1 /* 2 * SuperH On-Chip RTC Support 3 * 4 * Copyright (C) 2006, 2007 Paul Mundt 5 * Copyright (C) 2006 Jamie Lenehan 6 * 7 * Based on the old arch/sh/kernel/cpu/rtc.c by: 8 * 9 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 10 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 11 * 12 * This file is subject to the terms and conditions of the GNU General Public 13 * License. See the file "COPYING" in the main directory of this archive 14 * for more details. 15 */ 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/bcd.h> 19 #include <linux/rtc.h> 20 #include <linux/init.h> 21 #include <linux/platform_device.h> 22 #include <linux/seq_file.h> 23 #include <linux/interrupt.h> 24 #include <linux/spinlock.h> 25 #include <linux/io.h> 26 #include <asm/rtc.h> 27 28 #define DRV_NAME "sh-rtc" 29 #define DRV_VERSION "0.1.3" 30 31 #ifdef CONFIG_CPU_SH3 32 #define rtc_reg_size sizeof(u16) 33 #define RTC_BIT_INVERTED 0 /* No bug on SH7708, SH7709A */ 34 #define RTC_DEF_CAPABILITIES 0UL 35 #elif defined(CONFIG_CPU_SH4) 36 #define rtc_reg_size sizeof(u32) 37 #define RTC_BIT_INVERTED 0x40 /* bug on SH7750, SH7750S */ 38 #define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR 39 #endif 40 41 #define RTC_REG(r) ((r) * rtc_reg_size) 42 43 #define R64CNT RTC_REG(0) 44 45 #define RSECCNT RTC_REG(1) /* RTC sec */ 46 #define RMINCNT RTC_REG(2) /* RTC min */ 47 #define RHRCNT RTC_REG(3) /* RTC hour */ 48 #define RWKCNT RTC_REG(4) /* RTC week */ 49 #define RDAYCNT RTC_REG(5) /* RTC day */ 50 #define RMONCNT RTC_REG(6) /* RTC month */ 51 #define RYRCNT RTC_REG(7) /* RTC year */ 52 #define RSECAR RTC_REG(8) /* ALARM sec */ 53 #define RMINAR RTC_REG(9) /* ALARM min */ 54 #define RHRAR RTC_REG(10) /* ALARM hour */ 55 #define RWKAR RTC_REG(11) /* ALARM week */ 56 #define RDAYAR RTC_REG(12) /* ALARM day */ 57 #define RMONAR RTC_REG(13) /* ALARM month */ 58 #define RCR1 RTC_REG(14) /* Control */ 59 #define RCR2 RTC_REG(15) /* Control */ 60 61 /* ALARM Bits - or with BCD encoded value */ 62 #define AR_ENB 0x80 /* Enable for alarm cmp */ 63 64 /* RCR1 Bits */ 65 #define RCR1_CF 0x80 /* Carry Flag */ 66 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 67 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 68 #define RCR1_AF 0x01 /* Alarm Flag */ 69 70 /* RCR2 Bits */ 71 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 72 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 73 #define RCR2_RTCEN 0x08 /* ENable RTC */ 74 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 75 #define RCR2_RESET 0x02 /* Reset bit */ 76 #define RCR2_START 0x01 /* Start bit */ 77 78 struct sh_rtc { 79 void __iomem *regbase; 80 unsigned long regsize; 81 struct resource *res; 82 unsigned int alarm_irq, periodic_irq, carry_irq; 83 struct rtc_device *rtc_dev; 84 spinlock_t lock; 85 int rearm_aie; 86 unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */ 87 }; 88 89 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 90 { 91 struct platform_device *pdev = to_platform_device(dev_id); 92 struct sh_rtc *rtc = platform_get_drvdata(pdev); 93 unsigned int tmp, events = 0; 94 95 spin_lock(&rtc->lock); 96 97 tmp = readb(rtc->regbase + RCR1); 98 tmp &= ~RCR1_CF; 99 100 if (rtc->rearm_aie) { 101 if (tmp & RCR1_AF) 102 tmp &= ~RCR1_AF; /* try to clear AF again */ 103 else { 104 tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */ 105 rtc->rearm_aie = 0; 106 } 107 } 108 109 writeb(tmp, rtc->regbase + RCR1); 110 111 rtc_update_irq(rtc->rtc_dev, 1, events); 112 113 spin_unlock(&rtc->lock); 114 115 return IRQ_HANDLED; 116 } 117 118 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 