xref: /openbmc/linux/drivers/rtc/rtc-ab-b5ze-s3.c (revision c8a1d8a523e1018c3b7d23c7e1c99bf20006bcbf)
10b2f6228SArnaud Ebalard /*
20b2f6228SArnaud Ebalard  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
30b2f6228SArnaud Ebalard  *                  I2C RTC / Alarm chip
40b2f6228SArnaud Ebalard  *
50b2f6228SArnaud Ebalard  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
60b2f6228SArnaud Ebalard  *
70b2f6228SArnaud Ebalard  * Detailed datasheet of the chip is available here:
80b2f6228SArnaud Ebalard  *
90b2f6228SArnaud Ebalard  *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
100b2f6228SArnaud Ebalard  *
110b2f6228SArnaud Ebalard  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
120b2f6228SArnaud Ebalard  *
130b2f6228SArnaud Ebalard  * This program is free software; you can redistribute it and/or modify
140b2f6228SArnaud Ebalard  * it under the terms of the GNU General Public License as published by
150b2f6228SArnaud Ebalard  * the Free Software Foundation; either version 2 of the License, or
160b2f6228SArnaud Ebalard  * (at your option) any later version.
170b2f6228SArnaud Ebalard  *
180b2f6228SArnaud Ebalard  * This program is distributed in the hope that it will be useful,
190b2f6228SArnaud Ebalard  * but WITHOUT ANY WARRANTY; without even the implied warranty of
200b2f6228SArnaud Ebalard  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
210b2f6228SArnaud Ebalard  * GNU General Public License for more details.
220b2f6228SArnaud Ebalard  */
230b2f6228SArnaud Ebalard 
240b2f6228SArnaud Ebalard #include <linux/module.h>
250b2f6228SArnaud Ebalard #include <linux/mutex.h>
260b2f6228SArnaud Ebalard #include <linux/rtc.h>
270b2f6228SArnaud Ebalard #include <linux/i2c.h>
280b2f6228SArnaud Ebalard #include <linux/bcd.h>
290b2f6228SArnaud Ebalard #include <linux/of.h>
300b2f6228SArnaud Ebalard #include <linux/regmap.h>
310b2f6228SArnaud Ebalard #include <linux/interrupt.h>
320b2f6228SArnaud Ebalard 
330b2f6228SArnaud Ebalard #define DRV_NAME "rtc-ab-b5ze-s3"
340b2f6228SArnaud Ebalard 
350b2f6228SArnaud Ebalard /* Control section */
360b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
370b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
380b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
390b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
400b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
410b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
420b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
430b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
440b2f6228SArnaud Ebalard 
450b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
460b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
470b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
480b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
490b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
500b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
510b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
520b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
530b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
540b2f6228SArnaud Ebalard 
550b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
560b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
570b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
580b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
590b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
600b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
610b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
620b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
630b2f6228SArnaud Ebalard 
640b2f6228SArnaud Ebalard #define ABB5ZES3_CTRL_SEC_LEN	   3
650b2f6228SArnaud Ebalard 
660b2f6228SArnaud Ebalard /* RTC section */
670b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
680b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
690b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
700b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
710b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
720b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
730b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
740b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
750b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
760b2f6228SArnaud Ebalard 
770b2f6228SArnaud Ebalard #define ABB5ZES3_RTC_SEC_LEN	   7
780b2f6228SArnaud Ebalard 
790b2f6228SArnaud Ebalard /* Alarm section (enable bits are all active low) */
800b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
810b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
820b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
830b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
840b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
850b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
860b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
870b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
880b2f6228SArnaud Ebalard 
890b2f6228SArnaud Ebalard #define ABB5ZES3_ALRM_SEC_LEN	   4
900b2f6228SArnaud Ebalard 
910b2f6228SArnaud Ebalard /* Frequency offset section */
920b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
930b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
940b2f6228SArnaud Ebalard 
950b2f6228SArnaud Ebalard /* CLOCKOUT section */
960b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
970b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
980b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
990b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
1000b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
1010b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
1020b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
1030b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
1040b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
1050b2f6228SArnaud Ebalard 
1060b2f6228SArnaud Ebalard /* Timer A Section */
1070b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
1080b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
1090b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
1100b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
1110b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
1120b2f6228SArnaud Ebalard 
1130b2f6228SArnaud Ebalard #define ABB5ZES3_TIMA_SEC_LEN	   2
1140b2f6228SArnaud Ebalard 
1150b2f6228SArnaud Ebalard /* Timer B Section */
1160b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
1170b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
1180b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
1190b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
1200b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
1210b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
1220b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
1230b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
1240b2f6228SArnaud Ebalard #define ABB5ZES3_TIMB_SEC_LEN	   2
1250b2f6228SArnaud Ebalard 
1260b2f6228SArnaud Ebalard #define ABB5ZES3_MEM_MAP_LEN	   0x14
1270b2f6228SArnaud Ebalard 
1280b2f6228SArnaud Ebalard struct abb5zes3_rtc_data {
1290b2f6228SArnaud Ebalard 	struct rtc_device *rtc;
1300b2f6228SArnaud Ebalard 	struct regmap *regmap;
1310b2f6228SArnaud Ebalard 	struct mutex lock;
1320b2f6228SArnaud Ebalard 
1330b2f6228SArnaud Ebalard 	int irq;
1340b2f6228SArnaud Ebalard 
1350b2f6228SArnaud Ebalard 	bool battery_low;
136*c8a1d8a5SArnaud Ebalard 	bool timer_alarm; /* current alarm is via timer A */
1370b2f6228SArnaud Ebalard };
1380b2f6228SArnaud Ebalard 
1390b2f6228SArnaud Ebalard /*
1400b2f6228SArnaud Ebalard  * Try and match register bits w/ fixed null values to see whether we
1410b2f6228SArnaud Ebalard  * are dealing with an ABB5ZES3. Note: this function is called early
1420b2f6228SArnaud Ebalard  * during init and hence does need mutex protection.
