xref: /openbmc/linux/drivers/rtc/rtc-ab-b5ze-s3.c (revision 8bde032b280605c21a247557de9ee71e5835cab8)
10b2f6228SArnaud Ebalard /*
20b2f6228SArnaud Ebalard  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
30b2f6228SArnaud Ebalard  *                  I2C RTC / Alarm chip
40b2f6228SArnaud Ebalard  *
50b2f6228SArnaud Ebalard  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
60b2f6228SArnaud Ebalard  *
70b2f6228SArnaud Ebalard  * Detailed datasheet of the chip is available here:
80b2f6228SArnaud Ebalard  *
90b2f6228SArnaud Ebalard  *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
100b2f6228SArnaud Ebalard  *
110b2f6228SArnaud Ebalard  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
120b2f6228SArnaud Ebalard  *
130b2f6228SArnaud Ebalard  * This program is free software; you can redistribute it and/or modify
140b2f6228SArnaud Ebalard  * it under the terms of the GNU General Public License as published by
150b2f6228SArnaud Ebalard  * the Free Software Foundation; either version 2 of the License, or
160b2f6228SArnaud Ebalard  * (at your option) any later version.
170b2f6228SArnaud Ebalard  *
180b2f6228SArnaud Ebalard  * This program is distributed in the hope that it will be useful,
190b2f6228SArnaud Ebalard  * but WITHOUT ANY WARRANTY; without even the implied warranty of
200b2f6228SArnaud Ebalard  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
210b2f6228SArnaud Ebalard  * GNU General Public License for more details.
220b2f6228SArnaud Ebalard  */
230b2f6228SArnaud Ebalard 
240b2f6228SArnaud Ebalard #include <linux/module.h>
250b2f6228SArnaud Ebalard #include <linux/mutex.h>
260b2f6228SArnaud Ebalard #include <linux/rtc.h>
270b2f6228SArnaud Ebalard #include <linux/i2c.h>
280b2f6228SArnaud Ebalard #include <linux/bcd.h>
290b2f6228SArnaud Ebalard #include <linux/of.h>
300b2f6228SArnaud Ebalard #include <linux/regmap.h>
310b2f6228SArnaud Ebalard #include <linux/interrupt.h>
320b2f6228SArnaud Ebalard 
330b2f6228SArnaud Ebalard #define DRV_NAME "rtc-ab-b5ze-s3"
340b2f6228SArnaud Ebalard 
350b2f6228SArnaud Ebalard /* Control section */
360b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
370b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
380b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
390b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
400b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
410b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
420b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
430b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
440b2f6228SArnaud Ebalard 
450b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
460b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
470b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
480b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
490b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
500b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
510b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
520b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
530b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
540b2f6228SArnaud Ebalard 
550b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
560b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
570b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
580b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
590b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
600b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
610b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
620b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
630b2f6228SArnaud Ebalard 
640b2f6228SArnaud Ebalard #define ABB5ZES3_CTRL_SEC_LEN	   3
650b2f6228SArnaud Ebalard 
660b2f6228SArnaud Ebalard /* RTC section */
670b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
680b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
690b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
700b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
710b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
720b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
730b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
740b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
750b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
760b2f6228SArnaud Ebalard 
770b2f6228SArnaud Ebalard #define ABB5ZES3_RTC_SEC_LEN	   7
780b2f6228SArnaud Ebalard 
790b2f6228SArnaud Ebalard /* Alarm section (enable bits are all active low) */
800b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
810b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
820b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
830b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
840b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
850b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
860b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
870b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
880b2f6228SArnaud Ebalard 
890b2f6228SArnaud Ebalard #define ABB5ZES3_ALRM_SEC_LEN	   4
900b2f6228SArnaud Ebalard 
910b2f6228SArnaud Ebalard /* Frequency offset section */
920b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
930b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
940b2f6228SArnaud Ebalard 
950b2f6228SArnaud Ebalard /* CLOCKOUT section */
960b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
970b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
980b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
990b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
1000b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
1010b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
1020b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
1030b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
1040b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
1050b2f6228SArnaud Ebalard 
1060b2f6228SArnaud Ebalard /* Timer A Section */
1070b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
1080b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
1090b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
1100b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
1110b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
1120b2f6228SArnaud Ebalard 
1130b2f6228SArnaud Ebalard #define ABB5ZES3_TIMA_SEC_LEN	   2
1140b2f6228SArnaud Ebalard 
1150b2f6228SArnaud Ebalard /* Timer B Section */
1160b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
1170b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
1180b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
1190b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
1200b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
1210b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
1220b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
1230b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
1240b2f6228SArnaud Ebalard #define ABB5ZES3_TIMB_SEC_LEN	   2
1250b2f6228SArnaud Ebalard 
1260b2f6228SArnaud Ebalard #define ABB5ZES3_MEM_MAP_LEN	   0x14
1270b2f6228SArnaud Ebalard 
1280b2f6228SArnaud Ebalard struct abb5zes3_rtc_data {
1290b2f6228SArnaud Ebalard 	struct rtc_device *rtc;
1300b2f6228SArnaud Ebalard 	struct regmap *regmap;
1310b2f6228SArnaud Ebalard 	struct mutex lock;
1320b2f6228SArnaud Ebalard 
1330b2f6228SArnaud Ebalard 	int irq;
1340b2f6228SArnaud Ebalard 
1350b2f6228SArnaud Ebalard 	bool battery_low;
136c8a1d8a5SArnaud Ebalard 	bool timer_alarm; /* current alarm is via timer A */
1370b2f6228SArnaud Ebalard };
1380b2f6228SArnaud Ebalard 
1390b2f6228SArnaud Ebalard /*
1400b2f6228SArnaud Ebalard  * Try and match register bits w/ fixed null values to see whether we
1410b2f6228SArnaud Ebalard  * are dealing with an ABB5ZES3. Note: this function is called early
1420b2f6228SArnaud Ebalard  * during init and hence does need mutex protection.
