181880649SAlexandre Belloni // SPDX-License-Identifier: GPL-2.0+ 20b2f6228SArnaud Ebalard /* 30b2f6228SArnaud Ebalard * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 40b2f6228SArnaud Ebalard * I2C RTC / Alarm chip 50b2f6228SArnaud Ebalard * 60b2f6228SArnaud Ebalard * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> 70b2f6228SArnaud Ebalard * 80b2f6228SArnaud Ebalard * Detailed datasheet of the chip is available here: 90b2f6228SArnaud Ebalard * 10*3567d3d1SAlexander A. Klimov * https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf 110b2f6228SArnaud Ebalard * 120b2f6228SArnaud Ebalard * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). 130b2f6228SArnaud Ebalard * 140b2f6228SArnaud Ebalard */ 150b2f6228SArnaud Ebalard 160b2f6228SArnaud Ebalard #include <linux/module.h> 170b2f6228SArnaud Ebalard #include <linux/rtc.h> 180b2f6228SArnaud Ebalard #include <linux/i2c.h> 190b2f6228SArnaud Ebalard #include <linux/bcd.h> 200b2f6228SArnaud Ebalard #include <linux/of.h> 210b2f6228SArnaud Ebalard #include <linux/regmap.h> 220b2f6228SArnaud Ebalard #include <linux/interrupt.h> 230b2f6228SArnaud Ebalard 240b2f6228SArnaud Ebalard #define DRV_NAME "rtc-ab-b5ze-s3" 250b2f6228SArnaud Ebalard 260b2f6228SArnaud Ebalard /* Control section */ 270b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */ 280b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */ 290b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */ 300b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */ 310b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */ 320b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */ 330b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */ 340b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL1_CAP BIT(7) 350b2f6228SArnaud Ebalard 360b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */ 370b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */ 380b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */ 390b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */ 400b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */ 410b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */ 420b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */ 430b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */ 440b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */ 450b2f6228SArnaud Ebalard 460b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */ 470b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */ 480b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */ 490b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */ 500b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */ 510b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */ 520b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */ 530b2f6228SArnaud Ebalard #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */ 540b2f6228SArnaud Ebalard 550b2f6228SArnaud Ebalard #define ABB5ZES3_CTRL_SEC_LEN 3 560b2f6228SArnaud Ebalard 570b2f6228SArnaud Ebalard /* RTC section */ 580b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */ 590b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */ 600b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */ 610b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */ 620b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */ 630b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */ 640b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */ 650b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */ 660b2f6228SArnaud Ebalard #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */ 670b2f6228SArnaud Ebalard 680b2f6228SArnaud Ebalard #define ABB5ZES3_RTC_SEC_LEN 7 690b2f6228SArnaud Ebalard 700b2f6228SArnaud Ebalard /* Alarm section (enable bits are all active low) */ 710b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */ 720b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */ 730b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */ 740b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */ 750b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */ 