1 /* 2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved. 3 * 4 * The code contained herein is licensed under the GNU General Public 5 * License. You may obtain a copy of the GNU General Public License 6 * Version 2 or later at the following locations: 7 * 8 * http://www.opensource.org/licenses/gpl-license.html 9 * http://www.gnu.org/copyleft/gpl.html 10 */ 11 12 #include <linux/io.h> 13 #include <linux/rtc.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/platform_device.h> 18 #include <linux/clk.h> 19 20 #define RTC_INPUT_CLK_32768HZ (0x00 << 5) 21 #define RTC_INPUT_CLK_32000HZ (0x01 << 5) 22 #define RTC_INPUT_CLK_38400HZ (0x02 << 5) 23 24 #define RTC_SW_BIT (1 << 0) 25 #define RTC_ALM_BIT (1 << 2) 26 #define RTC_1HZ_BIT (1 << 4) 27 #define RTC_2HZ_BIT (1 << 7) 28 #define RTC_SAM0_BIT (1 << 8) 29 #define RTC_SAM1_BIT (1 << 9) 30 #define RTC_SAM2_BIT (1 << 10) 31 #define RTC_SAM3_BIT (1 << 11) 32 #define RTC_SAM4_BIT (1 << 12) 33 #define RTC_SAM5_BIT (1 << 13) 34 #define RTC_SAM6_BIT (1 << 14) 35 #define RTC_SAM7_BIT (1 << 15) 36 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \ 37 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \ 38 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT) 39 40 #define RTC_ENABLE_BIT (1 << 7) 41 42 #define MAX_PIE_NUM 9 43 #define MAX_PIE_FREQ 512 44 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = { 45 { 2, RTC_2HZ_BIT }, 46 { 4, RTC_SAM0_BIT }, 47 { 8, RTC_SAM1_BIT }, 48 { 16, RTC_SAM2_BIT }, 49 { 32, RTC_SAM3_BIT }, 50 { 64, RTC_SAM4_BIT }, 51 { 128, RTC_SAM5_BIT }, 52 { 256, RTC_SAM6_BIT }, 53 { MAX_PIE_FREQ, RTC_SAM7_BIT }, 54 }; 55 56 #define MXC_RTC_TIME 0 57 #define MXC_RTC_ALARM 1 58 59 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */ 60 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */ 61 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */ 62 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */ 63 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */ 64 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */ 65 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */ 66 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */ 67 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */ 68 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */ 69 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */ 70 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */ 71 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */ 72 73 enum imx_rtc_type { 74 IMX1_RTC, 75 IMX21_RTC, 76 }; 77 78 struct rtc_plat_data { 79 struct rtc_device *rtc; 80 void __iomem *ioaddr; 81 int irq; 82 struct clk *clk; 83 struct rtc_time g_rtc_alarm; 84 enum imx_rtc_type devtype; 85 }; 86 87 static struct platform_device_id imx_rtc_devtype[] = { 88 { 89 .name = "imx1-rtc", 90 .driver_data = IMX1_RTC, 91 }, { 92 .name = "imx21-rtc", 93 .driver_data = IMX21_RTC, 94 }, { 95 /* sentinel */ 96 } 97 }; 98 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype); 99 100 static inline int is_imx1_rtc(struct rtc_plat_data *data) 101 { 102 return data->devtype == IMX1_RTC; 103 } 104 105 /* 106 * This function is used to obtain the RTC time or the alarm value in 107 * second. 108 */ 109 static u32 get_alarm_or_time(struct device *dev, int time_alarm) 110 { 111 struct platform_device *pdev = to_platform_device(dev); 112 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 113 void __iomem *ioaddr = pdata->ioaddr; 114 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0; 115 116 switch (time_alarm) { 117 case MXC_RTC_TIME: 118 day = readw(ioaddr + RTC_DAYR); 119 hr_min = readw(ioaddr + RTC_HOURMIN); 120 sec = readw(ioaddr + RTC_SECOND); 121 break; 122 case MXC_RTC_ALARM: 123 day = readw(ioaddr + RTC_DAYALARM); 124 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff; 125 sec = readw(ioaddr + RTC_ALRM_SEC); 126 break; 127 } 128 129 hr = hr_min >> 8; 130 min = hr_min & 0xff; 131 132 return (((day * 24 + hr) * 60) + min) * 60 + sec; 133 } 134 135 /* 136 * This function sets the RTC alarm value or the time value. 