10b2f6228SArnaud Ebalard /* 20b2f6228SArnaud Ebalard * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 30b2f6228SArnaud Ebalard * I2C RTC / Alarm chip 40b2f6228SArnaud Ebalard * 50b2f6228SArnaud Ebalard * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> 60b2f6228SArnaud Ebalard * 70b2f6228SArnaud Ebalard * Detailed datasheet of the chip is available here: 80b2f6228SArnaud Ebalard * 90b2f6228SArnaud Ebalard * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf 100b2f6228SArnaud Ebalard * 110b2f6228SArnaud Ebalard * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). 120b2f6228SArnaud Ebalard * 130b2f6228SArnaud Ebalard * This program is free software; you can redistribute it and/or modify 140b2f6228SArnaud Ebalard * it under the terms of the GNU General Public License as published by 150b2f6228SArnaud Ebalard * the Free Software Foundation; either version 2 of the License, or 160b2f6228SArnaud Ebalard * (at your option) any later version. 170b2f6228SArnaud Ebalard * 180b2f6228SArnaud Ebalard * This program is distributed in the hope that it will be useful, 190b2f6228SArnaud Ebalard * but WITHOUT ANY WARRANTY; without even the implied warranty of 200b2f6228SArnaud Ebalard * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 210b2f6228SArnaud Ebalard * GNU General Public License for more details. 220b2f6228SArnaud Ebalard */ 230b2f6228SArnaud Ebalard 240b2f6228SArnaud Ebalard #include <linux/module.h> 250b2f6228SArnaud Ebalard #include <linux/rtc.h> 260b2f6228SArnaud Ebalard #include <linux/i2c.h> 270b2f6228SArnaud Ebalard #include <linux/bcd.h> 280b2f6228SArnaud Ebalard #include <linux/of.h> 290b2f6228SArnaud Ebalard #include <linux/regmap.h> 300b2f6228SArnaud Ebalard #include <linux/interrupt.h> 310b2f6228SArnaud Ebalard 320b2f6228SArnaud Ebalard #define DRV_NAME "rtc-ab-b5ze-s3" 330b2f6228SArnaud Ebalard 340b2f6228SArnaud Ebalard /* Control section */ 350b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */ 360b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */ 370b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */ 380b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */ 390b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */ 400b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */ 410b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */ 420b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CAP BIT(7) 430b2f6228SArnaud Ebalard 440b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */ 450b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */ 460b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */ 470b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */ 480b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */ 490b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */ 500b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */ 510b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */ 520b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */ 530b2f6228SArnaud Ebalard 540b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */ 550b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */ 560b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */ 570b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */ 580b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */ 590b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */ 600b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */ 610b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */ 620b2f6228SArnaud Ebalard 630b2f6228SArnaud Ebalard #define ABB5ZES3_CTRL_SEC_LEN 3 640b2f6228SArnaud Ebalard 650b2f6228SArnaud Ebalard /* RTC section */ 660b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */ 670b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */ 680b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */ 690b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */ 700b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */ 710b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */ 720b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */ 730b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */ 740b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */ 750b2f6228SArnaud Ebalard 760b2f6228SArnaud Ebalard #define ABB5ZES3_RTC_SEC_LEN 7 770b2f6228SArnaud Ebalard 780b2f6228SArnaud Ebalard /* Alarm section (enable bits are all active low) */ 790b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */ 800b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */ 810b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */ 820b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */ 830b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */ 840b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */ 850b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */ 860b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */ 870b2f6228SArnaud Ebalard 880b2f6228SArnaud Ebalard #define ABB5ZES3_ALRM_SEC_LEN 4 890b2f6228SArnaud Ebalard 900b2f6228SArnaud Ebalard /* Frequency offset section */ 910b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */ 920b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */ 930b2f6228SArnaud Ebalard 940b2f6228SArnaud Ebalard /* CLOCKOUT section */ 950b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */ 960b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */ 970b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */ 980b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */ 990b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */ 1000b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */ 1010b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */ 1020b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */ 1030b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */ 1040b2f6228SArnaud Ebalard 1050b2f6228SArnaud Ebalard /* Timer A Section */ 1060b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */ 1070b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */ 1080b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */ 1090b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */ 1100b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */ 1110b2f6228SArnaud Ebalard 1120b2f6228SArnaud Ebalard #define ABB5ZES3_TIMA_SEC_LEN 2 1130b2f6228SArnaud Ebalard 1140b2f6228SArnaud Ebalard /* Timer B Section */ 1150b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */ 1160b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) 1170b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) 1180b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) 