xref: /openbmc/linux/drivers/rtc/rtc-ab-b5ze-s3.c (revision 8a941124458f20816dc864af4ff7c68d823670f6)
10b2f6228SArnaud Ebalard /*
20b2f6228SArnaud Ebalard  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
30b2f6228SArnaud Ebalard  *                  I2C RTC / Alarm chip
40b2f6228SArnaud Ebalard  *
50b2f6228SArnaud Ebalard  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
60b2f6228SArnaud Ebalard  *
70b2f6228SArnaud Ebalard  * Detailed datasheet of the chip is available here:
80b2f6228SArnaud Ebalard  *
90b2f6228SArnaud Ebalard  *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
100b2f6228SArnaud Ebalard  *
110b2f6228SArnaud Ebalard  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
120b2f6228SArnaud Ebalard  *
130b2f6228SArnaud Ebalard  * This program is free software; you can redistribute it and/or modify
140b2f6228SArnaud Ebalard  * it under the terms of the GNU General Public License as published by
150b2f6228SArnaud Ebalard  * the Free Software Foundation; either version 2 of the License, or
160b2f6228SArnaud Ebalard  * (at your option) any later version.
170b2f6228SArnaud Ebalard  *
180b2f6228SArnaud Ebalard  * This program is distributed in the hope that it will be useful,
190b2f6228SArnaud Ebalard  * but WITHOUT ANY WARRANTY; without even the implied warranty of
200b2f6228SArnaud Ebalard  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
210b2f6228SArnaud Ebalard  * GNU General Public License for more details.
220b2f6228SArnaud Ebalard  */
230b2f6228SArnaud Ebalard 
240b2f6228SArnaud Ebalard #include <linux/module.h>
250b2f6228SArnaud Ebalard #include <linux/rtc.h>
260b2f6228SArnaud Ebalard #include <linux/i2c.h>
270b2f6228SArnaud Ebalard #include <linux/bcd.h>
280b2f6228SArnaud Ebalard #include <linux/of.h>
290b2f6228SArnaud Ebalard #include <linux/regmap.h>
300b2f6228SArnaud Ebalard #include <linux/interrupt.h>
310b2f6228SArnaud Ebalard 
320b2f6228SArnaud Ebalard #define DRV_NAME "rtc-ab-b5ze-s3"
330b2f6228SArnaud Ebalard 
340b2f6228SArnaud Ebalard /* Control section */
350b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
360b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
370b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
380b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
390b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
400b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
410b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
420b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
430b2f6228SArnaud Ebalard 
440b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
450b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
460b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
470b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
480b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
490b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
500b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
510b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
520b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
530b2f6228SArnaud Ebalard 
540b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
550b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
560b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
570b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
580b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
590b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
600b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
610b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
620b2f6228SArnaud Ebalard 
630b2f6228SArnaud Ebalard #define ABB5ZES3_CTRL_SEC_LEN	   3
640b2f6228SArnaud Ebalard 
650b2f6228SArnaud Ebalard /* RTC section */
660b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
670b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
680b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
690b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
700b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
710b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
720b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
730b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
740b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
750b2f6228SArnaud Ebalard 
760b2f6228SArnaud Ebalard #define ABB5ZES3_RTC_SEC_LEN	   7
770b2f6228SArnaud Ebalard 
780b2f6228SArnaud Ebalard /* Alarm section (enable bits are all active low) */
790b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
800b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
810b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
820b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
830b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
840b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
850b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
860b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
870b2f6228SArnaud Ebalard 
880b2f6228SArnaud Ebalard #define ABB5ZES3_ALRM_SEC_LEN	   4
890b2f6228SArnaud Ebalard 
900b2f6228SArnaud Ebalard /* Frequency offset section */
910b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
920b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
930b2f6228SArnaud Ebalard 
940b2f6228SArnaud Ebalard /* CLOCKOUT section */
950b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
960b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
970b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
980b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
990b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
1000b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
1010b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
1020b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
1030b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
1040b2f6228SArnaud Ebalard 
1050b2f6228SArnaud Ebalard /* Timer A Section */
1060b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
1070b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
1080b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
1090b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
1100b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
1110b2f6228SArnaud Ebalard 
1120b2f6228SArnaud Ebalard #define ABB5ZES3_TIMA_SEC_LEN	   2
1130b2f6228SArnaud Ebalard 
1140b2f6228SArnaud Ebalard /* Timer B Section */
1150b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
1160b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
1170b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
1180b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
1190b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
1200b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
1210b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
1220b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
1230b2f6228SArnaud Ebalard #define ABB5ZES3_TIMB_SEC_LEN	   2
1240b2f6228SArnaud Ebalard 
1250b2f6228SArnaud Ebalard #define ABB5ZES3_MEM_MAP_LEN	   0x14
1260b2f6228SArnaud Ebalard 
1270b2f6228SArnaud Ebalard struct abb5zes3_rtc_data {
1280b2f6228SArnaud Ebalard 	struct rtc_device *rtc;
1290b2f6228SArnaud Ebalard 	struct regmap *regmap;
1300b2f6228SArnaud Ebalard 
1310b2f6228SArnaud Ebalard 	int irq;
1320b2f6228SArnaud Ebalard 
1330b2f6228SArnaud Ebalard 	bool battery_low;
134c8a1d8a5SArnaud Ebalard 	bool timer_alarm; /* current alarm is via timer A */
1350b2f6228SArnaud Ebalard };
1360b2f6228SArnaud Ebalard 
1370b2f6228SArnaud Ebalard /*
1380b2f6228SArnaud Ebalard  * Try and match register bits w/ fixed null values to see whether we
139ac246738SAlexandre Belloni  * are dealing with an ABB5ZES3.
