xref: /openbmc/linux/drivers/rtc/rtc-ab-b5ze-s3.c (revision 818806498569c037acd7c336e47ed36d4b13a941)
1*81880649SAlexandre Belloni // SPDX-License-Identifier: GPL-2.0+
20b2f6228SArnaud Ebalard /*
30b2f6228SArnaud Ebalard  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
40b2f6228SArnaud Ebalard  *                  I2C RTC / Alarm chip
50b2f6228SArnaud Ebalard  *
60b2f6228SArnaud Ebalard  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
70b2f6228SArnaud Ebalard  *
80b2f6228SArnaud Ebalard  * Detailed datasheet of the chip is available here:
90b2f6228SArnaud Ebalard  *
100b2f6228SArnaud Ebalard  *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
110b2f6228SArnaud Ebalard  *
120b2f6228SArnaud Ebalard  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
130b2f6228SArnaud Ebalard  *
140b2f6228SArnaud Ebalard  */
150b2f6228SArnaud Ebalard 
160b2f6228SArnaud Ebalard #include <linux/module.h>
170b2f6228SArnaud Ebalard #include <linux/rtc.h>
180b2f6228SArnaud Ebalard #include <linux/i2c.h>
190b2f6228SArnaud Ebalard #include <linux/bcd.h>
200b2f6228SArnaud Ebalard #include <linux/of.h>
210b2f6228SArnaud Ebalard #include <linux/regmap.h>
220b2f6228SArnaud Ebalard #include <linux/interrupt.h>
230b2f6228SArnaud Ebalard 
240b2f6228SArnaud Ebalard #define DRV_NAME "rtc-ab-b5ze-s3"
250b2f6228SArnaud Ebalard 
260b2f6228SArnaud Ebalard /* Control section */
270b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
280b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
290b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
300b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
310b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
320b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
330b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
340b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
350b2f6228SArnaud Ebalard 
360b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
370b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
380b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
390b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
400b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
410b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
420b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
430b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
440b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
450b2f6228SArnaud Ebalard 
460b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
470b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
480b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
490b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
500b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
510b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
520b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
530b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
540b2f6228SArnaud Ebalard 
550b2f6228SArnaud Ebalard #define ABB5ZES3_CTRL_SEC_LEN	   3
560b2f6228SArnaud Ebalard 
570b2f6228SArnaud Ebalard /* RTC section */
580b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
590b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
600b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
610b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
620b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
630b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
640b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
650b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
660b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
670b2f6228SArnaud Ebalard 
680b2f6228SArnaud Ebalard #define ABB5ZES3_RTC_SEC_LEN	   7
690b2f6228SArnaud Ebalard 
700b2f6228SArnaud Ebalard /* Alarm section (enable bits are all active low) */
710b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
720b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
730b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
740b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
750b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
760b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
770b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
780b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
790b2f6228SArnaud Ebalard 
800b2f6228SArnaud Ebalard #define ABB5ZES3_ALRM_SEC_LEN	   4
810b2f6228SArnaud Ebalard 
820b2f6228SArnaud Ebalard /* Frequency offset section */
830b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
840b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
850b2f6228SArnaud Ebalard 
860b2f6228SArnaud Ebalard /* CLOCKOUT section */
870b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
880b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
890b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
900b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
910b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
920b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
930b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
940b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
950b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
960b2f6228SArnaud Ebalard 
970b2f6228SArnaud Ebalard /* Timer A Section */
980b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
990b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
1000b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
1010b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
1020b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
1030b2f6228SArnaud Ebalard 
1040b2f6228SArnaud Ebalard #define ABB5ZES3_TIMA_SEC_LEN	   2
1050b2f6228SArnaud Ebalard 
1060b2f6228SArnaud Ebalard /* Timer B Section */
1070b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
1080b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
1090b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
1100b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
1110b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
1120b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
1130b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
1140b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
1150b2f6228SArnaud Ebalard #define ABB5ZES3_TIMB_SEC_LEN	   2
1160b2f6228SArnaud Ebalard 
1170b2f6228SArnaud Ebalard #define ABB5ZES3_MEM_MAP_LEN	   0x14
1180b2f6228SArnaud Ebalard 
1190b2f6228SArnaud Ebalard struct abb5zes3_rtc_data {
1200b2f6228SArnaud Ebalard 	struct rtc_device *rtc;
1210b2f6228SArnaud Ebalard 	struct regmap *regmap;
1220b2f6228SArnaud Ebalard 
1230b2f6228SArnaud Ebalard 	int irq;
1240b2f6228SArnaud Ebalard 
1250b2f6228SArnaud Ebalard 	bool battery_low;
126c8a1d8a5SArnaud Ebalard 	bool timer_alarm; /* current alarm is via timer A */
1270b2f6228SArnaud Ebalard };
1280b2f6228SArnaud Ebalard 
1290b2f6228SArnaud Ebalard /*
1300b2f6228SArnaud Ebalard  * Try and match register bits w/ fixed null values to see whether we
131ac246738SAlexandre Belloni  * are dealing with an ABB5ZES3.