1430b2f6228SArnaud Ebalard  */
1440b2f6228SArnaud Ebalard static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
1450b2f6228SArnaud Ebalard {
1460b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
1470b2f6228SArnaud Ebalard 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
1480b2f6228SArnaud Ebalard 						       0x80, 0xc0, 0xc0, 0xf8,
1490b2f6228SArnaud Ebalard 						       0xe0, 0x00, 0x00, 0x40,
1500b2f6228SArnaud Ebalard 						       0x40, 0x78, 0x00, 0x00,
1510b2f6228SArnaud Ebalard 						       0xf8, 0x00, 0x88, 0x00 };
1520b2f6228SArnaud Ebalard 	int ret, i;
1530b2f6228SArnaud Ebalard 
1540b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
1550b2f6228SArnaud Ebalard 	if (ret)
1560b2f6228SArnaud Ebalard 		return ret;
1570b2f6228SArnaud Ebalard 
1580b2f6228SArnaud Ebalard 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
1590b2f6228SArnaud Ebalard 		if (regs[i] & mask[i]) /* check if bits are cleared */
1600b2f6228SArnaud Ebalard 			return -ENODEV;
1610b2f6228SArnaud Ebalard 	}
1620b2f6228SArnaud Ebalard 
1630b2f6228SArnaud Ebalard 	return 0;
1640b2f6228SArnaud Ebalard }
1650b2f6228SArnaud Ebalard 
1660b2f6228SArnaud Ebalard /* Clear alarm status bit. */
1670b2f6228SArnaud Ebalard static int _abb5zes3_rtc_clear_alarm(struct device *dev)
1680b2f6228SArnaud Ebalard {
1690b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
1700b2f6228SArnaud Ebalard 	int ret;
1710b2f6228SArnaud Ebalard 
1720b2f6228SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
1730b2f6228SArnaud Ebalard 				 ABB5ZES3_REG_CTRL2_AF, 0);
1740b2f6228SArnaud Ebalard 	if (ret)
1750b2f6228SArnaud Ebalard 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
1760b2f6228SArnaud Ebalard 
1770b2f6228SArnaud Ebalard 	return ret;
1780b2f6228SArnaud Ebalard }
1790b2f6228SArnaud Ebalard 
1800b2f6228SArnaud Ebalard /* Enable or disable alarm (i.e. alarm interrupt generation) */
1810b2f6228SArnaud Ebalard static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
1820b2f6228SArnaud Ebalard {
1830b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
1840b2f6228SArnaud Ebalard 	int ret;
1850b2f6228SArnaud Ebalard 
1860b2f6228SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
1870b2f6228SArnaud Ebalard 				 ABB5ZES3_REG_CTRL1_AIE,
1880b2f6228SArnaud Ebalard 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
1890b2f6228SArnaud Ebalard 	if (ret)
1900b2f6228SArnaud Ebalard 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
1910b2f6228SArnaud Ebalard 			__func__, ret);
1920b2f6228SArnaud Ebalard 
1930b2f6228SArnaud Ebalard 	return ret;
1940b2f6228SArnaud Ebalard }
1950b2f6228SArnaud Ebalard 
196*c8a1d8a5SArnaud Ebalard /* Enable or disable timer (watchdog timer A interrupt generation) */
197*c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
198*c8a1d8a5SArnaud Ebalard {
199*c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
200*c8a1d8a5SArnaud Ebalard 	int ret;
201*c8a1d8a5SArnaud Ebalard 
202*c8a1d8a5SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
203*c8a1d8a5SArnaud Ebalard 				 ABB5ZES3_REG_CTRL2_WTAIE,
204*c8a1d8a5SArnaud Ebalard 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
205*c8a1d8a5SArnaud Ebalard 	if (ret)
206*c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
207*c8a1d8a5SArnaud Ebalard 			__func__, ret);
208*c8a1d8a5SArnaud Ebalard 
209*c8a1d8a5SArnaud Ebalard 	return ret;
210*c8a1d8a5SArnaud Ebalard }
211*c8a1d8a5SArnaud Ebalard 
2120b2f6228SArnaud Ebalard /*
2130b2f6228SArnaud Ebalard  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
2140b2f6228SArnaud Ebalard  * we do not need driver's main lock protection.
2150b2f6228SArnaud Ebalard  */
2160b2f6228SArnaud Ebalard static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
2170b2f6228SArnaud Ebalard {
2180b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
2190b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
2200b2f6228SArnaud Ebalard 	int ret;
2210b2f6228SArnaud Ebalard 
2220b2f6228SArnaud Ebalard 	/*
2230b2f6228SArnaud Ebalard 	 * As we need to read CTRL1 register anyway to access 24/12h
2240b2f6228SArnaud Ebalard 	 * mode bit, we do a single bulk read of both control and RTC
2250b2f6228SArnaud Ebalard 	 * sections (they are consecutive). This also ease indexing
2260b2f6228SArnaud Ebalard 	 * of register values after bulk read.
2270b2f6228SArnaud Ebalard 	 */
2280b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
2290b2f6228SArnaud Ebalard 			       sizeof(regs));
2300b2f6228SArnaud Ebalard 	if (ret) {
2310b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
2320b2f6228SArnaud Ebalard 			__func__, ret);
2330b2f6228SArnaud Ebalard 		goto err;
2340b2f6228SArnaud Ebalard 	}
2350b2f6228SArnaud Ebalard 
2360b2f6228SArnaud Ebalard 	/* If clock integrity is not guaranteed, do not return a time value */
2370b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
2380b2f6228SArnaud Ebalard 		ret = -ENODATA;
2390b2f6228SArnaud Ebalard 		goto err;
2400b2f6228SArnaud Ebalard 	}
2410b2f6228SArnaud Ebalard 
2420b2f6228SArnaud Ebalard 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
2430b2f6228SArnaud Ebalard 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
2440b2f6228SArnaud Ebalard 
2450b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
2460b2f6228SArnaud Ebalard 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
2470b2f6228SArnaud Ebalard 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
2480b2f6228SArnaud Ebalard 			tm->tm_hour += 12;
2490b2f6228SArnaud Ebalard 	} else {						/* 24hr mode */
2500b2f6228SArnaud Ebalard 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
2510b2f6228SArnaud Ebalard 	}
2520b2f6228SArnaud Ebalard 
2530b2f6228SArnaud Ebalard 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
2540b2f6228SArnaud Ebalard 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
2550b2f6228SArnaud Ebalard 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
2560b2f6228SArnaud Ebalard 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
2570b2f6228SArnaud Ebalard 
2580b2f6228SArnaud Ebalard 	ret = rtc_valid_tm(tm);
2590b2f6228SArnaud Ebalard 
2600b2f6228SArnaud Ebalard err:
2610b2f6228SArnaud Ebalard 	return ret;
2620b2f6228SArnaud Ebalard }
2630b2f6228SArnaud Ebalard 
2640b2f6228SArnaud Ebalard static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
2650b2f6228SArnaud Ebalard {
2660b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
2670b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
2680b2f6228SArnaud Ebalard 	int ret;
2690b2f6228SArnaud Ebalard 
2700b2f6228SArnaud Ebalard 	/*
2710b2f6228SArnaud Ebalard 	 * Year register is 8-bit wide and bcd-coded, i.e records values
2720b2f6228SArnaud Ebalard 	 * between 0 and 99. tm_year is an offset from 1900 and we are
2730b2f6228SArnaud Ebalard 	 * interested in the 2000-2099 range, so any value less than 100
2740b2f6228SArnaud Ebalard 	 * is invalid.
2750b2f6228SArnaud Ebalard 	 */
2760b2f6228SArnaud Ebalard 	if (tm->tm_year < 100)
2770b2f6228SArnaud Ebalard 		return -EINVAL;
2780b2f6228SArnaud Ebalard 
2790b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
2800b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
2810b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
2820b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
2830b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
2840b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
2850b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
2860b2f6228SArnaud Ebalard 
2870b2f6228SArnaud Ebalard 	mutex_lock(&data->lock);
2880b2f6228SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
2890b2f6228SArnaud Ebalard 				regs + ABB5ZES3_REG_RTC_SC,
2900b2f6228SArnaud Ebalard 				ABB5ZES3_RTC_SEC_LEN);
2910b2f6228SArnaud Ebalard 	mutex_unlock(&data->lock);
2920b2f6228SArnaud Ebalard 
2930b2f6228SArnaud Ebalard 
2940b2f6228SArnaud Ebalard 	return ret;
2950b2f6228SArnaud Ebalard }
2960b2f6228SArnaud Ebalard 
297*c8a1d8a5SArnaud Ebalard /*
298*c8a1d8a5SArnaud Ebalard  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
299*c8a1d8a5SArnaud Ebalard  * given number of seconds.
300*c8a1d8a5SArnaud Ebalard  */
301*c8a1d8a5SArnaud Ebalard static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
302*c8a1d8a5SArnaud Ebalard {
303*c8a1d8a5SArnaud Ebalard 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
304*c8a1d8a5SArnaud Ebalard 	*timer_a = secs;
305*c8a1d8a5SArnaud Ebalard }
306*c8a1d8a5SArnaud Ebalard 
307*c8a1d8a5SArnaud Ebalard /*
308*c8a1d8a5SArnaud Ebalard  * Return current number of seconds in Timer A. As we only use
309*c8a1d8a5SArnaud Ebalard  * timer A with a 1Hz freq, this is what we expect to have.