1400b2f6228SArnaud Ebalard  */
1410b2f6228SArnaud Ebalard static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
1420b2f6228SArnaud Ebalard {
1430b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
1440b2f6228SArnaud Ebalard 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
1450b2f6228SArnaud Ebalard 						       0x80, 0xc0, 0xc0, 0xf8,
1460b2f6228SArnaud Ebalard 						       0xe0, 0x00, 0x00, 0x40,
1470b2f6228SArnaud Ebalard 						       0x40, 0x78, 0x00, 0x00,
1480b2f6228SArnaud Ebalard 						       0xf8, 0x00, 0x88, 0x00 };
1490b2f6228SArnaud Ebalard 	int ret, i;
1500b2f6228SArnaud Ebalard 
1510b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
1520b2f6228SArnaud Ebalard 	if (ret)
1530b2f6228SArnaud Ebalard 		return ret;
1540b2f6228SArnaud Ebalard 
1550b2f6228SArnaud Ebalard 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
1560b2f6228SArnaud Ebalard 		if (regs[i] & mask[i]) /* check if bits are cleared */
1570b2f6228SArnaud Ebalard 			return -ENODEV;
1580b2f6228SArnaud Ebalard 	}
1590b2f6228SArnaud Ebalard 
1600b2f6228SArnaud Ebalard 	return 0;
1610b2f6228SArnaud Ebalard }
1620b2f6228SArnaud Ebalard 
1630b2f6228SArnaud Ebalard /* Clear alarm status bit. */
1640b2f6228SArnaud Ebalard static int _abb5zes3_rtc_clear_alarm(struct device *dev)
1650b2f6228SArnaud Ebalard {
1660b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
1670b2f6228SArnaud Ebalard 	int ret;
1680b2f6228SArnaud Ebalard 
1690b2f6228SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
1700b2f6228SArnaud Ebalard 				 ABB5ZES3_REG_CTRL2_AF, 0);
1710b2f6228SArnaud Ebalard 	if (ret)
1720b2f6228SArnaud Ebalard 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
1730b2f6228SArnaud Ebalard 
1740b2f6228SArnaud Ebalard 	return ret;
1750b2f6228SArnaud Ebalard }
1760b2f6228SArnaud Ebalard 
1770b2f6228SArnaud Ebalard /* Enable or disable alarm (i.e. alarm interrupt generation) */
1780b2f6228SArnaud Ebalard static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
1790b2f6228SArnaud Ebalard {
1800b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
1810b2f6228SArnaud Ebalard 	int ret;
1820b2f6228SArnaud Ebalard 
1830b2f6228SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
1840b2f6228SArnaud Ebalard 				 ABB5ZES3_REG_CTRL1_AIE,
1850b2f6228SArnaud Ebalard 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
1860b2f6228SArnaud Ebalard 	if (ret)
1870b2f6228SArnaud Ebalard 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
1880b2f6228SArnaud Ebalard 			__func__, ret);
1890b2f6228SArnaud Ebalard 
1900b2f6228SArnaud Ebalard 	return ret;
1910b2f6228SArnaud Ebalard }
1920b2f6228SArnaud Ebalard 
193c8a1d8a5SArnaud Ebalard /* Enable or disable timer (watchdog timer A interrupt generation) */
194c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
195c8a1d8a5SArnaud Ebalard {
196c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
197c8a1d8a5SArnaud Ebalard 	int ret;
198c8a1d8a5SArnaud Ebalard 
199c8a1d8a5SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
200c8a1d8a5SArnaud Ebalard 				 ABB5ZES3_REG_CTRL2_WTAIE,
201c8a1d8a5SArnaud Ebalard 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
202c8a1d8a5SArnaud Ebalard 	if (ret)
203c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
204c8a1d8a5SArnaud Ebalard 			__func__, ret);
205c8a1d8a5SArnaud Ebalard 
206c8a1d8a5SArnaud Ebalard 	return ret;
207c8a1d8a5SArnaud Ebalard }
208c8a1d8a5SArnaud Ebalard 
2090b2f6228SArnaud Ebalard /*
2100b2f6228SArnaud Ebalard  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
2110b2f6228SArnaud Ebalard  * we do not need driver's main lock protection.
2120b2f6228SArnaud Ebalard  */
2130b2f6228SArnaud Ebalard static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
2140b2f6228SArnaud Ebalard {
2150b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
2160b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
217ce2e5a76SAlexandre Belloni 	int ret = 0;
2180b2f6228SArnaud Ebalard 
2190b2f6228SArnaud Ebalard 	/*
2200b2f6228SArnaud Ebalard 	 * As we need to read CTRL1 register anyway to access 24/12h
2210b2f6228SArnaud Ebalard 	 * mode bit, we do a single bulk read of both control and RTC
2220b2f6228SArnaud Ebalard 	 * sections (they are consecutive). This also ease indexing
2230b2f6228SArnaud Ebalard 	 * of register values after bulk read.
2240b2f6228SArnaud Ebalard 	 */
2250b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
2260b2f6228SArnaud Ebalard 			       sizeof(regs));
2270b2f6228SArnaud Ebalard 	if (ret) {
2280b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
2290b2f6228SArnaud Ebalard 			__func__, ret);
2305d049837SAlexandre Belloni 		return ret;
2310b2f6228SArnaud Ebalard 	}
2320b2f6228SArnaud Ebalard 
2330b2f6228SArnaud Ebalard 	/* If clock integrity is not guaranteed, do not return a time value */
2345d049837SAlexandre Belloni 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
2355d049837SAlexandre Belloni 		return -ENODATA;
2360b2f6228SArnaud Ebalard 
2370b2f6228SArnaud Ebalard 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
2380b2f6228SArnaud Ebalard 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
2390b2f6228SArnaud Ebalard 
2400b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
2410b2f6228SArnaud Ebalard 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
2420b2f6228SArnaud Ebalard 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
2430b2f6228SArnaud Ebalard 			tm->tm_hour += 12;
2440b2f6228SArnaud Ebalard 	} else {						/* 24hr mode */
2450b2f6228SArnaud Ebalard 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
2460b2f6228SArnaud Ebalard 	}
2470b2f6228SArnaud Ebalard 
2480b2f6228SArnaud Ebalard 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
2490b2f6228SArnaud Ebalard 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
2500b2f6228SArnaud Ebalard 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
2510b2f6228SArnaud Ebalard 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
2520b2f6228SArnaud Ebalard 
2530b2f6228SArnaud Ebalard 	return ret;
2540b2f6228SArnaud Ebalard }
2550b2f6228SArnaud Ebalard 
2560b2f6228SArnaud Ebalard static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
2570b2f6228SArnaud Ebalard {
2580b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
2590b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
2600b2f6228SArnaud Ebalard 	int ret;
2610b2f6228SArnaud Ebalard 
2620b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
2630b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
2640b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
2650b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
2660b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
2670b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
2680b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
2690b2f6228SArnaud Ebalard 
2700b2f6228SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
2710b2f6228SArnaud Ebalard 				regs + ABB5ZES3_REG_RTC_SC,
2720b2f6228SArnaud Ebalard 				ABB5ZES3_RTC_SEC_LEN);
2730b2f6228SArnaud Ebalard 
2740b2f6228SArnaud Ebalard 	return ret;
2750b2f6228SArnaud Ebalard }
2760b2f6228SArnaud Ebalard 
277c8a1d8a5SArnaud Ebalard /*
278c8a1d8a5SArnaud Ebalard  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
279c8a1d8a5SArnaud Ebalard  * given number of seconds.
280c8a1d8a5SArnaud Ebalard  */
281c8a1d8a5SArnaud Ebalard static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
282c8a1d8a5SArnaud Ebalard {
283c8a1d8a5SArnaud Ebalard 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
284c8a1d8a5SArnaud Ebalard 	*timer_a = secs;
285c8a1d8a5SArnaud Ebalard }
286c8a1d8a5SArnaud Ebalard 
287c8a1d8a5SArnaud Ebalard /*
288c8a1d8a5SArnaud Ebalard  * Return current number of seconds in Timer A. As we only use
289c8a1d8a5SArnaud Ebalard  * timer A with a 1Hz freq, this is what we expect to have.