1430b2f6228SArnaud Ebalard  */
1440b2f6228SArnaud Ebalard static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
1450b2f6228SArnaud Ebalard {
1460b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
1470b2f6228SArnaud Ebalard 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
1480b2f6228SArnaud Ebalard 						       0x80, 0xc0, 0xc0, 0xf8,
1490b2f6228SArnaud Ebalard 						       0xe0, 0x00, 0x00, 0x40,
1500b2f6228SArnaud Ebalard 						       0x40, 0x78, 0x00, 0x00,
1510b2f6228SArnaud Ebalard 						       0xf8, 0x00, 0x88, 0x00 };
1520b2f6228SArnaud Ebalard 	int ret, i;
1530b2f6228SArnaud Ebalard 
1540b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
1550b2f6228SArnaud Ebalard 	if (ret)
1560b2f6228SArnaud Ebalard 		return ret;
1570b2f6228SArnaud Ebalard 
1580b2f6228SArnaud Ebalard 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
1590b2f6228SArnaud Ebalard 		if (regs[i] & mask[i]) /* check if bits are cleared */
1600b2f6228SArnaud Ebalard 			return -ENODEV;
1610b2f6228SArnaud Ebalard 	}
1620b2f6228SArnaud Ebalard 
1630b2f6228SArnaud Ebalard 	return 0;
1640b2f6228SArnaud Ebalard }
1650b2f6228SArnaud Ebalard 
1660b2f6228SArnaud Ebalard /* Clear alarm status bit. */
1670b2f6228SArnaud Ebalard static int _abb5zes3_rtc_clear_alarm(struct device *dev)
1680b2f6228SArnaud Ebalard {
1690b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
1700b2f6228SArnaud Ebalard 	int ret;
1710b2f6228SArnaud Ebalard 
1720b2f6228SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
1730b2f6228SArnaud Ebalard 				 ABB5ZES3_REG_CTRL2_AF, 0);
1740b2f6228SArnaud Ebalard 	if (ret)
1750b2f6228SArnaud Ebalard 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
1760b2f6228SArnaud Ebalard 
1770b2f6228SArnaud Ebalard 	return ret;
1780b2f6228SArnaud Ebalard }
1790b2f6228SArnaud Ebalard 
1800b2f6228SArnaud Ebalard /* Enable or disable alarm (i.e. alarm interrupt generation) */
1810b2f6228SArnaud Ebalard static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
1820b2f6228SArnaud Ebalard {
1830b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
1840b2f6228SArnaud Ebalard 	int ret;
1850b2f6228SArnaud Ebalard 
1860b2f6228SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
1870b2f6228SArnaud Ebalard 				 ABB5ZES3_REG_CTRL1_AIE,
1880b2f6228SArnaud Ebalard 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
1890b2f6228SArnaud Ebalard 	if (ret)
1900b2f6228SArnaud Ebalard 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
1910b2f6228SArnaud Ebalard 			__func__, ret);
1920b2f6228SArnaud Ebalard 
1930b2f6228SArnaud Ebalard 	return ret;
1940b2f6228SArnaud Ebalard }
1950b2f6228SArnaud Ebalard 
196c8a1d8a5SArnaud Ebalard /* Enable or disable timer (watchdog timer A interrupt generation) */
197c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
198c8a1d8a5SArnaud Ebalard {
199c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
200c8a1d8a5SArnaud Ebalard 	int ret;
201c8a1d8a5SArnaud Ebalard 
202c8a1d8a5SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
203c8a1d8a5SArnaud Ebalard 				 ABB5ZES3_REG_CTRL2_WTAIE,
204c8a1d8a5SArnaud Ebalard 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
205c8a1d8a5SArnaud Ebalard 	if (ret)
206c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
207c8a1d8a5SArnaud Ebalard 			__func__, ret);
208c8a1d8a5SArnaud Ebalard 
209c8a1d8a5SArnaud Ebalard 	return ret;
210c8a1d8a5SArnaud Ebalard }
211c8a1d8a5SArnaud Ebalard 
2120b2f6228SArnaud Ebalard /*
2130b2f6228SArnaud Ebalard  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
2140b2f6228SArnaud Ebalard  * we do not need driver's main lock protection.
2150b2f6228SArnaud Ebalard  */
2160b2f6228SArnaud Ebalard static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
2170b2f6228SArnaud Ebalard {
2180b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
2190b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
220ce2e5a76SAlexandre Belloni 	int ret = 0;
2210b2f6228SArnaud Ebalard 
2220b2f6228SArnaud Ebalard 	/*
2230b2f6228SArnaud Ebalard 	 * As we need to read CTRL1 register anyway to access 24/12h
2240b2f6228SArnaud Ebalard 	 * mode bit, we do a single bulk read of both control and RTC
2250b2f6228SArnaud Ebalard 	 * sections (they are consecutive). This also ease indexing
2260b2f6228SArnaud Ebalard 	 * of register values after bulk read.
2270b2f6228SArnaud Ebalard 	 */
2280b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
2290b2f6228SArnaud Ebalard 			       sizeof(regs));
2300b2f6228SArnaud Ebalard 	if (ret) {
2310b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
2320b2f6228SArnaud Ebalard 			__func__, ret);
2330b2f6228SArnaud Ebalard 		goto err;
2340b2f6228SArnaud Ebalard 	}
2350b2f6228SArnaud Ebalard 
2360b2f6228SArnaud Ebalard 	/* If clock integrity is not guaranteed, do not return a time value */
2370b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
2380b2f6228SArnaud Ebalard 		ret = -ENODATA;
2390b2f6228SArnaud Ebalard 		goto err;
2400b2f6228SArnaud Ebalard 	}
2410b2f6228SArnaud Ebalard 
2420b2f6228SArnaud Ebalard 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
2430b2f6228SArnaud Ebalard 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
2440b2f6228SArnaud Ebalard 
2450b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
2460b2f6228SArnaud Ebalard 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
2470b2f6228SArnaud Ebalard 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
2480b2f6228SArnaud Ebalard 			tm->tm_hour += 12;
2490b2f6228SArnaud Ebalard 	} else {						/* 24hr mode */
2500b2f6228SArnaud Ebalard 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
2510b2f6228SArnaud Ebalard 	}
2520b2f6228SArnaud Ebalard 
2530b2f6228SArnaud Ebalard 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
2540b2f6228SArnaud Ebalard 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
2550b2f6228SArnaud Ebalard 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
2560b2f6228SArnaud Ebalard 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
2570b2f6228SArnaud Ebalard 
2580b2f6228SArnaud Ebalard err:
2590b2f6228SArnaud Ebalard 	return ret;
2600b2f6228SArnaud Ebalard }
2610b2f6228SArnaud Ebalard 
2620b2f6228SArnaud Ebalard static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
2630b2f6228SArnaud Ebalard {
2640b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
2650b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
2660b2f6228SArnaud Ebalard 	int ret;
2670b2f6228SArnaud Ebalard 
2680b2f6228SArnaud Ebalard 	/*
2690b2f6228SArnaud Ebalard 	 * Year register is 8-bit wide and bcd-coded, i.e records values
2700b2f6228SArnaud Ebalard 	 * between 0 and 99. tm_year is an offset from 1900 and we are
2710b2f6228SArnaud Ebalard 	 * interested in the 2000-2099 range, so any value less than 100
2720b2f6228SArnaud Ebalard 	 * is invalid.
2730b2f6228SArnaud Ebalard 	 */
2740b2f6228SArnaud Ebalard 	if (tm->tm_year < 100)
2750b2f6228SArnaud Ebalard 		return -EINVAL;
2760b2f6228SArnaud Ebalard 
2770b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
2780b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
2790b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
2800b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
2810b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
2820b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
2830b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
2840b2f6228SArnaud Ebalard 
2850b2f6228SArnaud Ebalard 	mutex_lock(&data->lock);
2860b2f6228SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
2870b2f6228SArnaud Ebalard 				regs + ABB5ZES3_REG_RTC_SC,
2880b2f6228SArnaud Ebalard 				ABB5ZES3_RTC_SEC_LEN);
2890b2f6228SArnaud Ebalard 	mutex_unlock(&data->lock);
2900b2f6228SArnaud Ebalard 
2910b2f6228SArnaud Ebalard 
2920b2f6228SArnaud Ebalard 	return ret;
2930b2f6228SArnaud Ebalard }
2940b2f6228SArnaud Ebalard 
295c8a1d8a5SArnaud Ebalard /*
296c8a1d8a5SArnaud Ebalard  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
297c8a1d8a5SArnaud Ebalard  * given number of seconds.
298c8a1d8a5SArnaud Ebalard  */
299c8a1d8a5SArnaud Ebalard static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
300c8a1d8a5SArnaud Ebalard {
301c8a1d8a5SArnaud Ebalard 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
302c8a1d8a5SArnaud Ebalard 	*timer_a = secs;
303c8a1d8a5SArnaud Ebalard }
304c8a1d8a5SArnaud Ebalard 
305c8a1d8a5SArnaud Ebalard /*
306c8a1d8a5SArnaud Ebalard  * Return current number of seconds in Timer A. As we only use
307c8a1d8a5SArnaud Ebalard  * timer A with a 1Hz freq, this is what we expect to have.