310*c8a1d8a5SArnaud Ebalard  */
311*c8a1d8a5SArnaud Ebalard static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
312*c8a1d8a5SArnaud Ebalard {
313*c8a1d8a5SArnaud Ebalard 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
314*c8a1d8a5SArnaud Ebalard 		return -EINVAL;
315*c8a1d8a5SArnaud Ebalard 
316*c8a1d8a5SArnaud Ebalard 	*secs = timer_a;
317*c8a1d8a5SArnaud Ebalard 
318*c8a1d8a5SArnaud Ebalard 	return 0;
319*c8a1d8a5SArnaud Ebalard }
320*c8a1d8a5SArnaud Ebalard 
321*c8a1d8a5SArnaud Ebalard /*
322*c8a1d8a5SArnaud Ebalard  * Read alarm currently configured via a watchdog timer using timer A. This
323*c8a1d8a5SArnaud Ebalard  * is done by reading current RTC time and adding remaining timer time.
324*c8a1d8a5SArnaud Ebalard  */
325*c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_timer(struct device *dev,
326*c8a1d8a5SArnaud Ebalard 				    struct rtc_wkalrm *alarm)
327*c8a1d8a5SArnaud Ebalard {
328*c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
329*c8a1d8a5SArnaud Ebalard 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
330*c8a1d8a5SArnaud Ebalard 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
331*c8a1d8a5SArnaud Ebalard 	unsigned long rtc_secs;
332*c8a1d8a5SArnaud Ebalard 	unsigned int reg;
333*c8a1d8a5SArnaud Ebalard 	u8 timer_secs;
334*c8a1d8a5SArnaud Ebalard 	int ret;
335*c8a1d8a5SArnaud Ebalard 
336*c8a1d8a5SArnaud Ebalard 	/*
337*c8a1d8a5SArnaud Ebalard 	 * Instead of doing two separate calls, because they are consecutive,
338*c8a1d8a5SArnaud Ebalard 	 * we grab both clockout register and Timer A section. The latter is
339*c8a1d8a5SArnaud Ebalard 	 * used to decide if timer A is enabled (as a watchdog timer).
340*c8a1d8a5SArnaud Ebalard 	 */
341*c8a1d8a5SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
342*c8a1d8a5SArnaud Ebalard 			       ABB5ZES3_TIMA_SEC_LEN + 1);
343*c8a1d8a5SArnaud Ebalard 	if (ret) {
344*c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
345*c8a1d8a5SArnaud Ebalard 			__func__, ret);
346*c8a1d8a5SArnaud Ebalard 		goto err;
347*c8a1d8a5SArnaud Ebalard 	}
348*c8a1d8a5SArnaud Ebalard 
349*c8a1d8a5SArnaud Ebalard 	/* get current time ... */
350*c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
351*c8a1d8a5SArnaud Ebalard 	if (ret)
352*c8a1d8a5SArnaud Ebalard 		goto err;
353*c8a1d8a5SArnaud Ebalard 
354*c8a1d8a5SArnaud Ebalard 	/* ... convert to seconds ... */
355*c8a1d8a5SArnaud Ebalard 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
356*c8a1d8a5SArnaud Ebalard 	if (ret)
357*c8a1d8a5SArnaud Ebalard 		goto err;
358*c8a1d8a5SArnaud Ebalard 
359*c8a1d8a5SArnaud Ebalard 	/* ... add remaining timer A time ... */
360*c8a1d8a5SArnaud Ebalard 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
361*c8a1d8a5SArnaud Ebalard 	if (ret)
362*c8a1d8a5SArnaud Ebalard 		goto err;
363*c8a1d8a5SArnaud Ebalard 
364*c8a1d8a5SArnaud Ebalard 	/* ... and convert back. */
365*c8a1d8a5SArnaud Ebalard 	rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
366*c8a1d8a5SArnaud Ebalard 
367*c8a1d8a5SArnaud Ebalard 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
368*c8a1d8a5SArnaud Ebalard 	if (ret) {
369*c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
370*c8a1d8a5SArnaud Ebalard 			__func__, ret);
371*c8a1d8a5SArnaud Ebalard 		goto err;
372*c8a1d8a5SArnaud Ebalard 	}
373*c8a1d8a5SArnaud Ebalard 
374*c8a1d8a5SArnaud Ebalard 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
375*c8a1d8a5SArnaud Ebalard 
376*c8a1d8a5SArnaud Ebalard err:
377*c8a1d8a5SArnaud Ebalard 	return ret;
378*c8a1d8a5SArnaud Ebalard }
379*c8a1d8a5SArnaud Ebalard 
380*c8a1d8a5SArnaud Ebalard /* Read alarm currently configured via a RTC alarm registers. */
381*c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_alarm(struct device *dev,
382*c8a1d8a5SArnaud Ebalard 				    struct rtc_wkalrm *alarm)
3830b2f6228SArnaud Ebalard {
3840b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
3850b2f6228SArnaud Ebalard 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
3860b2f6228SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
3870b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
3880b2f6228SArnaud Ebalard 	unsigned int reg;
3890b2f6228SArnaud Ebalard 	int ret;
3900b2f6228SArnaud Ebalard 
3910b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
3920b2f6228SArnaud Ebalard 			       ABB5ZES3_ALRM_SEC_LEN);
3930b2f6228SArnaud Ebalard 	if (ret) {
3940b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
3950b2f6228SArnaud Ebalard 			__func__, ret);
3960b2f6228SArnaud Ebalard 		goto err;
3970b2f6228SArnaud Ebalard 	}
3980b2f6228SArnaud Ebalard 
3990b2f6228SArnaud Ebalard 	alarm_tm->tm_sec  = 0;
4000b2f6228SArnaud Ebalard 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
4010b2f6228SArnaud Ebalard 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
4020b2f6228SArnaud Ebalard 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
4030b2f6228SArnaud Ebalard 	alarm_tm->tm_wday = -1;
4040b2f6228SArnaud Ebalard 
4050b2f6228SArnaud Ebalard 	/*
4060b2f6228SArnaud Ebalard 	 * The alarm section does not store year/month. We use the ones in rtc
4070b2f6228SArnaud Ebalard 	 * section as a basis and increment month and then year if needed to get
4080b2f6228SArnaud Ebalard 	 * alarm after current time.