1320b2f6228SArnaud Ebalard  */
1330b2f6228SArnaud Ebalard static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
1340b2f6228SArnaud Ebalard {
1350b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
1360b2f6228SArnaud Ebalard 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
1370b2f6228SArnaud Ebalard 						       0x80, 0xc0, 0xc0, 0xf8,
1380b2f6228SArnaud Ebalard 						       0xe0, 0x00, 0x00, 0x40,
1390b2f6228SArnaud Ebalard 						       0x40, 0x78, 0x00, 0x00,
1400b2f6228SArnaud Ebalard 						       0xf8, 0x00, 0x88, 0x00 };
1410b2f6228SArnaud Ebalard 	int ret, i;
1420b2f6228SArnaud Ebalard 
1430b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
1440b2f6228SArnaud Ebalard 	if (ret)
1450b2f6228SArnaud Ebalard 		return ret;
1460b2f6228SArnaud Ebalard 
1470b2f6228SArnaud Ebalard 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
1480b2f6228SArnaud Ebalard 		if (regs[i] & mask[i]) /* check if bits are cleared */
1490b2f6228SArnaud Ebalard 			return -ENODEV;
1500b2f6228SArnaud Ebalard 	}
1510b2f6228SArnaud Ebalard 
1520b2f6228SArnaud Ebalard 	return 0;
1530b2f6228SArnaud Ebalard }
1540b2f6228SArnaud Ebalard 
1550b2f6228SArnaud Ebalard /* Clear alarm status bit. */
1560b2f6228SArnaud Ebalard static int _abb5zes3_rtc_clear_alarm(struct device *dev)
1570b2f6228SArnaud Ebalard {
1580b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
1590b2f6228SArnaud Ebalard 	int ret;
1600b2f6228SArnaud Ebalard 
1610b2f6228SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
1620b2f6228SArnaud Ebalard 				 ABB5ZES3_REG_CTRL2_AF, 0);
1630b2f6228SArnaud Ebalard 	if (ret)
1640b2f6228SArnaud Ebalard 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
1650b2f6228SArnaud Ebalard 
1660b2f6228SArnaud Ebalard 	return ret;
1670b2f6228SArnaud Ebalard }
1680b2f6228SArnaud Ebalard 
1690b2f6228SArnaud Ebalard /* Enable or disable alarm (i.e. alarm interrupt generation) */
1700b2f6228SArnaud Ebalard static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
1710b2f6228SArnaud Ebalard {
1720b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
1730b2f6228SArnaud Ebalard 	int ret;
1740b2f6228SArnaud Ebalard 
1750b2f6228SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
1760b2f6228SArnaud Ebalard 				 ABB5ZES3_REG_CTRL1_AIE,
1770b2f6228SArnaud Ebalard 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
1780b2f6228SArnaud Ebalard 	if (ret)
1790b2f6228SArnaud Ebalard 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
1800b2f6228SArnaud Ebalard 			__func__, ret);
1810b2f6228SArnaud Ebalard 
1820b2f6228SArnaud Ebalard 	return ret;
1830b2f6228SArnaud Ebalard }
1840b2f6228SArnaud Ebalard 
185c8a1d8a5SArnaud Ebalard /* Enable or disable timer (watchdog timer A interrupt generation) */
186c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
187c8a1d8a5SArnaud Ebalard {
188c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
189c8a1d8a5SArnaud Ebalard 	int ret;
190c8a1d8a5SArnaud Ebalard 
191c8a1d8a5SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
192c8a1d8a5SArnaud Ebalard 				 ABB5ZES3_REG_CTRL2_WTAIE,
193c8a1d8a5SArnaud Ebalard 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
194c8a1d8a5SArnaud Ebalard 	if (ret)
195c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
196c8a1d8a5SArnaud Ebalard 			__func__, ret);
197c8a1d8a5SArnaud Ebalard 
198c8a1d8a5SArnaud Ebalard 	return ret;
199c8a1d8a5SArnaud Ebalard }
200c8a1d8a5SArnaud Ebalard 
2010b2f6228SArnaud Ebalard /*
2020b2f6228SArnaud Ebalard  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
2030b2f6228SArnaud Ebalard  * we do not need driver's main lock protection.
2040b2f6228SArnaud Ebalard  */
2050b2f6228SArnaud Ebalard static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
2060b2f6228SArnaud Ebalard {
2070b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
2080b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
209ce2e5a76SAlexandre Belloni 	int ret = 0;
2100b2f6228SArnaud Ebalard 
2110b2f6228SArnaud Ebalard 	/*
2120b2f6228SArnaud Ebalard 	 * As we need to read CTRL1 register anyway to access 24/12h
2130b2f6228SArnaud Ebalard 	 * mode bit, we do a single bulk read of both control and RTC
2140b2f6228SArnaud Ebalard 	 * sections (they are consecutive). This also ease indexing
2150b2f6228SArnaud Ebalard 	 * of register values after bulk read.
2160b2f6228SArnaud Ebalard 	 */
2170b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
2180b2f6228SArnaud Ebalard 			       sizeof(regs));
2190b2f6228SArnaud Ebalard 	if (ret) {
2200b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
2210b2f6228SArnaud Ebalard 			__func__, ret);
2225d049837SAlexandre Belloni 		return ret;
2230b2f6228SArnaud Ebalard 	}
2240b2f6228SArnaud Ebalard 
2250b2f6228SArnaud Ebalard 	/* If clock integrity is not guaranteed, do not return a time value */
2265d049837SAlexandre Belloni 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
2275d049837SAlexandre Belloni 		return -ENODATA;
2280b2f6228SArnaud Ebalard 
2290b2f6228SArnaud Ebalard 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
2300b2f6228SArnaud Ebalard 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
2310b2f6228SArnaud Ebalard 
2320b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
2330b2f6228SArnaud Ebalard 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
2340b2f6228SArnaud Ebalard 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
2350b2f6228SArnaud Ebalard 			tm->tm_hour += 12;
2360b2f6228SArnaud Ebalard 	} else {						/* 24hr mode */
2370b2f6228SArnaud Ebalard 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
2380b2f6228SArnaud Ebalard 	}
2390b2f6228SArnaud Ebalard 
2400b2f6228SArnaud Ebalard 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
2410b2f6228SArnaud Ebalard 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
2420b2f6228SArnaud Ebalard 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
2430b2f6228SArnaud Ebalard 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
2440b2f6228SArnaud Ebalard 
2450b2f6228SArnaud Ebalard 	return ret;
2460b2f6228SArnaud Ebalard }
2470b2f6228SArnaud Ebalard 
2480b2f6228SArnaud Ebalard static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
2490b2f6228SArnaud Ebalard {
2500b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
2510b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
2520b2f6228SArnaud Ebalard 	int ret;
2530b2f6228SArnaud Ebalard 
2540b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
2550b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
2560b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
2570b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
2580b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
2590b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
2600b2f6228SArnaud Ebalard 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
2610b2f6228SArnaud Ebalard 
2620b2f6228SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
2630b2f6228SArnaud Ebalard 				regs + ABB5ZES3_REG_RTC_SC,
2640b2f6228SArnaud Ebalard 				ABB5ZES3_RTC_SEC_LEN);
2650b2f6228SArnaud Ebalard 
2660b2f6228SArnaud Ebalard 	return ret;
2670b2f6228SArnaud Ebalard }
2680b2f6228SArnaud Ebalard 
269c8a1d8a5SArnaud Ebalard /*
270c8a1d8a5SArnaud Ebalard  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
271c8a1d8a5SArnaud Ebalard  * given number of seconds.
272c8a1d8a5SArnaud Ebalard  */
273c8a1d8a5SArnaud Ebalard static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
274c8a1d8a5SArnaud Ebalard {
275c8a1d8a5SArnaud Ebalard 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
276c8a1d8a5SArnaud Ebalard 	*timer_a = secs;
277c8a1d8a5SArnaud Ebalard }
278c8a1d8a5SArnaud Ebalard 
279c8a1d8a5SArnaud Ebalard /*
280c8a1d8a5SArnaud Ebalard  * Return current number of seconds in Timer A. As we only use
281c8a1d8a5SArnaud Ebalard  * timer A with a 1Hz freq, this is what we expect to have.
282c8a1d8a5SArnaud Ebalard  */
283c8a1d8a5SArnaud Ebalard static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
284c8a1d8a5SArnaud Ebalard {
285c8a1d8a5SArnaud Ebalard 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
286c8a1d8a5SArnaud Ebalard 		return -EINVAL;
287c8a1d8a5SArnaud Ebalard 
288c8a1d8a5SArnaud Ebalard 	*secs = timer_a;
289c8a1d8a5SArnaud Ebalard 
290c8a1d8a5SArnaud Ebalard 	return 0;
291c8a1d8a5SArnaud Ebalard }
292c8a1d8a5SArnaud Ebalard 
293c8a1d8a5SArnaud Ebalard /*
294c8a1d8a5SArnaud Ebalard  * Read alarm currently configured via a watchdog timer using timer A. This
295c8a1d8a5SArnaud Ebalard  * is done by reading current RTC time and adding remaining timer time.