1190b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) 1200b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) 1210b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) 1220b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */ 1230b2f6228SArnaud Ebalard #define ABB5ZES3_TIMB_SEC_LEN 2 1240b2f6228SArnaud Ebalard 1250b2f6228SArnaud Ebalard #define ABB5ZES3_MEM_MAP_LEN 0x14 1260b2f6228SArnaud Ebalard 1270b2f6228SArnaud Ebalard struct abb5zes3_rtc_data { 1280b2f6228SArnaud Ebalard struct rtc_device *rtc; 1290b2f6228SArnaud Ebalard struct regmap *regmap; 1300b2f6228SArnaud Ebalard 1310b2f6228SArnaud Ebalard int irq; 1320b2f6228SArnaud Ebalard 1330b2f6228SArnaud Ebalard bool battery_low; 134c8a1d8a5SArnaud Ebalard bool timer_alarm; /* current alarm is via timer A */ 1350b2f6228SArnaud Ebalard }; 1360b2f6228SArnaud Ebalard 1370b2f6228SArnaud Ebalard /* 1380b2f6228SArnaud Ebalard * Try and match register bits w/ fixed null values to see whether we 139ac246738SAlexandre Belloni * are dealing with an ABB5ZES3. 1400b2f6228SArnaud Ebalard */ 1410b2f6228SArnaud Ebalard static int abb5zes3_i2c_validate_chip(struct regmap *regmap) 1420b2f6228SArnaud Ebalard { 1430b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_MEM_MAP_LEN]; 1440b2f6228SArnaud Ebalard static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, 1450b2f6228SArnaud Ebalard 0x80, 0xc0, 0xc0, 0xf8, 1460b2f6228SArnaud Ebalard 0xe0, 0x00, 0x00, 0x40, 1470b2f6228SArnaud Ebalard 0x40, 0x78, 0x00, 0x00, 1480b2f6228SArnaud Ebalard 0xf8, 0x00, 0x88, 0x00 }; 1490b2f6228SArnaud Ebalard int ret, i; 1500b2f6228SArnaud Ebalard 1510b2f6228SArnaud Ebalard ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); 1520b2f6228SArnaud Ebalard if (ret) 1530b2f6228SArnaud Ebalard return ret; 1540b2f6228SArnaud Ebalard 1550b2f6228SArnaud Ebalard for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { 1560b2f6228SArnaud Ebalard if (regs[i] & mask[i]) /* check if bits are cleared */ 1570b2f6228SArnaud Ebalard return -ENODEV; 1580b2f6228SArnaud Ebalard } 1590b2f6228SArnaud Ebalard 1600b2f6228SArnaud Ebalard return 0; 1610b2f6228SArnaud Ebalard } 1620b2f6228SArnaud Ebalard 1630b2f6228SArnaud Ebalard /* Clear alarm status bit. */ 1640b2f6228SArnaud Ebalard static int _abb5zes3_rtc_clear_alarm(struct device *dev) 1650b2f6228SArnaud Ebalard { 1660b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 1670b2f6228SArnaud Ebalard int ret; 1680b2f6228SArnaud Ebalard 1690b2f6228SArnaud Ebalard ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, 1700b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL2_AF, 0); 1710b2f6228SArnaud Ebalard if (ret) 1720b2f6228SArnaud Ebalard dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); 1730b2f6228SArnaud Ebalard 1740b2f6228SArnaud Ebalard return ret; 1750b2f6228SArnaud Ebalard } 1760b2f6228SArnaud Ebalard 1770b2f6228SArnaud Ebalard /* Enable or disable alarm (i.e. alarm interrupt generation) */ 1780b2f6228SArnaud Ebalard static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) 1790b2f6228SArnaud Ebalard { 1800b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 1810b2f6228SArnaud Ebalard int ret; 1820b2f6228SArnaud Ebalard 1830b2f6228SArnaud Ebalard ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, 1840b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL1_AIE, 1850b2f6228SArnaud Ebalard enable ? ABB5ZES3_REG_CTRL1_AIE : 0); 1860b2f6228SArnaud Ebalard if (ret) 1870b2f6228SArnaud Ebalard dev_err(dev, "%s: writing alarm INT failed (%d)\n", 1880b2f6228SArnaud Ebalard __func__, ret); 1890b2f6228SArnaud Ebalard 1900b2f6228SArnaud Ebalard return ret; 1910b2f6228SArnaud Ebalard } 1920b2f6228SArnaud Ebalard 193c8a1d8a5SArnaud Ebalard /* Enable or disable timer (watchdog timer A interrupt generation) */ 194c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) 195c8a1d8a5SArnaud Ebalard { 196c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 197c8a1d8a5SArnaud Ebalard int ret; 198c8a1d8a5SArnaud Ebalard 199c8a1d8a5SArnaud Ebalard ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, 200c8a1d8a5SArnaud Ebalard ABB5ZES3_REG_CTRL2_WTAIE, 201c8a1d8a5SArnaud Ebalard enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); 202c8a1d8a5SArnaud Ebalard if (ret) 203c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: writing timer INT failed (%d)\n", 204c8a1d8a5SArnaud Ebalard __func__, ret); 205c8a1d8a5SArnaud Ebalard 206c8a1d8a5SArnaud Ebalard return ret; 207c8a1d8a5SArnaud Ebalard } 208c8a1d8a5SArnaud Ebalard 2090b2f6228SArnaud Ebalard /* 2100b2f6228SArnaud Ebalard * Note: we only read, so regmap inner lock protection is sufficient, i.e. 2110b2f6228SArnaud Ebalard * we do not need driver's main lock protection. 2120b2f6228SArnaud Ebalard */ 2130b2f6228SArnaud Ebalard static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) 2140b2f6228SArnaud Ebalard { 2150b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 2160b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; 217ce2e5a76SAlexandre Belloni int ret = 0; 2180b2f6228SArnaud Ebalard 2190b2f6228SArnaud Ebalard /* 2200b2f6228SArnaud Ebalard * As we need to read CTRL1 register anyway to access 24/12h 2210b2f6228SArnaud Ebalard * mode bit, we do a single bulk read of both control and RTC 2220b2f6228SArnaud Ebalard * sections (they are consecutive). This also ease indexing 2230b2f6228SArnaud Ebalard * of register values after bulk read. 2240b2f6228SArnaud Ebalard */ 2250b2f6228SArnaud Ebalard ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, 2260b2f6228SArnaud Ebalard sizeof(regs)); 2270b2f6228SArnaud Ebalard if (ret) { 2280b2f6228SArnaud Ebalard dev_err(dev, "%s: reading RTC time failed (%d)\n", 2290b2f6228SArnaud Ebalard __func__, ret); 230*5d049837SAlexandre Belloni return ret; 2310b2f6228SArnaud Ebalard } 2320b2f6228SArnaud Ebalard 2330b2f6228SArnaud Ebalard /* If clock integrity is not guaranteed, do not return a time value */ 234*5d049837SAlexandre Belloni if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) 235*5d049837SAlexandre Belloni return -ENODATA; 2360b2f6228SArnaud Ebalard 2370b2f6228SArnaud Ebalard tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); 2380b2f6228SArnaud Ebalard tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); 2390b2f6228SArnaud Ebalard 2400b2f6228SArnaud Ebalard if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ 2410b2f6228SArnaud Ebalard tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); 2420b2f6228SArnaud Ebalard if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ 2430b2f6228SArnaud Ebalard tm->tm_hour += 12; 2440b2f6228SArnaud Ebalard } else { /* 24hr mode */ 2450b2f6228SArnaud Ebalard tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); 2460b2f6228SArnaud Ebalard } 2470b2f6228SArnaud Ebalard 2480b2f6228SArnaud Ebalard tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); 2490b2f6228SArnaud Ebalard tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); 2500b2f6228SArnaud Ebalard tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ 2510b2f6228SArnaud Ebalard tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; 2520b2f6228SArnaud Ebalard 2530b2f6228SArnaud Ebalard return ret; 2540b2f6228SArnaud Ebalard } 2550b2f6228SArnaud Ebalard 2560b2f6228SArnaud Ebalard static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) 2570b2f6228SArnaud Ebalard { 2580b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 2590b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; 2600b2f6228SArnaud Ebalard int ret; 2610b2f6228SArnaud Ebalard 2620b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ 2630b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); 2640b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ 2650b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); 2660b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); 2670b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); 2680b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); 2690b2f6228SArnaud Ebalard 2700b2f6228SArnaud Ebalard ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, 2710b2f6228SArnaud Ebalard regs + ABB5ZES3_REG_RTC_SC, 2720b2f6228SArnaud Ebalard ABB5ZES3_RTC_SEC_LEN); 2730b2f6228SArnaud Ebalard 2740b2f6228SArnaud Ebalard return ret; 2750b2f6228SArnaud Ebalard } 2760b2f6228SArnaud Ebalard 277c8a1d8a5SArnaud Ebalard /* 278c8a1d8a5SArnaud Ebalard * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on 279c8a1d8a5SArnaud Ebalard * given number of seconds. 280c8a1d8a5SArnaud Ebalard */ 281c8a1d8a5SArnaud Ebalard static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) 282c8a1d8a5SArnaud Ebalard { 283c8a1d8a5SArnaud Ebalard *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ 284c8a1d8a5SArnaud Ebalard *timer_a = secs; 285c8a1d8a5SArnaud Ebalard } 286c8a1d8a5SArnaud Ebalard 287c8a1d8a5SArnaud Ebalard /* 288c8a1d8a5SArnaud Ebalard * Return current number of seconds in Timer A. As we only use 289c8a1d8a5SArnaud Ebalard * timer A with a 1Hz freq, this is what we expect to have. 290c8a1d8a5SArnaud Ebalard */ 291c8a1d8a5SArnaud Ebalard static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) 292c8a1d8a5SArnaud Ebalard { 293c8a1d8a5SArnaud Ebalard if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ 294c8a1d8a5SArnaud Ebalard return -EINVAL; 295c8a1d8a5SArnaud Ebalard 296c8a1d8a5SArnaud Ebalard *secs = timer_a; 297c8a1d8a5SArnaud Ebalard 298c8a1d8a5SArnaud Ebalard return 0; 299c8a1d8a5SArnaud Ebalard } 300c8a1d8a5SArnaud Ebalard 301c8a1d8a5SArnaud Ebalard /* 302c8a1d8a5SArnaud Ebalard * Read alarm currently configured via a watchdog timer using timer A. This 303c8a1d8a5SArnaud Ebalard * is done by reading current RTC time and adding remaining timer time. 304c8a1d8a5SArnaud Ebalard */ 305c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_timer(struct device *dev, 306c8a1d8a5SArnaud Ebalard struct rtc_wkalrm *alarm) 307c8a1d8a5SArnaud Ebalard { 308c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 309c8a1d8a5SArnaud Ebalard struct rtc_time rtc_tm, *alarm_tm = &alarm->time; 310c8a1d8a5SArnaud Ebalard u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; 311c8a1d8a5SArnaud Ebalard unsigned long rtc_secs; 312c8a1d8a5SArnaud Ebalard unsigned int reg; 313c8a1d8a5SArnaud Ebalard u8 timer_secs; 314c8a1d8a5SArnaud Ebalard int ret; 315c8a1d8a5SArnaud Ebalard 316c8a1d8a5SArnaud Ebalard /* 317c8a1d8a5SArnaud Ebalard * Instead of doing two separate calls, because they are consecutive, 318c8a1d8a5SArnaud Ebalard * we grab both clockout register and Timer A section. The latter is 319c8a1d8a5SArnaud Ebalard * used to decide if timer A is enabled (as a watchdog timer). 320c8a1d8a5SArnaud Ebalard */ 321c8a1d8a5SArnaud Ebalard ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, 322c8a1d8a5SArnaud Ebalard ABB5ZES3_TIMA_SEC_LEN + 1); 323c8a1d8a5SArnaud Ebalard if (ret) { 324c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: reading Timer A section failed (%d)\n", 325c8a1d8a5SArnaud Ebalard __func__, ret); 326*5d049837SAlexandre Belloni return ret; 327c8a1d8a5SArnaud Ebalard } 328c8a1d8a5SArnaud Ebalard 329c8a1d8a5SArnaud Ebalard /* get current time ... */ 330c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 331c8a1d8a5SArnaud Ebalard if (ret) 332*5d049837SAlexandre Belloni return ret; 333c8a1d8a5SArnaud Ebalard 334c8a1d8a5SArnaud Ebalard /* ... convert to seconds ... */ 335c8a1d8a5SArnaud Ebalard ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); 336c8a1d8a5SArnaud Ebalard if (ret) 337*5d049837SAlexandre Belloni return ret; 338c8a1d8a5SArnaud Ebalard 339c8a1d8a5SArnaud Ebalard /* ... add remaining timer A time ... */ 340c8a1d8a5SArnaud Ebalard ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); 341c8a1d8a5SArnaud Ebalard if (ret) 342*5d049837SAlexandre Belloni return ret; 343c8a1d8a5SArnaud Ebalard 344c8a1d8a5SArnaud Ebalard /* ... and convert back. */ 345c8a1d8a5SArnaud Ebalard rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm); 346c8a1d8a5SArnaud Ebalard 347c8a1d8a5SArnaud Ebalard ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); 348c8a1d8a5SArnaud Ebalard if (ret) { 349c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: reading ctrl reg failed (%d)\n", 350c8a1d8a5SArnaud Ebalard __func__, ret); 351*5d049837SAlexandre Belloni return ret; 352c8a1d8a5SArnaud Ebalard } 353c8a1d8a5SArnaud Ebalard 354c8a1d8a5SArnaud Ebalard alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); 355c8a1d8a5SArnaud Ebalard 356*5d049837SAlexandre Belloni return 0; 357c8a1d8a5SArnaud Ebalard } 358c8a1d8a5SArnaud Ebalard 359c8a1d8a5SArnaud Ebalard /* Read alarm currently configured via a RTC alarm registers. */ 360c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_alarm(struct device *dev, 361c8a1d8a5SArnaud Ebalard struct rtc_wkalrm *alarm) 3620b2f6228SArnaud Ebalard { 3630b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 3640b2f6228SArnaud Ebalard struct rtc_time rtc_tm, *alarm_tm = &alarm->time; 3650b2f6228SArnaud Ebalard unsigned long rtc_secs, alarm_secs; 3660b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_ALRM_SEC_LEN]; 3670b2f6228SArnaud Ebalard unsigned int reg; 3680b2f6228SArnaud