290c8a1d8a5SArnaud Ebalard  */
291c8a1d8a5SArnaud Ebalard static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
292c8a1d8a5SArnaud Ebalard {
293c8a1d8a5SArnaud Ebalard 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
294c8a1d8a5SArnaud Ebalard 		return -EINVAL;
295c8a1d8a5SArnaud Ebalard 
296c8a1d8a5SArnaud Ebalard 	*secs = timer_a;
297c8a1d8a5SArnaud Ebalard 
298c8a1d8a5SArnaud Ebalard 	return 0;
299c8a1d8a5SArnaud Ebalard }
300c8a1d8a5SArnaud Ebalard 
301c8a1d8a5SArnaud Ebalard /*
302c8a1d8a5SArnaud Ebalard  * Read alarm currently configured via a watchdog timer using timer A. This
303c8a1d8a5SArnaud Ebalard  * is done by reading current RTC time and adding remaining timer time.
304c8a1d8a5SArnaud Ebalard  */
305c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_timer(struct device *dev,
306c8a1d8a5SArnaud Ebalard 				    struct rtc_wkalrm *alarm)
307c8a1d8a5SArnaud Ebalard {
308c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
309c8a1d8a5SArnaud Ebalard 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
310c8a1d8a5SArnaud Ebalard 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
311c8a1d8a5SArnaud Ebalard 	unsigned long rtc_secs;
312c8a1d8a5SArnaud Ebalard 	unsigned int reg;
313c8a1d8a5SArnaud Ebalard 	u8 timer_secs;
314c8a1d8a5SArnaud Ebalard 	int ret;
315c8a1d8a5SArnaud Ebalard 
316c8a1d8a5SArnaud Ebalard 	/*
317c8a1d8a5SArnaud Ebalard 	 * Instead of doing two separate calls, because they are consecutive,
318c8a1d8a5SArnaud Ebalard 	 * we grab both clockout register and Timer A section. The latter is
319c8a1d8a5SArnaud Ebalard 	 * used to decide if timer A is enabled (as a watchdog timer).
320c8a1d8a5SArnaud Ebalard 	 */
321c8a1d8a5SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
322c8a1d8a5SArnaud Ebalard 			       ABB5ZES3_TIMA_SEC_LEN + 1);
323c8a1d8a5SArnaud Ebalard 	if (ret) {
324c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
325c8a1d8a5SArnaud Ebalard 			__func__, ret);
3265d049837SAlexandre Belloni 		return ret;
327c8a1d8a5SArnaud Ebalard 	}
328c8a1d8a5SArnaud Ebalard 
329c8a1d8a5SArnaud Ebalard 	/* get current time ... */
330c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
331c8a1d8a5SArnaud Ebalard 	if (ret)
3325d049837SAlexandre Belloni 		return ret;
333c8a1d8a5SArnaud Ebalard 
334c8a1d8a5SArnaud Ebalard 	/* ... convert to seconds ... */
335*8a941124SAlexandre Belloni 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
336c8a1d8a5SArnaud Ebalard 
337c8a1d8a5SArnaud Ebalard 	/* ... add remaining timer A time ... */
338c8a1d8a5SArnaud Ebalard 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
339c8a1d8a5SArnaud Ebalard 	if (ret)
3405d049837SAlexandre Belloni 		return ret;
341c8a1d8a5SArnaud Ebalard 
342c8a1d8a5SArnaud Ebalard 	/* ... and convert back. */
343*8a941124SAlexandre Belloni 	rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);
344c8a1d8a5SArnaud Ebalard 
345c8a1d8a5SArnaud Ebalard 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
346c8a1d8a5SArnaud Ebalard 	if (ret) {
347c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
348c8a1d8a5SArnaud Ebalard 			__func__, ret);
3495d049837SAlexandre Belloni 		return ret;
350c8a1d8a5SArnaud Ebalard 	}
351c8a1d8a5SArnaud Ebalard 
352c8a1d8a5SArnaud Ebalard 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
353c8a1d8a5SArnaud Ebalard 
3545d049837SAlexandre Belloni 	return 0;
355c8a1d8a5SArnaud Ebalard }
356c8a1d8a5SArnaud Ebalard 
357c8a1d8a5SArnaud Ebalard /* Read alarm currently configured via a RTC alarm registers. */
358c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_alarm(struct device *dev,
359c8a1d8a5SArnaud Ebalard 				    struct rtc_wkalrm *alarm)
3600b2f6228SArnaud Ebalard {
3610b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
3620b2f6228SArnaud Ebalard 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
3630b2f6228SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
3640b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
3650b2f6228SArnaud Ebalard 	unsigned int reg;
3660b2f6228SArnaud Ebalard 	int ret;
3670b2f6228SArnaud Ebalard 
3680b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
3690b2f6228SArnaud Ebalard 			       ABB5ZES3_ALRM_SEC_LEN);
3700b2f6228SArnaud Ebalard 	if (ret) {
3710b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
3720b2f6228SArnaud Ebalard 			__func__, ret);
3735d049837SAlexandre Belloni 		return ret;
3740b2f6228SArnaud Ebalard 	}
3750b2f6228SArnaud Ebalard 
3760b2f6228SArnaud Ebalard 	alarm_tm->tm_sec  = 0;
3770b2f6228SArnaud Ebalard 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
3780b2f6228SArnaud Ebalard 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
3790b2f6228SArnaud Ebalard 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
3800b2f6228SArnaud Ebalard 	alarm_tm->tm_wday = -1;
3810b2f6228SArnaud Ebalard 
3820b2f6228SArnaud Ebalard 	/*
3830b2f6228SArnaud Ebalard 	 * The alarm section does not store year/month. We use the ones in rtc
3840b2f6228SArnaud Ebalard 	 * section as a basis and increment month and then year if needed to get
3850b2f6228SArnaud Ebalard 	 * alarm after current time.
3860b2f6228SArnaud Ebalard 	 */
3870b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
3880b2f6228SArnaud Ebalard 	if (ret)
3895d049837SAlexandre Belloni 		return ret;
3900b2f6228SArnaud Ebalard 
3910b2f6228SArnaud Ebalard 	alarm_tm->tm_year = rtc_tm.tm_year;
3920b2f6228SArnaud Ebalard 	alarm_tm->tm_mon = rtc_tm.tm_mon;
3930b2f6228SArnaud Ebalard 
394*8a941124SAlexandre Belloni 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
395*8a941124SAlexandre Belloni 	alarm_secs = rtc_tm_to_time64(alarm_tm);
3960b2f6228SArnaud Ebalard 
3970b2f6228SArnaud Ebalard 	if (alarm_secs < rtc_secs) {
3980b2f6228SArnaud Ebalard 		if (alarm_tm->tm_mon == 11) {
3990b2f6228SArnaud Ebalard 			alarm_tm->tm_mon = 0;
4000b2f6228SArnaud Ebalard 			alarm_tm->tm_year += 1;
4010b2f6228SArnaud Ebalard 		} else {
4020b2f6228SArnaud Ebalard 			alarm_tm->tm_mon += 1;
4030b2f6228SArnaud Ebalard 		}
4040b2f6228SArnaud Ebalard 	}
4050b2f6228SArnaud Ebalard 
4060b2f6228SArnaud Ebalard 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
4070b2f6228SArnaud Ebalard 	if (ret) {
4080b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
4090b2f6228SArnaud Ebalard 			__func__, ret);
4105d049837SAlexandre Belloni 		return ret;
4110b2f6228SArnaud Ebalard 	}
4120b2f6228SArnaud Ebalard 
4130b2f6228SArnaud Ebalard 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
4140b2f6228SArnaud Ebalard 
4155d049837SAlexandre Belloni 	return 0;
416c8a1d8a5SArnaud Ebalard }
417c8a1d8a5SArnaud Ebalard 
418c8a1d8a5SArnaud Ebalard /*
419c8a1d8a5SArnaud Ebalard  * As the Alarm mechanism supported by the chip is only accurate to the
420c8a1d8a5SArnaud Ebalard  * minute, we use the watchdog timer mechanism provided by timer A
421c8a1d8a5SArnaud Ebalard  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
422c8a1d8a5SArnaud Ebalard  * 4 minutes). Otherwise, we use the common alarm mechanism provided
423c8a1d8a5SArnaud Ebalard  * by the chip. In order for that to work, we keep track of currently
424c8a1d8a5SArnaud Ebalard  * configured timer type via 'timer_alarm' flag in our private data
425c8a1d8a5SArnaud Ebalard  * structure.
