1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/mod_devicetable.h> 38 39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 40 #include <asm-generic/rtc.h> 41 42 43 struct cmos_rtc { 44 struct rtc_device *rtc; 45 struct device *dev; 46 int irq; 47 struct resource *iomem; 48 49 void (*wake_on)(struct device *); 50 void (*wake_off)(struct device *); 51 52 u8 enabled_wake; 53 u8 suspend_ctrl; 54 55 /* newer hardware extends the original register set */ 56 u8 day_alrm; 57 u8 mon_alrm; 58 u8 century; 59 }; 60 61 /* both platform and pnp busses use negative numbers for invalid irqs */ 62 #define is_valid_irq(n) ((n) >= 0) 63 64 static const char driver_name[] = "rtc_cmos"; 65 66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 67 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 68 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 69 */ 70 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 71 72 static inline int is_intr(u8 rtc_intr) 73 { 74 if (!(rtc_intr & RTC_IRQF)) 75 return 0; 76 return rtc_intr & RTC_IRQMASK; 77 } 78 79 /*----------------------------------------------------------------*/ 80 81 static int cmos_read_time(struct device *dev, struct rtc_time *t) 82 { 83 /* REVISIT: if the clock has a "century" register, use 84 * that instead of the heuristic in get_rtc_time(). 85 * That'll make Y3K compatility (year > 2070) easy! 86 */ 87 get_rtc_time(t); 88 return 0; 89 } 90 91 static int cmos_set_time(struct device *dev, struct rtc_time *t) 92 { 93 /* REVISIT: set the "century" register if available 94 * 95 * NOTE: this ignores the issue whereby updating the seconds 96 * takes effect exactly 500ms after we write the register. 97 * (Also queueing and other delays before we get this far.) 98 */ 99 return set_rtc_time(t); 100 } 101 102 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 103 { 104 struct cmos_rtc *cmos = dev_get_drvdata(dev); 105 unsigned char rtc_control; 106 107 if (!is_valid_irq(cmos->irq)) 108 return -EIO; 109 110 /* Basic alarms only support hour, minute, and seconds fields. 111 * Some also support day and month, for alarms up to a year in 112 * the future. 113 */ 114 t->time.tm_mday = -1; 115 t->time.tm_mon = -1; 116 117 spin_lock_irq(&rtc_lock); 118 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 119 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 120 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 121 122 if (cmos->day_alrm) { 123 t->time.tm_mday = CMOS_READ(cmos->day_alrm); 124 if (!t->time.tm_mday) 125 t->time.tm_mday = -1; 126 127 if (cmos->mon_alrm) { 128 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 129 if (!t->time.tm_mon) 130 t->time.tm_mon = -1; 131 } 132 } 133 134 rtc_control = CMOS_READ(RTC_CONTROL); 135 spin_unlock_irq(&rtc_lock); 136 137 /* REVISIT this assumes PC style usage: always BCD */ 138 139 if (((unsigned)t->time.tm_sec) < 0x60) 140 t->time.tm_sec = BCD2BIN(t->time.tm_sec); 141 else 142 t->time.tm_sec = -1; 143 if (((unsigned)t->time.tm_min) < 0x60) 144 t->time.tm_min = BCD2BIN(t->time.tm_min); 145 else 146 t->time.tm_min = -1; 147 if (((unsigned)t->time.tm_hour) < 0x24) 148 t->time.tm_hour = BCD2BIN(t->time.tm_hour); 149 else 150 t->time.tm_hour = -1; 151 152 if (cmos->day_alrm) { 153 if (((unsigned)t->time.tm_mday) <= 0x31) 154 t->time.tm_mday = BCD2BIN(t->time.tm_mday); 155 else 156 t->time.tm_mday = -1; 157 if (cmos->mon_alrm) { 158 if (((unsigned)t->time.tm_mon) <= 0x12) 159 t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1; 160 else 161 t->time.tm_mon = -1; 162 } 163 } 164 t->time.tm_year = -1; 165 166 t->enabled = !!