296c8a1d8a5SArnaud Ebalard  */
297c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_timer(struct device *dev,
298c8a1d8a5SArnaud Ebalard 				    struct rtc_wkalrm *alarm)
299c8a1d8a5SArnaud Ebalard {
300c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
301c8a1d8a5SArnaud Ebalard 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
302c8a1d8a5SArnaud Ebalard 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
303c8a1d8a5SArnaud Ebalard 	unsigned long rtc_secs;
304c8a1d8a5SArnaud Ebalard 	unsigned int reg;
305c8a1d8a5SArnaud Ebalard 	u8 timer_secs;
306c8a1d8a5SArnaud Ebalard 	int ret;
307c8a1d8a5SArnaud Ebalard 
308c8a1d8a5SArnaud Ebalard 	/*
309c8a1d8a5SArnaud Ebalard 	 * Instead of doing two separate calls, because they are consecutive,
310c8a1d8a5SArnaud Ebalard 	 * we grab both clockout register and Timer A section. The latter is
311c8a1d8a5SArnaud Ebalard 	 * used to decide if timer A is enabled (as a watchdog timer).
312c8a1d8a5SArnaud Ebalard 	 */
313c8a1d8a5SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
314c8a1d8a5SArnaud Ebalard 			       ABB5ZES3_TIMA_SEC_LEN + 1);
315c8a1d8a5SArnaud Ebalard 	if (ret) {
316c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
317c8a1d8a5SArnaud Ebalard 			__func__, ret);
3185d049837SAlexandre Belloni 		return ret;
319c8a1d8a5SArnaud Ebalard 	}
320c8a1d8a5SArnaud Ebalard 
321c8a1d8a5SArnaud Ebalard 	/* get current time ... */
322c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
323c8a1d8a5SArnaud Ebalard 	if (ret)
3245d049837SAlexandre Belloni 		return ret;
325c8a1d8a5SArnaud Ebalard 
326c8a1d8a5SArnaud Ebalard 	/* ... convert to seconds ... */
3278a941124SAlexandre Belloni 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
328c8a1d8a5SArnaud Ebalard 
329c8a1d8a5SArnaud Ebalard 	/* ... add remaining timer A time ... */
330c8a1d8a5SArnaud Ebalard 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
331c8a1d8a5SArnaud Ebalard 	if (ret)
3325d049837SAlexandre Belloni 		return ret;
333c8a1d8a5SArnaud Ebalard 
334c8a1d8a5SArnaud Ebalard 	/* ... and convert back. */
3358a941124SAlexandre Belloni 	rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);
336c8a1d8a5SArnaud Ebalard 
337c8a1d8a5SArnaud Ebalard 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
338c8a1d8a5SArnaud Ebalard 	if (ret) {
339c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
340c8a1d8a5SArnaud Ebalard 			__func__, ret);
3415d049837SAlexandre Belloni 		return ret;
342c8a1d8a5SArnaud Ebalard 	}
343c8a1d8a5SArnaud Ebalard 
344c8a1d8a5SArnaud Ebalard 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
345c8a1d8a5SArnaud Ebalard 
3465d049837SAlexandre Belloni 	return 0;
347c8a1d8a5SArnaud Ebalard }
348c8a1d8a5SArnaud Ebalard 
349c8a1d8a5SArnaud Ebalard /* Read alarm currently configured via a RTC alarm registers. */
350c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_alarm(struct device *dev,
351c8a1d8a5SArnaud Ebalard 				    struct rtc_wkalrm *alarm)
3520b2f6228SArnaud Ebalard {
3530b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
3540b2f6228SArnaud Ebalard 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
3550b2f6228SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
3560b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
3570b2f6228SArnaud Ebalard 	unsigned int reg;
3580b2f6228SArnaud Ebalard 	int ret;
3590b2f6228SArnaud Ebalard 
3600b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
3610b2f6228SArnaud Ebalard 			       ABB5ZES3_ALRM_SEC_LEN);
3620b2f6228SArnaud Ebalard 	if (ret) {
3630b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
3640b2f6228SArnaud Ebalard 			__func__, ret);
3655d049837SAlexandre Belloni 		return ret;
3660b2f6228SArnaud Ebalard 	}
3670b2f6228SArnaud Ebalard 
3680b2f6228SArnaud Ebalard 	alarm_tm->tm_sec  = 0;
3690b2f6228SArnaud Ebalard 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
3700b2f6228SArnaud Ebalard 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
3710b2f6228SArnaud Ebalard 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
3720b2f6228SArnaud Ebalard 	alarm_tm->tm_wday = -1;
3730b2f6228SArnaud Ebalard 
3740b2f6228SArnaud Ebalard 	/*
3750b2f6228SArnaud Ebalard 	 * The alarm section does not store year/month. We use the ones in rtc
3760b2f6228SArnaud Ebalard 	 * section as a basis and increment month and then year if needed to get
3770b2f6228SArnaud Ebalard 	 * alarm after current time.
3780b2f6228SArnaud Ebalard 	 */
3790b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
3800b2f6228SArnaud Ebalard 	if (ret)
3815d049837SAlexandre Belloni 		return ret;
3820b2f6228SArnaud Ebalard 
3830b2f6228SArnaud Ebalard 	alarm_tm->tm_year = rtc_tm.tm_year;
3840b2f6228SArnaud Ebalard 	alarm_tm->tm_mon = rtc_tm.tm_mon;
3850b2f6228SArnaud Ebalard 
3868a941124SAlexandre Belloni 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
3878a941124SAlexandre Belloni 	alarm_secs = rtc_tm_to_time64(alarm_tm);
3880b2f6228SArnaud Ebalard 
3890b2f6228SArnaud Ebalard 	if (alarm_secs < rtc_secs) {
3900b2f6228SArnaud Ebalard 		if (alarm_tm->tm_mon == 11) {
3910b2f6228SArnaud Ebalard 			alarm_tm->tm_mon = 0;
3920b2f6228SArnaud Ebalard 			alarm_tm->tm_year += 1;
3930b2f6228SArnaud Ebalard 		} else {
3940b2f6228SArnaud Ebalard 			alarm_tm->tm_mon += 1;
3950b2f6228SArnaud Ebalard 		}
3960b2f6228SArnaud Ebalard 	}
3970b2f6228SArnaud Ebalard 
3980b2f6228SArnaud Ebalard 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
3990b2f6228SArnaud Ebalard 	if (ret) {
4000b2f6228SArnaud Ebalard 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
4010b2f6228SArnaud Ebalard 			__func__, ret);
4025d049837SAlexandre Belloni 		return ret;
4030b2f6228SArnaud Ebalard 	}
4040b2f6228SArnaud Ebalard 
4050b2f6228SArnaud Ebalard 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
4060b2f6228SArnaud Ebalard 
4075d049837SAlexandre Belloni 	return 0;
408c8a1d8a5SArnaud Ebalard }
409c8a1d8a5SArnaud Ebalard 
410c8a1d8a5SArnaud Ebalard /*
411c8a1d8a5SArnaud Ebalard  * As the Alarm mechanism supported by the chip is only accurate to the
412c8a1d8a5SArnaud Ebalard  * minute, we use the watchdog timer mechanism provided by timer A
413c8a1d8a5SArnaud Ebalard  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
414c8a1d8a5SArnaud Ebalard  * 4 minutes). Otherwise, we use the common alarm mechanism provided
415c8a1d8a5SArnaud Ebalard  * by the chip. In order for that to work, we keep track of currently
416c8a1d8a5SArnaud Ebalard  * configured timer type via 'timer_alarm' flag in our private data
417c8a1d8a5SArnaud Ebalard  * structure.