308c8a1d8a5SArnaud Ebalard  */
309c8a1d8a5SArnaud Ebalard static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
310c8a1d8a5SArnaud Ebalard {
311c8a1d8a5SArnaud Ebalard 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
312c8a1d8a5SArnaud Ebalard 		return -EINVAL;
313c8a1d8a5SArnaud Ebalard 
314c8a1d8a5SArnaud Ebalard 	*secs = timer_a;
315c8a1d8a5SArnaud Ebalard 
316c8a1d8a5SArnaud Ebalard 	return 0;
317c8a1d8a5SArnaud Ebalard }
318c8a1d8a5SArnaud Ebalard 
319c8a1d8a5SArnaud Ebalard /*
320c8a1d8a5SArnaud Ebalard  * Read alarm currently configured via a watchdog timer using timer A. This
321c8a1d8a5SArnaud Ebalard  * is done by reading current RTC time and adding remaining timer time.
322c8a1d8a5SArnaud Ebalard  */
323c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_timer(struct device *dev,
324c8a1d8a5SArnaud Ebalard 				    struct rtc_wkalrm *alarm)
325c8a1d8a5SArnaud Ebalard {
326c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
327c8a1d8a5SArnaud Ebalard 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
328c8a1d8a5SArnaud Ebalard 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
329c8a1d8a5SArnaud Ebalard 	unsigned long rtc_secs;
330c8a1d8a5SArnaud Ebalard 	unsigned int reg;
331c8a1d8a5SArnaud Ebalard 	u8 timer_secs;
332c8a1d8a5SArnaud Ebalard 	int ret;
333c8a1d8a5SArnaud Ebalard 
334c8a1d8a5SArnaud Ebalard 	/*
335c8a1d8a5SArnaud Ebalard 	 * Instead of doing two separate calls, because they are consecutive,
336c8a1d8a5SArnaud Ebalard 	 * we grab both clockout register and Timer A section. The latter is
337c8a1d8a5SArnaud Ebalard 	 * used to decide if timer A is enabled (as a watchdog timer).
338c8a1d8a5SArnaud Ebalard 	 */
339c8a1d8a5SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
340c8a1d8a5SArnaud Ebalard 			       ABB5ZES3_TIMA_SEC_LEN + 1);
341c8a1d8a5SArnaud Ebalard 	if (ret) {
342c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
343c8a1d8a5SArnaud Ebalard 			__func__, ret);
344c8a1d8a5SArnaud Ebalard 		goto err;
345c8a1d8a5SArnaud Ebalard 	}
346c8a1d8a5SArnaud Ebalard 
347c8a1d8a5SArnaud Ebalard 	/* get current time ... */
348c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
349c8a1d8a5SArnaud Ebalard 	if (ret)
350c8a1d8a5SArnaud Ebalard 		goto err;
351c8a1d8a5SArnaud Ebalard 
352c8a1d8a5SArnaud Ebalard 	/* ... convert to seconds ... */
353c8a1d8a5SArnaud Ebalard 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
354c8a1d8a5SArnaud Ebalard 	if (ret)
355c8a1d8a5SArnaud Ebalard 		goto err;
356c8a1d8a5SArnaud Ebalard 
357c8a1d8a5SArnaud Ebalard 	/* ... add remaining timer A time ... */
358c8a1d8a5SArnaud Ebalard 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
359c8a1d8a5SArnaud Ebalard 	if (ret)
360c8a1d8a5SArnaud Ebalard 		goto err;
361c8a1d8a5SArnaud Ebalard 
362c8a1d8a5SArnaud Ebalard 	/* ... and convert back. */
363c8a1d8a5SArnaud Ebalard 	rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
364c8a1d8a5SArnaud Ebalard 
365c8a1d8a5SArnaud Ebalard 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
366c8a1d8a5SArnaud Ebalard 	if (ret) {
367c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
368c8a1d8a5SArnaud Ebalard 			__func__, ret);
369c8a1d8a5SArnaud Ebalard 		goto err;
370c8a1d8a5SArnaud Ebalard 	}
371c8a1d8a5SArnaud Ebalard 
372c8a1d8a5SArnaud Ebalard 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
373c8a1d8a5SArnaud Ebalard 
374c8a1d8a5SArnaud Ebalard err:
375c8a1d8a5SArnaud Ebalard 	return ret;
376c8a1d8a5SArnaud Ebalard }
377c8a1d8a5SArnaud Ebalard 
378c8a1d8a5SArnaud Ebalard /* Read alarm currently configured via a RTC alarm registers. */
379c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_alarm(struct device *dev,
380c8a1d8a5SArnaud Ebalard 				    struct rtc_wkalrm *alarm)
3810b2f6228SArnaud Ebalard {
3820b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
3830b2f6228SArnaud Ebalard 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
3840b2f6228SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
3850b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
3860b2f6228SArnaud Ebalard 	unsigned int reg;
3870b2f6228SArnaud Ebalard 	int ret;
3880b2f6228SArnaud Ebalard 
3890b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
3900b2f6228SArnaud Ebalard 			       ABB5ZES3_ALRM_SEC_LEN);
3910b2f6228SArnaud Ebalard 	if (ret) {
3920b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
3930b2f6228SArnaud Ebalard 			__func__, ret);
3940b2f6228SArnaud Ebalard 		goto err;
3950b2f6228SArnaud Ebalard 	}
3960b2f6228SArnaud Ebalard 
3970b2f6228SArnaud Ebalard 	alarm_tm->tm_sec  = 0;
3980b2f6228SArnaud Ebalard 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
3990b2f6228SArnaud Ebalard 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
4000b2f6228SArnaud Ebalard 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
4010b2f6228SArnaud Ebalard 	alarm_tm->tm_wday = -1;
4020b2f6228SArnaud Ebalard 
4030b2f6228SArnaud Ebalard 	/*
4040b2f6228SArnaud Ebalard 	 * The alarm section does not store year/month. We use the ones in rtc
4050b2f6228SArnaud Ebalard 	 * section as a basis and increment month and then year if needed to get
4060b2f6228SArnaud Ebalard 	 * alarm after current time.