426c8a1d8a5SArnaud Ebalard  */
427c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
428c8a1d8a5SArnaud Ebalard {
429c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
430c8a1d8a5SArnaud Ebalard 	int ret;
431c8a1d8a5SArnaud Ebalard 
432c8a1d8a5SArnaud Ebalard 	if (data->timer_alarm)
433c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
434c8a1d8a5SArnaud Ebalard 	else
435c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
4360b2f6228SArnaud Ebalard 
4370b2f6228SArnaud Ebalard 	return ret;
4380b2f6228SArnaud Ebalard }
4390b2f6228SArnaud Ebalard 
440c8a1d8a5SArnaud Ebalard /*
441c8a1d8a5SArnaud Ebalard  * Set alarm using chip alarm mechanism. It is only accurate to the
442c8a1d8a5SArnaud Ebalard  * minute (not the second). The function expects alarm interrupt to
443c8a1d8a5SArnaud Ebalard  * be disabled.
444c8a1d8a5SArnaud Ebalard  */
445c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
4460b2f6228SArnaud Ebalard {
4470b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
4480b2f6228SArnaud Ebalard 	struct rtc_time *alarm_tm = &alarm->time;
4490b2f6228SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
4500b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
4510b2f6228SArnaud Ebalard 	struct rtc_time rtc_tm;
4520b2f6228SArnaud Ebalard 	int ret, enable = 1;
4530b2f6228SArnaud Ebalard 
4540b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
4550b2f6228SArnaud Ebalard 	if (ret)
4565d049837SAlexandre Belloni 		return ret;
4570b2f6228SArnaud Ebalard 
458*8a941124SAlexandre Belloni 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
459*8a941124SAlexandre Belloni 	alarm_secs = rtc_tm_to_time64(alarm_tm);
4600b2f6228SArnaud Ebalard 
4610b2f6228SArnaud Ebalard 	/* If alarm time is before current time, disable the alarm */
4620b2f6228SArnaud Ebalard 	if (!alarm->enabled || alarm_secs <= rtc_secs) {
4630b2f6228SArnaud Ebalard 		enable = 0;
4640b2f6228SArnaud Ebalard 	} else {
4650b2f6228SArnaud Ebalard 		/*
4660b2f6228SArnaud Ebalard 		 * Chip only support alarms up to one month in the future. Let's
4670b2f6228SArnaud Ebalard 		 * return an error if we get something after that limit.
4680b2f6228SArnaud Ebalard 		 * Comparison is done by incrementing rtc_tm month field by one
4690b2f6228SArnaud Ebalard 		 * and checking alarm value is still below.
4700b2f6228SArnaud Ebalard 		 */
4710b2f6228SArnaud Ebalard 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
4720b2f6228SArnaud Ebalard 			rtc_tm.tm_mon = 0;
4730b2f6228SArnaud Ebalard 			rtc_tm.tm_year += 1;
4740b2f6228SArnaud Ebalard 		} else {
4750b2f6228SArnaud Ebalard 			rtc_tm.tm_mon += 1;
4760b2f6228SArnaud Ebalard 		}
4770b2f6228SArnaud Ebalard 
478*8a941124SAlexandre Belloni 		rtc_secs = rtc_tm_to_time64(&rtc_tm);
4790b2f6228SArnaud Ebalard 
4800b2f6228SArnaud Ebalard 		if (alarm_secs > rtc_secs) {
4810b2f6228SArnaud Ebalard 			dev_err(dev, "%s: alarm maximum is one month in the "
4820b2f6228SArnaud Ebalard 				"future (%d)\n", __func__, ret);
4835d049837SAlexandre Belloni 			return -EINVAL;
4840b2f6228SArnaud Ebalard 		}
4850b2f6228SArnaud Ebalard 	}
4860b2f6228SArnaud Ebalard 
487c8a1d8a5SArnaud Ebalard 	/*
488c8a1d8a5SArnaud Ebalard 	 * Program all alarm registers but DW one. For each register, setting
489c8a1d8a5SArnaud Ebalard 	 * MSB to 0 enables associated alarm.
490c8a1d8a5SArnaud Ebalard 	 */
491c8a1d8a5SArnaud Ebalard 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
492c8a1d8a5SArnaud Ebalard 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
493c8a1d8a5SArnaud Ebalard 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
4940b2f6228SArnaud Ebalard 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
4950b2f6228SArnaud Ebalard 
4960b2f6228SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
4970b2f6228SArnaud Ebalard 				ABB5ZES3_ALRM_SEC_LEN);
4980b2f6228SArnaud Ebalard 	if (ret < 0) {
4990b2f6228SArnaud Ebalard 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
5000b2f6228SArnaud Ebalard 			__func__, ret);
5015d049837SAlexandre Belloni 		return ret;
5020b2f6228SArnaud Ebalard 	}
5030b2f6228SArnaud Ebalard 
504c8a1d8a5SArnaud Ebalard 	/* Record currently configured alarm is not a timer */
505c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 0;
506c8a1d8a5SArnaud Ebalard 
507c8a1d8a5SArnaud Ebalard 	/* Enable or disable alarm interrupt generation */
5085d049837SAlexandre Belloni 	return _abb5zes3_rtc_update_alarm(dev, enable);
509c8a1d8a5SArnaud Ebalard }
510c8a1d8a5SArnaud Ebalard 
511c8a1d8a5SArnaud Ebalard /*
512c8a1d8a5SArnaud Ebalard  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
513c8a1d8a5SArnaud Ebalard  * timer A interrupt to be disabled.