(rtc_control & RTC_AIE); 167 t->pending = 0; 168 169 return 0; 170 } 171 172 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 173 { 174 struct cmos_rtc *cmos = dev_get_drvdata(dev); 175 unsigned char mon, mday, hrs, min, sec; 176 unsigned char rtc_control, rtc_intr; 177 178 if (!is_valid_irq(cmos->irq)) 179 return -EIO; 180 181 /* REVISIT this assumes PC style usage: always BCD */ 182 183 /* Writing 0xff means "don't care" or "match all". */ 184 185 mon = t->time.tm_mon; 186 mon = (mon < 12) ? BIN2BCD(mon) : 0xff; 187 mon++; 188 189 mday = t->time.tm_mday; 190 mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff; 191 192 hrs = t->time.tm_hour; 193 hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff; 194 195 min = t->time.tm_min; 196 min = (min < 60) ? BIN2BCD(min) : 0xff; 197 198 sec = t->time.tm_sec; 199 sec = (sec < 60) ? BIN2BCD(sec) : 0xff; 200 201 spin_lock_irq(&rtc_lock); 202 203 /* next rtc irq must not be from previous alarm setting */ 204 rtc_control = CMOS_READ(RTC_CONTROL); 205 rtc_control &= ~RTC_AIE; 206 CMOS_WRITE(rtc_control, RTC_CONTROL); 207 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 208 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 209 if (is_intr(rtc_intr)) 210 rtc_update_irq(cmos->rtc, 1, rtc_intr); 211 212 /* update alarm */ 213 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 214 CMOS_WRITE(min, RTC_MINUTES_ALARM); 215 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 216 217 /* the system may support an "enhanced" alarm */ 218 if (cmos->day_alrm) { 219 CMOS_WRITE(mday, cmos->day_alrm); 220 if (cmos->mon_alrm) 221 CMOS_WRITE(mon, cmos->mon_alrm); 222 } 223 224 if (t->enabled) { 225 rtc_control |= RTC_AIE; 226 CMOS_WRITE(rtc_control, RTC_CONTROL); 227 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 228 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 229 if (is_intr(rtc_intr)) 230 rtc_update_irq(cmos->rtc, 1, rtc_intr); 231 } 232 233 spin_unlock_irq(&rtc_lock); 234 235 return 0; 236 } 237 238 static int cmos_irq_set_freq(struct device *dev, int freq) 239 { 240 struct cmos_rtc *cmos = dev_get_drvdata(dev); 241 int f; 242 unsigned long flags; 243 244 if (!is_valid_irq(cmos->irq)) 245 return -ENXIO; 246 247 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */ 248 f = ffs(freq); 249 if (f-- > 16) 250 return -EINVAL; 251 f = 16 - f; 252 253 spin_lock_irqsave(&rtc_lock, flags); 254 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT); 255 spin_unlock_irqrestore(&rtc_lock, flags); 256 257 return 0; 258 } 259 260 static int cmos_irq_set_state(struct device *dev, int enabled) 261 { 262 struct cmos_rtc *cmos = dev_get_drvdata(dev); 263 unsigned char rtc_control, rtc_intr; 264 unsigned long flags; 265 266 if (!is_valid_irq(cmos->irq)) 267 return -ENXIO; 268 269 spin_lock_irqsave(&rtc_lock, flags); 270 rtc_control = CMOS_READ(RTC_CONTROL); 271 272 if (enabled) 273 rtc_control |= RTC_PIE; 274 else 275 rtc_control &= ~RTC_PIE; 276 277 CMOS_WRITE(rtc_control, RTC_CONTROL); 278 279 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 280 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 281 if (is_intr(rtc_intr)) 282 rtc_update_irq(cmos->rtc, 1, rtc_intr); 283 284 spin_unlock_irqrestore(&rtc_lock, flags); 285 return 0; 286 } 287 288 