760b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */ 770b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */ 780b2f6228SArnaud Ebalard #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */ 790b2f6228SArnaud Ebalard 800b2f6228SArnaud Ebalard #define ABB5ZES3_ALRM_SEC_LEN 4 810b2f6228SArnaud Ebalard 820b2f6228SArnaud Ebalard /* Frequency offset section */ 830b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */ 840b2f6228SArnaud Ebalard #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */ 850b2f6228SArnaud Ebalard 860b2f6228SArnaud Ebalard /* CLOCKOUT section */ 870b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */ 880b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */ 890b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */ 900b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */ 910b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */ 920b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */ 930b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */ 940b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */ 950b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */ 960b2f6228SArnaud Ebalard 970b2f6228SArnaud Ebalard /* Timer A Section */ 980b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */ 990b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */ 1000b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */ 1010b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */ 1020b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */ 1030b2f6228SArnaud Ebalard 1040b2f6228SArnaud Ebalard #define ABB5ZES3_TIMA_SEC_LEN 2 1050b2f6228SArnaud Ebalard 1060b2f6228SArnaud Ebalard /* Timer B Section */ 1070b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */ 1080b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) 1090b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) 1100b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) 1110b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) 1120b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) 1130b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) 1140b2f6228SArnaud Ebalard #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */ 1150b2f6228SArnaud Ebalard #define ABB5ZES3_TIMB_SEC_LEN 2 1160b2f6228SArnaud Ebalard 1170b2f6228SArnaud Ebalard #define ABB5ZES3_MEM_MAP_LEN 0x14 1180b2f6228SArnaud Ebalard 1190b2f6228SArnaud Ebalard struct abb5zes3_rtc_data { 1200b2f6228SArnaud Ebalard struct rtc_device *rtc; 1210b2f6228SArnaud Ebalard struct regmap *regmap; 1220b2f6228SArnaud Ebalard 1230b2f6228SArnaud Ebalard int irq; 1240b2f6228SArnaud Ebalard 1250b2f6228SArnaud Ebalard bool battery_low; 126c8a1d8a5SArnaud Ebalard bool timer_alarm; /* current alarm is via timer A */ 1270b2f6228SArnaud Ebalard }; 1280b2f6228SArnaud Ebalard 1290b2f6228SArnaud Ebalard /* 1300b2f6228SArnaud Ebalard * Try and match register bits w/ fixed null values to see whether we 131ac246738SAlexandre Belloni * are dealing with an ABB5ZES3. 1320b2f6228SArnaud Ebalard */ 1330b2f6228SArnaud Ebalard static int abb5zes3_i2c_validate_chip(struct regmap *regmap) 1340b2f6228SArnaud Ebalard { 1350b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_MEM_MAP_LEN]; 1360b2f6228SArnaud Ebalard static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, 1370b2f6228SArnaud Ebalard 0x80, 0xc0, 0xc0, 0xf8, 1380b2f6228SArnaud Ebalard 0xe0, 0x00, 0x00, 0x40, 1390b2f6228SArnaud Ebalard 0x40, 0x78, 0x00, 0x00, 1400b2f6228SArnaud Ebalard 0xf8, 0x00, 0x88, 0x00 }; 1410b2f6228SArnaud Ebalard int ret, i; 1420b2f6228SArnaud Ebalard 1430b2f6228SArnaud Ebalard ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); 1440b2f6228SArnaud Ebalard if (ret) 1450b2f6228SArnaud Ebalard return ret; 1460b2f6228SArnaud Ebalard 1470b2f6228SArnaud Ebalard for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { 1480b2f6228SArnaud Ebalard if (regs[i] & mask[i]) /* check if bits are cleared */ 1490b2f6228SArnaud Ebalard return -ENODEV; 1500b2f6228SArnaud Ebalard } 1510b2f6228SArnaud Ebalard 1520b2f6228SArnaud Ebalard return 0; 1530b2f6228SArnaud