4090b2f6228SArnaud Ebalard 	 */
4100b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
4110b2f6228SArnaud Ebalard 	if (ret)
4120b2f6228SArnaud Ebalard 		goto err;
4130b2f6228SArnaud Ebalard 
4140b2f6228SArnaud Ebalard 	alarm_tm->tm_year = rtc_tm.tm_year;
4150b2f6228SArnaud Ebalard 	alarm_tm->tm_mon = rtc_tm.tm_mon;
4160b2f6228SArnaud Ebalard 
4170b2f6228SArnaud Ebalard 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
4180b2f6228SArnaud Ebalard 	if (ret)
4190b2f6228SArnaud Ebalard 		goto err;
4200b2f6228SArnaud Ebalard 
4210b2f6228SArnaud Ebalard 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
4220b2f6228SArnaud Ebalard 	if (ret)
4230b2f6228SArnaud Ebalard 		goto err;
4240b2f6228SArnaud Ebalard 
4250b2f6228SArnaud Ebalard 	if (alarm_secs < rtc_secs) {
4260b2f6228SArnaud Ebalard 		if (alarm_tm->tm_mon == 11) {
4270b2f6228SArnaud Ebalard 			alarm_tm->tm_mon = 0;
4280b2f6228SArnaud Ebalard 			alarm_tm->tm_year += 1;
4290b2f6228SArnaud Ebalard 		} else {
4300b2f6228SArnaud Ebalard 			alarm_tm->tm_mon += 1;
4310b2f6228SArnaud Ebalard 		}
4320b2f6228SArnaud Ebalard 	}
4330b2f6228SArnaud Ebalard 
4340b2f6228SArnaud Ebalard 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
4350b2f6228SArnaud Ebalard 	if (ret) {
4360b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
4370b2f6228SArnaud Ebalard 			__func__, ret);
4380b2f6228SArnaud Ebalard 		goto err;
4390b2f6228SArnaud Ebalard 	}
4400b2f6228SArnaud Ebalard 
4410b2f6228SArnaud Ebalard 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
4420b2f6228SArnaud Ebalard 
4430b2f6228SArnaud Ebalard err:
444*c8a1d8a5SArnaud Ebalard 	return ret;
445*c8a1d8a5SArnaud Ebalard }
446*c8a1d8a5SArnaud Ebalard 
447*c8a1d8a5SArnaud Ebalard /*
448*c8a1d8a5SArnaud Ebalard  * As the Alarm mechanism supported by the chip is only accurate to the
449*c8a1d8a5SArnaud Ebalard  * minute, we use the watchdog timer mechanism provided by timer A
450*c8a1d8a5SArnaud Ebalard  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
451*c8a1d8a5SArnaud Ebalard  * 4 minutes). Otherwise, we use the common alarm mechanism provided
452*c8a1d8a5SArnaud Ebalard  * by the chip. In order for that to work, we keep track of currently
453*c8a1d8a5SArnaud Ebalard  * configured timer type via 'timer_alarm' flag in our private data
454*c8a1d8a5SArnaud Ebalard  * structure.
455*c8a1d8a5SArnaud Ebalard  */
456*c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
457*c8a1d8a5SArnaud Ebalard {
458*c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
459*c8a1d8a5SArnaud Ebalard 	int ret;
460*c8a1d8a5SArnaud Ebalard 
461*c8a1d8a5SArnaud Ebalard 	mutex_lock(&data->lock);
462*c8a1d8a5SArnaud Ebalard 	if (data->timer_alarm)
463*c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
464*c8a1d8a5SArnaud Ebalard 	else
465*c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
4660b2f6228SArnaud Ebalard 	mutex_unlock(&data->lock);
4670b2f6228SArnaud Ebalard 
4680b2f6228SArnaud Ebalard 	return ret;
4690b2f6228SArnaud Ebalard }
4700b2f6228SArnaud Ebalard 
471*c8a1d8a5SArnaud Ebalard /*
472*c8a1d8a5SArnaud Ebalard  * Set alarm using chip alarm mechanism. It is only accurate to the
473*c8a1d8a5SArnaud Ebalard  * minute (not the second). The function expects alarm interrupt to
474*c8a1d8a5SArnaud Ebalard  * be disabled.
475*c8a1d8a5SArnaud Ebalard  */
476*c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
4770b2f6228SArnaud Ebalard {
4780b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
4790b2f6228SArnaud Ebalard 	struct rtc_time *alarm_tm = &alarm->time;
4800b2f6228SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
4810b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
4820b2f6228SArnaud Ebalard 	struct rtc_time rtc_tm;
4830b2f6228SArnaud Ebalard 	int ret, enable = 1;
4840b2f6228SArnaud Ebalard 
4850b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
4860b2f6228SArnaud Ebalard 	if (ret)
4870b2f6228SArnaud Ebalard 		goto err;
4880b2f6228SArnaud Ebalard 
4890b2f6228SArnaud Ebalard 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
4900b2f6228SArnaud Ebalard 	if (ret)
4910b2f6228SArnaud Ebalard 		goto err;
4920b2f6228SArnaud Ebalard 
4930b2f6228SArnaud Ebalard 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
4940b2f6228SArnaud Ebalard 	if (ret)
4950b2f6228SArnaud Ebalard 		goto err;
4960b2f6228SArnaud Ebalard 
4970b2f6228SArnaud Ebalard 	/* If alarm time is before current time, disable the alarm */
4980b2f6228SArnaud Ebalard 	if (!alarm->enabled || alarm_secs <= rtc_secs) {
4990b2f6228SArnaud Ebalard 		enable = 0;
5000b2f6228SArnaud Ebalard 	} else {
5010b2f6228SArnaud Ebalard 		/*
5020b2f6228SArnaud Ebalard 		 * Chip only support alarms up to one month in the future. Let's
5030b2f6228SArnaud Ebalard 		 * return an error if we get something after that limit.
5040b2f6228SArnaud Ebalard 		 * Comparison is done by incrementing rtc_tm month field by one
5050b2f6228SArnaud Ebalard 		 * and checking alarm value is still below.
5060b2f6228SArnaud Ebalard 		 */
5070b2f6228SArnaud Ebalard 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
5080b2f6228SArnaud Ebalard 			rtc_tm.tm_mon = 0;
5090b2f6228SArnaud Ebalard 			rtc_tm.tm_year += 1;
5100b2f6228SArnaud Ebalard 		} else {
5110b2f6228SArnaud Ebalard 			rtc_tm.tm_mon += 1;
5120b2f6228SArnaud Ebalard 		}
5130b2f6228SArnaud Ebalard 
5140b2f6228SArnaud Ebalard 		ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
5150b2f6228SArnaud Ebalard 		if (ret)
5160b2f6228SArnaud Ebalard 			goto err;
5170b2f6228SArnaud Ebalard 
5180b2f6228SArnaud Ebalard 		if (alarm_secs > rtc_secs) {
5190b2f6228SArnaud Ebalard 			dev_err(dev, "%s: alarm maximum is one month in the "
5200b2f6228SArnaud Ebalard 				"future (%d)\n", __func__, ret);
5210b2f6228SArnaud Ebalard 			ret = -EINVAL;
5220b2f6228SArnaud Ebalard 			goto err;
5230b2f6228SArnaud Ebalard 		}
5240b2f6228SArnaud Ebalard 	}
5250b2f6228SArnaud Ebalard 
526*c8a1d8a5SArnaud Ebalard 	/*
527*c8a1d8a5SArnaud Ebalard 	 * Program all alarm registers but DW one. For each register, setting
528*c8a1d8a5SArnaud Ebalard 	 * MSB to 0 enables associated alarm.
529*c8a1d8a5SArnaud Ebalard 	 */
530*c8a1d8a5SArnaud Ebalard 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
531*c8a1d8a5SArnaud Ebalard 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
532*c8a1d8a5SArnaud Ebalard 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
5330b2f6228SArnaud Ebalard 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
5340b2f6228SArnaud Ebalard 
5350b2f6228SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
5360b2f6228SArnaud Ebalard 				ABB5ZES3_ALRM_SEC_LEN);
5370b2f6228SArnaud Ebalard 	if (ret < 0) {
5380b2f6228SArnaud Ebalard 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
5390b2f6228SArnaud Ebalard 			__func__, ret);
5400b2f6228SArnaud Ebalard 		goto err;
5410b2f6228SArnaud Ebalard 	}
5420b2f6228SArnaud Ebalard 
543*c8a1d8a5SArnaud Ebalard 	/* Record currently configured alarm is not a timer */
544*c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 0;
545*c8a1d8a5SArnaud Ebalard 
546*c8a1d8a5SArnaud Ebalard 	/* Enable or disable alarm interrupt generation */
5470b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_update_alarm(dev, enable);
5480b2f6228SArnaud Ebalard 
5490b2f6228SArnaud Ebalard err:
550*c8a1d8a5SArnaud Ebalard 	return ret;
551*c8a1d8a5SArnaud Ebalard }
552*c8a1d8a5SArnaud Ebalard 
553*c8a1d8a5SArnaud Ebalard /*
554*c8a1d8a5SArnaud Ebalard  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
555*c8a1d8a5SArnaud Ebalard  * timer A interrupt to be disabled.