137 */ 138 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time) 139 { 140 u32 day, hr, min, sec, temp; 141 struct platform_device *pdev = to_platform_device(dev); 142 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 143 void __iomem *ioaddr = pdata->ioaddr; 144 145 day = time / 86400; 146 time -= day * 86400; 147 148 /* time is within a day now */ 149 hr = time / 3600; 150 time -= hr * 3600; 151 152 /* time is within an hour now */ 153 min = time / 60; 154 sec = time - min * 60; 155 156 temp = (hr << 8) + min; 157 158 switch (time_alarm) { 159 case MXC_RTC_TIME: 160 writew(day, ioaddr + RTC_DAYR); 161 writew(sec, ioaddr + RTC_SECOND); 162 writew(temp, ioaddr + RTC_HOURMIN); 163 break; 164 case MXC_RTC_ALARM: 165 writew(day, ioaddr + RTC_DAYALARM); 166 writew(sec, ioaddr + RTC_ALRM_SEC); 167 writew(temp, ioaddr + RTC_ALRM_HM); 168 break; 169 } 170 } 171 172 /* 173 * This function updates the RTC alarm registers and then clears all the 174 * interrupt status bits. 175 */ 176 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm) 177 { 178 struct rtc_time alarm_tm, now_tm; 179 unsigned long now, time; 180 struct platform_device *pdev = to_platform_device(dev); 181 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 182 void __iomem *ioaddr = pdata->ioaddr; 183 184 now = get_alarm_or_time(dev, MXC_RTC_TIME); 185 rtc_time_to_tm(now, &now_tm); 186 alarm_tm.tm_year = now_tm.tm_year; 187 alarm_tm.tm_mon = now_tm.tm_mon; 188 alarm_tm.tm_mday = now_tm.tm_mday; 189 alarm_tm.tm_hour = alrm->tm_hour; 190 alarm_tm.tm_min = alrm->tm_min; 191 alarm_tm.tm_sec = alrm->tm_sec; 192 rtc_tm_to_time(&alarm_tm, &time); 193 194 /* clear all the interrupt status bits */ 195 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR); 196 set_alarm_or_time(dev, MXC_RTC_ALARM, time); 197 198 return 0; 199 } 200 201 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit, 202 unsigned int enabled) 203 { 204 struct platform_device *pdev = to_platform_device(dev); 205 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 206 void __iomem *ioaddr = pdata->ioaddr; 207 u32 reg; 208 209 spin_lock_irq(&pdata->rtc->irq_lock); 210 reg = readw(ioaddr + RTC_RTCIENR); 211 212 if (enabled) 213 reg |= bit; 214 else 215 reg &= ~bit; 216 217 writew(reg, ioaddr + RTC_RTCIENR); 218 spin_unlock_irq(&pdata->rtc->irq_lock); 219 } 220 221 /* This function is the RTC interrupt service routine. */ 222 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id) 223 { 224 struct platform_device *pdev = dev_id; 225 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 226 void __iomem *ioaddr = pdata->ioaddr; 227 unsigned long flags; 228 u32 status; 229 u32 events = 0; 230 231 spin_lock_irqsave(&pdata->rtc->irq_lock, flags); 232 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR); 233 /* clear interrupt sources */ 234 writew(status, ioaddr + RTC_RTCISR); 235 236 /* update irq data & counter */ 237 if (status & RTC_ALM_BIT) { 238 events |= (RTC_AF | RTC_IRQF); 239 /* RTC alarm should be one-shot */ 240 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0); 241 } 242 243 if (status & RTC_1HZ_BIT) 244 events |= (RTC_UF | RTC_IRQF); 245 246 if (status & PIT_ALL_ON) 247 events |= (RTC_PF | RTC_IRQF); 248 249 rtc_update_irq(pdata->rtc, 1, events); 250 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags); 251 252 return IRQ_HANDLED; 253 } 254 255 /* 256 * Clear all interrupts and release the IRQ 257 */ 258 static void mxc_rtc_release(struct device *dev) 259 { 260 struct platform_device *pdev = to_platform_device(dev); 261 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 262 void __iomem *ioaddr = pdata->ioaddr; 263 264 spin_lock_irq(&pdata->rtc->irq_lock); 265 266 /* Disable all rtc interrupts */ 267 writew(0, ioaddr + RTC_RTCIENR); 268 269 /* Clear all interrupt status */ 270 writew(0xffffffff, ioaddr + RTC_RTCISR); 271 272 spin_unlock_irq(&pdata->rtc->irq_lock); 273 } 274 275 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 276 { 277 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled); 278 return 0; 279 } 280 281 /* 282 * This function reads the current RTC time into tm in Gregorian date. 283 */ 284 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm) 285 { 286 u32 val; 287 288 /* Avoid roll-over from reading the different registers */ 289 do { 290 val = get_alarm_or_time(dev, MXC_RTC_TIME); 291 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME)); 292 293 rtc_time_to_tm(val, tm); 294 295 return 0; 296 } 297 298 /* 299 * This function sets the internal RTC time based on tm in Gregorian date. 300 */ 301 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time) 302 { 303 struct platform_device *pdev = to_platform_device(dev); 304 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 305 306 /* 307 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only 308 */ 309 if (is_imx1_rtc(pdata)) { 310 struct rtc_time tm; 311 312 rtc_time_to_tm(time, &tm); 313 tm.tm_year = 70; 314 rtc_tm_to_time(&tm, &time); 315 } 316 317 /* Avoid roll-over from reading the different registers */ 318 do { 319 set_alarm_or_time(dev, MXC_RTC_TIME, time); 320 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME)); 321 322 return 0; 323 } 324 325 /* 326 * This function reads the current