Ebalard } 1540b2f6228SArnaud Ebalard 1550b2f6228SArnaud Ebalard /* Clear alarm status bit. */ 1560b2f6228SArnaud Ebalard static int _abb5zes3_rtc_clear_alarm(struct device *dev) 1570b2f6228SArnaud Ebalard { 1580b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 1590b2f6228SArnaud Ebalard int ret; 1600b2f6228SArnaud Ebalard 1610b2f6228SArnaud Ebalard ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, 1620b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL2_AF, 0); 1630b2f6228SArnaud Ebalard if (ret) 1640b2f6228SArnaud Ebalard dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); 1650b2f6228SArnaud Ebalard 1660b2f6228SArnaud Ebalard return ret; 1670b2f6228SArnaud Ebalard } 1680b2f6228SArnaud Ebalard 1690b2f6228SArnaud Ebalard /* Enable or disable alarm (i.e. alarm interrupt generation) */ 1700b2f6228SArnaud Ebalard static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) 1710b2f6228SArnaud Ebalard { 1720b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 1730b2f6228SArnaud Ebalard int ret; 1740b2f6228SArnaud Ebalard 1750b2f6228SArnaud Ebalard ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, 1760b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL1_AIE, 1770b2f6228SArnaud Ebalard enable ? ABB5ZES3_REG_CTRL1_AIE : 0); 1780b2f6228SArnaud Ebalard if (ret) 1790b2f6228SArnaud Ebalard dev_err(dev, "%s: writing alarm INT failed (%d)\n", 1800b2f6228SArnaud Ebalard __func__, ret); 1810b2f6228SArnaud Ebalard 1820b2f6228SArnaud Ebalard return ret; 1830b2f6228SArnaud Ebalard } 1840b2f6228SArnaud Ebalard 185c8a1d8a5SArnaud Ebalard /* Enable or disable timer (watchdog timer A interrupt generation) */ 186c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) 187c8a1d8a5SArnaud Ebalard { 188c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 189c8a1d8a5SArnaud Ebalard int ret; 190c8a1d8a5SArnaud Ebalard 191c8a1d8a5SArnaud Ebalard ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, 192c8a1d8a5SArnaud Ebalard ABB5ZES3_REG_CTRL2_WTAIE, 193c8a1d8a5SArnaud Ebalard enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); 194c8a1d8a5SArnaud Ebalard if (ret) 195c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: writing timer INT failed (%d)\n", 196c8a1d8a5SArnaud Ebalard __func__, ret); 197c8a1d8a5SArnaud Ebalard 198c8a1d8a5SArnaud Ebalard return ret; 199c8a1d8a5SArnaud Ebalard } 200c8a1d8a5SArnaud Ebalard 2010b2f6228SArnaud Ebalard /* 2020b2f6228SArnaud Ebalard * Note: we only read, so regmap inner lock protection is sufficient, i.e. 2030b2f6228SArnaud Ebalard * we do not need driver's main lock protection. 2040b2f6228SArnaud Ebalard */ 2050b2f6228SArnaud Ebalard static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) 2060b2f6228SArnaud Ebalard { 2070b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 2080b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; 209ce2e5a76SAlexandre Belloni int ret = 0; 2100b2f6228SArnaud Ebalard 2110b2f6228SArnaud Ebalard /* 2120b2f6228SArnaud Ebalard * As we need to read CTRL1 register anyway to access 24/12h 2130b2f6228SArnaud Ebalard * mode bit, we do a single bulk read of both control and RTC 2140b2f6228SArnaud Ebalard * sections (they are consecutive). This also ease indexing 2150b2f6228SArnaud Ebalard * of register values after bulk read. 2160b2f6228SArnaud Ebalard */ 2170b2f6228SArnaud Ebalard ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, 2180b2f6228SArnaud Ebalard sizeof(regs)); 2190b2f6228SArnaud Ebalard if (ret) { 2200b2f6228SArnaud Ebalard dev_err(dev, "%s: reading RTC time failed (%d)\n", 2210b2f6228SArnaud Ebalard __func__, ret); 2225d049837SAlexandre Belloni return ret; 2230b2f6228SArnaud Ebalard } 2240b2f6228SArnaud Ebalard 2250b2f6228SArnaud Ebalard /* If clock integrity is not guaranteed, do not return a time value */ 2265d049837SAlexandre Belloni if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) 2275d049837SAlexandre Belloni return -ENODATA; 2280b2f6228SArnaud Ebalard 2290b2f6228SArnaud Ebalard tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); 2300b2f6228SArnaud Ebalard tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); 2310b2f6228SArnaud Ebalard 2320b2f6228SArnaud Ebalard if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ 2330b2f6228SArnaud Ebalard tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); 2340b2f6228SArnaud Ebalard if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ 2350b2f6228SArnaud Ebalard tm->tm_hour += 12; 2360b2f6228SArnaud Ebalard } else { /* 24hr mode */ 2370b2f6228SArnaud Ebalard tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); 2380b2f6228SArnaud Ebalard } 2390b2f6228SArnaud Ebalard 2400b2f6228SArnaud Ebalard tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); 2410b2f6228SArnaud Ebalard tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); 2420b2f6228SArnaud Ebalard tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ 2430b2f6228SArnaud Ebalard tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; 2440b2f6228SArnaud Ebalard 2450b2f6228SArnaud Ebalard return ret; 2460b2f6228SArnaud Ebalard } 2470b2f6228SArnaud Ebalard 2480b2f6228SArnaud Ebalard static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) 2490b2f6228SArnaud Ebalard { 2500b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 2510b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; 2520b2f6228SArnaud Ebalard int ret; 2530b2f6228SArnaud Ebalard 2540b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ 2550b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); 2560b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ 2570b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); 2580b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); 2590b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); 2600b2f6228SArnaud Ebalard regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); 2610b2f6228SArnaud Ebalard 2620b2f6228SArnaud Ebalard ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, 2630b2f6228SArnaud Ebalard regs + ABB5ZES3_REG_RTC_SC, 2640b2f6228SArnaud Ebalard ABB5ZES3_RTC_SEC_LEN); 2650b2f6228SArnaud Ebalard 2660b2f6228SArnaud Ebalard return ret; 2670b2f6228SArnaud Ebalard } 2680b2f6228SArnaud Ebalard 269c8a1d8a5SArnaud Ebalard /* 270c8a1d8a5SArnaud Ebalard * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on 271c8a1d8a5SArnaud Ebalard * given number of seconds. 272c8a1d8a5SArnaud Ebalard */ 273c8a1d8a5SArnaud Ebalard static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) 274c8a1d8a5SArnaud Ebalard { 275c8a1d8a5SArnaud Ebalard *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ 276c8a1d8a5SArnaud Ebalard *timer_a = secs; 277c8a1d8a5SArnaud Ebalard } 278c8a1d8a5SArnaud Ebalard 279c8a1d8a5SArnaud Ebalard /* 280c8a1d8a5SArnaud Ebalard * Return current number of seconds in Timer A. As we only use 281c8a1d8a5SArnaud Ebalard * timer A with a 1Hz freq, this is what we expect to have. 282c8a1d8a5SArnaud Ebalard */ 283c8a1d8a5SArnaud Ebalard static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) 284c8a1d8a5SArnaud Ebalard { 285c8a1d8a5SArnaud Ebalard if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ 286c8a1d8a5SArnaud Ebalard return -EINVAL; 287c8a1d8a5SArnaud Ebalard 288c8a1d8a5SArnaud Ebalard *secs = timer_a; 289c8a1d8a5SArnaud Ebalard 290c8a1d8a5SArnaud Ebalard return 0; 291c8a1d8a5SArnaud Ebalard } 292c8a1d8a5SArnaud Ebalard 293c8a1d8a5SArnaud Ebalard /* 294c8a1d8a5SArnaud Ebalard * Read alarm currently configured via a watchdog timer using timer A. This 295c8a1d8a5SArnaud Ebalard * is done by reading current RTC time and adding remaining timer time. 296c8a1d8a5SArnaud Ebalard */ 297c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_timer(struct device *dev, 298c8a1d8a5SArnaud Ebalard struct rtc_wkalrm *alarm) 299c8a1d8a5SArnaud Ebalard { 300c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 301c8a1d8a5SArnaud Ebalard struct rtc_time rtc_tm, *alarm_tm = &alarm->time; 302c8a1d8a5SArnaud Ebalard u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; 303c8a1d8a5SArnaud Ebalard unsigned long rtc_secs; 304c8a1d8a5SArnaud Ebalard unsigned int reg; 305c8a1d8a5SArnaud Ebalard u8 timer_secs; 306c8a1d8a5SArnaud Ebalard int ret; 307c8a1d8a5SArnaud Ebalard 308c8a1d8a5SArnaud Ebalard /* 309c8a1d8a5SArnaud Ebalard * Instead of doing two separate calls, because they are consecutive, 310c8a1d8a5SArnaud Ebalard * we grab both clockout register and Timer A section. The latter is 311c8a1d8a5SArnaud Ebalard * used to decide if timer A is enabled (as a watchdog timer). 