514c8a1d8a5SArnaud Ebalard  */
515c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
516c8a1d8a5SArnaud Ebalard 				   u8 secs)
517c8a1d8a5SArnaud Ebalard {
518c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
519c8a1d8a5SArnaud Ebalard 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
520c8a1d8a5SArnaud Ebalard 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
521c8a1d8a5SArnaud Ebalard 	int ret = 0;
522c8a1d8a5SArnaud Ebalard 
523c8a1d8a5SArnaud Ebalard 	/* Program given number of seconds to Timer A registers */
524c8a1d8a5SArnaud Ebalard 	sec_to_timer_a(secs, &regs[0], &regs[1]);
525c8a1d8a5SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
526c8a1d8a5SArnaud Ebalard 				ABB5ZES3_TIMA_SEC_LEN);
527c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
528c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: writing timer section failed\n", __func__);
5295d049837SAlexandre Belloni 		return ret;
530c8a1d8a5SArnaud Ebalard 	}
531c8a1d8a5SArnaud Ebalard 
532c8a1d8a5SArnaud Ebalard 	/* Configure Timer A as a watchdog timer */
533c8a1d8a5SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
534c8a1d8a5SArnaud Ebalard 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
535c8a1d8a5SArnaud Ebalard 	if (ret)
536c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: failed to update timer\n", __func__);
537c8a1d8a5SArnaud Ebalard 
538c8a1d8a5SArnaud Ebalard 	/* Record currently configured alarm is a timer */
539c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 1;
540c8a1d8a5SArnaud Ebalard 
541c8a1d8a5SArnaud Ebalard 	/* Enable or disable timer interrupt generation */
5425d049837SAlexandre Belloni 	return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
543c8a1d8a5SArnaud Ebalard }
544c8a1d8a5SArnaud Ebalard 
545c8a1d8a5SArnaud Ebalard /*
546c8a1d8a5SArnaud Ebalard  * The chip has an alarm which is only accurate to the minute. In order to
547c8a1d8a5SArnaud Ebalard  * handle alarms below that limit, we use the watchdog timer function of
548c8a1d8a5SArnaud Ebalard  * timer A. More precisely, the timer method is used for alarms below 240
549c8a1d8a5SArnaud Ebalard  * seconds.
550c8a1d8a5SArnaud Ebalard  */
551c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
552c8a1d8a5SArnaud Ebalard {
553c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
554c8a1d8a5SArnaud Ebalard 	struct rtc_time *alarm_tm = &alarm->time;
555c8a1d8a5SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
556c8a1d8a5SArnaud Ebalard 	struct rtc_time rtc_tm;
557c8a1d8a5SArnaud Ebalard 	int ret;
558c8a1d8a5SArnaud Ebalard 
559c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
560c8a1d8a5SArnaud Ebalard 	if (ret)
5615d049837SAlexandre Belloni 		return ret;
562c8a1d8a5SArnaud Ebalard 
563*8a941124SAlexandre Belloni 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
564*8a941124SAlexandre Belloni 	alarm_secs = rtc_tm_to_time64(alarm_tm);
565c8a1d8a5SArnaud Ebalard 
566c8a1d8a5SArnaud Ebalard 	/* Let's first disable both the alarm and the timer interrupts */
567c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_alarm(dev, false);
568c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
569c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
570c8a1d8a5SArnaud Ebalard 			ret);
5715d049837SAlexandre Belloni 		return ret;
572c8a1d8a5SArnaud Ebalard 	}
573c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_timer(dev, false);
574c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
575c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
576c8a1d8a5SArnaud Ebalard 			ret);
5775d049837SAlexandre Belloni 		return ret;
578c8a1d8a5SArnaud Ebalard 	}
579c8a1d8a5SArnaud Ebalard 
580c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 0;
581c8a1d8a5SArnaud Ebalard 
582c8a1d8a5SArnaud Ebalard 	/*
583c8a1d8a5SArnaud Ebalard 	 * Let's now configure the alarm; if we are expected to ring in
584c8a1d8a5SArnaud Ebalard 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
585c8a1d8a5SArnaud Ebalard 	 */
586c8a1d8a5SArnaud Ebalard 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
587c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
588c8a1d8a5SArnaud Ebalard 					      alarm_secs - rtc_secs);
589c8a1d8a5SArnaud Ebalard 	else
590c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
591c8a1d8a5SArnaud Ebalard 
592c8a1d8a5SArnaud Ebalard 	if (ret)
593c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
594c8a1d8a5SArnaud Ebalard 			ret);
595c8a1d8a5SArnaud Ebalard 
5960b2f6228SArnaud Ebalard 	return ret;
5970b2f6228SArnaud Ebalard }
5980b2f6228SArnaud Ebalard 
5990b2f6228SArnaud Ebalard /* Enable or disable battery low irq generation */
6000b2f6228SArnaud Ebalard static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
6010b2f6228SArnaud Ebalard 						       bool enable)
6020b2f6228SArnaud Ebalard {
6030b2f6228SArnaud Ebalard 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
6040b2f6228SArnaud Ebalard 				  ABB5ZES3_REG_CTRL3_BLIE,
6050b2f6228SArnaud Ebalard 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
6060b2f6228SArnaud Ebalard }
6070b2f6228SArnaud Ebalard 
6080b2f6228SArnaud Ebalard /*
6090b2f6228SArnaud Ebalard  * Check current RTC status and enable/disable what needs to be. Return 0 if
610ac246738SAlexandre Belloni  * everything went ok and a negative value upon error.
6110b2f6228SArnaud Ebalard  */
6120b2f6228SArnaud Ebalard static int abb5zes3_rtc_check_setup(struct device *dev)
6130b2f6228SArnaud Ebalard {
6140b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
6150b2f6228SArnaud Ebalard 	struct regmap *regmap = data->regmap;
6160b2f6228SArnaud Ebalard 	unsigned int reg;
6170b2f6228SArnaud Ebalard 	int ret;
6180b2f6228SArnaud Ebalard 	u8 mask;
6190b2f6228SArnaud Ebalard 
6200b2f6228SArnaud Ebalard 	/*
6210b2f6228SArnaud Ebalard 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
6220b2f6228SArnaud Ebalard 	 * is disabled here to prevent polluting the interrupt line and
6230b2f6228SArnaud Ebalard 	 * uselessly triggering the IRQ handler we install for alarm and battery
6240b2f6228SArnaud Ebalard 	 * low events. Note: this is done before clearing int. status below
6250b2f6228SArnaud Ebalard 	 * in this function.
6260b2f6228SArnaud Ebalard 	 * We also disable all timers and set timer interrupt to permanent (not
6270b2f6228SArnaud Ebalard 	 * pulsed).
6280b2f6228SArnaud Ebalard 	 */
6290b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
6300b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
6310b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
6320b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
6330b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
6340b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
6350b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF2);
6360b2f6228SArnaud Ebalard 	if (ret < 0) {
6370b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
6380b2f6228SArnaud Ebalard 			__func__, ret);
6390b2f6228SArnaud Ebalard 		return ret;
6400b2f6228SArnaud Ebalard 	}
6410b2f6228SArnaud Ebalard 
6420b2f6228SArnaud Ebalard 	/*
6430b2f6228SArnaud Ebalard 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
6440b2f6228SArnaud Ebalard 	 * individually by clearing/setting MSB of each associated register. So,
6450b2f6228SArnaud Ebalard 	 * we set all alarm enable bits to disable current alarm setting.