418c8a1d8a5SArnaud Ebalard  */
419c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
420c8a1d8a5SArnaud Ebalard {
421c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
422c8a1d8a5SArnaud Ebalard 	int ret;
423c8a1d8a5SArnaud Ebalard 
424c8a1d8a5SArnaud Ebalard 	if (data->timer_alarm)
425c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
426c8a1d8a5SArnaud Ebalard 	else
427c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
4280b2f6228SArnaud Ebalard 
4290b2f6228SArnaud Ebalard 	return ret;
4300b2f6228SArnaud Ebalard }
4310b2f6228SArnaud Ebalard 
432c8a1d8a5SArnaud Ebalard /*
433c8a1d8a5SArnaud Ebalard  * Set alarm using chip alarm mechanism. It is only accurate to the
434c8a1d8a5SArnaud Ebalard  * minute (not the second). The function expects alarm interrupt to
435c8a1d8a5SArnaud Ebalard  * be disabled.
436c8a1d8a5SArnaud Ebalard  */
437c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
4380b2f6228SArnaud Ebalard {
4390b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
4400b2f6228SArnaud Ebalard 	struct rtc_time *alarm_tm = &alarm->time;
4410b2f6228SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
4420b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
4430b2f6228SArnaud Ebalard 	struct rtc_time rtc_tm;
4440b2f6228SArnaud Ebalard 	int ret, enable = 1;
4450b2f6228SArnaud Ebalard 
4460b2f6228SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
4470b2f6228SArnaud Ebalard 	if (ret)
4485d049837SAlexandre Belloni 		return ret;
4490b2f6228SArnaud Ebalard 
4508a941124SAlexandre Belloni 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
4518a941124SAlexandre Belloni 	alarm_secs = rtc_tm_to_time64(alarm_tm);
4520b2f6228SArnaud Ebalard 
4530b2f6228SArnaud Ebalard 	/* If alarm time is before current time, disable the alarm */
4540b2f6228SArnaud Ebalard 	if (!alarm->enabled || alarm_secs <= rtc_secs) {
4550b2f6228SArnaud Ebalard 		enable = 0;
4560b2f6228SArnaud Ebalard 	} else {
4570b2f6228SArnaud Ebalard 		/*
4580b2f6228SArnaud Ebalard 		 * Chip only support alarms up to one month in the future. Let's
4590b2f6228SArnaud Ebalard 		 * return an error if we get something after that limit.
4600b2f6228SArnaud Ebalard 		 * Comparison is done by incrementing rtc_tm month field by one
4610b2f6228SArnaud Ebalard 		 * and checking alarm value is still below.
4620b2f6228SArnaud Ebalard 		 */
4630b2f6228SArnaud Ebalard 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
4640b2f6228SArnaud Ebalard 			rtc_tm.tm_mon = 0;
4650b2f6228SArnaud Ebalard 			rtc_tm.tm_year += 1;
4660b2f6228SArnaud Ebalard 		} else {
4670b2f6228SArnaud Ebalard 			rtc_tm.tm_mon += 1;
4680b2f6228SArnaud Ebalard 		}
4690b2f6228SArnaud Ebalard 
4708a941124SAlexandre Belloni 		rtc_secs = rtc_tm_to_time64(&rtc_tm);
4710b2f6228SArnaud Ebalard 
4720b2f6228SArnaud Ebalard 		if (alarm_secs > rtc_secs) {
4730b2f6228SArnaud Ebalard 			dev_err(dev, "%s: alarm maximum is one month in the "
4740b2f6228SArnaud Ebalard 				"future (%d)\n", __func__, ret);
4755d049837SAlexandre Belloni 			return -EINVAL;
4760b2f6228SArnaud Ebalard 		}
4770b2f6228SArnaud Ebalard 	}
4780b2f6228SArnaud Ebalard 
479c8a1d8a5SArnaud Ebalard 	/*
480c8a1d8a5SArnaud Ebalard 	 * Program all alarm registers but DW one. For each register, setting
481c8a1d8a5SArnaud Ebalard 	 * MSB to 0 enables associated alarm.
482c8a1d8a5SArnaud Ebalard 	 */
483c8a1d8a5SArnaud Ebalard 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
484c8a1d8a5SArnaud Ebalard 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
485c8a1d8a5SArnaud Ebalard 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
4860b2f6228SArnaud Ebalard 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
4870b2f6228SArnaud Ebalard 
4880b2f6228SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
4890b2f6228SArnaud Ebalard 				ABB5ZES3_ALRM_SEC_LEN);
4900b2f6228SArnaud Ebalard 	if (ret < 0) {
4910b2f6228SArnaud Ebalard 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
4920b2f6228SArnaud Ebalard 			__func__, ret);
4935d049837SAlexandre Belloni 		return ret;
4940b2f6228SArnaud Ebalard 	}
4950b2f6228SArnaud Ebalard 
496c8a1d8a5SArnaud Ebalard 	/* Record currently configured alarm is not a timer */
497c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 0;
498c8a1d8a5SArnaud Ebalard 
499c8a1d8a5SArnaud Ebalard 	/* Enable or disable alarm interrupt generation */
5005d049837SAlexandre Belloni 	return _abb5zes3_rtc_update_alarm(dev, enable);
501c8a1d8a5SArnaud Ebalard }
502c8a1d8a5SArnaud Ebalard 
503c8a1d8a5SArnaud Ebalard /*
504c8a1d8a5SArnaud Ebalard  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
505c8a1d8a5SArnaud Ebalard  * timer A interrupt to be disabled.