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE) 289 290 static int 291 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 292 { 293 struct cmos_rtc *cmos = dev_get_drvdata(dev); 294 unsigned char rtc_control, rtc_intr; 295 unsigned long flags; 296 297 switch (cmd) { 298 case RTC_AIE_OFF: 299 case RTC_AIE_ON: 300 case RTC_UIE_OFF: 301 case RTC_UIE_ON: 302 case RTC_PIE_OFF: 303 case RTC_PIE_ON: 304 if (!is_valid_irq(cmos->irq)) 305 return -EINVAL; 306 break; 307 default: 308 return -ENOIOCTLCMD; 309 } 310 311 spin_lock_irqsave(&rtc_lock, flags); 312 rtc_control = CMOS_READ(RTC_CONTROL); 313 switch (cmd) { 314 case RTC_AIE_OFF: /* alarm off */ 315 rtc_control &= ~RTC_AIE; 316 break; 317 case RTC_AIE_ON: /* alarm on */ 318 rtc_control |= RTC_AIE; 319 break; 320 case RTC_UIE_OFF: /* update off */ 321 rtc_control &= ~RTC_UIE; 322 break; 323 case RTC_UIE_ON: /* update on */ 324 rtc_control |= RTC_UIE; 325 break; 326 case RTC_PIE_OFF: /* periodic off */ 327 rtc_control &= ~RTC_PIE; 328 break; 329 case RTC_PIE_ON: /* periodic on */ 330 rtc_control |= RTC_PIE; 331 break; 332 } 333 CMOS_WRITE(rtc_control, RTC_CONTROL); 334 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 335 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 336 if (is_intr(rtc_intr)) 337 rtc_update_irq(cmos->rtc, 1, rtc_intr); 338 spin_unlock_irqrestore(&rtc_lock, flags); 339 return 0; 340 } 341 342 #else 343 #define cmos_rtc_ioctl NULL 344 #endif 345 346 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 347 348 static int cmos_procfs(struct device *dev, struct seq_file *seq) 349 { 350 struct cmos_rtc *cmos = dev_get_drvdata(dev); 351 unsigned char rtc_control, valid; 352 353 spin_lock_irq(&rtc_lock); 354 rtc_control = CMOS_READ(RTC_CONTROL); 355 valid = CMOS_READ(RTC_VALID); 356 spin_unlock_irq(&rtc_lock); 357 358 /* NOTE: at least ICH6 reports battery status using a different 359 * (non-RTC) bit; and SQWE is ignored on many current systems. 360 */ 361 return seq_printf(seq, 362 "periodic_IRQ\t: %s\n" 363 "update_IRQ\t: %s\n" 364 // "square_wave\t: %s\n" 365 // "BCD\t\t: %s\n" 366 "DST_enable\t: %s\n" 367 "periodic_freq\t: %d\n" 368 "batt_status\t: %s\n", 369 (rtc_control & RTC_PIE) ? "yes" : "no", 370 (rtc_control & RTC_UIE) ? "yes" : "no", 371 // (rtc_control & RTC_SQWE) ? "yes" : "no", 372 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 373 (rtc_control & RTC_DST_EN) ? "yes" : "no", 374 cmos->rtc->irq_freq, 375 (valid & RTC_VRT) ? "okay" : "dead"); 376 } 377 378 #else 379 #define cmos_procfs NULL 380 #endif 381 382 static const struct rtc_class_ops cmos_rtc_ops = { 383 .ioctl = cmos_rtc_ioctl, 384 .read_time = cmos_read_time, 385 .set_time = cmos_set_time, 386 .read_alarm = cmos_read_alarm, 387 .set_alarm = cmos_set_alarm, 388 .proc = cmos_procfs, 389 .irq_set_freq = cmos_irq_set_freq, 390 .irq_set_state = cmos_irq_set_state, 391 }; 392 393 /*----------------------------------------------------------------*/ 394 395 static struct cmos_rtc cmos_rtc; 396 397 static irqreturn_t cmos_interrupt(int irq, void *p) 398 { 399 u8 irqstat; 400 401 spin_lock(&rtc_lock); 402 irqstat = CMOS_READ(RTC_INTR_FLAGS); 403 irqstat &= (CMOS_READ(RTC_CONTROL) & RTC_IRQMASK) | RTC_IRQF; 404 spin_unlock(&rtc_lock); 405 406 if (is_intr(irqstat)) { 407 rtc_update_irq(p, 1, irqstat); 408 return IRQ_HANDLED; 409 } else 410 return IRQ_NONE; 411 } 412 413 #ifdef CONFIG_PNP 414 #define is_pnp() 1 415 #define