6460b2f6228SArnaud Ebalard 	 */
6470b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
6480b2f6228SArnaud Ebalard 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
6490b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
6500b2f6228SArnaud Ebalard 	if (ret < 0) {
6510b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
6520b2f6228SArnaud Ebalard 			__func__, ret);
6530b2f6228SArnaud Ebalard 		return ret;
6540b2f6228SArnaud Ebalard 	}
6550b2f6228SArnaud Ebalard 
6560b2f6228SArnaud Ebalard 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
6570b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
6580b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
6590b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
6600b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
6610b2f6228SArnaud Ebalard 	if (ret < 0) {
6620b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
6630b2f6228SArnaud Ebalard 			__func__, ret);
6640b2f6228SArnaud Ebalard 		return ret;
6650b2f6228SArnaud Ebalard 	}
6660b2f6228SArnaud Ebalard 
6670b2f6228SArnaud Ebalard 	/*
6680b2f6228SArnaud Ebalard 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
6690b2f6228SArnaud Ebalard 	 * WTAF is read-only and cleared automatically by reading the register.
6700b2f6228SArnaud Ebalard 	 */
6710b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
6720b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
6730b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
6740b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_CTAF);
6750b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
6760b2f6228SArnaud Ebalard 	if (ret < 0) {
6770b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
6780b2f6228SArnaud Ebalard 			__func__, ret);
6790b2f6228SArnaud Ebalard 		return ret;
6800b2f6228SArnaud Ebalard 	}
6810b2f6228SArnaud Ebalard 
6820b2f6228SArnaud Ebalard 	/*
6830b2f6228SArnaud Ebalard 	 * Enable battery low detection function and battery switchover function
6840b2f6228SArnaud Ebalard 	 * (standard mode). Disable associated interrupts. Clear battery
6850b2f6228SArnaud Ebalard 	 * switchover flag but not battery low flag. The latter is checked
6860b2f6228SArnaud Ebalard 	 * later below.
6870b2f6228SArnaud Ebalard 	 */
6880b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
6890b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
6900b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
6910b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
6920b2f6228SArnaud Ebalard 	if (ret < 0) {
6930b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
6940b2f6228SArnaud Ebalard 			__func__, ret);
6950b2f6228SArnaud Ebalard 		return ret;
6960b2f6228SArnaud Ebalard 	}
6970b2f6228SArnaud Ebalard 
6980b2f6228SArnaud Ebalard 	/* Check oscillator integrity flag */
6990b2f6228SArnaud Ebalard 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
7000b2f6228SArnaud Ebalard 	if (ret < 0) {
7010b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
7020b2f6228SArnaud Ebalard 			__func__, ret);
7030b2f6228SArnaud Ebalard 		return ret;
7040b2f6228SArnaud Ebalard 	}
7050b2f6228SArnaud Ebalard 
7060b2f6228SArnaud Ebalard 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
7070b2f6228SArnaud Ebalard 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
7080b2f6228SArnaud Ebalard 			"or has been interrupted.\n");
7090b2f6228SArnaud Ebalard 		dev_err(dev, "change battery (if not already done) and  "
7100b2f6228SArnaud Ebalard 			"then set time to reset osc. failure flag.\n");
7110b2f6228SArnaud Ebalard 	}
7120b2f6228SArnaud Ebalard 
7130b2f6228SArnaud Ebalard 	/*
7140b2f6228SArnaud Ebalard 	 * Check battery low flag at startup: this allows reporting battery
7150b2f6228SArnaud Ebalard 	 * is low at startup when IRQ line is not connected. Note: we record
7160b2f6228SArnaud Ebalard 	 * current status to avoid reenabling this interrupt later in probe
7170b2f6228SArnaud Ebalard 	 * function if battery is low.
7180b2f6228SArnaud Ebalard 	 */
7190b2f6228SArnaud Ebalard 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
7200b2f6228SArnaud Ebalard 	if (ret < 0) {
7210b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
7220b2f6228SArnaud Ebalard 			__func__, ret);
7230b2f6228SArnaud Ebalard 		return ret;
7240b2f6228SArnaud Ebalard 	}
7250b2f6228SArnaud Ebalard 
7260b2f6228SArnaud Ebalard 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
7270b2f6228SArnaud Ebalard 	if (data->battery_low) {
7280b2f6228SArnaud Ebalard 		dev_err(dev, "RTC battery is low; please, consider "
7290b2f6228SArnaud Ebalard 			"changing it!\n");
7300b2f6228SArnaud Ebalard 
7310b2f6228SArnaud Ebalard 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
7320b2f6228SArnaud Ebalard 		if (ret)
7330b2f6228SArnaud Ebalard 			dev_err(dev, "%s: disabling battery low interrupt "
7340b2f6228SArnaud Ebalard 				"generation failed (%d)\n", __func__, ret);
7350b2f6228SArnaud Ebalard 	}
7360b2f6228SArnaud Ebalard 
7370b2f6228SArnaud Ebalard 	return ret;
7380b2f6228SArnaud Ebalard }
7390b2f6228SArnaud Ebalard 
7400b2f6228SArnaud Ebalard static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
7410b2f6228SArnaud Ebalard 					 unsigned int enable)
7420b2f6228SArnaud Ebalard {
7430b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
7440b2f6228SArnaud Ebalard 	int ret = 0;
7450b2f6228SArnaud Ebalard 
7460b2f6228SArnaud Ebalard 	if (rtc_data->irq) {
747c8a1d8a5SArnaud Ebalard 		if (rtc_data->timer_alarm)
748c8a1d8a5SArnaud Ebalard 			ret = _abb5zes3_rtc_update_timer(dev, enable);
749c8a1d8a5SArnaud Ebalard 		else
7500b2f6228SArnaud Ebalard 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
7510b2f6228SArnaud Ebalard 	}
7520b2f6228SArnaud Ebalard 
7530b2f6228SArnaud Ebalard 	return ret;
7540b2f6228SArnaud Ebalard }
7550b2f6228SArnaud Ebalard 
7560b2f6228SArnaud Ebalard static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
7570b2f6228SArnaud Ebalard {
7580b2f6228SArnaud Ebalard 	struct i2c_client *client = data;
7590b2f6228SArnaud Ebalard 	struct device *dev = &client->dev;
7600b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
7610b2f6228SArnaud Ebalard 	struct rtc_device *rtc = rtc_data->rtc;
7620b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
7630b2f6228SArnaud Ebalard 	int ret, handled = IRQ_NONE;
7640b2f6228SArnaud Ebalard 
7650b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
7660b2f6228SArnaud Ebalard 			       ABB5ZES3_CTRL_SEC_LEN);
7670b2f6228SArnaud Ebalard 	if (ret) {
7680b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read control section (%d)!\n",
7690b2f6228SArnaud Ebalard 			__func__, ret);
7700b2f6228SArnaud Ebalard 		return handled;
7710b2f6228SArnaud Ebalard 	}
7720b2f6228SArnaud Ebalard 
7730b2f6228SArnaud Ebalard 	/*
7740b2f6228SArnaud Ebalard 	 * Check battery low detection flag and disable battery low interrupt
7750b2f6228SArnaud Ebalard 	 * generation if flag is set (interrupt can only be cleared when
7760b2f6228SArnaud Ebalard 	 * battery is replaced).