119 { 120 struct platform_device *pdev = to_platform_device(dev_id); 121 struct sh_rtc *rtc = platform_get_drvdata(pdev); 122 unsigned int tmp, events = 0; 123 124 spin_lock(&rtc->lock); 125 126 tmp = readb(rtc->regbase + RCR1); 127 128 /* 129 * If AF is set then the alarm has triggered. If we clear AF while 130 * the alarm time still matches the RTC time then AF will 131 * immediately be set again, and if AIE is enabled then the alarm 132 * interrupt will immediately be retrigger. So we clear AIE here 133 * and use rtc->rearm_aie so that the carry interrupt will keep 134 * trying to clear AF and once it stays cleared it'll re-enable 135 * AIE. 136 */ 137 if (tmp & RCR1_AF) { 138 events |= RTC_AF | RTC_IRQF; 139 140 tmp &= ~(RCR1_AF|RCR1_AIE); 141 142 writeb(tmp, rtc->regbase + RCR1); 143 144 rtc->rearm_aie = 1; 145 146 rtc_update_irq(rtc->rtc_dev, 1, events); 147 } 148 149 spin_unlock(&rtc->lock); 150 return IRQ_HANDLED; 151 } 152 153 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 154 { 155 struct platform_device *pdev = to_platform_device(dev_id); 156 struct sh_rtc *rtc = platform_get_drvdata(pdev); 157 158 spin_lock(&rtc->lock); 159 160 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 161 162 spin_unlock(&rtc->lock); 163 164 return IRQ_HANDLED; 165 } 166 167 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable) 168 { 169 struct sh_rtc *rtc = dev_get_drvdata(dev); 170 unsigned int tmp; 171 172 spin_lock_irq(&rtc->lock); 173 174 tmp = readb(rtc->regbase + RCR2); 175 176 if (enable) { 177 tmp &= ~RCR2_PESMASK; 178 tmp |= RCR2_PEF | (2 << 4); 179 } else 180 tmp &= ~(RCR2_PESMASK | RCR2_PEF); 181 182 writeb(tmp, rtc->regbase + RCR2); 183 184 spin_unlock_irq(&rtc->lock); 185 } 186 187 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 188 { 189 struct sh_rtc *rtc = dev_get_drvdata(dev); 190 unsigned int tmp; 191 192 spin_lock_irq(&rtc->lock); 193 194 tmp = readb(rtc->regbase + RCR1); 195 196 if (!enable) { 197 tmp &= ~RCR1_AIE; 198 rtc->rearm_aie = 0; 199 } else if (rtc->rearm_aie == 0) 200 tmp |= RCR1_AIE; 201 202 writeb(tmp, rtc->regbase + RCR1); 203 204 spin_unlock_irq(&rtc->lock); 205 } 206 207 static int sh_rtc_open(struct device *dev) 208 { 209 struct sh_rtc *rtc = dev_get_drvdata(dev); 210 unsigned int tmp; 211 int ret; 212 213 tmp = readb(rtc->regbase + RCR1); 214 tmp &= ~RCR1_CF; 215 tmp |= RCR1_CIE; 216 writeb(tmp, rtc->regbase + RCR1); 217 218 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED, 219 "sh-rtc period", dev); 220 if (unlikely(ret)) { 221 dev_err(dev, "request period IRQ failed with %d, IRQ %d\n", 222 ret, rtc->periodic_irq); 223 return ret; 224 } 225 226 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED, 227 "sh-rtc carry", dev); 228 if (unlikely(ret)) { 229 dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n", 230 ret, rtc->carry_irq); 231 free_irq(rtc->periodic_irq, dev); 232 goto err_bad_carry; 233 } 234 235 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED, 236 "sh-rtc alarm", dev); 237 if (unlikely(ret)) { 238 dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n", 239 ret, rtc->alarm_irq); 240 goto err_bad_alarm; 241 } 242 243 return 0; 244 245 err_bad_alarm: 246 free_irq(rtc->carry_irq, dev); 247 err_bad_carry: 248 free_irq(rtc->periodic_irq, dev); 249 250 return ret; 251 } 252 253 static void sh_rtc_release(struct device *dev) 254 { 255 struct sh_rtc *rtc = dev_get_drvdata(dev); 256 257 sh_rtc_setpie(dev, 0); 258 sh_rtc_setaie(dev, 0); 259 260 free_irq(rtc->periodic_irq, dev); 261 free_irq(rtc->carry_irq, dev); 262 free_irq(rtc->alarm_irq, dev); 263 } 264 265 