4070b2f6228SArnaud Ebalard 	 */
4080b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
4090b2f6228SArnaud Ebalard 	if (ret)
4100b2f6228SArnaud Ebalard 		goto err;
4110b2f6228SArnaud Ebalard 
4120b2f6228SArnaud Ebalard 	alarm_tm->tm_year = rtc_tm.tm_year;
4130b2f6228SArnaud Ebalard 	alarm_tm->tm_mon = rtc_tm.tm_mon;
4140b2f6228SArnaud Ebalard 
4150b2f6228SArnaud Ebalard 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
4160b2f6228SArnaud Ebalard 	if (ret)
4170b2f6228SArnaud Ebalard 		goto err;
4180b2f6228SArnaud Ebalard 
4190b2f6228SArnaud Ebalard 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
4200b2f6228SArnaud Ebalard 	if (ret)
4210b2f6228SArnaud Ebalard 		goto err;
4220b2f6228SArnaud Ebalard 
4230b2f6228SArnaud Ebalard 	if (alarm_secs < rtc_secs) {
4240b2f6228SArnaud Ebalard 		if (alarm_tm->tm_mon == 11) {
4250b2f6228SArnaud Ebalard 			alarm_tm->tm_mon = 0;
4260b2f6228SArnaud Ebalard 			alarm_tm->tm_year += 1;
4270b2f6228SArnaud Ebalard 		} else {
4280b2f6228SArnaud Ebalard 			alarm_tm->tm_mon += 1;
4290b2f6228SArnaud Ebalard 		}
4300b2f6228SArnaud Ebalard 	}
4310b2f6228SArnaud Ebalard 
4320b2f6228SArnaud Ebalard 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
4330b2f6228SArnaud Ebalard 	if (ret) {
4340b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
4350b2f6228SArnaud Ebalard 			__func__, ret);
4360b2f6228SArnaud Ebalard 		goto err;
4370b2f6228SArnaud Ebalard 	}
4380b2f6228SArnaud Ebalard 
4390b2f6228SArnaud Ebalard 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
4400b2f6228SArnaud Ebalard 
4410b2f6228SArnaud Ebalard err:
442c8a1d8a5SArnaud Ebalard 	return ret;
443c8a1d8a5SArnaud Ebalard }
444c8a1d8a5SArnaud Ebalard 
445c8a1d8a5SArnaud Ebalard /*
446c8a1d8a5SArnaud Ebalard  * As the Alarm mechanism supported by the chip is only accurate to the
447c8a1d8a5SArnaud Ebalard  * minute, we use the watchdog timer mechanism provided by timer A
448c8a1d8a5SArnaud Ebalard  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
449c8a1d8a5SArnaud Ebalard  * 4 minutes). Otherwise, we use the common alarm mechanism provided
450c8a1d8a5SArnaud Ebalard  * by the chip. In order for that to work, we keep track of currently
451c8a1d8a5SArnaud Ebalard  * configured timer type via 'timer_alarm' flag in our private data
452c8a1d8a5SArnaud Ebalard  * structure.
453c8a1d8a5SArnaud Ebalard  */
454c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
455c8a1d8a5SArnaud Ebalard {
456c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
457c8a1d8a5SArnaud Ebalard 	int ret;
458c8a1d8a5SArnaud Ebalard 
459c8a1d8a5SArnaud Ebalard 	mutex_lock(&data->lock);
460c8a1d8a5SArnaud Ebalard 	if (data->timer_alarm)
461c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
462c8a1d8a5SArnaud Ebalard 	else
463c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
4640b2f6228SArnaud Ebalard 	mutex_unlock(&data->lock);
4650b2f6228SArnaud Ebalard 
4660b2f6228SArnaud Ebalard 	return ret;
4670b2f6228SArnaud Ebalard }
4680b2f6228SArnaud Ebalard 
469c8a1d8a5SArnaud Ebalard /*
470c8a1d8a5SArnaud Ebalard  * Set alarm using chip alarm mechanism. It is only accurate to the
471c8a1d8a5SArnaud Ebalard  * minute (not the second). The function expects alarm interrupt to
472c8a1d8a5SArnaud Ebalard  * be disabled.
473c8a1d8a5SArnaud Ebalard  */
474c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
4750b2f6228SArnaud Ebalard {
4760b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
4770b2f6228SArnaud Ebalard 	struct rtc_time *alarm_tm = &alarm->time;
4780b2f6228SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
4790b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
4800b2f6228SArnaud Ebalard 	struct rtc_time rtc_tm;
4810b2f6228SArnaud Ebalard 	int ret, enable = 1;
4820b2f6228SArnaud Ebalard 
4830b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
4840b2f6228SArnaud Ebalard 	if (ret)
4850b2f6228SArnaud Ebalard 		goto err;
4860b2f6228SArnaud Ebalard 
4870b2f6228SArnaud Ebalard 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
4880b2f6228SArnaud Ebalard 	if (ret)
4890b2f6228SArnaud Ebalard 		goto err;
4900b2f6228SArnaud Ebalard 
4910b2f6228SArnaud Ebalard 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
4920b2f6228SArnaud Ebalard 	if (ret)
4930b2f6228SArnaud Ebalard 		goto err;
4940b2f6228SArnaud Ebalard 
4950b2f6228SArnaud Ebalard 	/* If alarm time is before current time, disable the alarm */
4960b2f6228SArnaud Ebalard 	if (!alarm->enabled || alarm_secs <= rtc_secs) {
4970b2f6228SArnaud Ebalard 		enable = 0;
4980b2f6228SArnaud Ebalard 	} else {
4990b2f6228SArnaud Ebalard 		/*
5000b2f6228SArnaud Ebalard 		 * Chip only support alarms up to one month in the future. Let's
5010b2f6228SArnaud Ebalard 		 * return an error if we get something after that limit.
5020b2f6228SArnaud Ebalard 		 * Comparison is done by incrementing rtc_tm month field by one
5030b2f6228SArnaud Ebalard 		 * and checking alarm value is still below.
5040b2f6228SArnaud Ebalard 		 */
5050b2f6228SArnaud Ebalard 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
5060b2f6228SArnaud Ebalard 			rtc_tm.tm_mon = 0;
5070b2f6228SArnaud Ebalard 			rtc_tm.tm_year += 1;
5080b2f6228SArnaud Ebalard 		} else {
5090b2f6228SArnaud Ebalard 			rtc_tm.tm_mon += 1;
5100b2f6228SArnaud Ebalard 		}
5110b2f6228SArnaud Ebalard 
5120b2f6228SArnaud Ebalard 		ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
5130b2f6228SArnaud Ebalard 		if (ret)
5140b2f6228SArnaud Ebalard 			goto err;
5150b2f6228SArnaud Ebalard 
5160b2f6228SArnaud Ebalard 		if (alarm_secs > rtc_secs) {
5170b2f6228SArnaud Ebalard 			dev_err(dev, "%s: alarm maximum is one month in the "
5180b2f6228SArnaud Ebalard 				"future (%d)\n", __func__, ret);
5190b2f6228SArnaud Ebalard 			ret = -EINVAL;
5200b2f6228SArnaud Ebalard 			goto err;
5210b2f6228SArnaud Ebalard 		}
5220b2f6228SArnaud Ebalard 	}
5230b2f6228SArnaud Ebalard 
524c8a1d8a5SArnaud Ebalard 	/*
525c8a1d8a5SArnaud Ebalard 	 * Program all alarm registers but DW one. For each register, setting
526c8a1d8a5SArnaud Ebalard 	 * MSB to 0 enables associated alarm.
527c8a1d8a5SArnaud Ebalard 	 */
528c8a1d8a5SArnaud Ebalard 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
529c8a1d8a5SArnaud Ebalard 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
530c8a1d8a5SArnaud Ebalard 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
5310b2f6228SArnaud Ebalard 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
5320b2f6228SArnaud Ebalard 
5330b2f6228SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
5340b2f6228SArnaud Ebalard 				ABB5ZES3_ALRM_SEC_LEN);
5350b2f6228SArnaud Ebalard 	if (ret < 0) {
5360b2f6228SArnaud Ebalard 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
5370b2f6228SArnaud Ebalard 			__func__, ret);
5380b2f6228SArnaud Ebalard 		goto err;
5390b2f6228SArnaud Ebalard 	}
5400b2f6228SArnaud Ebalard 
541c8a1d8a5SArnaud Ebalard 	/* Record currently configured alarm is not a timer */
542c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 0;
543c8a1d8a5SArnaud Ebalard 
544c8a1d8a5SArnaud Ebalard 	/* Enable or disable alarm interrupt generation */
5450b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_update_alarm(dev, enable);
5460b2f6228SArnaud Ebalard 
5470b2f6228SArnaud Ebalard err:
548c8a1d8a5SArnaud Ebalard 	return ret;
549c8a1d8a5SArnaud Ebalard }
550c8a1d8a5SArnaud Ebalard 
551c8a1d8a5SArnaud Ebalard /*
552c8a1d8a5SArnaud Ebalard  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
553c8a1d8a5SArnaud Ebalard  * timer A interrupt to be disabled.