INITSECTION 416 417 #else 418 #define is_pnp() 0 419 #define INITSECTION __init 420 #endif 421 422 static int INITSECTION 423 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 424 { 425 struct cmos_rtc_board_info *info = dev->platform_data; 426 int retval = 0; 427 unsigned char rtc_control; 428 429 /* there can be only one ... */ 430 if (cmos_rtc.dev) 431 return -EBUSY; 432 433 if (!ports) 434 return -ENODEV; 435 436 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 437 * 438 * REVISIT non-x86 systems may instead use memory space resources 439 * (needing ioremap etc), not i/o space resources like this ... 440 */ 441 ports = request_region(ports->start, 442 ports->end + 1 - ports->start, 443 driver_name); 444 if (!ports) { 445 dev_dbg(dev, "i/o registers already in use\n"); 446 return -EBUSY; 447 } 448 449 cmos_rtc.irq = rtc_irq; 450 cmos_rtc.iomem = ports; 451 452 /* For ACPI systems extension info comes from the FADT. On others, 453 * board specific setup provides it as appropriate. Systems where 454 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 455 * some almost-clones) can provide hooks to make that behave. 456 */ 457 if (info) { 458 cmos_rtc.day_alrm = info->rtc_day_alarm; 459 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 460 cmos_rtc.century = info->rtc_century; 461 462 if (info->wake_on && info->wake_off) { 463 cmos_rtc.wake_on = info->wake_on; 464 cmos_rtc.wake_off = info->wake_off; 465 } 466 } 467 468 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 469 &cmos_rtc_ops, THIS_MODULE); 470 if (IS_ERR(cmos_rtc.rtc)) { 471 retval = PTR_ERR(cmos_rtc.rtc); 472 goto cleanup0; 473 } 474 475 cmos_rtc.dev = dev; 476 dev_set_drvdata(dev, &cmos_rtc); 477 rename_region(ports, cmos_rtc.rtc->dev.bus_id); 478 479 spin_lock_irq(&rtc_lock); 480 481 /* force periodic irq to CMOS reset default of 1024Hz; 482 * 483 * REVISIT it's been reported that at least one x86_64 ALI mobo 484 * doesn't use 32KHz here ... for portability we might need to 485 * do something about other clock frequencies. 486 */ 487 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 488 cmos_rtc.rtc->irq_freq = 1024; 489 490 /* disable irqs. 491 * 492 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 493 * allegedly some older rtcs need that to handle irqs properly 494 */ 495 rtc_control = CMOS_READ(RTC_CONTROL); 496 rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE); 497 CMOS_WRITE(rtc_control, RTC_CONTROL); 498 CMOS_READ(RTC_INTR_FLAGS); 499 500 spin_unlock_irq(&rtc_lock); 501 502 /* FIXME teach the alarm code how to handle binary mode; 503 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 504 */ 505 if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) { 506 dev_dbg(dev, "only 24-hr BCD mode supported\n"); 507 retval = -ENXIO; 508 goto cleanup1; 509 } 510 511 if (is_valid_irq(rtc_irq)) 512 retval = request_irq(rtc_irq, cmos_interrupt, IRQF_DISABLED, 513 cmos_rtc.rtc->dev.bus_id, 514 cmos_rtc.rtc); 515 if (retval < 0) { 516 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 517 goto cleanup1; 518 } 519 520 /* REVISIT optionally make 50 or 114 bytes NVRAM available, 521 * like rtc-ds1553, rtc-ds1742 ... this will often include 522 * registers for century, and day/month alarm. 