506c8a1d8a5SArnaud Ebalard  */
507c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
508c8a1d8a5SArnaud Ebalard 				   u8 secs)
509c8a1d8a5SArnaud Ebalard {
510c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
511c8a1d8a5SArnaud Ebalard 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
512c8a1d8a5SArnaud Ebalard 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
513c8a1d8a5SArnaud Ebalard 	int ret = 0;
514c8a1d8a5SArnaud Ebalard 
515c8a1d8a5SArnaud Ebalard 	/* Program given number of seconds to Timer A registers */
516c8a1d8a5SArnaud Ebalard 	sec_to_timer_a(secs, &regs[0], &regs[1]);
517c8a1d8a5SArnaud Ebalard 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
518c8a1d8a5SArnaud Ebalard 				ABB5ZES3_TIMA_SEC_LEN);
519c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
520c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: writing timer section failed\n", __func__);
5215d049837SAlexandre Belloni 		return ret;
522c8a1d8a5SArnaud Ebalard 	}
523c8a1d8a5SArnaud Ebalard 
524c8a1d8a5SArnaud Ebalard 	/* Configure Timer A as a watchdog timer */
525c8a1d8a5SArnaud Ebalard 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
526c8a1d8a5SArnaud Ebalard 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
527c8a1d8a5SArnaud Ebalard 	if (ret)
528c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: failed to update timer\n", __func__);
529c8a1d8a5SArnaud Ebalard 
530c8a1d8a5SArnaud Ebalard 	/* Record currently configured alarm is a timer */
531c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 1;
532c8a1d8a5SArnaud Ebalard 
533c8a1d8a5SArnaud Ebalard 	/* Enable or disable timer interrupt generation */
5345d049837SAlexandre Belloni 	return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
535c8a1d8a5SArnaud Ebalard }
536c8a1d8a5SArnaud Ebalard 
537c8a1d8a5SArnaud Ebalard /*
538c8a1d8a5SArnaud Ebalard  * The chip has an alarm which is only accurate to the minute. In order to
539c8a1d8a5SArnaud Ebalard  * handle alarms below that limit, we use the watchdog timer function of
540c8a1d8a5SArnaud Ebalard  * timer A. More precisely, the timer method is used for alarms below 240
541c8a1d8a5SArnaud Ebalard  * seconds.
542c8a1d8a5SArnaud Ebalard  */
543c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
544c8a1d8a5SArnaud Ebalard {
545c8a1d8a5SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
546c8a1d8a5SArnaud Ebalard 	struct rtc_time *alarm_tm = &alarm->time;
547c8a1d8a5SArnaud Ebalard 	unsigned long rtc_secs, alarm_secs;
548c8a1d8a5SArnaud Ebalard 	struct rtc_time rtc_tm;
549c8a1d8a5SArnaud Ebalard 	int ret;
550c8a1d8a5SArnaud Ebalard 
551c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
552c8a1d8a5SArnaud Ebalard 	if (ret)
5535d049837SAlexandre Belloni 		return ret;
554c8a1d8a5SArnaud Ebalard 
5558a941124SAlexandre Belloni 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
5568a941124SAlexandre Belloni 	alarm_secs = rtc_tm_to_time64(alarm_tm);
557c8a1d8a5SArnaud Ebalard 
558c8a1d8a5SArnaud Ebalard 	/* Let's first disable both the alarm and the timer interrupts */
559c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_alarm(dev, false);
560c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
561c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
562c8a1d8a5SArnaud Ebalard 			ret);
5635d049837SAlexandre Belloni 		return ret;
564c8a1d8a5SArnaud Ebalard 	}
565c8a1d8a5SArnaud Ebalard 	ret = _abb5zes3_rtc_update_timer(dev, false);
566c8a1d8a5SArnaud Ebalard 	if (ret < 0) {
567c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
568c8a1d8a5SArnaud Ebalard 			ret);
5695d049837SAlexandre Belloni 		return ret;
570c8a1d8a5SArnaud Ebalard 	}
571c8a1d8a5SArnaud Ebalard 
572c8a1d8a5SArnaud Ebalard 	data->timer_alarm = 0;
573c8a1d8a5SArnaud Ebalard 
574c8a1d8a5SArnaud Ebalard 	/*
575c8a1d8a5SArnaud Ebalard 	 * Let's now configure the alarm; if we are expected to ring in
576c8a1d8a5SArnaud Ebalard 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
577c8a1d8a5SArnaud Ebalard 	 */
578c8a1d8a5SArnaud Ebalard 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
579c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
580c8a1d8a5SArnaud Ebalard 					      alarm_secs - rtc_secs);
581c8a1d8a5SArnaud Ebalard 	else
582c8a1d8a5SArnaud Ebalard 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
583c8a1d8a5SArnaud Ebalard 
584c8a1d8a5SArnaud Ebalard 	if (ret)
585c8a1d8a5SArnaud Ebalard 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
586c8a1d8a5SArnaud Ebalard 			ret);
587c8a1d8a5SArnaud Ebalard 
5880b2f6228SArnaud Ebalard 	return ret;
5890b2f6228SArnaud Ebalard }
5900b2f6228SArnaud Ebalard 
5910b2f6228SArnaud Ebalard /* Enable or disable battery low irq generation */
5920b2f6228SArnaud Ebalard static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
5930b2f6228SArnaud Ebalard 						       bool enable)
5940b2f6228SArnaud Ebalard {
5950b2f6228SArnaud Ebalard 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
5960b2f6228SArnaud Ebalard 				  ABB5ZES3_REG_CTRL3_BLIE,
5970b2f6228SArnaud Ebalard 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
5980b2f6228SArnaud Ebalard }
5990b2f6228SArnaud Ebalard 
6000b2f6228SArnaud Ebalard /*
6010b2f6228SArnaud Ebalard  * Check current RTC status and enable/disable what needs to be. Return 0 if
602ac246738SAlexandre Belloni  * everything went ok and a negative value upon error.
6030b2f6228SArnaud Ebalard  */
6040b2f6228SArnaud Ebalard static int abb5zes3_rtc_check_setup(struct device *dev)
6050b2f6228SArnaud Ebalard {
6060b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
6070b2f6228SArnaud Ebalard 	struct regmap *regmap = data->regmap;
6080b2f6228SArnaud Ebalard 	unsigned int reg;
6090b2f6228SArnaud Ebalard 	int ret;
6100b2f6228SArnaud Ebalard 	u8 mask;
6110b2f6228SArnaud Ebalard 
6120b2f6228SArnaud Ebalard 	/*
6130b2f6228SArnaud Ebalard 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
6140b2f6228SArnaud Ebalard 	 * is disabled here to prevent polluting the interrupt line and
6150b2f6228SArnaud Ebalard 	 * uselessly triggering the IRQ handler we install for alarm and battery
6160b2f6228SArnaud Ebalard 	 * low events. Note: this is done before clearing int. status below
6170b2f6228SArnaud Ebalard 	 * in this function.
6180b2f6228SArnaud Ebalard 	 * We also disable all timers and set timer interrupt to permanent (not
6190b2f6228SArnaud Ebalard 	 * pulsed).
6200b2f6228SArnaud Ebalard 	 */
6210b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
6220b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
6230b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
6240b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
6250b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
6260b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
6270b2f6228SArnaud Ebalard 		ABB5ZES3_REG_TIM_CLK_COF2);
6280b2f6228SArnaud Ebalard 	if (ret < 0) {
6290b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
6300b2f6228SArnaud Ebalard 			__func__, ret);
6310b2f6228SArnaud Ebalard 		return ret;
6320b2f6228SArnaud Ebalard 	}
6330b2f6228SArnaud Ebalard 
6340b2f6228SArnaud Ebalard 	/*
6350b2f6228SArnaud Ebalard 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
6360b2f6228SArnaud Ebalard 	 * individually by clearing/setting MSB of each associated register. So,
6370b2f6228SArnaud Ebalard 	 * we set all alarm enable bits to disable current alarm setting.