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 266 { 267 struct sh_rtc *rtc = dev_get_drvdata(dev); 268 unsigned int tmp; 269 270 tmp = readb(rtc->regbase + RCR1); 271 seq_printf(seq, "carry_IRQ\t: %s\n", 272 (tmp & RCR1_CIE) ? "yes" : "no"); 273 274 tmp = readb(rtc->regbase + RCR2); 275 seq_printf(seq, "periodic_IRQ\t: %s\n", 276 (tmp & RCR2_PEF) ? "yes" : "no"); 277 278 return 0; 279 } 280 281 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 282 { 283 unsigned int ret = -ENOIOCTLCMD; 284 285 switch (cmd) { 286 case RTC_PIE_OFF: 287 case RTC_PIE_ON: 288 sh_rtc_setpie(dev, cmd == RTC_PIE_ON); 289 ret = 0; 290 break; 291 case RTC_AIE_OFF: 292 case RTC_AIE_ON: 293 sh_rtc_setaie(dev, cmd == RTC_AIE_ON); 294 ret = 0; 295 break; 296 } 297 298 return ret; 299 } 300 301 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 302 { 303 struct platform_device *pdev = to_platform_device(dev); 304 struct sh_rtc *rtc = platform_get_drvdata(pdev); 305 unsigned int sec128, sec2, yr, yr100, cf_bit; 306 307 do { 308 unsigned int tmp; 309 310 spin_lock_irq(&rtc->lock); 311 312 tmp = readb(rtc->regbase + RCR1); 313 tmp &= ~RCR1_CF; /* Clear CF-bit */ 314 tmp |= RCR1_CIE; 315 writeb(tmp, rtc->regbase + RCR1); 316 317 sec128 = readb(rtc->regbase + R64CNT); 318 319 tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT)); 320 tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT)); 321 tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT)); 322 tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT)); 323 tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT)); 324 tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1; 325 326 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 327 yr = readw(rtc->regbase + RYRCNT); 328 yr100 = BCD2BIN(yr >> 8); 329 yr &= 0xff; 330 } else { 331 yr = readb(rtc->regbase + RYRCNT); 332 yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20); 333 } 334 335 tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900; 336 337 sec2 = readb(rtc->regbase + R64CNT); 338 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 339 340 spin_unlock_irq(&rtc->lock); 341 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 342 343 #if RTC_BIT_INVERTED != 0 344 if ((sec128 & RTC_BIT_INVERTED)) 345 tm->tm_sec--; 346 #endif 347 348 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 349 "mday=%d, mon=%d, year=%d, wday=%d\n", 350 __FUNCTION__, 351 tm->tm_sec, tm->tm_min, tm->tm_hour, 352 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 353 354 if (rtc_valid_tm(tm) < 0) 355 dev_err(dev, "invalid date\n"); 356 357 return 0; 358 } 359 360 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 361 { 362 struct platform_device *pdev = to_platform_device(dev); 363 struct sh_rtc *rtc = platform_get_drvdata(pdev); 364 unsigned int tmp; 365 int year; 366 367 spin_lock_irq(&rtc->lock); 368 369 /* Reset pre-scaler & stop RTC */ 370 tmp = readb(rtc->regbase + RCR2); 371 tmp |= RCR2_RESET; 372 tmp &= ~RCR2_START; 373 writeb(tmp, rtc->regbase + RCR2); 374 375 writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT); 376 writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT); 377 writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT); 378 writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT); 379 writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT); 380 writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT); 381 382 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 383 year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) | 384 BIN2BCD(tm->tm_year % 100); 385 writew(year, rtc->regbase + RYRCNT); 386 } else { 387 year = tm->tm_year % 100; 388 writeb(BIN2BCD(year), rtc->regbase + RYRCNT); 389 } 390 391 /* Start RTC */ 392 tmp = readb(rtc->regbase + RCR2); 393 tmp &= ~RCR2_RESET; 394 tmp |= RCR2_RTCEN | RCR2_START; 395 writeb(tmp, rtc->regbase + RCR2); 396 397 spin_unlock_irq(&rtc->lock); 398 399 return 0; 400 } 401 402 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 403 { 404 unsigned int byte; 405 int value = 0xff; /* return 0xff for ignored values */ 406 407 byte = readb(rtc->regbase + reg_off); 408 if (byte & AR_ENB) { 409 byte &= ~AR_ENB; /* strip the enable bit */ 410 value = BCD2BIN(byte); 411 } 412 413 return value; 414 } 415 416 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 417 { 418 struct platform_device *pdev = to_platform_device(dev); 419 struct sh_rtc *rtc = platform_get_drvdata(pdev); 420 struct rtc_time* tm = &wkalrm->time; 421 422 spin_lock_irq(&rtc->lock); 423 424 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 425 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 426 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 427 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 428 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 429 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 430 if (tm->tm_mon > 0) 431 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 432 tm->tm_year = 0xffff; 433 434 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 435 436 spin_unlock_irq(&rtc->lock); 437 438 return 0; 439 } 440 441 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 442 int value, int reg_off) 443 { 444 /* < 0 for a value that is ignored */ 445 if (value < 0) 446 writeb(0, rtc->regbase + reg_off); 447 else 448 writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off); 449 } 450 451 static int sh_rtc_check_alarm(struct rtc_time* tm) 452 { 453 /* 454 * The original rtc says anything > 0xc0 is "don't care" or "match 455 * all" - most users use 0xff but rtc-dev uses -1 for the same thing. 456 * The original rtc doesn't support years - some things use -1 and 457 * some 0xffff. We use -1 to make out tests easier. 458 */ 459 if (tm->tm_year == 0xffff) 460 tm->tm_year = -1; 461 if (tm->tm_mon >= 0xff) 462 tm->tm_mon = -1; 463 if (tm->tm_mday >= 0xff) 464 tm->tm_mday = -1; 465 if (tm->tm_wday >= 0xff) 466 tm->tm_wday = -1; 467 if (tm->tm_hour >= 0xff) 468 tm->tm_hour = -1; 469 if (tm->tm_min >= 0xff) 470 tm->tm_min = -1; 471 if (tm->tm_sec >= 0xff) 472 tm->tm_sec = -1; 473 474 if (tm->tm_year > 9999 || 475 tm->tm_mon >= 12 || 476 tm->tm_mday == 0 || tm->tm_mday >= 32 || 477 tm->tm_wday >= 7 || 478 tm->tm_hour >= 24 || 479 tm->tm_min >= 60 || 480 tm->tm_sec >= 60) 481 return -EINVAL; 482 483 return 0; 484 } 485 486 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 487 { 488 struct platform_device *pdev = to_platform_device(dev); 489 struct sh_rtc *rtc = platform_get_drvdata(pdev); 490 unsigned int rcr1; 491 struct rtc_time *tm = &wkalrm->time; 492 int mon, err; 493 494 err = sh_rtc_check_alarm(tm); 495 if (unlikely(err < 0)) 496 return err; 497 498 spin_lock_irq(&rtc->lock); 499 500 /* disable alarm interrupt and clear the alarm flag */ 501 rcr1 = readb(rtc->regbase + RCR1); 502 rcr1 &= ~(RCR1_AF|RCR1_AIE); 503 writeb(rcr1, rtc->regbase + RCR1); 504 505 rtc->rearm_aie = 0; 506 507 /* set alarm time */ 508 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 509 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 510 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 511 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 512 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 513 mon = tm->tm_mon; 