554c8a1d8a5SArnaud Ebalard  */
555c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
556c8a1d8a5SArnaud Ebalard 				   u8 secs)
557c8a1d8a5SArnaud Ebalard {
558c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
559c8a1d8a5SArnaud Ebalard 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
560c8a1d8a5SArnaud Ebalard 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
561c8a1d8a5SArnaud Ebalard 	int ret = 0;
562c8a1d8a5SArnaud Ebalard 
563c8a1d8a5SArnaud Ebalard 	/* Program given number of seconds to Timer A registers */
564c8a1d8a5SArnaud Ebalard 	sec_to_timer_a(secs, &regs[0], &regs[1]);
565c8a1d8a5SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
566c8a1d8a5SArnaud Ebalard 				ABB5ZES3_TIMA_SEC_LEN);
567c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
568c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: writing timer section failed\n", __func__);
569c8a1d8a5SArnaud Ebalard 		goto err;
570c8a1d8a5SArnaud Ebalard 	}
571c8a1d8a5SArnaud Ebalard 
572c8a1d8a5SArnaud Ebalard 	/* Configure Timer A as a watchdog timer */
573c8a1d8a5SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
574c8a1d8a5SArnaud Ebalard 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
575c8a1d8a5SArnaud Ebalard 	if (ret)
576c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: failed to update timer\n", __func__);
577c8a1d8a5SArnaud Ebalard 
578c8a1d8a5SArnaud Ebalard 	/* Record currently configured alarm is a timer */
579c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 1;
580c8a1d8a5SArnaud Ebalard 
581c8a1d8a5SArnaud Ebalard 	/* Enable or disable timer interrupt generation */
582c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
583c8a1d8a5SArnaud Ebalard 
584c8a1d8a5SArnaud Ebalard err:
585c8a1d8a5SArnaud Ebalard 	return ret;
586c8a1d8a5SArnaud Ebalard }
587c8a1d8a5SArnaud Ebalard 
588c8a1d8a5SArnaud Ebalard /*
589c8a1d8a5SArnaud Ebalard  * The chip has an alarm which is only accurate to the minute. In order to
590c8a1d8a5SArnaud Ebalard  * handle alarms below that limit, we use the watchdog timer function of
591c8a1d8a5SArnaud Ebalard  * timer A. More precisely, the timer method is used for alarms below 240
592c8a1d8a5SArnaud Ebalard  * seconds.
593c8a1d8a5SArnaud Ebalard  */
594c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
595c8a1d8a5SArnaud Ebalard {
596c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
597c8a1d8a5SArnaud Ebalard 	struct rtc_time *alarm_tm = &alarm->time;
598c8a1d8a5SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
599c8a1d8a5SArnaud Ebalard 	struct rtc_time rtc_tm;
600c8a1d8a5SArnaud Ebalard 	int ret;
601c8a1d8a5SArnaud Ebalard 
602c8a1d8a5SArnaud Ebalard 	mutex_lock(&data->lock);
603c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
604c8a1d8a5SArnaud Ebalard 	if (ret)
605c8a1d8a5SArnaud Ebalard 		goto err;
606c8a1d8a5SArnaud Ebalard 
607c8a1d8a5SArnaud Ebalard 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
608c8a1d8a5SArnaud Ebalard 	if (ret)
609c8a1d8a5SArnaud Ebalard 		goto err;
610c8a1d8a5SArnaud Ebalard 
611c8a1d8a5SArnaud Ebalard 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
612c8a1d8a5SArnaud Ebalard 	if (ret)
613c8a1d8a5SArnaud Ebalard 		goto err;
614c8a1d8a5SArnaud Ebalard 
615c8a1d8a5SArnaud Ebalard 	/* Let's first disable both the alarm and the timer interrupts */
616c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_alarm(dev, false);
617c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
618c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
619c8a1d8a5SArnaud Ebalard 			ret);
620c8a1d8a5SArnaud Ebalard 		goto err;
621c8a1d8a5SArnaud Ebalard 	}
622c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_timer(dev, false);
623c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
624c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
625c8a1d8a5SArnaud Ebalard 			ret);
626c8a1d8a5SArnaud Ebalard 		goto err;
627c8a1d8a5SArnaud Ebalard 	}
628c8a1d8a5SArnaud Ebalard 
629c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 0;
630c8a1d8a5SArnaud Ebalard 
631c8a1d8a5SArnaud Ebalard 	/*
632c8a1d8a5SArnaud Ebalard 	 * Let's now configure the alarm; if we are expected to ring in
633c8a1d8a5SArnaud Ebalard 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
634c8a1d8a5SArnaud Ebalard 	 */
635c8a1d8a5SArnaud Ebalard 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
636c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
637c8a1d8a5SArnaud Ebalard 					      alarm_secs - rtc_secs);
638c8a1d8a5SArnaud Ebalard 	else
639c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
640c8a1d8a5SArnaud Ebalard 
641c8a1d8a5SArnaud Ebalard  err:
6420b2f6228SArnaud Ebalard 	mutex_unlock(&data->lock);
6430b2f6228SArnaud Ebalard 
644c8a1d8a5SArnaud Ebalard 	if (ret)
645c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
646c8a1d8a5SArnaud Ebalard 			ret);
647c8a1d8a5SArnaud Ebalard 
6480b2f6228SArnaud Ebalard 	return ret;
6490b2f6228SArnaud Ebalard }
6500b2f6228SArnaud Ebalard 
6510b2f6228SArnaud Ebalard /* Enable or disable battery low irq generation */
6520b2f6228SArnaud Ebalard static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
6530b2f6228SArnaud Ebalard 						       bool enable)
6540b2f6228SArnaud Ebalard {
6550b2f6228SArnaud Ebalard 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
6560b2f6228SArnaud Ebalard 				  ABB5ZES3_REG_CTRL3_BLIE,
6570b2f6228SArnaud Ebalard 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
6580b2f6228SArnaud Ebalard }
6590b2f6228SArnaud Ebalard 
6600b2f6228SArnaud Ebalard /*
6610b2f6228SArnaud Ebalard  * Check current RTC status and enable/disable what needs to be. Return 0 if
6620b2f6228SArnaud Ebalard  * everything went ok and a negative value upon error. Note: this function
6630b2f6228SArnaud Ebalard  * is called early during init and hence does need mutex protection.
6640b2f6228SArnaud Ebalard  */
6650b2f6228SArnaud Ebalard static int abb5zes3_rtc_check_setup(struct device *dev)
6660b2f6228SArnaud Ebalard {
6670b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
6680b2f6228SArnaud Ebalard 	struct regmap *regmap = data->regmap;
6690b2f6228SArnaud Ebalard 	unsigned int reg;
6700b2f6228SArnaud Ebalard 	int ret;
6710b2f6228SArnaud Ebalard 	u8 mask;
6720b2f6228SArnaud Ebalard 
6730b2f6228SArnaud Ebalard 	/*
6740b2f6228SArnaud Ebalard 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
6750b2f6228SArnaud Ebalard 	 * is disabled here to prevent polluting the interrupt line and
6760b2f6228SArnaud Ebalard 	 * uselessly triggering the IRQ handler we install for alarm and battery
6770b2f6228SArnaud Ebalard 	 * low events. Note: this is done before clearing int. status below
6780b2f6228SArnaud Ebalard 	 * in this function.