312c8a1d8a5SArnaud Ebalard */ 313c8a1d8a5SArnaud Ebalard ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, 314c8a1d8a5SArnaud Ebalard ABB5ZES3_TIMA_SEC_LEN + 1); 315c8a1d8a5SArnaud Ebalard if (ret) { 316c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: reading Timer A section failed (%d)\n", 317c8a1d8a5SArnaud Ebalard __func__, ret); 3185d049837SAlexandre Belloni return ret; 319c8a1d8a5SArnaud Ebalard } 320c8a1d8a5SArnaud Ebalard 321c8a1d8a5SArnaud Ebalard /* get current time ... */ 322c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 323c8a1d8a5SArnaud Ebalard if (ret) 3245d049837SAlexandre Belloni return ret; 325c8a1d8a5SArnaud Ebalard 326c8a1d8a5SArnaud Ebalard /* ... convert to seconds ... */ 3278a941124SAlexandre Belloni rtc_secs = rtc_tm_to_time64(&rtc_tm); 328c8a1d8a5SArnaud Ebalard 329c8a1d8a5SArnaud Ebalard /* ... add remaining timer A time ... */ 330c8a1d8a5SArnaud Ebalard ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); 331c8a1d8a5SArnaud Ebalard if (ret) 3325d049837SAlexandre Belloni return ret; 333c8a1d8a5SArnaud Ebalard 334c8a1d8a5SArnaud Ebalard /* ... and convert back. */ 3358a941124SAlexandre Belloni rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm); 336c8a1d8a5SArnaud Ebalard 337c8a1d8a5SArnaud Ebalard ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); 338c8a1d8a5SArnaud Ebalard if (ret) { 339c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: reading ctrl reg failed (%d)\n", 340c8a1d8a5SArnaud Ebalard __func__, ret); 3415d049837SAlexandre Belloni return ret; 342c8a1d8a5SArnaud Ebalard } 343c8a1d8a5SArnaud Ebalard 344c8a1d8a5SArnaud Ebalard alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); 345c8a1d8a5SArnaud Ebalard 3465d049837SAlexandre Belloni return 0; 347c8a1d8a5SArnaud Ebalard } 348c8a1d8a5SArnaud Ebalard 349c8a1d8a5SArnaud Ebalard /* Read alarm currently configured via a RTC alarm registers. */ 350c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_read_alarm(struct device *dev, 351c8a1d8a5SArnaud Ebalard struct rtc_wkalrm *alarm) 3520b2f6228SArnaud Ebalard { 3530b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 3540b2f6228SArnaud Ebalard struct rtc_time rtc_tm, *alarm_tm = &alarm->time; 3550b2f6228SArnaud Ebalard unsigned long rtc_secs, alarm_secs; 3560b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_ALRM_SEC_LEN]; 3570b2f6228SArnaud Ebalard unsigned int reg; 3580b2f6228SArnaud Ebalard int ret; 3590b2f6228SArnaud Ebalard 3600b2f6228SArnaud Ebalard ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, 3610b2f6228SArnaud Ebalard ABB5ZES3_ALRM_SEC_LEN); 3620b2f6228SArnaud Ebalard if (ret) { 3630b2f6228SArnaud Ebalard dev_err(dev, "%s: reading alarm section failed (%d)\n", 3640b2f6228SArnaud Ebalard __func__, ret); 3655d049837SAlexandre Belloni return ret; 3660b2f6228SArnaud Ebalard } 3670b2f6228SArnaud Ebalard 3680b2f6228SArnaud Ebalard alarm_tm->tm_sec = 0; 3690b2f6228SArnaud Ebalard alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f); 3700b2f6228SArnaud Ebalard alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); 3710b2f6228SArnaud Ebalard alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); 3720b2f6228SArnaud Ebalard alarm_tm->tm_wday = -1; 3730b2f6228SArnaud Ebalard 3740b2f6228SArnaud Ebalard /* 3750b2f6228SArnaud Ebalard * The alarm section does not store year/month. We use the ones in rtc 3760b2f6228SArnaud Ebalard * section as a basis and increment month and then year if needed to get 3770b2f6228SArnaud Ebalard * alarm after current time. 3780b2f6228SArnaud Ebalard */ 3790b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 3800b2f6228SArnaud Ebalard if (ret) 3815d049837SAlexandre Belloni return ret; 