alarm value into the passed in 'alrm' 327 * argument. It updates the alrm's pending field value based on the whether 328 * an alarm interrupt occurs or not. 329 */ 330 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 331 { 332 struct platform_device *pdev = to_platform_device(dev); 333 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 334 void __iomem *ioaddr = pdata->ioaddr; 335 336 rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time); 337 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0; 338 339 return 0; 340 } 341 342 /* 343 * This function sets the RTC alarm based on passed in alrm. 344 */ 345 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 346 { 347 struct platform_device *pdev = to_platform_device(dev); 348 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 349 int ret; 350 351 ret = rtc_update_alarm(dev, &alrm->time); 352 if (ret) 353 return ret; 354 355 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time)); 356 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled); 357 358 return 0; 359 } 360 361 /* RTC layer */ 362 static struct rtc_class_ops mxc_rtc_ops = { 363 .release = mxc_rtc_release, 364 .read_time = mxc_rtc_read_time, 365 .set_mmss = mxc_rtc_set_mmss, 366 .read_alarm = mxc_rtc_read_alarm, 367 .set_alarm = mxc_rtc_set_alarm, 368 .alarm_irq_enable = mxc_rtc_alarm_irq_enable, 369 }; 370 371 static int mxc_rtc_probe(struct platform_device *pdev) 372 { 373 struct resource *res; 374 struct rtc_device *rtc; 375 struct rtc_plat_data *pdata = NULL; 376 u32 reg; 377 unsigned long rate; 378 int ret; 379 380 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 381 if (!pdata) 382 return -ENOMEM; 383 384 pdata->devtype = pdev->id_entry->driver_data; 385 386 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 387 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); 388 if (IS_ERR(pdata->ioaddr)) 389 return PTR_ERR(pdata->ioaddr); 390 391 pdata->clk = devm_clk_get(&pdev->dev, NULL); 392 if (IS_ERR(pdata->clk)) { 393 dev_err(&pdev->dev, "unable to get clock!\n"); 394 return PTR_ERR(pdata->clk); 395 } 396 397 ret = clk_prepare_enable(pdata->clk); 398 if (ret) 399 return ret; 400 401 rate = clk_get_rate(pdata->clk); 402 403 if (rate == 32768) 404 reg = RTC_INPUT_CLK_32768HZ; 405 else if (rate == 32000) 406 reg = RTC_INPUT_CLK_32000HZ; 407 else if (rate == 38400) 408 reg = RTC_INPUT_CLK_38400HZ; 409 else { 410 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate); 411 ret = -EINVAL; 412 goto exit_put_clk; 413 } 414 415 reg |= RTC_ENABLE_BIT; 416 writew(reg, (pdata->ioaddr + RTC_RTCCTL)); 417 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) { 418 dev_err(&pdev->dev, "hardware module can't be enabled!\n"); 419 ret = -EIO; 420 goto exit_put_clk; 421 } 422 423 platform_set_drvdata(pdev, pdata); 424 425 /* Configure and enable the RTC */ 426 pdata->irq = platform_get_irq(pdev, 0); 427 428 if (pdata->irq >= 0 && 429 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, 430 IRQF_SHARED, pdev->name, pdev) < 0) { 431 dev_warn(&pdev->dev, "interrupt not available.\n"); 432 pdata->irq = -1; 433 } 434 435 if (pdata->irq >= 0) 436 device_init_wakeup(&pdev->dev, 1); 437 438 rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops, 439 THIS_MODULE); 440 if (IS_ERR(rtc)) { 441 ret = PTR_ERR(rtc); 442 goto exit_put_clk; 443 } 444 445 pdata->rtc = rtc; 446 447 return 0; 448 449 exit_put_clk: 450 clk_disable_unprepare(pdata->clk); 451 452 return ret; 453 } 454 455 static int mxc_rtc_remove(struct platform_device *pdev) 456 { 457 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 458 459 clk_disable_unprepare(pdata->clk); 460 461 return 0; 462 } 463 464 #ifdef CONFIG_PM_SLEEP 465 static int mxc_rtc_suspend(struct device *dev) 466 { 467 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 468 469 if (device_may_wakeup(dev)) 470 enable_irq_wake(pdata->irq); 471 472 return 0; 473 } 474 475 static int mxc_rtc_resume(struct device *dev) 476 { 477 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 478 479 if (device_may_wakeup(dev)) 480 disable_irq_wake(pdata->irq); 481 482 return 0; 483 } 484 #endif 485 486 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume); 487 488 static struct platform_driver mxc_rtc_driver = { 489 .driver = { 490 .name = "mxc_rtc", 491 .pm = &mxc_rtc_pm_ops, 492 .owner = THIS_MODULE, 493 }, 494 .id_table = imx_rtc_devtype, 495 .probe = mxc_rtc_probe, 496 .remove = mxc_rtc_remove, 497 }; 498 499 module_platform_driver(mxc_rtc_driver) 500 501 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>"); 502 MODULE_DESCRIPTION("RTC driver for Freescale MXC"); 503 MODULE_LICENSE("GPL"); 504 505