7770b2f6228SArnaud Ebalard 	 */
7780b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
7790b2f6228SArnaud Ebalard 		dev_err(dev, "RTC battery is low; please change it!\n");
7800b2f6228SArnaud Ebalard 
7810b2f6228SArnaud Ebalard 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
7820b2f6228SArnaud Ebalard 
7830b2f6228SArnaud Ebalard 		handled = IRQ_HANDLED;
7840b2f6228SArnaud Ebalard 	}
7850b2f6228SArnaud Ebalard 
7860b2f6228SArnaud Ebalard 	/* Check alarm flag */
7870b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
7880b2f6228SArnaud Ebalard 		dev_dbg(dev, "RTC alarm!\n");
7890b2f6228SArnaud Ebalard 
7900b2f6228SArnaud Ebalard 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
7910b2f6228SArnaud Ebalard 
7920b2f6228SArnaud Ebalard 		/* Acknowledge and disable the alarm */
7930b2f6228SArnaud Ebalard 		_abb5zes3_rtc_clear_alarm(dev);
7940b2f6228SArnaud Ebalard 		_abb5zes3_rtc_update_alarm(dev, 0);
7950b2f6228SArnaud Ebalard 
7960b2f6228SArnaud Ebalard 		handled = IRQ_HANDLED;
7970b2f6228SArnaud Ebalard 	}
7980b2f6228SArnaud Ebalard 
799c8a1d8a5SArnaud Ebalard 	/* Check watchdog Timer A flag */
800c8a1d8a5SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
801c8a1d8a5SArnaud Ebalard 		dev_dbg(dev, "RTC timer!\n");
802c8a1d8a5SArnaud Ebalard 
803c8a1d8a5SArnaud Ebalard 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
804c8a1d8a5SArnaud Ebalard 
805c8a1d8a5SArnaud Ebalard 		/*
806c8a1d8a5SArnaud Ebalard 		 * Acknowledge and disable the alarm. Note: WTAF
807c8a1d8a5SArnaud Ebalard 		 * flag had been cleared when reading CTRL2
808c8a1d8a5SArnaud Ebalard 		 */
809c8a1d8a5SArnaud Ebalard 		_abb5zes3_rtc_update_timer(dev, 0);
810c8a1d8a5SArnaud Ebalard 
811c8a1d8a5SArnaud Ebalard 		rtc_data->timer_alarm = 0;
812c8a1d8a5SArnaud Ebalard 
813c8a1d8a5SArnaud Ebalard 		handled = IRQ_HANDLED;
814c8a1d8a5SArnaud Ebalard 	}
815c8a1d8a5SArnaud Ebalard 
8160b2f6228SArnaud Ebalard 	return handled;
8170b2f6228SArnaud Ebalard }
8180b2f6228SArnaud Ebalard 
8190b2f6228SArnaud Ebalard static const struct rtc_class_ops rtc_ops = {
8200b2f6228SArnaud Ebalard 	.read_time = _abb5zes3_rtc_read_time,
8210b2f6228SArnaud Ebalard 	.set_time = abb5zes3_rtc_set_time,
8220b2f6228SArnaud Ebalard 	.read_alarm = abb5zes3_rtc_read_alarm,
8230b2f6228SArnaud Ebalard 	.set_alarm = abb5zes3_rtc_set_alarm,
8240b2f6228SArnaud Ebalard 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
8250b2f6228SArnaud Ebalard };
8260b2f6228SArnaud Ebalard 
827ac2a2726SKrzysztof Kozlowski static const struct regmap_config abb5zes3_rtc_regmap_config = {
8280b2f6228SArnaud Ebalard 	.reg_bits = 8,
8290b2f6228SArnaud Ebalard 	.val_bits = 8,
8300b2f6228SArnaud Ebalard };
8310b2f6228SArnaud Ebalard 
8320b2f6228SArnaud Ebalard static int abb5zes3_probe(struct i2c_client *client,
8330b2f6228SArnaud Ebalard 			  const struct i2c_device_id *id)
8340b2f6228SArnaud Ebalard {
8350b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = NULL;
8360b2f6228SArnaud Ebalard 	struct device *dev = &client->dev;
8370b2f6228SArnaud Ebalard 	struct regmap *regmap;
8380b2f6228SArnaud Ebalard 	int ret;
8390b2f6228SArnaud Ebalard 
8400b2f6228SArnaud Ebalard 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
8410b2f6228SArnaud Ebalard 				     I2C_FUNC_SMBUS_BYTE_DATA |
8425d049837SAlexandre Belloni 				     I2C_FUNC_SMBUS_I2C_BLOCK))
8435d049837SAlexandre Belloni 		return -ENODEV;
8440b2f6228SArnaud Ebalard 
8450b2f6228SArnaud Ebalard 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
8460b2f6228SArnaud Ebalard 	if (IS_ERR(regmap)) {
8470b2f6228SArnaud Ebalard 		ret = PTR_ERR(regmap);
8480b2f6228SArnaud Ebalard 		dev_err(dev, "%s: regmap allocation failed: %d\n",
8490b2f6228SArnaud Ebalard 			__func__, ret);
8505d049837SAlexandre Belloni 		return ret;
8510b2f6228SArnaud Ebalard 	}
8520b2f6228SArnaud Ebalard 
8530b2f6228SArnaud Ebalard 	ret = abb5zes3_i2c_validate_chip(regmap);
8540b2f6228SArnaud Ebalard 	if (ret)
8555d049837SAlexandre Belloni 		return ret;
8560b2f6228SArnaud Ebalard 
8570b2f6228SArnaud Ebalard 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
8585d049837SAlexandre Belloni 	if (!data)
8595d049837SAlexandre Belloni 		return -ENOMEM;
8600b2f6228SArnaud Ebalard 
8610b2f6228SArnaud Ebalard 	data->regmap = regmap;
8620b2f6228SArnaud Ebalard 	dev_set_drvdata(dev, data);
8630b2f6228SArnaud Ebalard 
8640b2f6228SArnaud Ebalard 	ret = abb5zes3_rtc_check_setup(dev);
8650b2f6228SArnaud Ebalard 	if (ret)
8665d049837SAlexandre Belloni 		return ret;
8670b2f6228SArnaud Ebalard 
8688bde032bSAlexandre Belloni 	data->rtc = devm_rtc_allocate_device(dev);
8698bde032bSAlexandre Belloni 	ret = PTR_ERR_OR_ZERO(data->rtc);
8708bde032bSAlexandre Belloni 	if (ret) {
8718bde032bSAlexandre Belloni 		dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
8728bde032bSAlexandre Belloni 			__func__, ret);
8735d049837SAlexandre Belloni 		return ret;
8748bde032bSAlexandre Belloni 	}
8758bde032bSAlexandre Belloni 
8760b2f6228SArnaud Ebalard 	if (client->irq > 0) {
8770b2f6228SArnaud Ebalard 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