Ebalard int ret; 3690b2f6228SArnaud Ebalard 3700b2f6228SArnaud Ebalard ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, 3710b2f6228SArnaud Ebalard ABB5ZES3_ALRM_SEC_LEN); 3720b2f6228SArnaud Ebalard if (ret) { 3730b2f6228SArnaud Ebalard dev_err(dev, "%s: reading alarm section failed (%d)\n", 3740b2f6228SArnaud Ebalard __func__, ret); 375*5d049837SAlexandre Belloni return ret; 3760b2f6228SArnaud Ebalard } 3770b2f6228SArnaud Ebalard 3780b2f6228SArnaud Ebalard alarm_tm->tm_sec = 0; 3790b2f6228SArnaud Ebalard alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f); 3800b2f6228SArnaud Ebalard alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); 3810b2f6228SArnaud Ebalard alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); 3820b2f6228SArnaud Ebalard alarm_tm->tm_wday = -1; 3830b2f6228SArnaud Ebalard 3840b2f6228SArnaud Ebalard /* 3850b2f6228SArnaud Ebalard * The alarm section does not store year/month. We use the ones in rtc 3860b2f6228SArnaud Ebalard * section as a basis and increment month and then year if needed to get 3870b2f6228SArnaud Ebalard * alarm after current time. 3880b2f6228SArnaud Ebalard */ 3890b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 3900b2f6228SArnaud Ebalard if (ret) 391*5d049837SAlexandre Belloni return ret; 3920b2f6228SArnaud Ebalard 3930b2f6228SArnaud Ebalard alarm_tm->tm_year = rtc_tm.tm_year; 3940b2f6228SArnaud Ebalard alarm_tm->tm_mon = rtc_tm.tm_mon; 3950b2f6228SArnaud Ebalard 3960b2f6228SArnaud Ebalard ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); 3970b2f6228SArnaud Ebalard if (ret) 398*5d049837SAlexandre Belloni return ret; 3990b2f6228SArnaud Ebalard 4000b2f6228SArnaud Ebalard ret = rtc_tm_to_time(alarm_tm, &alarm_secs); 4010b2f6228SArnaud Ebalard if (ret) 402*5d049837SAlexandre Belloni return ret; 4030b2f6228SArnaud Ebalard 4040b2f6228SArnaud Ebalard if (alarm_secs < rtc_secs) { 4050b2f6228SArnaud Ebalard if (alarm_tm->tm_mon == 11) { 4060b2f6228SArnaud Ebalard alarm_tm->tm_mon = 0; 4070b2f6228SArnaud Ebalard alarm_tm->tm_year += 1; 4080b2f6228SArnaud Ebalard } else { 4090b2f6228SArnaud Ebalard alarm_tm->tm_mon += 1; 4100b2f6228SArnaud Ebalard } 4110b2f6228SArnaud Ebalard } 4120b2f6228SArnaud Ebalard 4130b2f6228SArnaud Ebalard ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); 4140b2f6228SArnaud Ebalard if (ret) { 4150b2f6228SArnaud Ebalard dev_err(dev, "%s: reading ctrl reg failed (%d)\n", 4160b2f6228SArnaud Ebalard __func__, ret); 417*5d049837SAlexandre Belloni return ret; 4180b2f6228SArnaud Ebalard } 4190b2f6228SArnaud Ebalard 4200b2f6228SArnaud Ebalard alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); 4210b2f6228SArnaud Ebalard 422*5d049837SAlexandre Belloni return 0; 423c8a1d8a5SArnaud Ebalard } 424c8a1d8a5SArnaud Ebalard 425c8a1d8a5SArnaud Ebalard /* 426c8a1d8a5SArnaud Ebalard * As the Alarm mechanism supported by the chip is only accurate to the 427c8a1d8a5SArnaud Ebalard * minute, we use the watchdog timer mechanism provided by timer A 428c8a1d8a5SArnaud Ebalard * (up to 256 seconds w/ a second accuracy) for low alarm values (below 429c8a1d8a5SArnaud Ebalard * 4 minutes). Otherwise, we use the common alarm mechanism provided 430c8a1d8a5SArnaud Ebalard * by the chip. In order for that to work, we keep track of currently 431c8a1d8a5SArnaud Ebalard * configured timer type via 'timer_alarm' flag in our private data 432c8a1d8a5SArnaud Ebalard * structure. 433c8a1d8a5SArnaud Ebalard */ 434c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) 435c8a1d8a5SArnaud Ebalard { 436c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 437c8a1d8a5SArnaud Ebalard int ret; 438c8a1d8a5SArnaud Ebalard 439c8a1d8a5SArnaud Ebalard if (data->timer_alarm) 440c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_read_timer(dev, alarm); 441c8a1d8a5SArnaud Ebalard else 442c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_read_alarm(dev, alarm); 4430b2f6228SArnaud Ebalard 4440b2f6228SArnaud Ebalard return ret; 4450b2f6228SArnaud Ebalard } 4460b2f6228SArnaud Ebalard 447c8a1d8a5SArnaud Ebalard /* 448c8a1d8a5SArnaud Ebalard * Set alarm using chip alarm mechanism. It is only accurate to the 449c8a1d8a5SArnaud Ebalard * minute (not the second). The function expects alarm interrupt to 450c8a1d8a5SArnaud Ebalard * be disabled. 451c8a1d8a5SArnaud Ebalard */ 452c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 4530b2f6228SArnaud Ebalard { 4540b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 4550b2f6228SArnaud Ebalard struct rtc_time *alarm_tm = &alarm->time; 4560b2f6228SArnaud Ebalard unsigned long rtc_secs, alarm_secs; 4570b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_ALRM_SEC_LEN]; 4580b2f6228SArnaud Ebalard struct rtc_time rtc_tm; 4590b2f6228SArnaud Ebalard int ret, enable = 1; 4600b2f6228SArnaud Ebalard 4610b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 4620b2f6228SArnaud Ebalard if (ret) 463*5d049837SAlexandre Belloni return ret; 4640b2f6228SArnaud Ebalard 4650b2f6228SArnaud Ebalard ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); 4660b2f6228SArnaud Ebalard if (ret) 467*5d049837SAlexandre Belloni return ret; 4680b2f6228SArnaud Ebalard 4690b2f6228SArnaud Ebalard ret = rtc_tm_to_time(alarm_tm, &alarm_secs); 4700b2f6228SArnaud Ebalard if (ret) 471*5d049837SAlexandre Belloni return ret; 4720b2f6228SArnaud Ebalard 4730b2f6228SArnaud Ebalard /* If alarm time is before current time, disable the alarm */ 4740b2f6228SArnaud Ebalard if (!alarm->enabled || alarm_secs <= rtc_secs) { 4750b2f6228SArnaud Ebalard enable = 0; 4760b2f6228SArnaud Ebalard } else { 4770b2f6228SArnaud Ebalard /* 4780b2f6228SArnaud Ebalard * Chip only support alarms up to one month in the future. Let's 4790b2f6228SArnaud Ebalard * return an error if we get something after that limit. 4800b2f6228SArnaud Ebalard * Comparison is done by incrementing rtc_tm month field by one 4810b2f6228SArnaud Ebalard * and checking alarm value is still below. 4820b2f6228SArnaud Ebalard */ 4830b2f6228SArnaud Ebalard if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ 4840b2f6228SArnaud Ebalard rtc_tm.tm_mon = 0; 4850b2f6228SArnaud Ebalard rtc_tm.tm_year += 1; 4860b2f6228SArnaud Ebalard } else { 4870b2f6228SArnaud Ebalard rtc_tm.tm_mon += 1; 4880b2f6228SArnaud Ebalard } 4890b2f6228SArnaud Ebalard 4900b2f6228SArnaud Ebalard ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); 4910b2f6228SArnaud Ebalard if (ret) 492*5d049837SAlexandre Belloni return ret; 4930b2f6228SArnaud Ebalard 4940b2f6228SArnaud Ebalard if (alarm_secs > rtc_secs) { 4950b2f6228SArnaud Ebalard dev_err(dev, "%s: alarm maximum is one month in the " 4960b2f6228SArnaud Ebalard "future (%d)\n", __func__, ret); 497*5d049837SAlexandre Belloni return -EINVAL; 4980b2f6228SArnaud Ebalard } 4990b2f6228SArnaud Ebalard } 5000b2f6228SArnaud Ebalard 501c8a1d8a5SArnaud Ebalard /* 502c8a1d8a5SArnaud Ebalard * Program all alarm registers but DW one. For each register, setting 503c8a1d8a5SArnaud Ebalard * MSB to 0 enables associated alarm. 