523 */ 524 525 pr_info("%s: alarms up to one %s%s\n", 526 cmos_rtc.rtc->dev.bus_id, 527 is_valid_irq(rtc_irq) 528 ? (cmos_rtc.mon_alrm 529 ? "year" 530 : (cmos_rtc.day_alrm 531 ? "month" : "day")) 532 : "no", 533 cmos_rtc.century ? ", y3k" : "" 534 ); 535 536 return 0; 537 538 cleanup1: 539 cmos_rtc.dev = NULL; 540 rtc_device_unregister(cmos_rtc.rtc); 541 cleanup0: 542 release_region(ports->start, ports->end + 1 - ports->start); 543 return retval; 544 } 545 546 static void cmos_do_shutdown(void) 547 { 548 unsigned char rtc_control; 549 550 spin_lock_irq(&rtc_lock); 551 rtc_control = CMOS_READ(RTC_CONTROL); 552 rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE); 553 CMOS_WRITE(rtc_control, RTC_CONTROL); 554 CMOS_READ(RTC_INTR_FLAGS); 555 spin_unlock_irq(&rtc_lock); 556 } 557 558 static void __exit cmos_do_remove(struct device *dev) 559 { 560 struct cmos_rtc *cmos = dev_get_drvdata(dev); 561 struct resource *ports; 562 563 cmos_do_shutdown(); 564 565 if (is_valid_irq(cmos->irq)) 566 free_irq(cmos->irq, cmos->rtc); 567 568 rtc_device_unregister(cmos->rtc); 569 cmos->rtc = NULL; 570 571 ports = cmos->iomem; 572 release_region(ports->start, ports->end + 1 - ports->start); 573 cmos->iomem = NULL; 574 575 cmos->dev = NULL; 576 dev_set_drvdata(dev, NULL); 577 } 578 579 #ifdef CONFIG_PM 580 581 static int cmos_suspend(struct device *dev, pm_message_t mesg) 582 { 583 struct cmos_rtc *cmos = dev_get_drvdata(dev); 584 int do_wake = device_may_wakeup(dev); 585 unsigned char tmp; 586 587 /* only the alarm might be a wakeup event source */ 588 spin_lock_irq(&rtc_lock); 589 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 590 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 591 unsigned char irqstat; 592 593 if (do_wake) 594 tmp &= ~(RTC_PIE|RTC_UIE); 595 else 596 tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE); 597 CMOS_WRITE(tmp, RTC_CONTROL); 598 irqstat = CMOS_READ(RTC_INTR_FLAGS); 599 irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF; 600 if (is_intr(irqstat)) 601 rtc_update_irq(cmos->rtc, 1, irqstat); 602 } 603 spin_unlock_irq(&rtc_lock); 604 605 if (tmp & RTC_AIE) { 606 cmos->enabled_wake = 1; 607 if (cmos->wake_on) 608 cmos->wake_on(dev); 609 else 610 enable_irq_wake(cmos->irq); 611 } 612 613 pr_debug("%s: suspend%s, ctrl %02x\n", 614 cmos_rtc.rtc->dev.bus_id, 615 (tmp & RTC_AIE) ? ", alarm may wake" : "", 616 tmp); 617 618 return 0; 619 } 620 621 static int cmos_resume(struct device *dev) 622 { 623 struct cmos_rtc *cmos = dev_get_drvdata(dev); 624 unsigned char tmp = cmos->suspend_ctrl; 625 626 /* re-enable any irqs previously active */ 627 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 628 629 if (cmos->enabled_wake) { 630 if (cmos->wake_off) 631 cmos->wake_off(dev); 632 else 633 disable_irq_wake(cmos->irq); 634 cmos->enabled_wake = 0; 635 } 636 637 spin_lock_irq(&rtc_lock); 638 CMOS_WRITE(tmp, RTC_CONTROL); 639 tmp = CMOS_READ(RTC_INTR_FLAGS); 640 tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 641 if (is_intr(tmp)) 642 rtc_update_irq(cmos->rtc, 1, tmp); 643 spin_unlock_irq(&rtc_lock); 644 } 645 646 pr_debug("%s: resume, ctrl %02x\n", 647 cmos_rtc.rtc->dev.bus_id, 648 cmos->suspend_ctrl); 649 650 651 return 0; 652 } 653 654 #else 655 #define cmos_suspend NULL 656 #define cmos_resume NULL 657 #endif 658 659 /*----------------------------------------------------------------*/ 660 661 /* The "CMOS" RTC normally lives on the platform_bus. On ACPI systems, 662 * the device node will always be created as a PNPACPI device. Plus 663 * pre-ACPI PCs probably list it in the PNPBIOS tables. 