556*c8a1d8a5SArnaud Ebalard  */
557*c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
558*c8a1d8a5SArnaud Ebalard 				   u8 secs)
559*c8a1d8a5SArnaud Ebalard {
560*c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
561*c8a1d8a5SArnaud Ebalard 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
562*c8a1d8a5SArnaud Ebalard 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
563*c8a1d8a5SArnaud Ebalard 	int ret = 0;
564*c8a1d8a5SArnaud Ebalard 
565*c8a1d8a5SArnaud Ebalard 	/* Program given number of seconds to Timer A registers */
566*c8a1d8a5SArnaud Ebalard 	sec_to_timer_a(secs, &regs[0], &regs[1]);
567*c8a1d8a5SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
568*c8a1d8a5SArnaud Ebalard 				ABB5ZES3_TIMA_SEC_LEN);
569*c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
570*c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: writing timer section failed\n", __func__);
571*c8a1d8a5SArnaud Ebalard 		goto err;
572*c8a1d8a5SArnaud Ebalard 	}
573*c8a1d8a5SArnaud Ebalard 
574*c8a1d8a5SArnaud Ebalard 	/* Configure Timer A as a watchdog timer */
575*c8a1d8a5SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
576*c8a1d8a5SArnaud Ebalard 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
577*c8a1d8a5SArnaud Ebalard 	if (ret)
578*c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: failed to update timer\n", __func__);
579*c8a1d8a5SArnaud Ebalard 
580*c8a1d8a5SArnaud Ebalard 	/* Record currently configured alarm is a timer */
581*c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 1;
582*c8a1d8a5SArnaud Ebalard 
583*c8a1d8a5SArnaud Ebalard 	/* Enable or disable timer interrupt generation */
584*c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
585*c8a1d8a5SArnaud Ebalard 
586*c8a1d8a5SArnaud Ebalard err:
587*c8a1d8a5SArnaud Ebalard 	return ret;
588*c8a1d8a5SArnaud Ebalard }
589*c8a1d8a5SArnaud Ebalard 
590*c8a1d8a5SArnaud Ebalard /*
591*c8a1d8a5SArnaud Ebalard  * The chip has an alarm which is only accurate to the minute. In order to
592*c8a1d8a5SArnaud Ebalard  * handle alarms below that limit, we use the watchdog timer function of
593*c8a1d8a5SArnaud Ebalard  * timer A. More precisely, the timer method is used for alarms below 240
594*c8a1d8a5SArnaud Ebalard  * seconds.
595*c8a1d8a5SArnaud Ebalard  */
596*c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
597*c8a1d8a5SArnaud Ebalard {
598*c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
599*c8a1d8a5SArnaud Ebalard 	struct rtc_time *alarm_tm = &alarm->time;
600*c8a1d8a5SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
601*c8a1d8a5SArnaud Ebalard 	struct rtc_time rtc_tm;
602*c8a1d8a5SArnaud Ebalard 	int ret;
603*c8a1d8a5SArnaud Ebalard 
604*c8a1d8a5SArnaud Ebalard 	mutex_lock(&data->lock);
605*c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
606*c8a1d8a5SArnaud Ebalard 	if (ret)
607*c8a1d8a5SArnaud Ebalard 		goto err;
608*c8a1d8a5SArnaud Ebalard 
609*c8a1d8a5SArnaud Ebalard 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
610*c8a1d8a5SArnaud Ebalard 	if (ret)
611*c8a1d8a5SArnaud Ebalard 		goto err;
612*c8a1d8a5SArnaud Ebalard 
613*c8a1d8a5SArnaud Ebalard 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
614*c8a1d8a5SArnaud Ebalard 	if (ret)
615*c8a1d8a5SArnaud Ebalard 		goto err;
616*c8a1d8a5SArnaud Ebalard 
617*c8a1d8a5SArnaud Ebalard 	/* Let's first disable both the alarm and the timer interrupts */
618*c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_alarm(dev, false);
619*c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
620*c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
621*c8a1d8a5SArnaud Ebalard 			ret);
622*c8a1d8a5SArnaud Ebalard 		goto err;
623*c8a1d8a5SArnaud Ebalard 	}
624*c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_timer(dev, false);
625*c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
626*c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
627*c8a1d8a5SArnaud Ebalard 			ret);
628*c8a1d8a5SArnaud Ebalard 		goto err;
629*c8a1d8a5SArnaud Ebalard 	}
630*c8a1d8a5SArnaud Ebalard 
631*c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 0;
632*c8a1d8a5SArnaud Ebalard 
633*c8a1d8a5SArnaud Ebalard 	/*
634*c8a1d8a5SArnaud Ebalard 	 * Let's now configure the alarm; if we are expected to ring in
635*c8a1d8a5SArnaud Ebalard 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
636*c8a1d8a5SArnaud Ebalard 	 */
637*c8a1d8a5SArnaud Ebalard 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
638*c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
639*c8a1d8a5SArnaud Ebalard 					      alarm_secs - rtc_secs);
640*c8a1d8a5SArnaud Ebalard 	else
641*c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
642*c8a1d8a5SArnaud Ebalard 
643*c8a1d8a5SArnaud Ebalard  err:
6440b2f6228SArnaud Ebalard 	mutex_unlock(&data->lock);
6450b2f6228SArnaud Ebalard 
646*c8a1d8a5SArnaud Ebalard 	if (ret)
647*c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
648*c8a1d8a5SArnaud Ebalard 			ret);
649*c8a1d8a5SArnaud Ebalard 
6500b2f6228SArnaud Ebalard 	return ret;
6510b2f6228SArnaud Ebalard  }
6520b2f6228SArnaud Ebalard 
6530b2f6228SArnaud Ebalard /* Enable or disable battery low irq generation */
6540b2f6228SArnaud Ebalard static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
6550b2f6228SArnaud Ebalard 						       bool enable)
6560b2f6228SArnaud Ebalard {
6570b2f6228SArnaud Ebalard 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
6580b2f6228SArnaud Ebalard 				  ABB5ZES3_REG_CTRL3_BLIE,
6590b2f6228SArnaud Ebalard 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
6600b2f6228SArnaud Ebalard }
6610b2f6228SArnaud Ebalard 
6620b2f6228SArnaud Ebalard /*
6630b2f6228SArnaud Ebalard  * Check current RTC status and enable/disable what needs to be. Return 0 if
6640b2f6228SArnaud Ebalard  * everything went ok and a negative value upon error. Note: this function
6650b2f6228SArnaud Ebalard  * is called early during init and hence does need mutex protection.