6380b2f6228SArnaud Ebalard 	 */
6390b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
6400b2f6228SArnaud Ebalard 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
6410b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
6420b2f6228SArnaud Ebalard 	if (ret < 0) {
6430b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
6440b2f6228SArnaud Ebalard 			__func__, ret);
6450b2f6228SArnaud Ebalard 		return ret;
6460b2f6228SArnaud Ebalard 	}
6470b2f6228SArnaud Ebalard 
6480b2f6228SArnaud Ebalard 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
6490b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
6500b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
6510b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
6520b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
6530b2f6228SArnaud Ebalard 	if (ret < 0) {
6540b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
6550b2f6228SArnaud Ebalard 			__func__, ret);
6560b2f6228SArnaud Ebalard 		return ret;
6570b2f6228SArnaud Ebalard 	}
6580b2f6228SArnaud Ebalard 
6590b2f6228SArnaud Ebalard 	/*
6600b2f6228SArnaud Ebalard 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
6610b2f6228SArnaud Ebalard 	 * WTAF is read-only and cleared automatically by reading the register.
6620b2f6228SArnaud Ebalard 	 */
6630b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
6640b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
6650b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
6660b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL2_CTAF);
6670b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
6680b2f6228SArnaud Ebalard 	if (ret < 0) {
6690b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
6700b2f6228SArnaud Ebalard 			__func__, ret);
6710b2f6228SArnaud Ebalard 		return ret;
6720b2f6228SArnaud Ebalard 	}
6730b2f6228SArnaud Ebalard 
6740b2f6228SArnaud Ebalard 	/*
6750b2f6228SArnaud Ebalard 	 * Enable battery low detection function and battery switchover function
6760b2f6228SArnaud Ebalard 	 * (standard mode). Disable associated interrupts. Clear battery
6770b2f6228SArnaud Ebalard 	 * switchover flag but not battery low flag. The latter is checked
6780b2f6228SArnaud Ebalard 	 * later below.
6790b2f6228SArnaud Ebalard 	 */
6800b2f6228SArnaud Ebalard 	mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
6810b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
6820b2f6228SArnaud Ebalard 		ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
6830b2f6228SArnaud Ebalard 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
6840b2f6228SArnaud Ebalard 	if (ret < 0) {
6850b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
6860b2f6228SArnaud Ebalard 			__func__, ret);
6870b2f6228SArnaud Ebalard 		return ret;
6880b2f6228SArnaud Ebalard 	}
6890b2f6228SArnaud Ebalard 
6900b2f6228SArnaud Ebalard 	/* Check oscillator integrity flag */
6910b2f6228SArnaud Ebalard 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
6920b2f6228SArnaud Ebalard 	if (ret < 0) {
6930b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
6940b2f6228SArnaud Ebalard 			__func__, ret);
6950b2f6228SArnaud Ebalard 		return ret;
6960b2f6228SArnaud Ebalard 	}
6970b2f6228SArnaud Ebalard 
6980b2f6228SArnaud Ebalard 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
6990b2f6228SArnaud Ebalard 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
7000b2f6228SArnaud Ebalard 			"or has been interrupted.\n");
7010b2f6228SArnaud Ebalard 		dev_err(dev, "change battery (if not already done) and  "
7020b2f6228SArnaud Ebalard 			"then set time to reset osc. failure flag.\n");
7030b2f6228SArnaud Ebalard 	}
7040b2f6228SArnaud Ebalard 
7050b2f6228SArnaud Ebalard 	/*
7060b2f6228SArnaud Ebalard 	 * Check battery low flag at startup: this allows reporting battery
7070b2f6228SArnaud Ebalard 	 * is low at startup when IRQ line is not connected. Note: we record
7080b2f6228SArnaud Ebalard 	 * current status to avoid reenabling this interrupt later in probe
7090b2f6228SArnaud Ebalard 	 * function if battery is low.
7100b2f6228SArnaud Ebalard 	 */
7110b2f6228SArnaud Ebalard 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
7120b2f6228SArnaud Ebalard 	if (ret < 0) {
7130b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
7140b2f6228SArnaud Ebalard 			__func__, ret);
7150b2f6228SArnaud Ebalard 		return ret;
7160b2f6228SArnaud Ebalard 	}
7170b2f6228SArnaud Ebalard 
7180b2f6228SArnaud Ebalard 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
7190b2f6228SArnaud Ebalard 	if (data->battery_low) {
7200b2f6228SArnaud Ebalard 		dev_err(dev, "RTC battery is low; please, consider "
7210b2f6228SArnaud Ebalard 			"changing it!\n");
7220b2f6228SArnaud Ebalard 
7230b2f6228SArnaud Ebalard 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
7240b2f6228SArnaud Ebalard 		if (ret)
7250b2f6228SArnaud Ebalard 			dev_err(dev, "%s: disabling battery low interrupt "
7260b2f6228SArnaud Ebalard 				"generation failed (%d)\n", __func__, ret);
7270b2f6228SArnaud Ebalard 	}
7280b2f6228SArnaud Ebalard 
7290b2f6228SArnaud Ebalard 	return ret;
7300b2f6228SArnaud Ebalard }
7310b2f6228SArnaud Ebalard 
7320b2f6228SArnaud Ebalard static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
7330b2f6228SArnaud Ebalard 					 unsigned int enable)
7340b2f6228SArnaud Ebalard {
7350b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
7360b2f6228SArnaud Ebalard 	int ret = 0;
7370b2f6228SArnaud Ebalard 
7380b2f6228SArnaud Ebalard 	if (rtc_data->irq) {
739c8a1d8a5SArnaud Ebalard 		if (rtc_data->timer_alarm)
740c8a1d8a5SArnaud Ebalard 			ret = _abb5zes3_rtc_update_timer(dev, enable);
741c8a1d8a5SArnaud Ebalard 		else
7420b2f6228SArnaud Ebalard 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
7430b2f6228SArnaud Ebalard 	}
7440b2f6228SArnaud Ebalard 
7450b2f6228SArnaud Ebalard 	return ret;
7460b2f6228SArnaud Ebalard }
7470b2f6228SArnaud Ebalard 
7480b2f6228SArnaud Ebalard static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
7490b2f6228SArnaud Ebalard {
7500b2f6228SArnaud Ebalard 	struct i2c_client *client = data;
7510b2f6228SArnaud Ebalard 	struct device *dev = &client->dev;
7520b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
7530b2f6228SArnaud Ebalard 	struct rtc_device *rtc = rtc_data->rtc;
7540b2f6228SArnaud Ebalard 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
7550b2f6228SArnaud Ebalard 	int ret, handled = IRQ_NONE;
7560b2f6228SArnaud Ebalard 
7570b2f6228SArnaud Ebalard 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
7580b2f6228SArnaud Ebalard 			       ABB5ZES3_CTRL_SEC_LEN);
7590b2f6228SArnaud Ebalard 	if (ret) {
7600b2f6228SArnaud Ebalard 		dev_err(dev, "%s: unable to read control section (%d)!\n",
7610b2f6228SArnaud Ebalard 			__func__, ret);
7620b2f6228SArnaud Ebalard 		return handled;
7630b2f6228SArnaud Ebalard 	}
7640b2f6228SArnaud Ebalard 
7650b2f6228SArnaud Ebalard 	/*
7660b2f6228SArnaud Ebalard 	 * Check battery low detection flag and disable battery low interrupt
7670b2f6228SArnaud Ebalard 	 * generation if flag is set (interrupt can only be cleared when
7680b2f6228SArnaud Ebalard 	 * battery is replaced).