514 if (mon >= 0) 515 mon += 1; 516 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 517 518 if (wkalrm->enabled) { 519 rcr1 |= RCR1_AIE; 520 writeb(rcr1, rtc->regbase + RCR1); 521 } 522 523 spin_unlock_irq(&rtc->lock); 524 525 return 0; 526 } 527 528 static struct rtc_class_ops sh_rtc_ops = { 529 .open = sh_rtc_open, 530 .release = sh_rtc_release, 531 .ioctl = sh_rtc_ioctl, 532 .read_time = sh_rtc_read_time, 533 .set_time = sh_rtc_set_time, 534 .read_alarm = sh_rtc_read_alarm, 535 .set_alarm = sh_rtc_set_alarm, 536 .proc = sh_rtc_proc, 537 }; 538 539 static int __devinit sh_rtc_probe(struct platform_device *pdev) 540 { 541 struct sh_rtc *rtc; 542 struct resource *res; 543 int ret = -ENOENT; 544 545 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL); 546 if (unlikely(!rtc)) 547 return -ENOMEM; 548 549 spin_lock_init(&rtc->lock); 550 551 rtc->periodic_irq = platform_get_irq(pdev, 0); 552 if (unlikely(rtc->periodic_irq < 0)) { 553 dev_err(&pdev->dev, "No IRQ for period\n"); 554 goto err_badres; 555 } 556 557 rtc->carry_irq = platform_get_irq(pdev, 1); 558 if (unlikely(rtc->carry_irq < 0)) { 559 dev_err(&pdev->dev, "No IRQ for carry\n"); 560 goto err_badres; 561 } 562 563 rtc->alarm_irq = platform_get_irq(pdev, 2); 564 if (unlikely(rtc->alarm_irq < 0)) { 565 dev_err(&pdev->dev, "No IRQ for alarm\n"); 566 goto err_badres; 567 } 568 569 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 570 if (unlikely(res == NULL)) { 571 dev_err(&pdev->dev, "No IO resource\n"); 572 goto err_badres; 573 } 574 575 rtc->regsize = res->end - res->start + 1; 576 577 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name); 578 if (unlikely(!rtc->res)) { 579 ret = -EBUSY; 580 goto err_badres; 581 } 582 583 rtc->regbase = (void __iomem *)rtc->res->start; 584 if (unlikely(!rtc->regbase)) { 585 ret = -EINVAL; 586 goto err_badmap; 587 } 588 589 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev, 590 &sh_rtc_ops, THIS_MODULE); 591 if (IS_ERR(rtc)) { 592 ret = PTR_ERR(rtc->rtc_dev); 593 goto err_badmap; 594 } 595 596 rtc->capabilities = RTC_DEF_CAPABILITIES; 597 if (pdev->dev.platform_data) { 598 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data; 599 600 /* 601 * Some CPUs have special capabilities in addition to the 602 * default set. Add those in here. 603 */ 604 rtc->capabilities |= pinfo->capabilities; 605 } 606 607 platform_set_drvdata(pdev, rtc); 608 609 return 0; 610 611 err_badmap: 612 release_resource(rtc->res); 613 err_badres: 614 kfree(rtc); 615 616 return ret; 617 } 618 619 static int __devexit sh_rtc_remove(struct platform_device *pdev) 620 { 621 struct sh_rtc *rtc = platform_get_drvdata(pdev); 622 623 if (likely(rtc->rtc_dev)) 624 rtc_device_unregister(rtc->rtc_dev); 625 626 sh_rtc_setpie(&pdev->dev, 0); 627 sh_rtc_setaie(&pdev->dev, 0); 628 629 release_resource(rtc->res); 630 631 platform_set_drvdata(pdev, NULL); 632 633 kfree(rtc); 634 635 return 0; 636 } 637 static struct platform_driver sh_rtc_platform_driver = { 638 .driver = { 639 .name = DRV_NAME, 640 .owner = THIS_MODULE, 641 }, 642 .probe = sh_rtc_probe, 643 .remove = __devexit_p(sh_rtc_remove), 644 }; 645 646 static int __init sh_rtc_init(void) 647 { 648 return platform_driver_register(&sh_rtc_platform_driver); 649 } 650 651 static void __exit sh_rtc_exit(void) 652 { 653 platform_driver_unregister(&sh_rtc_platform_driver); 654 } 655 656 module_init(sh_rtc_init); 657 module_exit(sh_rtc_exit); 658 659 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 660 MODULE_VERSION(DRV_VERSION); 661 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>"); 662 MODULE_LICENSE("GPL"); 663