6660b2f6228SArnaud Ebalard  */
6670b2f6228SArnaud Ebalard static int abb5zes3_rtc_check_setup(struct device *dev)
6680b2f6228SArnaud Ebalard {
6690b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
6700b2f6228SArnaud Ebalard 	struct regmap *regmap = data->regmap;
6710b2f6228SArnaud Ebalard 	unsigned int reg;
6720b2f6228SArnaud Ebalard 	int ret;
6730b2f6228SArnaud Ebalard 	u8 mask;
6740b2f6228SArnaud Ebalard 
6750b2f6228SArnaud Ebalard 	/*
6760b2f6228SArnaud Ebalard 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
6770b2f6228SArnaud Ebalard 	 * is disabled here to prevent polluting the interrupt line and
6780b2f6228SArnaud Ebalard 	 * uselessly triggering the IRQ handler we install for alarm and battery
6790b2f6228SArnaud Ebalard 	 * low events. Note: this is done before clearing int. status below
6800b2f6228SArnaud Ebalard 	 * in this function.
6810b2f6228SArnaud Ebalard 	 * We also disable all timers and set timer interrupt to permanent (not
6820b2f6228SArnaud Ebalard 	 * pulsed).
6830b2f6228SArnaud Ebalard 	 */
6840b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
6850b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
6860b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
6870b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
6880b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
6890b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
6900b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF2);
6910b2f6228SArnaud Ebalard 	if (ret < 0) {
6920b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
6930b2f6228SArnaud Ebalard 			__func__, ret);
6940b2f6228SArnaud Ebalard 		return ret;
6950b2f6228SArnaud Ebalard 	}
6960b2f6228SArnaud Ebalard 
6970b2f6228SArnaud Ebalard 	/*
6980b2f6228SArnaud Ebalard 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
6990b2f6228SArnaud Ebalard 	 * individually by clearing/setting MSB of each associated register. So,
7000b2f6228SArnaud Ebalard 	 * we set all alarm enable bits to disable current alarm setting.
7010b2f6228SArnaud Ebalard 	 */
7020b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
7030b2f6228SArnaud Ebalard 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
7040b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
7050b2f6228SArnaud Ebalard 	if (ret < 0) {
7060b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
7070b2f6228SArnaud Ebalard 			__func__, ret);
7080b2f6228SArnaud Ebalard 		return ret;
7090b2f6228SArnaud Ebalard 	}
7100b2f6228SArnaud Ebalard 
7110b2f6228SArnaud Ebalard 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
7120b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
7130b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
7140b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
7150b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
7160b2f6228SArnaud Ebalard 	if (ret < 0) {
7170b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
7180b2f6228SArnaud Ebalard 			__func__, ret);
7190b2f6228SArnaud Ebalard 		return ret;
7200b2f6228SArnaud Ebalard 	}
7210b2f6228SArnaud Ebalard 
7220b2f6228SArnaud Ebalard 	/*
7230b2f6228SArnaud Ebalard 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
7240b2f6228SArnaud Ebalard 	 * WTAF is read-only and cleared automatically by reading the register.
7250b2f6228SArnaud Ebalard 	 */
7260b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
7270b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
7280b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
7290b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_CTAF);
7300b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
7310b2f6228SArnaud Ebalard 	if (ret < 0) {
7320b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
7330b2f6228SArnaud Ebalard 			__func__, ret);
7340b2f6228SArnaud Ebalard 		return ret;
7350b2f6228SArnaud Ebalard 	}
7360b2f6228SArnaud Ebalard 
7370b2f6228SArnaud Ebalard 	/*
7380b2f6228SArnaud Ebalard 	 * Enable battery low detection function and battery switchover function
7390b2f6228SArnaud Ebalard 	 * (standard mode). Disable associated interrupts. Clear battery
7400b2f6228SArnaud Ebalard 	 * switchover flag but not battery low flag. The latter is checked
7410b2f6228SArnaud Ebalard 	 * later below.
7420b2f6228SArnaud Ebalard 	 */
7430b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
7440b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
7450b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
7460b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
7470b2f6228SArnaud Ebalard 	if (ret < 0) {
7480b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
7490b2f6228SArnaud Ebalard 			__func__, ret);
7500b2f6228SArnaud Ebalard 		return ret;
7510b2f6228SArnaud Ebalard 	}
7520b2f6228SArnaud Ebalard 
7530b2f6228SArnaud Ebalard 	/* Check oscillator integrity flag */
7540b2f6228SArnaud Ebalard 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
7550b2f6228SArnaud Ebalard 	if (ret < 0) {
7560b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
7570b2f6228SArnaud Ebalard 			__func__, ret);
7580b2f6228SArnaud Ebalard 		return ret;
7590b2f6228SArnaud Ebalard 	}
7600b2f6228SArnaud Ebalard 
7610b2f6228SArnaud Ebalard 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
7620b2f6228SArnaud Ebalard 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
7630b2f6228SArnaud Ebalard 			"or has been interrupted.\n");
7640b2f6228SArnaud Ebalard 		dev_err(dev, "change battery (if not already done) and  "
7650b2f6228SArnaud Ebalard 			"then set time to reset osc. failure flag.\n");
7660b2f6228SArnaud Ebalard 	}
7670b2f6228SArnaud Ebalard 
7680b2f6228SArnaud Ebalard 	/*
7690b2f6228SArnaud Ebalard 	 * Check battery low flag at startup: this allows reporting battery
7700b2f6228SArnaud Ebalard 	 * is low at startup when IRQ line is not connected. Note: we record
7710b2f6228SArnaud Ebalard 	 * current status to avoid reenabling this interrupt later in probe
7720b2f6228SArnaud Ebalard 	 * function if battery is low.
7730b2f6228SArnaud Ebalard 	 */
7740b2f6228SArnaud Ebalard 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
7750b2f6228SArnaud Ebalard 	if (ret < 0) {
7760b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
7770b2f6228SArnaud Ebalard 			__func__, ret);
7780b2f6228SArnaud Ebalard 		return ret;
7790b2f6228SArnaud Ebalard 	}
7800b2f6228SArnaud Ebalard 
7810b2f6228SArnaud Ebalard 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
7820b2f6228SArnaud Ebalard 	if (data->battery_low) {
7830b2f6228SArnaud Ebalard 		dev_err(dev, "RTC battery is low; please, consider "
7840b2f6228SArnaud Ebalard 			"changing it!\n");
7850b2f6228SArnaud Ebalard 
7860b2f6228SArnaud Ebalard 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
7870b2f6228SArnaud Ebalard 		if (ret)
7880b2f6228SArnaud Ebalard 			dev_err(dev, "%s: disabling battery low interrupt "
7890b2f6228SArnaud Ebalard 				"generation failed (%d)\n", __func__, ret);
7900b2f6228SArnaud Ebalard 	}
7910b2f6228SArnaud Ebalard 
7920b2f6228SArnaud Ebalard 	return ret;
7930b2f6228SArnaud Ebalard }
7940b2f6228SArnaud Ebalard 
7950b2f6228SArnaud Ebalard static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
7960b2f6228SArnaud Ebalard 					 unsigned int enable)
7970b2f6228SArnaud Ebalard {
7980b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
7990b2f6228SArnaud Ebalard 	int ret = 0;
8000b2f6228SArnaud Ebalard 
8010b2f6228SArnaud Ebalard 	if (rtc_data->irq) {
8020b2f6228SArnaud Ebalard 		mutex_lock(&rtc_data->lock);
803*c8a1d8a5SArnaud Ebalard 		if (rtc_data->timer_alarm)
804*c8a1d8a5SArnaud Ebalard 			ret = _abb5zes3_rtc_update_timer(dev, enable);
805*c8a1d8a5SArnaud Ebalard 		else
8060b2f6228SArnaud Ebalard 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
8070b2f6228SArnaud Ebalard 		mutex_unlock(&rtc_data->lock);
8080b2f6228SArnaud Ebalard 	}
8090b2f6228SArnaud Ebalard 
8100b2f6228SArnaud Ebalard 	return ret;
8110b2f6228SArnaud Ebalard }
8120b2f6228SArnaud Ebalard 
8130b2f6228SArnaud Ebalard static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
8140b2f6228SArnaud Ebalard {
8150b2f6228SArnaud Ebalard 	struct i2c_client *client = data;
8160b2f6228SArnaud Ebalard 	struct device *dev = &client->dev;
8170b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
8180b2f6228SArnaud Ebalard 	struct rtc_device *rtc = rtc_data->rtc;
8190b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
8200b2f6228SArnaud Ebalard 	int ret, handled = IRQ_NONE;
8210b2f6228SArnaud Ebalard 
8220b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
8230b2f6228SArnaud Ebalard 			       ABB5ZES3_CTRL_SEC_LEN);
8240b2f6228SArnaud Ebalard 	if (ret) {
8250b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read control section (%d)!\n",
8260b2f6228SArnaud Ebalard 			__func__, ret);
8270b2f6228SArnaud Ebalard 		return handled;
8280b2f6228SArnaud Ebalard 	}
8290b2f6228SArnaud Ebalard 
8300b2f6228SArnaud Ebalard 	/*
8310b2f6228SArnaud Ebalard 	 * Check battery low detection flag and disable battery low interrupt
8320b2f6228SArnaud Ebalard 	 * generation if flag is set (interrupt can only be cleared when
8330b2f6228SArnaud Ebalard 	 * battery is replaced).