504c8a1d8a5SArnaud Ebalard */ 505c8a1d8a5SArnaud Ebalard regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; 506c8a1d8a5SArnaud Ebalard regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; 507c8a1d8a5SArnaud Ebalard regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; 5080b2f6228SArnaud Ebalard regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ 5090b2f6228SArnaud Ebalard 5100b2f6228SArnaud Ebalard ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, 5110b2f6228SArnaud Ebalard ABB5ZES3_ALRM_SEC_LEN); 5120b2f6228SArnaud Ebalard if (ret < 0) { 5130b2f6228SArnaud Ebalard dev_err(dev, "%s: writing ALARM section failed (%d)\n", 5140b2f6228SArnaud Ebalard __func__, ret); 515*5d049837SAlexandre Belloni return ret; 5160b2f6228SArnaud Ebalard } 5170b2f6228SArnaud Ebalard 518c8a1d8a5SArnaud Ebalard /* Record currently configured alarm is not a timer */ 519c8a1d8a5SArnaud Ebalard data->timer_alarm = 0; 520c8a1d8a5SArnaud Ebalard 521c8a1d8a5SArnaud Ebalard /* Enable or disable alarm interrupt generation */ 522*5d049837SAlexandre Belloni return _abb5zes3_rtc_update_alarm(dev, enable); 523c8a1d8a5SArnaud Ebalard } 524c8a1d8a5SArnaud Ebalard 525c8a1d8a5SArnaud Ebalard /* 526c8a1d8a5SArnaud Ebalard * Set alarm using timer watchdog (via timer A) mechanism. The function expects 527c8a1d8a5SArnaud Ebalard * timer A interrupt to be disabled. 528c8a1d8a5SArnaud Ebalard */ 529c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, 530c8a1d8a5SArnaud Ebalard u8 secs) 531c8a1d8a5SArnaud Ebalard { 532c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 533c8a1d8a5SArnaud Ebalard u8 regs[ABB5ZES3_TIMA_SEC_LEN]; 534c8a1d8a5SArnaud Ebalard u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; 535c8a1d8a5SArnaud Ebalard int ret = 0; 536c8a1d8a5SArnaud Ebalard 537c8a1d8a5SArnaud Ebalard /* Program given number of seconds to Timer A registers */ 538c8a1d8a5SArnaud Ebalard sec_to_timer_a(secs, ®s[0], ®s[1]); 539c8a1d8a5SArnaud Ebalard ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, 540c8a1d8a5SArnaud Ebalard ABB5ZES3_TIMA_SEC_LEN); 541c8a1d8a5SArnaud Ebalard if (ret < 0) { 542c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: writing timer section failed\n", __func__); 543*5d049837SAlexandre Belloni return ret; 544c8a1d8a5SArnaud Ebalard } 545c8a1d8a5SArnaud Ebalard 546c8a1d8a5SArnaud Ebalard /* Configure Timer A as a watchdog timer */ 547c8a1d8a5SArnaud Ebalard ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, 548c8a1d8a5SArnaud Ebalard mask, ABB5ZES3_REG_TIM_CLK_TAC1); 549c8a1d8a5SArnaud Ebalard if (ret) 550c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: failed to update timer\n", __func__); 551c8a1d8a5SArnaud Ebalard 552c8a1d8a5SArnaud Ebalard /* Record currently configured alarm is a timer */ 553c8a1d8a5SArnaud Ebalard data->timer_alarm = 1; 554c8a1d8a5SArnaud Ebalard 555c8a1d8a5SArnaud Ebalard /* Enable or disable timer interrupt generation */ 556*5d049837SAlexandre Belloni return _abb5zes3_rtc_update_timer(dev, alarm->enabled); 557c8a1d8a5SArnaud Ebalard } 558c8a1d8a5SArnaud Ebalard 559c8a1d8a5SArnaud Ebalard /* 560c8a1d8a5SArnaud Ebalard * The chip has an alarm which is only accurate to the minute. In order to 561c8a1d8a5SArnaud Ebalard * handle alarms below that limit, we use the watchdog timer function of 562c8a1d8a5SArnaud Ebalard * timer A. More precisely, the timer method is used for alarms below 240 563c8a1d8a5SArnaud Ebalard * seconds. 564c8a1d8a5SArnaud Ebalard */ 565c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 566c8a1d8a5SArnaud Ebalard { 567c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 568c8a1d8a5SArnaud Ebalard struct rtc_time *alarm_tm = &alarm->time; 569c8a1d8a5SArnaud Ebalard unsigned long rtc_secs, alarm_secs; 570c8a1d8a5SArnaud Ebalard struct rtc_time rtc_tm; 571c8a1d8a5SArnaud Ebalard int ret; 572c8a1d8a5SArnaud Ebalard 573c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 574c8a1d8a5SArnaud Ebalard if (ret) 575*5d049837SAlexandre Belloni return ret; 576c8a1d8a5SArnaud Ebalard 577c8a1d8a5SArnaud Ebalard ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); 578c8a1d8a5SArnaud Ebalard if (ret) 579*5d049837SAlexandre Belloni return ret; 580c8a1d8a5SArnaud Ebalard 581c8a1d8a5SArnaud Ebalard ret = rtc_tm_to_time(alarm_tm, &alarm_secs); 582c8a1d8a5SArnaud Ebalard if (ret) 583*5d049837SAlexandre Belloni return ret; 584c8a1d8a5SArnaud Ebalard 585c8a1d8a5SArnaud Ebalard /* Let's first disable both the alarm and the timer interrupts */ 586c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_update_alarm(dev, false); 587c8a1d8a5SArnaud Ebalard if (ret < 0) { 588c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, 589c8a1d8a5SArnaud Ebalard ret); 590*5d049837SAlexandre Belloni return ret; 591c8a1d8a5SArnaud Ebalard } 592c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_update_timer(dev, false); 593c8a1d8a5SArnaud Ebalard if (ret < 0) { 594c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, 595c8a1d8a5SArnaud Ebalard ret); 596*5d049837SAlexandre Belloni return ret; 597c8a1d8a5SArnaud Ebalard } 598c8a1d8a5SArnaud Ebalard 599c8a1d8a5SArnaud Ebalard data->timer_alarm = 0; 600c8a1d8a5SArnaud Ebalard 601c8a1d8a5SArnaud Ebalard /* 602c8a1d8a5SArnaud Ebalard * Let's now configure the alarm; if we are expected to ring in 603c8a1d8a5SArnaud Ebalard * more than 240s, then we setup an alarm. Otherwise, a timer. 604c8a1d8a5SArnaud Ebalard */ 605c8a1d8a5SArnaud Ebalard if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) 606c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_set_timer(dev, alarm, 607c8a1d8a5SArnaud Ebalard alarm_secs - rtc_secs); 608c8a1d8a5SArnaud Ebalard else 609c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_set_alarm(dev, alarm); 610c8a1d8a5SArnaud Ebalard 611c8a1d8a5SArnaud Ebalard if (ret) 612c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, 613c8a1d8a5SArnaud Ebalard ret); 614c8a1d8a5SArnaud Ebalard 6150b2f6228SArnaud Ebalard return ret; 6160b2f6228SArnaud Ebalard } 6170b2f6228SArnaud Ebalard 6180b2f6228SArnaud Ebalard /* Enable or disable battery low irq generation */ 6190b2f6228SArnaud Ebalard static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, 6200b2f6228SArnaud Ebalard bool enable) 6210b2f6228SArnaud Ebalard { 6220b2f6228SArnaud Ebalard return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, 6230b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL3_BLIE, 6240b2f6228SArnaud Ebalard enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); 6250b2f6228SArnaud Ebalard } 6260b2f6228SArnaud Ebalard 6270b2f6228SArnaud Ebalard /* 6280b2f6228SArnaud Ebalard * Check current RTC status and enable/disable what needs to be. Return 0 if 629ac246738SAlexandre Belloni * everything went ok and a negative value upon error. 