7690b2f6228SArnaud Ebalard 	 */
7700b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
7710b2f6228SArnaud Ebalard 		dev_err(dev, "RTC battery is low; please change it!\n");
7720b2f6228SArnaud Ebalard 
7730b2f6228SArnaud Ebalard 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
7740b2f6228SArnaud Ebalard 
7750b2f6228SArnaud Ebalard 		handled = IRQ_HANDLED;
7760b2f6228SArnaud Ebalard 	}
7770b2f6228SArnaud Ebalard 
7780b2f6228SArnaud Ebalard 	/* Check alarm flag */
7790b2f6228SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
7800b2f6228SArnaud Ebalard 		dev_dbg(dev, "RTC alarm!\n");
7810b2f6228SArnaud Ebalard 
7820b2f6228SArnaud Ebalard 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
7830b2f6228SArnaud Ebalard 
7840b2f6228SArnaud Ebalard 		/* Acknowledge and disable the alarm */
7850b2f6228SArnaud Ebalard 		_abb5zes3_rtc_clear_alarm(dev);
7860b2f6228SArnaud Ebalard 		_abb5zes3_rtc_update_alarm(dev, 0);
7870b2f6228SArnaud Ebalard 
7880b2f6228SArnaud Ebalard 		handled = IRQ_HANDLED;
7890b2f6228SArnaud Ebalard 	}
7900b2f6228SArnaud Ebalard 
791c8a1d8a5SArnaud Ebalard 	/* Check watchdog Timer A flag */
792c8a1d8a5SArnaud Ebalard 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
793c8a1d8a5SArnaud Ebalard 		dev_dbg(dev, "RTC timer!\n");
794c8a1d8a5SArnaud Ebalard 
795c8a1d8a5SArnaud Ebalard 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
796c8a1d8a5SArnaud Ebalard 
797c8a1d8a5SArnaud Ebalard 		/*
798c8a1d8a5SArnaud Ebalard 		 * Acknowledge and disable the alarm. Note: WTAF
799c8a1d8a5SArnaud Ebalard 		 * flag had been cleared when reading CTRL2
800c8a1d8a5SArnaud Ebalard 		 */
801c8a1d8a5SArnaud Ebalard 		_abb5zes3_rtc_update_timer(dev, 0);
802c8a1d8a5SArnaud Ebalard 
803c8a1d8a5SArnaud Ebalard 		rtc_data->timer_alarm = 0;
804c8a1d8a5SArnaud Ebalard 
805c8a1d8a5SArnaud Ebalard 		handled = IRQ_HANDLED;
806c8a1d8a5SArnaud Ebalard 	}
807c8a1d8a5SArnaud Ebalard 
8080b2f6228SArnaud Ebalard 	return handled;
8090b2f6228SArnaud Ebalard }
8100b2f6228SArnaud Ebalard 
8110b2f6228SArnaud Ebalard static const struct rtc_class_ops rtc_ops = {
8120b2f6228SArnaud Ebalard 	.read_time = _abb5zes3_rtc_read_time,
8130b2f6228SArnaud Ebalard 	.set_time = abb5zes3_rtc_set_time,
8140b2f6228SArnaud Ebalard 	.read_alarm = abb5zes3_rtc_read_alarm,
8150b2f6228SArnaud Ebalard 	.set_alarm = abb5zes3_rtc_set_alarm,
8160b2f6228SArnaud Ebalard 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
8170b2f6228SArnaud Ebalard };
8180b2f6228SArnaud Ebalard 
819ac2a2726SKrzysztof Kozlowski static const struct regmap_config abb5zes3_rtc_regmap_config = {
8200b2f6228SArnaud Ebalard 	.reg_bits = 8,
8210b2f6228SArnaud Ebalard 	.val_bits = 8,
8220b2f6228SArnaud Ebalard };
8230b2f6228SArnaud Ebalard 
8240b2f6228SArnaud Ebalard static int abb5zes3_probe(struct i2c_client *client,
8250b2f6228SArnaud Ebalard 			  const struct i2c_device_id *id)
8260b2f6228SArnaud Ebalard {
8270b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *data = NULL;
8280b2f6228SArnaud Ebalard 	struct device *dev = &client->dev;
8290b2f6228SArnaud Ebalard 	struct regmap *regmap;
8300b2f6228SArnaud Ebalard 	int ret;
8310b2f6228SArnaud Ebalard 
8320b2f6228SArnaud Ebalard 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
8330b2f6228SArnaud Ebalard 				     I2C_FUNC_SMBUS_BYTE_DATA |
8345d049837SAlexandre Belloni 				     I2C_FUNC_SMBUS_I2C_BLOCK))
8355d049837SAlexandre Belloni 		return -ENODEV;
8360b2f6228SArnaud Ebalard 
8370b2f6228SArnaud Ebalard 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
8380b2f6228SArnaud Ebalard 	if (IS_ERR(regmap)) {
8390b2f6228SArnaud Ebalard 		ret = PTR_ERR(regmap);
8400b2f6228SArnaud Ebalard 		dev_err(dev, "%s: regmap allocation failed: %d\n",
8410b2f6228SArnaud Ebalard 			__func__, ret);
8425d049837SAlexandre Belloni 		return ret;
8430b2f6228SArnaud Ebalard 	}
8440b2f6228SArnaud Ebalard 
8450b2f6228SArnaud Ebalard 	ret = abb5zes3_i2c_validate_chip(regmap);
8460b2f6228SArnaud Ebalard 	if (ret)
8475d049837SAlexandre Belloni 		return ret;
8480b2f6228SArnaud Ebalard 
8490b2f6228SArnaud Ebalard 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
8505d049837SAlexandre Belloni 	if (!data)
8515d049837SAlexandre Belloni 		return -ENOMEM;
8520b2f6228SArnaud Ebalard 
8530b2f6228SArnaud Ebalard 	data->regmap = regmap;
8540b2f6228SArnaud Ebalard 	dev_set_drvdata(dev, data);
8550b2f6228SArnaud Ebalard 
8560b2f6228SArnaud Ebalard 	ret = abb5zes3_rtc_check_setup(dev);
8570b2f6228SArnaud Ebalard 	if (ret)
8585d049837SAlexandre Belloni 		return ret;
8590b2f6228SArnaud Ebalard 
8608bde032bSAlexandre Belloni 	data->rtc = devm_rtc_allocate_device(dev);
8618bde032bSAlexandre Belloni 	ret = PTR_ERR_OR_ZERO(data->rtc);
8628bde032bSAlexandre Belloni 	if (ret) {
8638bde032bSAlexandre Belloni 		dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
8648bde032bSAlexandre Belloni 			__func__, ret);
8655d049837SAlexandre Belloni 		return ret;
8668bde032bSAlexandre Belloni 	}
8678bde032bSAlexandre Belloni 
8680b2f6228SArnaud Ebalard 	if (client->irq > 0) {
8690b2f6228SArnaud Ebalard 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
