1281  */
1282 int disable_cmf(struct ccw_device *cdev)
1283 {
1284 	int ret;
1285 
1286 	ret = cmbops->set(cdev, 0);
1287 	if (ret)
1288 		return ret;
1289 	cmbops->free(cdev);
1290 	sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
1291 	return ret;
1292 }
1293 
1294 /**
1295  * cmf_read() - read one value from the current channel measurement block
1296  * @cdev:	the channel to be read
1297  * @index:	the index of the value to be read
1298  *
1299  * Returns the value read or %0 if the value cannot be read.
1300  *
1301  *  Context:
1302  *    any
1303  */
1304 u64 cmf_read(struct ccw_device *cdev, int index)
1305 {
1306 	return cmbops->read(cdev, index);
1307 }
1308 
1309 /**
1310  * cmf_readall() - read the current channel measurement block
1311  * @cdev:	the channel to be read
1312  * @data:	a pointer to a data block that will be filled
1313  *
1314  * Returns %0 on success, a negative error value otherwise.
1315  *
1316  *  Context:
1317  *    any
1318  */
1319 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data)
1320 {
1321 	return cmbops->readall(cdev, data);
1322 }
1323 
1324 /* Reenable cmf when a disconnected device becomes available again. */
1325 int cmf_reenable(struct ccw_device *cdev)
1326 {
1327 	cmbops->reset(cdev);
1328 	return cmbops->set(cdev, 2);
1329 }
1330 
1331 static int __init init_cmf(void)
1332 {
1333 	char *format_string;
1334 	char *detect_string = "parameter";
1335 
1336 	/*
1337 	 * If the user did not give a parameter, see if we are running on a
1338 	 * machine supporting extended measurement blocks, otherwise fall back
1339 	 * to basic mode.
1340 	 */
1341 	if (format == CMF_AUTODETECT) {
1342 		if (!css_characteristics_avail ||
1343 		    !css_general_characteristics.ext_mb) {
1344 			format = CMF_BASIC;
1345 		} else {
1346 			format = CMF_EXTENDED;
1347 		}
1348 		detect_string = "autodetected";
1349 	} else {
1350 		detect_string = "parameter";
1351 	}
1352 
1353 	switch (format) {
1354 	case CMF_BASIC:
1355 		format_string = "basic";
1356 		cmbops = &cmbops_basic;
1357 		break;
1358 	case CMF_EXTENDED:
1359 		format_string = "extended";
1360 		cmbops = &cmbops_extended;
1361 		break;
1362 	default:
1363 		printk(KERN_ERR "cio: Invalid format %d for channel "
1364 			"measurement facility\n", format);
1365 		return 1;
1366 	}
1367 
1368 	printk(KERN_INFO "cio: Channel measurement facility using %s "
1369 	       "format (%s)\n", format_string, detect_string);
1370 	return 0;
1371 }
1372 
1373 module_init(init_cmf);
1374 
1375 
1376 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");
1377 MODULE_LICENSE("GPL");
1378 MODULE_DESCRIPTION("channel measurement facility base driver\n"
1379 		   "Copyright 2003 IBM Corporation\n");
1380 
1381 EXPORT_SYMBOL_GPL(enable_cmf);
1382 EXPORT_SYMBOL_GPL(disable_cmf);
1383 EXPORT_SYMBOL_GPL(cmf_read);
1384 EXPORT_SYMBOL_GPL(cmf_readall);
1385