6300b2f6228SArnaud Ebalard */ 6310b2f6228SArnaud Ebalard static int abb5zes3_rtc_check_setup(struct device *dev) 6320b2f6228SArnaud Ebalard { 6330b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 6340b2f6228SArnaud Ebalard struct regmap *regmap = data->regmap; 6350b2f6228SArnaud Ebalard unsigned int reg; 6360b2f6228SArnaud Ebalard int ret; 6370b2f6228SArnaud Ebalard u8 mask; 6380b2f6228SArnaud Ebalard 6390b2f6228SArnaud Ebalard /* 6400b2f6228SArnaud Ebalard * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It 6410b2f6228SArnaud Ebalard * is disabled here to prevent polluting the interrupt line and 6420b2f6228SArnaud Ebalard * uselessly triggering the IRQ handler we install for alarm and battery 6430b2f6228SArnaud Ebalard * low events. Note: this is done before clearing int. status below 6440b2f6228SArnaud Ebalard * in this function. 6450b2f6228SArnaud Ebalard * We also disable all timers and set timer interrupt to permanent (not 6460b2f6228SArnaud Ebalard * pulsed). 6470b2f6228SArnaud Ebalard */ 6480b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | 6490b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | 6500b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | 6510b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); 6520b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, 6530b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 | 6540b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_COF2); 6550b2f6228SArnaud Ebalard if (ret < 0) { 6560b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to initialize clkout register (%d)\n", 6570b2f6228SArnaud Ebalard __func__, ret); 6580b2f6228SArnaud Ebalard return ret; 6590b2f6228SArnaud Ebalard } 6600b2f6228SArnaud Ebalard 6610b2f6228SArnaud Ebalard /* 6620b2f6228SArnaud Ebalard * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled 6630b2f6228SArnaud Ebalard * individually by clearing/setting MSB of each associated register. So, 6640b2f6228SArnaud Ebalard * we set all alarm enable bits to disable current alarm setting. 6650b2f6228SArnaud Ebalard */ 6660b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | 6670b2f6228SArnaud Ebalard ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); 6680b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); 6690b2f6228SArnaud Ebalard if (ret < 0) { 6700b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to disable alarm setting (%d)\n", 6710b2f6228SArnaud Ebalard __func__, ret); 6720b2f6228SArnaud Ebalard return ret; 6730b2f6228SArnaud Ebalard } 6740b2f6228SArnaud Ebalard 6750b2f6228SArnaud Ebalard /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ 6760b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | 6770b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | 6780b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); 6790b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); 6800b2f6228SArnaud Ebalard if (ret < 0) { 6810b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", 6820b2f6228SArnaud Ebalard __func__, ret); 6830b2f6228SArnaud Ebalard return ret; 6840b2f6228SArnaud Ebalard } 6850b2f6228SArnaud Ebalard 6860b2f6228SArnaud Ebalard /* 6870b2f6228SArnaud Ebalard * Set Control 2 register (timer int. disabled, alarm status cleared). 6880b2f6228SArnaud Ebalard * WTAF is read-only and cleared automatically by reading the register. 6890b2f6228SArnaud Ebalard */ 6900b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | 6910b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | 6920b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | 6930b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL2_CTAF); 6940b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); 6950b2f6228SArnaud Ebalard if (ret < 0) { 6960b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", 6970b2f6228SArnaud Ebalard __func__, ret); 6980b2f6228SArnaud Ebalard return ret; 6990b2f6228SArnaud Ebalard } 7000b2f6228SArnaud Ebalard 7010b2f6228SArnaud Ebalard /* 7020b2f6228SArnaud Ebalard * Enable battery low detection function and battery switchover function 7030b2f6228SArnaud Ebalard * (standard mode). Disable associated interrupts. Clear battery 7040b2f6228SArnaud Ebalard * switchover flag but not battery low flag. The latter is checked 7050b2f6228SArnaud Ebalard * later below. 7060b2f6228SArnaud Ebalard */ 7070b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 | 7080b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE | 7090b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF); 7100b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); 7110b2f6228SArnaud Ebalard if (ret < 0) { 7120b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", 7130b2f6228SArnaud Ebalard __func__, ret); 7140b2f6228SArnaud Ebalard return ret; 7150b2f6228SArnaud Ebalard } 7160b2f6228SArnaud Ebalard 7170b2f6228SArnaud Ebalard /* Check oscillator integrity flag */ 7180b2f6228SArnaud Ebalard ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); 7190b2f6228SArnaud Ebalard if (ret < 0) { 7200b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", 7210b2f6228SArnaud Ebalard __func__, ret); 7220b2f6228SArnaud Ebalard return ret; 7230b2f6228SArnaud Ebalard } 7240b2f6228SArnaud Ebalard 7250b2f6228SArnaud Ebalard if (reg & ABB5ZES3_REG_RTC_SC_OSC) { 7260b2f6228SArnaud Ebalard dev_err(dev, "clock integrity not guaranteed. Osc. has stopped " 7270b2f6228SArnaud Ebalard "or has been interrupted.\n"); 7280b2f6228SArnaud Ebalard dev_err(dev, "change battery (if not already done) and " 7290b2f6228SArnaud Ebalard "then set time to reset osc. failure flag.