664 */ 665 666 #ifdef CONFIG_PNP 667 668 #include <linux/pnp.h> 669 670 static int __devinit 671 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 672 { 673 /* REVISIT paranoia argues for a shutdown notifier, since PNP 674 * drivers can't provide shutdown() methods to disable IRQs. 675 * Or better yet, fix PNP to allow those methods... 676 */ 677 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0)) 678 /* Some machines contain a PNP entry for the RTC, but 679 * don't define the IRQ. It should always be safe to 680 * hardcode it in these cases 681 */ 682 return cmos_do_probe(&pnp->dev, &pnp->res.port_resource[0], 8); 683 else 684 return cmos_do_probe(&pnp->dev, 685 &pnp->res.port_resource[0], 686 pnp->res.irq_resource[0].start); 687 } 688 689 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 690 { 691 cmos_do_remove(&pnp->dev); 692 } 693 694 #ifdef CONFIG_PM 695 696 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg) 697 { 698 return cmos_suspend(&pnp->dev, mesg); 699 } 700 701 static int cmos_pnp_resume(struct pnp_dev *pnp) 702 { 703 return cmos_resume(&pnp->dev); 704 } 705 706 #else 707 #define cmos_pnp_suspend NULL 708 #define cmos_pnp_resume NULL 709 #endif 710 711 712 static const struct pnp_device_id rtc_ids[] = { 713 { .id = "PNP0b00", }, 714 { .id = "PNP0b01", }, 715 { .id = "PNP0b02", }, 716 { }, 717 }; 718 MODULE_DEVICE_TABLE(pnp, rtc_ids); 719 720 static struct pnp_driver cmos_pnp_driver = { 721 .name = (char *) driver_name, 722 .id_table = rtc_ids, 723 .probe = cmos_pnp_probe, 724 .remove = __exit_p(cmos_pnp_remove), 725 726 /* flag ensures resume() gets called, and stops syslog spam */ 727 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 728 .suspend = cmos_pnp_suspend, 729 .resume = cmos_pnp_resume, 730 }; 731 732 static int __init cmos_init(void) 733 { 734 return pnp_register_driver(&cmos_pnp_driver); 735 } 736 module_init(cmos_init); 737 738 static void __exit cmos_exit(void) 739 { 740 pnp_unregister_driver(&cmos_pnp_driver); 741 } 742 module_exit(cmos_exit); 743 744 #else /* no PNP */ 745 746 /*----------------------------------------------------------------*/ 747 748 /* Platform setup should have set up an RTC device, when PNP is 749 * unavailable ... this could happen even on (older) PCs. 750 */ 751 752 static int __init cmos_platform_probe(struct platform_device *pdev) 753 { 754 return cmos_do_probe(&pdev->dev, 755 platform_get_resource(pdev, IORESOURCE_IO, 0), 756 platform_get_irq(pdev, 0)); 757 } 758 759 static int __exit cmos_platform_remove(struct platform_device *pdev) 760 { 761 cmos_do_remove(&pdev->dev); 762 return 0; 763 } 764 765 static void cmos_platform_shutdown(struct platform_device *pdev) 766 { 767 cmos_do_shutdown(); 768 } 769 770 static struct platform_driver cmos_platform_driver = { 771 .remove = __exit_p(cmos_platform_remove), 772 .shutdown = cmos_platform_shutdown, 773 .driver = { 774 .name = (char *) driver_name, 775 .suspend = cmos_suspend, 776 .resume = cmos_resume, 777 } 778 }; 779 780 static int __init cmos_init(void) 781 { 782 return platform_driver_probe(&cmos_platform_driver, 783 cmos_platform_probe); 784 } 785 module_init(cmos_init); 786 787 static void __exit cmos_exit(void) 788 { 789 platform_driver_unregister(&cmos_platform_driver); 790 } 791 module_exit(cmos_exit); 792 793 794 #endif /* !PNP */ 795 796 MODULE_AUTHOR("David Brownell"); 797 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 798 MODULE_LICENSE("GPL"); 799