3820b2f6228SArnaud Ebalard 3830b2f6228SArnaud Ebalard alarm_tm->tm_year = rtc_tm.tm_year; 3840b2f6228SArnaud Ebalard alarm_tm->tm_mon = rtc_tm.tm_mon; 3850b2f6228SArnaud Ebalard 3868a941124SAlexandre Belloni rtc_secs = rtc_tm_to_time64(&rtc_tm); 3878a941124SAlexandre Belloni alarm_secs = rtc_tm_to_time64(alarm_tm); 3880b2f6228SArnaud Ebalard 3890b2f6228SArnaud Ebalard if (alarm_secs < rtc_secs) { 3900b2f6228SArnaud Ebalard if (alarm_tm->tm_mon == 11) { 3910b2f6228SArnaud Ebalard alarm_tm->tm_mon = 0; 3920b2f6228SArnaud Ebalard alarm_tm->tm_year += 1; 3930b2f6228SArnaud Ebalard } else { 3940b2f6228SArnaud Ebalard alarm_tm->tm_mon += 1; 3950b2f6228SArnaud Ebalard } 3960b2f6228SArnaud Ebalard } 3970b2f6228SArnaud Ebalard 3980b2f6228SArnaud Ebalard ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); 3990b2f6228SArnaud Ebalard if (ret) { 4000b2f6228SArnaud Ebalard dev_err(dev, "%s: reading ctrl reg failed (%d)\n", 4010b2f6228SArnaud Ebalard __func__, ret); 4025d049837SAlexandre Belloni return ret; 4030b2f6228SArnaud Ebalard } 4040b2f6228SArnaud Ebalard 4050b2f6228SArnaud Ebalard alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); 4060b2f6228SArnaud Ebalard 4075d049837SAlexandre Belloni return 0; 408c8a1d8a5SArnaud Ebalard } 409c8a1d8a5SArnaud Ebalard 410c8a1d8a5SArnaud Ebalard /* 411c8a1d8a5SArnaud Ebalard * As the Alarm mechanism supported by the chip is only accurate to the 412c8a1d8a5SArnaud Ebalard * minute, we use the watchdog timer mechanism provided by timer A 413c8a1d8a5SArnaud Ebalard * (up to 256 seconds w/ a second accuracy) for low alarm values (below 414c8a1d8a5SArnaud Ebalard * 4 minutes). Otherwise, we use the common alarm mechanism provided 415c8a1d8a5SArnaud Ebalard * by the chip. In order for that to work, we keep track of currently 416c8a1d8a5SArnaud Ebalard * configured timer type via 'timer_alarm' flag in our private data 417c8a1d8a5SArnaud Ebalard * structure. 418c8a1d8a5SArnaud Ebalard */ 419c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) 420c8a1d8a5SArnaud Ebalard { 421c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 422c8a1d8a5SArnaud Ebalard int ret; 423c8a1d8a5SArnaud Ebalard 424c8a1d8a5SArnaud Ebalard if (data->timer_alarm) 425c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_read_timer(dev, alarm); 426c8a1d8a5SArnaud Ebalard else 427c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_read_alarm(dev, alarm); 4280b2f6228SArnaud Ebalard 4290b2f6228SArnaud Ebalard return ret; 4300b2f6228SArnaud Ebalard } 4310b2f6228SArnaud Ebalard 432c8a1d8a5SArnaud Ebalard /* 433c8a1d8a5SArnaud Ebalard * Set alarm using chip alarm mechanism. It is only accurate to the 434c8a1d8a5SArnaud Ebalard * minute (not the second). The function expects alarm interrupt to 435c8a1d8a5SArnaud Ebalard * be disabled. 436c8a1d8a5SArnaud Ebalard */ 437c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 4380b2f6228SArnaud Ebalard { 4390b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 4400b2f6228SArnaud Ebalard struct rtc_time *alarm_tm = &alarm->time; 4410b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_ALRM_SEC_LEN]; 4420b2f6228SArnaud Ebalard struct rtc_time rtc_tm; 4430b2f6228SArnaud Ebalard int ret, enable = 1; 4440b2f6228SArnaud Ebalard 44533fee143SAlexandre Belloni if (!alarm->enabled) { 4460b2f6228SArnaud Ebalard enable = 0; 4470b2f6228SArnaud Ebalard } else { 44833fee143SAlexandre Belloni unsigned long rtc_secs, alarm_secs; 44933fee143SAlexandre Belloni 4500b2f6228SArnaud Ebalard /* 4510b2f6228SArnaud Ebalard * Chip only support alarms up to one month in the future. Let's 4520b2f6228SArnaud Ebalard * return an error if we get something after that limit. 4530b2f6228SArnaud Ebalard * Comparison is done by incrementing rtc_tm month field by one 4540b2f6228SArnaud Ebalard * and checking alarm value is still below. 