\n"); 7300b2f6228SArnaud Ebalard } 7310b2f6228SArnaud Ebalard 7320b2f6228SArnaud Ebalard /* 7330b2f6228SArnaud Ebalard * Check battery low flag at startup: this allows reporting battery 7340b2f6228SArnaud Ebalard * is low at startup when IRQ line is not connected. Note: we record 7350b2f6228SArnaud Ebalard * current status to avoid reenabling this interrupt later in probe 7360b2f6228SArnaud Ebalard * function if battery is low. 7370b2f6228SArnaud Ebalard */ 7380b2f6228SArnaud Ebalard ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); 7390b2f6228SArnaud Ebalard if (ret < 0) { 7400b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to read battery low flag (%d)\n", 7410b2f6228SArnaud Ebalard __func__, ret); 7420b2f6228SArnaud Ebalard return ret; 7430b2f6228SArnaud Ebalard } 7440b2f6228SArnaud Ebalard 7450b2f6228SArnaud Ebalard data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; 7460b2f6228SArnaud Ebalard if (data->battery_low) { 7470b2f6228SArnaud Ebalard dev_err(dev, "RTC battery is low; please, consider " 7480b2f6228SArnaud Ebalard "changing it!\n"); 7490b2f6228SArnaud Ebalard 7500b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); 7510b2f6228SArnaud Ebalard if (ret) 7520b2f6228SArnaud Ebalard dev_err(dev, "%s: disabling battery low interrupt " 7530b2f6228SArnaud Ebalard "generation failed (%d)\n", __func__, ret); 7540b2f6228SArnaud Ebalard } 7550b2f6228SArnaud Ebalard 7560b2f6228SArnaud Ebalard return ret; 7570b2f6228SArnaud Ebalard } 7580b2f6228SArnaud Ebalard 7590b2f6228SArnaud Ebalard static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, 7600b2f6228SArnaud Ebalard unsigned int enable) 7610b2f6228SArnaud Ebalard { 7620b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 7630b2f6228SArnaud Ebalard int ret = 0; 7640b2f6228SArnaud Ebalard 7650b2f6228SArnaud Ebalard if (rtc_data->irq) { 766c8a1d8a5SArnaud Ebalard if (rtc_data->timer_alarm) 767c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_update_timer(dev, enable); 768c8a1d8a5SArnaud Ebalard else 7690b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_update_alarm(dev, enable); 7700b2f6228SArnaud Ebalard } 7710b2f6228SArnaud Ebalard 7720b2f6228SArnaud Ebalard return ret; 7730b2f6228SArnaud Ebalard } 7740b2f6228SArnaud Ebalard 7750b2f6228SArnaud Ebalard static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) 7760b2f6228SArnaud Ebalard { 7770b2f6228SArnaud Ebalard struct i2c_client *client = data; 7780b2f6228SArnaud Ebalard struct device *dev = &client->dev; 7790b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 7800b2f6228SArnaud Ebalard struct rtc_device *rtc = rtc_data->rtc; 7810b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_CTRL_SEC_LEN]; 7820b2f6228SArnaud Ebalard int ret, handled = IRQ_NONE; 7830b2f6228SArnaud Ebalard 7840b2f6228SArnaud Ebalard ret = regmap_bulk_read(rtc_data->regmap, 0, regs, 7850b2f6228SArnaud Ebalard ABB5ZES3_CTRL_SEC_LEN); 7860b2f6228SArnaud Ebalard if (ret) { 7870b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to read control section (%d)!\n", 7880b2f6228SArnaud Ebalard __func__, ret); 7890b2f6228SArnaud Ebalard return handled; 7900b2f6228SArnaud Ebalard } 7910b2f6228SArnaud Ebalard 7920b2f6228SArnaud Ebalard /* 7930b2f6228SArnaud Ebalard * Check battery low detection flag and disable battery low interrupt 7940b2f6228SArnaud Ebalard * generation if flag is set (interrupt can only be cleared when 7950b2f6228SArnaud Ebalard * battery is replaced). 7960b2f6228SArnaud Ebalard */ 7970b2f6228SArnaud Ebalard if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { 7980b2f6228SArnaud Ebalard dev_err(dev, "RTC battery is low; please change it!\n"); 7990b2f6228SArnaud Ebalard 8000b2f6228SArnaud Ebalard _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); 8010b2f6228SArnaud Ebalard 8020b2f6228SArnaud Ebalard handled = IRQ_HANDLED; 8030b2f6228SArnaud Ebalard } 8040b2f6228SArnaud Ebalard 8050b2f6228SArnaud Ebalard /* Check alarm flag */ 8060b2f6228SArnaud Ebalard if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { 8070b2f6228SArnaud Ebalard dev_dbg(dev, "RTC alarm!\n"); 8080b2f6228SArnaud Ebalard 8090b2f6228SArnaud Ebalard rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); 8100b2f6228SArnaud Ebalard 8110b2f6228SArnaud Ebalard /* Acknowledge and disable the alarm */ 8120b2f6228SArnaud Ebalard _abb5zes3_rtc_clear_alarm(dev); 8130b2f6228SArnaud Ebalard _abb5zes3_rtc_update_alarm(dev, 0); 8140b2f6228SArnaud Ebalard 8150b2f6228SArnaud Ebalard handled = IRQ_HANDLED; 8160b2f6228SArnaud Ebalard } 8170b2f6228SArnaud Ebalard 818c8a1d8a5SArnaud Ebalard /* Check watchdog Timer A flag */ 819c8a1d8a5SArnaud Ebalard if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { 820c8a1d8a5SArnaud Ebalard dev_dbg(dev, "RTC timer!\n"); 821c8a1d8a5SArnaud Ebalard 822c8a1d8a5SArnaud Ebalard rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); 823c8a1d8a5SArnaud Ebalard 824c8a1d8a5SArnaud Ebalard /* 825c8a1d8a5SArnaud Ebalard * Acknowledge and disable the alarm. Note: WTAF 826c8a1d8a5SArnaud Ebalard * flag had been cleared when reading CTRL2 827c8a1d8a5SArnaud Ebalard */ 828c8a1d8a5SArnaud Ebalard _abb5zes3_rtc_update_timer(dev, 0); 829c8a1d8a5SArnaud Ebalard 830c8a1d8a5SArnaud Ebalard rtc_data->timer_alarm = 0; 831c8a1d8a5SArnaud Ebalard 832c8a1d8a5SArnaud Ebalard handled = IRQ_HANDLED; 833c8a1d8a5SArnaud Ebalard } 834c8a1d8a5SArnaud Ebalard 8350b2f6228SArnaud Ebalard return handled; 8360b2f6228SArnaud Ebalard } 8370b2f6228SArnaud Ebalard 8380b2f6228SArnaud Ebalard static const struct rtc_class_ops rtc_ops = { 8390b2f6228SArnaud Ebalard .read_time = _abb5zes3_rtc_read_time, 8400b2f6228SArnaud Ebalard .set_time = abb5zes3_rtc_set_time, 8410b2f6228SArnaud Ebalard .read_alarm = abb5zes3_rtc_read_alarm, 8420b2f6228SArnaud Ebalard .set_alarm = abb5zes3_rtc_set_alarm, 8430b2f6228SArnaud Ebalard .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, 8440b2f6228SArnaud Ebalard }; 8450b2f6228SArnaud Ebalard 846ac2a2726SKrzysztof Kozlowski static const struct regmap_config abb5zes3_rtc_regmap_config = { 8470b2f6228SArnaud Ebalard .reg_bits = 8, 8480b2f6228SArnaud Ebalard .val_bits = 8, 8490b2f6228SArnaud Ebalard }; 8500b2f6228SArnaud Ebalard 8510b2f6228SArnaud Ebalard static int abb5zes3_probe(struct i2c_client *client, 8520b2f6228SArnaud Ebalard const struct i2c_device_id *id) 8530b2f6228SArnaud Ebalard { 8540b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = NULL; 8550b2f6228SArnaud Ebalard struct device *dev = &client->dev; 8560b2f6228SArnaud Ebalard struct regmap *regmap; 8570b2f6228SArnaud Ebalard int ret; 8580b2f6228SArnaud Ebalard 8590b2f6228SArnaud Ebalard if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | 8600b2f6228SArnaud Ebalard I2C_FUNC_SMBUS_BYTE_DATA | 861*5d049837SAlexandre Belloni I2C_FUNC_SMBUS_I2C_BLOCK)) 862*5d049837SAlexandre Belloni return -ENODEV; 8630b2f6228SArnaud