8700b2f6228SArnaud Ebalard 						_abb5zes3_rtc_interrupt,
8710b2f6228SArnaud Ebalard 						IRQF_SHARED|IRQF_ONESHOT,
8720b2f6228SArnaud Ebalard 						DRV_NAME, client);
8730b2f6228SArnaud Ebalard 		if (!ret) {
8740b2f6228SArnaud Ebalard 			device_init_wakeup(dev, true);
8750b2f6228SArnaud Ebalard 			data->irq = client->irq;
8760b2f6228SArnaud Ebalard 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
8770b2f6228SArnaud Ebalard 				client->irq);
8780b2f6228SArnaud Ebalard 		} else {
8790b2f6228SArnaud Ebalard 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
8800b2f6228SArnaud Ebalard 				__func__, client->irq, ret);
8810b2f6228SArnaud Ebalard 			goto err;
8820b2f6228SArnaud Ebalard 		}
8830b2f6228SArnaud Ebalard 	}
8840b2f6228SArnaud Ebalard 
8858bde032bSAlexandre Belloni 	data->rtc->ops = &rtc_ops;
886c402f8eaSAlexandre Belloni 	data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
887c402f8eaSAlexandre Belloni 	data->rtc->range_max = RTC_TIMESTAMP_END_2099;
8880b2f6228SArnaud Ebalard 
8890b2f6228SArnaud Ebalard 	/* Enable battery low detection interrupt if battery not already low */
8900b2f6228SArnaud Ebalard 	if (!data->battery_low && data->irq) {
8910b2f6228SArnaud Ebalard 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
8920b2f6228SArnaud Ebalard 		if (ret) {
8930b2f6228SArnaud Ebalard 			dev_err(dev, "%s: enabling battery low interrupt "
8940b2f6228SArnaud Ebalard 				"generation failed (%d)\n", __func__, ret);
8950b2f6228SArnaud Ebalard 			goto err;
8960b2f6228SArnaud Ebalard 		}
8970b2f6228SArnaud Ebalard 	}
8980b2f6228SArnaud Ebalard 
8998bde032bSAlexandre Belloni 	ret = rtc_register_device(data->rtc);
9008bde032bSAlexandre Belloni 
9010b2f6228SArnaud Ebalard err:
9025d049837SAlexandre Belloni 	if (ret && data->irq)
9030b2f6228SArnaud Ebalard 		device_init_wakeup(dev, false);
9040b2f6228SArnaud Ebalard 	return ret;
9050b2f6228SArnaud Ebalard }
9060b2f6228SArnaud Ebalard 
9070b2f6228SArnaud Ebalard static int abb5zes3_remove(struct i2c_client *client)
9080b2f6228SArnaud Ebalard {
9090b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
9100b2f6228SArnaud Ebalard 
9110b2f6228SArnaud Ebalard 	if (rtc_data->irq > 0)
9120b2f6228SArnaud Ebalard 		device_init_wakeup(&client->dev, false);
9130b2f6228SArnaud Ebalard 
9140b2f6228SArnaud Ebalard 	return 0;
9150b2f6228SArnaud Ebalard }
9160b2f6228SArnaud Ebalard 
9170b2f6228SArnaud Ebalard #ifdef CONFIG_PM_SLEEP
9180b2f6228SArnaud Ebalard static int abb5zes3_rtc_suspend(struct device *dev)
9190b2f6228SArnaud Ebalard {
9200b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
9210b2f6228SArnaud Ebalard 
9220b2f6228SArnaud Ebalard 	if (device_may_wakeup(dev))
9230b2f6228SArnaud Ebalard 		return enable_irq_wake(rtc_data->irq);
9240b2f6228SArnaud Ebalard 
9250b2f6228SArnaud Ebalard 	return 0;
9260b2f6228SArnaud Ebalard }
9270b2f6228SArnaud Ebalard 
9280b2f6228SArnaud Ebalard static int abb5zes3_rtc_resume(struct device *dev)
9290b2f6228SArnaud Ebalard {
9300b2f6228SArnaud Ebalard 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
9310b2f6228SArnaud Ebalard 
9320b2f6228SArnaud Ebalard 	if (device_may_wakeup(dev))
9330b2f6228SArnaud Ebalard 		return disable_irq_wake(rtc_data->irq);
9340b2f6228SArnaud Ebalard 
9350b2f6228SArnaud Ebalard 	return 0;
9360b2f6228SArnaud Ebalard }
9370b2f6228SArnaud Ebalard #endif
9380b2f6228SArnaud Ebalard 
9390b2f6228SArnaud Ebalard static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
9400b2f6228SArnaud Ebalard 			 abb5zes3_rtc_resume);
9410b2f6228SArnaud Ebalard 
9420b2f6228SArnaud Ebalard #ifdef CONFIG_OF
9430b2f6228SArnaud Ebalard static const struct of_device_id abb5zes3_dt_match[] = {
9440b2f6228SArnaud Ebalard 	{ .compatible = "abracon,abb5zes3" },
9450b2f6228SArnaud Ebalard 	{ },
9460b2f6228SArnaud Ebalard };
9471c4fc295SJavier Martinez Canillas MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
9480b2f6228SArnaud Ebalard #endif
9490b2f6228SArnaud Ebalard 
9500b2f6228SArnaud Ebalard static const struct i2c_device_id abb5zes3_id[] = {
9510b2f6228SArnaud Ebalard 	{ "abb5zes3", 0 },
9520b2f6228SArnaud Ebalard 	{ }
9530b2f6228SArnaud Ebalard };
9540b2f6228SArnaud Ebalard MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
9550b2f6228SArnaud Ebalard 
9560b2f6228SArnaud Ebalard static struct i2c_driver abb5zes3_driver = {
9570b2f6228SArnaud Ebalard 	.driver = {
9580b2f6228SArnaud Ebalard 		.name = DRV_NAME,
9590b2f6228SArnaud Ebalard 		.pm = &abb5zes3_rtc_pm_ops,
9600b2f6228SArnaud Ebalard 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
9610b2f6228SArnaud Ebalard 	},
9620b2f6228SArnaud Ebalard 	.probe	  = abb5zes3_probe,
9630b2f6228SArnaud Ebalard 	.remove	  = abb5zes3_remove,
9640b2f6228SArnaud Ebalard 	.id_table = abb5zes3_id,
9650b2f6228SArnaud Ebalard };
9660b2f6228SArnaud Ebalard module_i2c_driver(abb5zes3_driver);
9670b2f6228SArnaud Ebalard 
9680b2f6228SArnaud Ebalard MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
9690b2f6228SArnaud Ebalard MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
9700b2f6228SArnaud Ebalard MODULE_LICENSE("GPL");
971