6790b2f6228SArnaud Ebalard 	 * We also disable all timers and set timer interrupt to permanent (not
6800b2f6228SArnaud Ebalard 	 * pulsed).
6810b2f6228SArnaud Ebalard 	 */
6820b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
6830b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
6840b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
6850b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
6860b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
6870b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
6880b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF2);
6890b2f6228SArnaud Ebalard 	if (ret < 0) {
6900b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
6910b2f6228SArnaud Ebalard 			__func__, ret);
6920b2f6228SArnaud Ebalard 		return ret;
6930b2f6228SArnaud Ebalard 	}
6940b2f6228SArnaud Ebalard 
6950b2f6228SArnaud Ebalard 	/*
6960b2f6228SArnaud Ebalard 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
6970b2f6228SArnaud Ebalard 	 * individually by clearing/setting MSB of each associated register. So,
6980b2f6228SArnaud Ebalard 	 * we set all alarm enable bits to disable current alarm setting.
6990b2f6228SArnaud Ebalard 	 */
7000b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
7010b2f6228SArnaud Ebalard 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
7020b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
7030b2f6228SArnaud Ebalard 	if (ret < 0) {
7040b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
7050b2f6228SArnaud Ebalard 			__func__, ret);
7060b2f6228SArnaud Ebalard 		return ret;
7070b2f6228SArnaud Ebalard 	}
7080b2f6228SArnaud Ebalard 
7090b2f6228SArnaud Ebalard 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
7100b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
7110b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
7120b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
7130b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
7140b2f6228SArnaud Ebalard 	if (ret < 0) {
7150b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
7160b2f6228SArnaud Ebalard 			__func__, ret);
7170b2f6228SArnaud Ebalard 		return ret;
7180b2f6228SArnaud Ebalard 	}
7190b2f6228SArnaud Ebalard 
7200b2f6228SArnaud Ebalard 	/*
7210b2f6228SArnaud Ebalard 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
7220b2f6228SArnaud Ebalard 	 * WTAF is read-only and cleared automatically by reading the register.
7230b2f6228SArnaud Ebalard 	 */
7240b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
7250b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
7260b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
7270b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_CTAF);
7280b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
7290b2f6228SArnaud Ebalard 	if (ret < 0) {
7300b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
7310b2f6228SArnaud Ebalard 			__func__, ret);
7320b2f6228SArnaud Ebalard 		return ret;
7330b2f6228SArnaud Ebalard 	}
7340b2f6228SArnaud Ebalard 
7350b2f6228SArnaud Ebalard 	/*
7360b2f6228SArnaud Ebalard 	 * Enable battery low detection function and battery switchover function
7370b2f6228SArnaud Ebalard 	 * (standard mode). Disable associated interrupts. Clear battery
7380b2f6228SArnaud Ebalard 	 * switchover flag but not battery low flag. The latter is checked
7390b2f6228SArnaud Ebalard 	 * later below.
7400b2f6228SArnaud Ebalard 	 */
7410b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
7420b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
7430b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
7440b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
7450b2f6228SArnaud Ebalard 	if (ret < 0) {
7460b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
7470b2f6228SArnaud Ebalard 			__func__, ret);
7480b2f6228SArnaud Ebalard 		return ret;
7490b2f6228SArnaud Ebalard 	}
7500b2f6228SArnaud Ebalard 
7510b2f6228SArnaud Ebalard 	/* Check oscillator integrity flag */
7520b2f6228SArnaud Ebalard 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
7530b2f6228SArnaud Ebalard 	if (ret < 0) {
7540b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
7550b2f6228SArnaud Ebalard 			__func__, ret);
7560b2f6228SArnaud Ebalard 		return ret;
7570b2f6228SArnaud Ebalard 	}
7580b2f6228SArnaud Ebalard 
7590b2f6228SArnaud Ebalard 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
7600b2f6228SArnaud Ebalard 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
7610b2f6228SArnaud Ebalard 			"or has been interrupted.\n");
7620b2f6228SArnaud Ebalard 		dev_err(dev, "change battery (if not already done) and  "
7630b2f6228SArnaud Ebalard 			"then set time to reset osc. failure flag.\n");
7640b2f6228SArnaud Ebalard 	}
7650b2f6228SArnaud Ebalard 
7660b2f6228SArnaud Ebalard 	/*
7670b2f6228SArnaud Ebalard 	 * Check battery low flag at startup: this allows reporting battery
7680b2f6228SArnaud Ebalard 	 * is low at startup when IRQ line is not connected. Note: we record
7690b2f6228SArnaud Ebalard 	 * current status to avoid reenabling this interrupt later in probe
7700b2f6228SArnaud Ebalard 	 * function if battery is low.
7710b2f6228SArnaud Ebalard 	 */
7720b2f6228SArnaud Ebalard 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
7730b2f6228SArnaud Ebalard 	if (ret < 0) {
7740b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
7750b2f6228SArnaud Ebalard 			__func__, ret);
7760b2f6228SArnaud Ebalard 		return ret;
7770b2f6228SArnaud Ebalard 	}
7780b2f6228SArnaud Ebalard 
7790b2f6228SArnaud Ebalard 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
7800b2f6228SArnaud Ebalard 	if (data->battery_low) {
7810b2f6228SArnaud Ebalard 		dev_err(dev, "RTC battery is low; please, consider "
7820b2f6228SArnaud Ebalard 			"changing it!\n");
7830b2f6228SArnaud Ebalard 
7840b2f6228SArnaud Ebalard 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
7850b2f6228SArnaud Ebalard 		if (ret)
7860b2f6228SArnaud Ebalard 			dev_err(dev, "%s: disabling battery low interrupt "
7870b2f6228SArnaud Ebalard 				"generation failed (%d)\n", __func__, ret);
7880b2f6228SArnaud Ebalard 	}
7890b2f6228SArnaud Ebalard 
7900b2f6228SArnaud Ebalard 	return ret;
7910b2f6228SArnaud Ebalard }
7920b2f6228SArnaud Ebalard 
7930b2f6228SArnaud Ebalard static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
7940b2f6228SArnaud Ebalard 					 unsigned int enable)
7950b2f6228SArnaud Ebalard {
7960b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
7970b2f6228SArnaud Ebalard 	int ret = 0;
7980b2f6228SArnaud Ebalard 
7990b2f6228SArnaud Ebalard 	if (rtc_data->irq) {
8000b2f6228SArnaud Ebalard 		mutex_lock(&rtc_data->lock);
801c8a1d8a5SArnaud Ebalard 		if (rtc_data->timer_alarm)
802c8a1d8a5SArnaud Ebalard 			ret = _abb5zes3_rtc_update_timer(dev, enable);
803c8a1d8a5SArnaud Ebalard 		else
8040b2f6228SArnaud Ebalard 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
8050b2f6228SArnaud Ebalard 		mutex_unlock(&rtc_data->lock);
8060b2f6228SArnaud Ebalard 	}
8070b2f6228SArnaud Ebalard 
8080b2f6228SArnaud Ebalard 	return ret;
8090b2f6228SArnaud Ebalard }
8100b2f6228SArnaud Ebalard 
8110b2f6228SArnaud Ebalard static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
8120b2f6228SArnaud Ebalard {
8130b2f6228SArnaud Ebalard 	struct i2c_client *client = data;
8140b2f6228SArnaud Ebalard 	struct device *dev = &client->dev;
8150b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
8160b2f6228SArnaud Ebalard 	struct rtc_device *rtc = rtc_data->rtc;
8170b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
8180b2f6228SArnaud Ebalard 	int ret, handled = IRQ_NONE;
8190b2f6228SArnaud Ebalard 
8200b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
8210b2f6228SArnaud Ebalard 			       ABB5ZES3_CTRL_SEC_LEN);
8220b2f6228SArnaud Ebalard 	if (ret) {
8230b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read control section (%d)!\n",
8240b2f6228SArnaud Ebalard 			__func__, ret);
8250b2f6228SArnaud Ebalard 		return handled;
8260b2f6228SArnaud Ebalard 	}
8270b2f6228SArnaud Ebalard 
8280b2f6228SArnaud Ebalard 	/*
8290b2f6228SArnaud Ebalard 	 * Check battery low detection flag and disable battery low interrupt
8300b2f6228SArnaud Ebalard 	 * generation if flag is set (interrupt can only be cleared when
8310b2f6228SArnaud Ebalard 	 * battery is replaced).