8780b2f6228SArnaud Ebalard 						_abb5zes3_rtc_interrupt,
8790b2f6228SArnaud Ebalard 						IRQF_SHARED|IRQF_ONESHOT,
8800b2f6228SArnaud Ebalard 						DRV_NAME, client);
8810b2f6228SArnaud Ebalard 		if (!ret) {
8820b2f6228SArnaud Ebalard 			device_init_wakeup(dev, true);
8830b2f6228SArnaud Ebalard 			data->irq = client->irq;
8840b2f6228SArnaud Ebalard 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
8850b2f6228SArnaud Ebalard 				client->irq);
8860b2f6228SArnaud Ebalard 		} else {
8870b2f6228SArnaud Ebalard 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
8880b2f6228SArnaud Ebalard 				__func__, client->irq, ret);
8890b2f6228SArnaud Ebalard 			goto err;
8900b2f6228SArnaud Ebalard 		}
8910b2f6228SArnaud Ebalard 	}
8920b2f6228SArnaud Ebalard 
8938bde032bSAlexandre Belloni 	data->rtc->ops = &rtc_ops;
894c402f8eaSAlexandre Belloni 	data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
895c402f8eaSAlexandre Belloni 	data->rtc->range_max = RTC_TIMESTAMP_END_2099;
8960b2f6228SArnaud Ebalard 
8970b2f6228SArnaud Ebalard 	/* Enable battery low detection interrupt if battery not already low */
8980b2f6228SArnaud Ebalard 	if (!data->battery_low && data->irq) {
8990b2f6228SArnaud Ebalard 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
9000b2f6228SArnaud Ebalard 		if (ret) {
9010b2f6228SArnaud Ebalard 			dev_err(dev, "%s: enabling battery low interrupt "
9020b2f6228SArnaud Ebalard 				"generation failed (%d)\n", __func__, ret);
9030b2f6228SArnaud Ebalard 			goto err;
9040b2f6228SArnaud Ebalard 		}
9050b2f6228SArnaud Ebalard 	}
9060b2f6228SArnaud Ebalard 
9078bde032bSAlexandre Belloni 	ret = rtc_register_device(data->rtc);
9088bde032bSAlexandre Belloni 
9090b2f6228SArnaud Ebalard err:
9105d049837SAlexandre Belloni 	if (ret && data->irq)
9110b2f6228SArnaud Ebalard 		device_init_wakeup(dev, false);
9120b2f6228SArnaud Ebalard 	return ret;
9130b2f6228SArnaud Ebalard }
9140b2f6228SArnaud Ebalard 
9150b2f6228SArnaud Ebalard static int abb5zes3_remove(struct i2c_client *client)
9160b2f6228SArnaud Ebalard {
9170b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
9180b2f6228SArnaud Ebalard 
9190b2f6228SArnaud Ebalard 	if (rtc_data->irq > 0)
9200b2f6228SArnaud Ebalard 		device_init_wakeup(&client->dev, false);
9210b2f6228SArnaud Ebalard 
9220b2f6228SArnaud Ebalard 	return 0;
9230b2f6228SArnaud Ebalard }
9240b2f6228SArnaud Ebalard 
9250b2f6228SArnaud Ebalard #ifdef CONFIG_PM_SLEEP
9260b2f6228SArnaud Ebalard static int abb5zes3_rtc_suspend(struct device *dev)
9270b2f6228SArnaud Ebalard {
9280b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
9290b2f6228SArnaud Ebalard 
9300b2f6228SArnaud Ebalard 	if (device_may_wakeup(dev))
9310b2f6228SArnaud Ebalard 		return enable_irq_wake(rtc_data->irq);
9320b2f6228SArnaud Ebalard 
9330b2f6228SArnaud Ebalard 	return 0;
9340b2f6228SArnaud Ebalard }
9350b2f6228SArnaud Ebalard 
9360b2f6228SArnaud Ebalard static int abb5zes3_rtc_resume(struct device *dev)
9370b2f6228SArnaud Ebalard {
9380b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
9390b2f6228SArnaud Ebalard 
9400b2f6228SArnaud Ebalard 	if (device_may_wakeup(dev))
9410b2f6228SArnaud Ebalard 		return disable_irq_wake(rtc_data->irq);
9420b2f6228SArnaud Ebalard 
9430b2f6228SArnaud Ebalard 	return 0;
9440b2f6228SArnaud Ebalard }
9450b2f6228SArnaud Ebalard #endif
9460b2f6228SArnaud Ebalard 
9470b2f6228SArnaud Ebalard static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
9480b2f6228SArnaud Ebalard 			 abb5zes3_rtc_resume);
9490b2f6228SArnaud Ebalard 
9500b2f6228SArnaud Ebalard #ifdef CONFIG_OF
9510b2f6228SArnaud Ebalard static const struct of_device_id abb5zes3_dt_match[] = {
9520b2f6228SArnaud Ebalard 	{ .compatible = "abracon,abb5zes3" },
9530b2f6228SArnaud Ebalard 	{ },
9540b2f6228SArnaud Ebalard };
9551c4fc295SJavier Martinez Canillas MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
9560b2f6228SArnaud Ebalard #endif
9570b2f6228SArnaud Ebalard 
9580b2f6228SArnaud Ebalard static const struct i2c_device_id abb5zes3_id[] = {
9590b2f6228SArnaud Ebalard 	{ "abb5zes3", 0 },
9600b2f6228SArnaud Ebalard 	{ }
9610b2f6228SArnaud Ebalard };
9620b2f6228SArnaud Ebalard MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
9630b2f6228SArnaud Ebalard 
9640b2f6228SArnaud Ebalard static struct i2c_driver abb5zes3_driver = {
9650b2f6228SArnaud Ebalard 	.driver = {
9660b2f6228SArnaud Ebalard 		.name = DRV_NAME,
9670b2f6228SArnaud Ebalard 		.pm = &abb5zes3_rtc_pm_ops,
9680b2f6228SArnaud Ebalard 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
9690b2f6228SArnaud Ebalard 	},
9700b2f6228SArnaud Ebalard 	.probe	  = abb5zes3_probe,
9710b2f6228SArnaud Ebalard 	.remove	  = abb5zes3_remove,
9720b2f6228SArnaud Ebalard 	.id_table = abb5zes3_id,
9730b2f6228SArnaud Ebalard };
9740b2f6228SArnaud Ebalard module_i2c_driver(abb5zes3_driver);
9750b2f6228SArnaud Ebalard 
9760b2f6228SArnaud Ebalard MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
9770b2f6228SArnaud Ebalard MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
9780b2f6228SArnaud Ebalard MODULE_LICENSE("GPL");
979