Ebalard 8640b2f6228SArnaud Ebalard regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); 8650b2f6228SArnaud Ebalard if (IS_ERR(regmap)) { 8660b2f6228SArnaud Ebalard ret = PTR_ERR(regmap); 8670b2f6228SArnaud Ebalard dev_err(dev, "%s: regmap allocation failed: %d\n", 8680b2f6228SArnaud Ebalard __func__, ret); 869*5d049837SAlexandre Belloni return ret; 8700b2f6228SArnaud Ebalard } 8710b2f6228SArnaud Ebalard 8720b2f6228SArnaud Ebalard ret = abb5zes3_i2c_validate_chip(regmap); 8730b2f6228SArnaud Ebalard if (ret) 874*5d049837SAlexandre Belloni return ret; 8750b2f6228SArnaud Ebalard 8760b2f6228SArnaud Ebalard data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 877*5d049837SAlexandre Belloni if (!data) 878*5d049837SAlexandre Belloni return -ENOMEM; 8790b2f6228SArnaud Ebalard 8800b2f6228SArnaud Ebalard data->regmap = regmap; 8810b2f6228SArnaud Ebalard dev_set_drvdata(dev, data); 8820b2f6228SArnaud Ebalard 8830b2f6228SArnaud Ebalard ret = abb5zes3_rtc_check_setup(dev); 8840b2f6228SArnaud Ebalard if (ret) 885*5d049837SAlexandre Belloni return ret; 8860b2f6228SArnaud Ebalard 8878bde032bSAlexandre Belloni data->rtc = devm_rtc_allocate_device(dev); 8888bde032bSAlexandre Belloni ret = PTR_ERR_OR_ZERO(data->rtc); 8898bde032bSAlexandre Belloni if (ret) { 8908bde032bSAlexandre Belloni dev_err(dev, "%s: unable to allocate RTC device (%d)\n", 8918bde032bSAlexandre Belloni __func__, ret); 892*5d049837SAlexandre Belloni return ret; 8938bde032bSAlexandre Belloni } 8948bde032bSAlexandre Belloni 8950b2f6228SArnaud Ebalard if (client->irq > 0) { 8960b2f6228SArnaud Ebalard ret = devm_request_threaded_irq(dev, client->irq, NULL, 8970b2f6228SArnaud Ebalard _abb5zes3_rtc_interrupt, 8980b2f6228SArnaud Ebalard IRQF_SHARED|IRQF_ONESHOT, 8990b2f6228SArnaud Ebalard DRV_NAME, client); 9000b2f6228SArnaud Ebalard if (!ret) { 9010b2f6228SArnaud Ebalard device_init_wakeup(dev, true); 9020b2f6228SArnaud Ebalard data->irq = client->irq; 9030b2f6228SArnaud Ebalard dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, 9040b2f6228SArnaud Ebalard client->irq); 9050b2f6228SArnaud Ebalard } else { 9060b2f6228SArnaud Ebalard dev_err(dev, "%s: irq %d unavailable (%d)\n", 9070b2f6228SArnaud Ebalard __func__, client->irq, ret); 9080b2f6228SArnaud Ebalard goto err; 9090b2f6228SArnaud Ebalard } 9100b2f6228SArnaud Ebalard } 9110b2f6228SArnaud Ebalard 9128bde032bSAlexandre Belloni data->rtc->ops = &rtc_ops; 913c402f8eaSAlexandre Belloni data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; 914c402f8eaSAlexandre Belloni data->rtc->range_max = RTC_TIMESTAMP_END_2099; 9150b2f6228SArnaud Ebalard 9160b2f6228SArnaud Ebalard /* Enable battery low detection interrupt if battery not already low */ 9170b2f6228SArnaud Ebalard if (!data->battery_low && data->irq) { 9180b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); 9190b2f6228SArnaud Ebalard if (ret) { 9200b2f6228SArnaud Ebalard dev_err(dev, "%s: enabling battery low interrupt " 9210b2f6228SArnaud Ebalard "generation failed (%d)\n", __func__, ret); 9220b2f6228SArnaud Ebalard goto err; 9230b2f6228SArnaud Ebalard } 9240b2f6228SArnaud Ebalard } 9250b2f6228SArnaud Ebalard 9268bde032bSAlexandre Belloni ret = rtc_register_device(data->rtc); 9278bde032bSAlexandre Belloni 9280b2f6228SArnaud Ebalard err: 929*5d049837SAlexandre Belloni if (ret && data->irq) 9300b2f6228SArnaud Ebalard device_init_wakeup(dev, false); 9310b2f6228SArnaud Ebalard return ret; 9320b2f6228SArnaud Ebalard } 9330b2f6228SArnaud Ebalard 9340b2f6228SArnaud Ebalard static int abb5zes3_remove(struct i2c_client *client) 9350b2f6228SArnaud Ebalard { 9360b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev); 9370b2f6228SArnaud Ebalard 9380b2f6228SArnaud Ebalard if (rtc_data->irq > 0) 9390b2f6228SArnaud Ebalard device_init_wakeup(&client->dev, false); 9400b2f6228SArnaud Ebalard 9410b2f6228SArnaud Ebalard return 0; 9420b2f6228SArnaud Ebalard } 9430b2f6228SArnaud Ebalard 9440b2f6228SArnaud Ebalard #ifdef CONFIG_PM_SLEEP 9450b2f6228SArnaud Ebalard static int abb5zes3_rtc_suspend(struct device *dev) 9460b2f6228SArnaud Ebalard { 9470b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 9480b2f6228SArnaud Ebalard 9490b2f6228SArnaud Ebalard if (device_may_wakeup(dev)) 9500b2f6228SArnaud Ebalard return enable_irq_wake(rtc_data->irq); 9510b2f6228SArnaud Ebalard 9520b2f6228SArnaud Ebalard return 0; 9530b2f6228SArnaud Ebalard } 9540b2f6228SArnaud Ebalard 9550b2f6228SArnaud Ebalard static int abb5zes3_rtc_resume(struct device *dev) 9560b2f6228SArnaud Ebalard { 9570b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 9580b2f6228SArnaud Ebalard 9590b2f6228SArnaud Ebalard if (device_may_wakeup(dev)) 9600b2f6228SArnaud Ebalard return disable_irq_wake(rtc_data->irq); 9610b2f6228SArnaud Ebalard 9620b2f6228SArnaud Ebalard return 0; 9630b2f6228SArnaud Ebalard } 9640b2f6228SArnaud Ebalard #endif 9650b2f6228SArnaud Ebalard 9660b2f6228SArnaud Ebalard static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, 9670b2f6228SArnaud Ebalard abb5zes3_rtc_resume); 9680b2f6228SArnaud Ebalard 9690b2f6228SArnaud Ebalard #ifdef CONFIG_OF 9700b2f6228SArnaud Ebalard static const struct of_device_id abb5zes3_dt_match[] = { 9710b2f6228SArnaud Ebalard { .compatible = "abracon,abb5zes3" }, 9720b2f6228SArnaud Ebalard { }, 9730b2f6228SArnaud Ebalard }; 9741c4fc295SJavier Martinez Canillas MODULE_DEVICE_TABLE(of, abb5zes3_dt_match); 9750b2f6228SArnaud Ebalard #endif 9760b2f6228SArnaud Ebalard 9770b2f6228SArnaud Ebalard static const struct i2c_device_id abb5zes3_id[] = { 9780b2f6228SArnaud Ebalard { "abb5zes3", 0 }, 9790b2f6228SArnaud Ebalard { } 9800b2f6228SArnaud Ebalard }; 9810b2f6228SArnaud Ebalard MODULE_DEVICE_TABLE(i2c, abb5zes3_id); 9820b2f6228SArnaud Ebalard 9830b2f6228SArnaud Ebalard static struct i2c_driver abb5zes3_driver = { 9840b2f6228SArnaud Ebalard .driver = { 9850b2f6228SArnaud Ebalard .name = DRV_NAME, 9860b2f6228SArnaud Ebalard .pm = &abb5zes3_rtc_pm_ops, 9870b2f6228SArnaud Ebalard .of_match_table = of_match_ptr(abb5zes3_dt_match), 9880b2f6228SArnaud Ebalard }, 9890b2f6228SArnaud Ebalard .probe = abb5zes3_probe, 9900b2f6228SArnaud Ebalard .remove = abb5zes3_remove, 9910b2f6228SArnaud Ebalard .id_table = abb5zes3_id, 9920b2f6228SArnaud Ebalard }; 9930b2f6228SArnaud Ebalard module_i2c_driver(abb5zes3_driver); 9940b2f6228SArnaud Ebalard 9950b2f6228SArnaud Ebalard MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); 9960b2f6228SArnaud Ebalard MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); 9970b2f6228SArnaud Ebalard MODULE_LICENSE("GPL"); 998