8320b2f6228SArnaud Ebalard 	 */
8330b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
8340b2f6228SArnaud Ebalard 		dev_err(dev, "RTC battery is low; please change it!\n");
8350b2f6228SArnaud Ebalard 
8360b2f6228SArnaud Ebalard 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
8370b2f6228SArnaud Ebalard 
8380b2f6228SArnaud Ebalard 		handled = IRQ_HANDLED;
8390b2f6228SArnaud Ebalard 	}
8400b2f6228SArnaud Ebalard 
8410b2f6228SArnaud Ebalard 	/* Check alarm flag */
8420b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
8430b2f6228SArnaud Ebalard 		dev_dbg(dev, "RTC alarm!\n");
8440b2f6228SArnaud Ebalard 
8450b2f6228SArnaud Ebalard 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
8460b2f6228SArnaud Ebalard 
8470b2f6228SArnaud Ebalard 		/* Acknowledge and disable the alarm */
8480b2f6228SArnaud Ebalard 		_abb5zes3_rtc_clear_alarm(dev);
8490b2f6228SArnaud Ebalard 		_abb5zes3_rtc_update_alarm(dev, 0);
8500b2f6228SArnaud Ebalard 
8510b2f6228SArnaud Ebalard 		handled = IRQ_HANDLED;
8520b2f6228SArnaud Ebalard 	}
8530b2f6228SArnaud Ebalard 
854c8a1d8a5SArnaud Ebalard 	/* Check watchdog Timer A flag */
855c8a1d8a5SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
856c8a1d8a5SArnaud Ebalard 		dev_dbg(dev, "RTC timer!\n");
857c8a1d8a5SArnaud Ebalard 
858c8a1d8a5SArnaud Ebalard 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
859c8a1d8a5SArnaud Ebalard 
860c8a1d8a5SArnaud Ebalard 		/*
861c8a1d8a5SArnaud Ebalard 		 * Acknowledge and disable the alarm. Note: WTAF
862c8a1d8a5SArnaud Ebalard 		 * flag had been cleared when reading CTRL2
863c8a1d8a5SArnaud Ebalard 		 */
864c8a1d8a5SArnaud Ebalard 		_abb5zes3_rtc_update_timer(dev, 0);
865c8a1d8a5SArnaud Ebalard 
866c8a1d8a5SArnaud Ebalard 		rtc_data->timer_alarm = 0;
867c8a1d8a5SArnaud Ebalard 
868c8a1d8a5SArnaud Ebalard 		handled = IRQ_HANDLED;
869c8a1d8a5SArnaud Ebalard 	}
870c8a1d8a5SArnaud Ebalard 
8710b2f6228SArnaud Ebalard 	return handled;
8720b2f6228SArnaud Ebalard }
8730b2f6228SArnaud Ebalard 
8740b2f6228SArnaud Ebalard static const struct rtc_class_ops rtc_ops = {
8750b2f6228SArnaud Ebalard 	.read_time = _abb5zes3_rtc_read_time,
8760b2f6228SArnaud Ebalard 	.set_time = abb5zes3_rtc_set_time,
8770b2f6228SArnaud Ebalard 	.read_alarm = abb5zes3_rtc_read_alarm,
8780b2f6228SArnaud Ebalard 	.set_alarm = abb5zes3_rtc_set_alarm,
8790b2f6228SArnaud Ebalard 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
8800b2f6228SArnaud Ebalard };
8810b2f6228SArnaud Ebalard 
882ac2a2726SKrzysztof Kozlowski static const struct regmap_config abb5zes3_rtc_regmap_config = {
8830b2f6228SArnaud Ebalard 	.reg_bits = 8,
8840b2f6228SArnaud Ebalard 	.val_bits = 8,
8850b2f6228SArnaud Ebalard };
8860b2f6228SArnaud Ebalard 
8870b2f6228SArnaud Ebalard static int abb5zes3_probe(struct i2c_client *client,
8880b2f6228SArnaud Ebalard 			  const struct i2c_device_id *id)
8890b2f6228SArnaud Ebalard {
8900b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = NULL;
8910b2f6228SArnaud Ebalard 	struct device *dev = &client->dev;
8920b2f6228SArnaud Ebalard 	struct regmap *regmap;
8930b2f6228SArnaud Ebalard 	int ret;
8940b2f6228SArnaud Ebalard 
8950b2f6228SArnaud Ebalard 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
8960b2f6228SArnaud Ebalard 				     I2C_FUNC_SMBUS_BYTE_DATA |
8970b2f6228SArnaud Ebalard 				     I2C_FUNC_SMBUS_I2C_BLOCK)) {
8980b2f6228SArnaud Ebalard 		ret = -ENODEV;
8990b2f6228SArnaud Ebalard 		goto err;
9000b2f6228SArnaud Ebalard 	}
9010b2f6228SArnaud Ebalard 
9020b2f6228SArnaud Ebalard 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
9030b2f6228SArnaud Ebalard 	if (IS_ERR(regmap)) {
9040b2f6228SArnaud Ebalard 		ret = PTR_ERR(regmap);
9050b2f6228SArnaud Ebalard 		dev_err(dev, "%s: regmap allocation failed: %d\n",
9060b2f6228SArnaud Ebalard 			__func__, ret);
9070b2f6228SArnaud Ebalard 		goto err;
9080b2f6228SArnaud Ebalard 	}
9090b2f6228SArnaud Ebalard 
9100b2f6228SArnaud Ebalard 	ret = abb5zes3_i2c_validate_chip(regmap);
9110b2f6228SArnaud Ebalard 	if (ret)
9120b2f6228SArnaud Ebalard 		goto err;
9130b2f6228SArnaud Ebalard 
9140b2f6228SArnaud Ebalard 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
9150b2f6228SArnaud Ebalard 	if (!data) {
9160b2f6228SArnaud Ebalard 		ret = -ENOMEM;
9170b2f6228SArnaud Ebalard 		goto err;
9180b2f6228SArnaud Ebalard 	}
9190b2f6228SArnaud Ebalard 
9200b2f6228SArnaud Ebalard 	mutex_init(&data->lock);
9210b2f6228SArnaud Ebalard 	data->regmap = regmap;
9220b2f6228SArnaud Ebalard 	dev_set_drvdata(dev, data);
9230b2f6228SArnaud Ebalard 
9240b2f6228SArnaud Ebalard 	ret = abb5zes3_rtc_check_setup(dev);
9250b2f6228SArnaud Ebalard 	if (ret)
9260b2f6228SArnaud Ebalard 		goto err;
9270b2f6228SArnaud Ebalard 
928*8bde032bSAlexandre Belloni 	data->rtc = devm_rtc_allocate_device(dev);
929*8bde032bSAlexandre Belloni 	ret = PTR_ERR_OR_ZERO(data->rtc);
930*8bde032bSAlexandre Belloni 	if (ret) {
931*8bde032bSAlexandre Belloni 		dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
932*8bde032bSAlexandre Belloni 			__func__, ret);
933*8bde032bSAlexandre Belloni 		goto err;
934*8bde032bSAlexandre Belloni 	}