8340b2f6228SArnaud Ebalard 	 */
8350b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
8360b2f6228SArnaud Ebalard 		dev_err(dev, "RTC battery is low; please change it!\n");
8370b2f6228SArnaud Ebalard 
8380b2f6228SArnaud Ebalard 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
8390b2f6228SArnaud Ebalard 
8400b2f6228SArnaud Ebalard 		handled = IRQ_HANDLED;
8410b2f6228SArnaud Ebalard 	}
8420b2f6228SArnaud Ebalard 
8430b2f6228SArnaud Ebalard 	/* Check alarm flag */
8440b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
8450b2f6228SArnaud Ebalard 		dev_dbg(dev, "RTC alarm!\n");
8460b2f6228SArnaud Ebalard 
8470b2f6228SArnaud Ebalard 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
8480b2f6228SArnaud Ebalard 
8490b2f6228SArnaud Ebalard 		/* Acknowledge and disable the alarm */
8500b2f6228SArnaud Ebalard 		_abb5zes3_rtc_clear_alarm(dev);
8510b2f6228SArnaud Ebalard 		_abb5zes3_rtc_update_alarm(dev, 0);
8520b2f6228SArnaud Ebalard 
8530b2f6228SArnaud Ebalard 		handled = IRQ_HANDLED;
8540b2f6228SArnaud Ebalard 	}
8550b2f6228SArnaud Ebalard 
856*c8a1d8a5SArnaud Ebalard 	/* Check watchdog Timer A flag */
857*c8a1d8a5SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
858*c8a1d8a5SArnaud Ebalard 		dev_dbg(dev, "RTC timer!\n");
859*c8a1d8a5SArnaud Ebalard 
860*c8a1d8a5SArnaud Ebalard 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
861*c8a1d8a5SArnaud Ebalard 
862*c8a1d8a5SArnaud Ebalard 		/*
863*c8a1d8a5SArnaud Ebalard 		 * Acknowledge and disable the alarm. Note: WTAF
864*c8a1d8a5SArnaud Ebalard 		 * flag had been cleared when reading CTRL2
865*c8a1d8a5SArnaud Ebalard 		 */
866*c8a1d8a5SArnaud Ebalard 		_abb5zes3_rtc_update_timer(dev, 0);
867*c8a1d8a5SArnaud Ebalard 
868*c8a1d8a5SArnaud Ebalard 		rtc_data->timer_alarm = 0;
869*c8a1d8a5SArnaud Ebalard 
870*c8a1d8a5SArnaud Ebalard 		handled = IRQ_HANDLED;
871*c8a1d8a5SArnaud Ebalard 	}
872*c8a1d8a5SArnaud Ebalard 
8730b2f6228SArnaud Ebalard 	return handled;
8740b2f6228SArnaud Ebalard }
8750b2f6228SArnaud Ebalard 
8760b2f6228SArnaud Ebalard static const struct rtc_class_ops rtc_ops = {
8770b2f6228SArnaud Ebalard 	.read_time = _abb5zes3_rtc_read_time,
8780b2f6228SArnaud Ebalard 	.set_time = abb5zes3_rtc_set_time,
8790b2f6228SArnaud Ebalard 	.read_alarm = abb5zes3_rtc_read_alarm,
8800b2f6228SArnaud Ebalard 	.set_alarm = abb5zes3_rtc_set_alarm,
8810b2f6228SArnaud Ebalard 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
8820b2f6228SArnaud Ebalard };
8830b2f6228SArnaud Ebalard 
8840b2f6228SArnaud Ebalard static struct regmap_config abb5zes3_rtc_regmap_config = {
8850b2f6228SArnaud Ebalard 	.reg_bits = 8,
8860b2f6228SArnaud Ebalard 	.val_bits = 8,
8870b2f6228SArnaud Ebalard };
8880b2f6228SArnaud Ebalard 
8890b2f6228SArnaud Ebalard static int abb5zes3_probe(struct i2c_client *client,
8900b2f6228SArnaud Ebalard 			  const struct i2c_device_id *id)
8910b2f6228SArnaud Ebalard {
8920b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = NULL;
8930b2f6228SArnaud Ebalard 	struct device *dev = &client->dev;
8940b2f6228SArnaud Ebalard 	struct regmap *regmap;
8950b2f6228SArnaud Ebalard 	int ret;
8960b2f6228SArnaud Ebalard 
8970b2f6228SArnaud Ebalard 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
8980b2f6228SArnaud Ebalard 				     I2C_FUNC_SMBUS_BYTE_DATA |
8990b2f6228SArnaud Ebalard 				     I2C_FUNC_SMBUS_I2C_BLOCK)) {
9000b2f6228SArnaud Ebalard 		ret = -ENODEV;
9010b2f6228SArnaud Ebalard 		goto err;
9020b2f6228SArnaud Ebalard 	}
9030b2f6228SArnaud Ebalard 
9040b2f6228SArnaud Ebalard 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
9050b2f6228SArnaud Ebalard 	if (IS_ERR(regmap)) {
9060b2f6228SArnaud Ebalard 		ret = PTR_ERR(regmap);
9070b2f6228SArnaud Ebalard 		dev_err(dev, "%s: regmap allocation failed: %d\n",
9080b2f6228SArnaud Ebalard 			__func__, ret);
9090b2f6228SArnaud Ebalard 		goto err;
9100b2f6228SArnaud Ebalard 	}
9110b2f6228SArnaud Ebalard 
9120b2f6228SArnaud Ebalard 	ret = abb5zes3_i2c_validate_chip(regmap);
9130b2f6228SArnaud Ebalard 	if (ret)
9140b2f6228SArnaud Ebalard 		goto err;
9150b2f6228SArnaud Ebalard 
9160b2f6228SArnaud Ebalard 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
9170b2f6228SArnaud Ebalard 	if (!data) {
9180b2f6228SArnaud Ebalard 		ret = -ENOMEM;
9190b2f6228SArnaud Ebalard 		goto err;
9200b2f6228SArnaud Ebalard 	}
9210b2f6228SArnaud Ebalard 
9220b2f6228SArnaud Ebalard 	mutex_init(&data->lock);
9230b2f6228SArnaud Ebalard 	data->regmap = regmap;
9240b2f6228SArnaud Ebalard 	dev_set_drvdata(dev, data);
9250b2f6228SArnaud Ebalard 
9260b2f6228SArnaud Ebalard 	ret = abb5zes3_rtc_check_setup(dev);
9270b2f6228SArnaud Ebalard 	if (ret)
9280b2f6228SArnaud Ebalard 		goto err;
9290b2f6228SArnaud Ebalard 
9300b2f6228SArnaud Ebalard 	if (client->irq > 0) {
9310b2f6228SArnaud Ebalard 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
9320b2f6228SArnaud Ebalard 						_abb5zes3_rtc_interrupt,
9330b2f6228SArnaud Ebalard 						IRQF_SHARED|IRQF_ONESHOT,
9340b2f6228SArnaud Ebalard 						DRV_NAME, client);
9350b2f6228SArnaud Ebalard 		if (!ret) {
9360b2f6228SArnaud Ebalard 			device_init_wakeup(dev, true);
9370b2f6228SArnaud Ebalard 			data->irq = client->irq;
9380b2f6228SArnaud Ebalard 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
9390b2f6228SArnaud Ebalard 				client->irq);
9400b2f6228SArnaud Ebalard 		} else {
9410b2f6228SArnaud Ebalard 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
9420b2f6228SArnaud Ebalard 				__func__, client->irq, ret);
9430b2f6228SArnaud Ebalard 			goto err;
9440b2f6228SArnaud Ebalard 		}
9450b2f6228SArnaud Ebalard 	}
9460b2f6228SArnaud Ebalard 
9470b2f6228SArnaud Ebalard 	data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
9480b2f6228SArnaud Ebalard 					     THIS_MODULE);
9490b2f6228SArnaud Ebalard 	ret = PTR_ERR_OR_ZERO(data->rtc);
9500b2f6228SArnaud Ebalard 	if (ret) {
9510b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to register RTC device (%d)\n",
9520b2f6228SArnaud Ebalard 			__func__, ret);
9530b2f6228SArnaud Ebalard 		goto err;
9540b2f6228SArnaud Ebalard 	}
9550b2f6228SArnaud Ebalard 
9560b2f6228SArnaud Ebalard 	/* Enable battery low detection interrupt if battery not already low */
9570b2f6228SArnaud Ebalard 	if (!data->battery_low && data->irq) {
9580b2f6228SArnaud Ebalard 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
9590b2f6228SArnaud Ebalard 		if (ret) {
9600b2f6228SArnaud Ebalard 			dev_err(dev, "%s: enabling battery low interrupt "
9610b2f6228SArnaud Ebalard 				"generation failed (%d)\n", __func__, ret);
9620b2f6228SArnaud Ebalard 			goto err;
9630b2f6228SArnaud Ebalard 		}
9640b2f6228SArnaud Ebalard 	}
9650b2f6228SArnaud Ebalard 
9660b2f6228SArnaud Ebalard err:
9670b2f6228SArnaud Ebalard 	if (ret && data && data->irq)
9680b2f6228SArnaud Ebalard 		device_init_wakeup(dev, false);
9690b2f6228SArnaud Ebalard 	return ret;
9700b2f6228SArnaud Ebalard }
9710b2f6228SArnaud Ebalard 
9720b2f6228SArnaud Ebalard static int abb5zes3_remove(struct i2c_client *client)
9730b2f6228SArnaud Ebalard {
9740b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
9750b2f6228SArnaud Ebalard 
9760b2f6228SArnaud Ebalard 	if (rtc_data->irq > 0)
9770b2f6228SArnaud Ebalard 		device_init_wakeup(&client->dev, false);
9780b2f6228SArnaud Ebalard 
9790b2f6228SArnaud Ebalard 	return 0;
9800b2f6228SArnaud Ebalard }
9810b2f6228SArnaud Ebalard 
9820b2f6228SArnaud Ebalard #ifdef CONFIG_PM_SLEEP
9830b2f6228SArnaud Ebalard static int abb5zes3_rtc_suspend(struct device *dev)
9840b2f6228SArnaud Ebalard {
9850b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
9860b2f6228SArnaud Ebalard 
9870b2f6228SArnaud Ebalard 	if (device_may_wakeup(dev))
9880b2f6228SArnaud Ebalard 		return enable_irq_wake(rtc_data->irq);
9890b2f6228SArnaud Ebalard 
9900b2f6228SArnaud Ebalard 	return 0;
9910b2f6228SArnaud Ebalard }
9920b2f6228SArnaud Ebalard 
9930b2f6228SArnaud Ebalard static int abb5zes3_rtc_resume(struct device *dev)
9940b2f6228SArnaud Ebalard {
9950b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
9960b2f6228SArnaud Ebalard 
9970b2f6228SArnaud Ebalard 	if (device_may_wakeup(dev))
9980b2f6228SArnaud Ebalard 		return disable_irq_wake(rtc_data->irq);
9990b2f6228SArnaud Ebalard 
10000b2f6228SArnaud Ebalard 	return 0;
10010b2f6228SArnaud Ebalard }
10020b2f6228SArnaud Ebalard #endif
10030b2f6228SArnaud Ebalard 
10040b2f6228SArnaud Ebalard static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
10050b2f6228SArnaud Ebalard 			 abb5zes3_rtc_resume);
10060b2f6228SArnaud Ebalard 
10070b2f6228SArnaud Ebalard #ifdef CONFIG_OF
10080b2f6228SArnaud Ebalard static const struct of_device_id abb5zes3_dt_match[] = {
10090b2f6228SArnaud Ebalard 	{ .compatible = "abracon,abb5zes3" },
10100b2f6228SArnaud Ebalard 	{ },
10110b2f6228SArnaud Ebalard };
10120b2f6228SArnaud Ebalard #endif
10130b2f6228SArnaud Ebalard 
10140b2f6228SArnaud Ebalard static const struct i2c_device_id abb5zes3_id[] = {
10150b2f6228SArnaud Ebalard 	{ "abb5zes3", 0 },
10160b2f6228SArnaud Ebalard 	{ }
10170b2f6228SArnaud Ebalard };
10180b2f6228SArnaud Ebalard MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
10190b2f6228SArnaud Ebalard 
10200b2f6228SArnaud Ebalard static struct i2c_driver abb5zes3_driver = {
10210b2f6228SArnaud Ebalard 	.driver = {
10220b2f6228SArnaud Ebalard 		.name = DRV_NAME,
10230b2f6228SArnaud Ebalard 		.owner = THIS_MODULE,
10240b2f6228SArnaud Ebalard 		.pm = &abb5zes3_rtc_pm_ops,
10250b2f6228SArnaud Ebalard 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
10260b2f6228SArnaud Ebalard 	},
10270b2f6228SArnaud Ebalard 	.probe	  = abb5zes3_probe,
10280b2f6228SArnaud Ebalard 	.remove	  = abb5zes3_remove,
10290b2f6228SArnaud Ebalard 	.id_table = abb5zes3_id,
10300b2f6228SArnaud Ebalard };
10310b2f6228SArnaud Ebalard module_i2c_driver(abb5zes3_driver);
10320b2f6228SArnaud Ebalard 
10330b2f6228SArnaud Ebalard MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
10340b2f6228SArnaud Ebalard MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
10350b2f6228SArnaud Ebalard MODULE_LICENSE("GPL");
1036