935*8bde032bSAlexandre Belloni 
9360b2f6228SArnaud Ebalard 	if (client->irq > 0) {
9370b2f6228SArnaud Ebalard 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
9380b2f6228SArnaud Ebalard 						_abb5zes3_rtc_interrupt,
9390b2f6228SArnaud Ebalard 						IRQF_SHARED|IRQF_ONESHOT,
9400b2f6228SArnaud Ebalard 						DRV_NAME, client);
9410b2f6228SArnaud Ebalard 		if (!ret) {
9420b2f6228SArnaud Ebalard 			device_init_wakeup(dev, true);
9430b2f6228SArnaud Ebalard 			data->irq = client->irq;
9440b2f6228SArnaud Ebalard 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
9450b2f6228SArnaud Ebalard 				client->irq);
9460b2f6228SArnaud Ebalard 		} else {
9470b2f6228SArnaud Ebalard 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
9480b2f6228SArnaud Ebalard 				__func__, client->irq, ret);
9490b2f6228SArnaud Ebalard 			goto err;
9500b2f6228SArnaud Ebalard 		}
9510b2f6228SArnaud Ebalard 	}
9520b2f6228SArnaud Ebalard 
953*8bde032bSAlexandre Belloni 	data->rtc->ops = &rtc_ops;
9540b2f6228SArnaud Ebalard 
9550b2f6228SArnaud Ebalard 	/* Enable battery low detection interrupt if battery not already low */
9560b2f6228SArnaud Ebalard 	if (!data->battery_low && data->irq) {
9570b2f6228SArnaud Ebalard 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
9580b2f6228SArnaud Ebalard 		if (ret) {
9590b2f6228SArnaud Ebalard 			dev_err(dev, "%s: enabling battery low interrupt "
9600b2f6228SArnaud Ebalard 				"generation failed (%d)\n", __func__, ret);
9610b2f6228SArnaud Ebalard 			goto err;
9620b2f6228SArnaud Ebalard 		}
9630b2f6228SArnaud Ebalard 	}
9640b2f6228SArnaud Ebalard 
965*8bde032bSAlexandre Belloni 	ret = rtc_register_device(data->rtc);
966*8bde032bSAlexandre Belloni 
9670b2f6228SArnaud Ebalard err:
9680b2f6228SArnaud Ebalard 	if (ret && data && data->irq)
9690b2f6228SArnaud Ebalard 		device_init_wakeup(dev, false);
9700b2f6228SArnaud Ebalard 	return ret;
9710b2f6228SArnaud Ebalard }
9720b2f6228SArnaud Ebalard 
9730b2f6228SArnaud Ebalard static int abb5zes3_remove(struct i2c_client *client)
9740b2f6228SArnaud Ebalard {
9750b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
9760b2f6228SArnaud Ebalard 
9770b2f6228SArnaud Ebalard 	if (rtc_data->irq > 0)
9780b2f6228SArnaud Ebalard 		device_init_wakeup(&client->dev, false);
9790b2f6228SArnaud Ebalard 
9800b2f6228SArnaud Ebalard 	return 0;
9810b2f6228SArnaud Ebalard }
9820b2f6228SArnaud Ebalard 
9830b2f6228SArnaud Ebalard #ifdef CONFIG_PM_SLEEP
9840b2f6228SArnaud Ebalard static int abb5zes3_rtc_suspend(struct device *dev)
9850b2f6228SArnaud Ebalard {
9860b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
9870b2f6228SArnaud Ebalard 
9880b2f6228SArnaud Ebalard 	if (device_may_wakeup(dev))
9890b2f6228SArnaud Ebalard 		return enable_irq_wake(rtc_data->irq);
9900b2f6228SArnaud Ebalard 
9910b2f6228SArnaud Ebalard 	return 0;
9920b2f6228SArnaud Ebalard }
9930b2f6228SArnaud Ebalard 
9940b2f6228SArnaud Ebalard static int abb5zes3_rtc_resume(struct device *dev)
9950b2f6228SArnaud Ebalard {
9960b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
9970b2f6228SArnaud Ebalard 
9980b2f6228SArnaud Ebalard 	if (device_may_wakeup(dev))
9990b2f6228SArnaud Ebalard 		return disable_irq_wake(rtc_data->irq);
10000b2f6228SArnaud Ebalard 
10010b2f6228SArnaud Ebalard 	return 0;
10020b2f6228SArnaud Ebalard }
10030b2f6228SArnaud Ebalard #endif
10040b2f6228SArnaud Ebalard 
10050b2f6228SArnaud Ebalard static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
10060b2f6228SArnaud Ebalard 			 abb5zes3_rtc_resume);
10070b2f6228SArnaud Ebalard 
10080b2f6228SArnaud Ebalard #ifdef CONFIG_OF
10090b2f6228SArnaud Ebalard static const struct of_device_id abb5zes3_dt_match[] = {
10100b2f6228SArnaud Ebalard 	{ .compatible = "abracon,abb5zes3" },
10110b2f6228SArnaud Ebalard 	{ },
10120b2f6228SArnaud Ebalard };
10131c4fc295SJavier Martinez Canillas MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
10140b2f6228SArnaud Ebalard #endif
10150b2f6228SArnaud Ebalard 
10160b2f6228SArnaud Ebalard static const struct i2c_device_id abb5zes3_id[] = {
10170b2f6228SArnaud Ebalard 	{ "abb5zes3", 0 },
10180b2f6228SArnaud Ebalard 	{ }
10190b2f6228SArnaud Ebalard };
10200b2f6228SArnaud Ebalard MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
10210b2f6228SArnaud Ebalard 
10220b2f6228SArnaud Ebalard static struct i2c_driver abb5zes3_driver = {
10230b2f6228SArnaud Ebalard 	.driver = {
10240b2f6228SArnaud Ebalard 		.name = DRV_NAME,
10250b2f6228SArnaud Ebalard 		.pm = &abb5zes3_rtc_pm_ops,
10260b2f6228SArnaud Ebalard 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
10270b2f6228SArnaud Ebalard 	},
10280b2f6228SArnaud Ebalard 	.probe	  = abb5zes3_probe,
10290b2f6228SArnaud Ebalard 	.remove	  = abb5zes3_remove,
10300b2f6228SArnaud Ebalard 	.id_table = abb5zes3_id,
10310b2f6228SArnaud Ebalard };
10320b2f6228SArnaud Ebalard module_i2c_driver(abb5zes3_driver);
10330b2f6228SArnaud Ebalard 
10340b2f6228SArnaud Ebalard MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
10350b2f6228SArnaud Ebalard MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
10360b2f6228SArnaud Ebalard MODULE_LICENSE("GPL");
1037