4550b2f6228SArnaud Ebalard */ 45633fee143SAlexandre Belloni ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 45733fee143SAlexandre Belloni if (ret) 45833fee143SAlexandre Belloni return ret; 45933fee143SAlexandre Belloni 4600b2f6228SArnaud Ebalard if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ 4610b2f6228SArnaud Ebalard rtc_tm.tm_mon = 0; 4620b2f6228SArnaud Ebalard rtc_tm.tm_year += 1; 4630b2f6228SArnaud Ebalard } else { 4640b2f6228SArnaud Ebalard rtc_tm.tm_mon += 1; 4650b2f6228SArnaud Ebalard } 4660b2f6228SArnaud Ebalard 4678a941124SAlexandre Belloni rtc_secs = rtc_tm_to_time64(&rtc_tm); 46833fee143SAlexandre Belloni alarm_secs = rtc_tm_to_time64(alarm_tm); 4690b2f6228SArnaud Ebalard 4700b2f6228SArnaud Ebalard if (alarm_secs > rtc_secs) { 4719c3ab855SAlexandre Belloni dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n", 4729c3ab855SAlexandre Belloni __func__, ret); 4735d049837SAlexandre Belloni return -EINVAL; 4740b2f6228SArnaud Ebalard } 4750b2f6228SArnaud Ebalard } 4760b2f6228SArnaud Ebalard 477c8a1d8a5SArnaud Ebalard /* 478c8a1d8a5SArnaud Ebalard * Program all alarm registers but DW one. For each register, setting 479c8a1d8a5SArnaud Ebalard * MSB to 0 enables associated alarm. 480c8a1d8a5SArnaud Ebalard */ 481c8a1d8a5SArnaud Ebalard regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; 482c8a1d8a5SArnaud Ebalard regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; 483c8a1d8a5SArnaud Ebalard regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; 4840b2f6228SArnaud Ebalard regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ 4850b2f6228SArnaud Ebalard 4860b2f6228SArnaud Ebalard ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, 4870b2f6228SArnaud Ebalard ABB5ZES3_ALRM_SEC_LEN); 4880b2f6228SArnaud Ebalard if (ret < 0) { 4890b2f6228SArnaud Ebalard dev_err(dev, "%s: writing ALARM section failed (%d)\n", 4900b2f6228SArnaud Ebalard __func__, ret); 4915d049837SAlexandre Belloni return ret; 4920b2f6228SArnaud Ebalard } 4930b2f6228SArnaud Ebalard 494c8a1d8a5SArnaud Ebalard /* Record currently configured alarm is not a timer */ 495c8a1d8a5SArnaud Ebalard data->timer_alarm = 0; 496c8a1d8a5SArnaud Ebalard 497c8a1d8a5SArnaud Ebalard /* Enable or disable alarm interrupt generation */ 4985d049837SAlexandre Belloni return _abb5zes3_rtc_update_alarm(dev, enable); 499c8a1d8a5SArnaud Ebalard } 500c8a1d8a5SArnaud Ebalard 501c8a1d8a5SArnaud Ebalard /* 502c8a1d8a5SArnaud Ebalard * Set alarm using timer watchdog (via timer A) mechanism. The function expects 503c8a1d8a5SArnaud Ebalard * timer A interrupt to be disabled. 504c8a1d8a5SArnaud Ebalard */ 505c8a1d8a5SArnaud Ebalard static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, 506c8a1d8a5SArnaud Ebalard u8 secs) 507c8a1d8a5SArnaud Ebalard { 508c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 509c8a1d8a5SArnaud Ebalard u8 regs[ABB5ZES3_TIMA_SEC_LEN]; 510c8a1d8a5SArnaud Ebalard u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; 511c8a1d8a5SArnaud Ebalard int ret = 0; 512c8a1d8a5SArnaud Ebalard 513c8a1d8a5SArnaud Ebalard /* Program given number of seconds to Timer A registers */ 514c8a1d8a5SArnaud Ebalard sec_to_timer_a(secs, ®s[0], ®s[1]); 515c8a1d8a5SArnaud Ebalard ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, 516c8a1d8a5SArnaud Ebalard ABB5ZES3_TIMA_SEC_LEN); 517c8a1d8a5SArnaud Ebalard if (ret < 0) { 518c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: writing timer section failed\n", __func__); 5195d049837SAlexandre Belloni return ret; 520c8a1d8a5SArnaud Ebalard } 521c8a1d8a5SArnaud Ebalard 522c8a1d8a5SArnaud Ebalard /* Configure Timer A as a watchdog timer */ 523c8a1d8a5SArnaud Ebalard ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, 524c8a1d8a5SArnaud Ebalard mask, ABB5ZES3_REG_TIM_CLK_TAC1); 525c8a1d8a5SArnaud Ebalard if (ret) 526c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: failed to update timer\n", __func__); 527c8a1d8a5SArnaud Ebalard 528c8a1d8a5SArnaud Ebalard /* Record currently configured alarm is a timer */ 529c8a1d8a5SArnaud Ebalard data->timer_alarm = 1; 530c8a1d8a5SArnaud Ebalard 531c8a1d8a5SArnaud Ebalard /* Enable or disable timer interrupt generation */ 5325d049837SAlexandre Belloni return _abb5zes3_rtc_update_timer(dev, alarm->enabled); 533c8a1d8a5SArnaud Ebalard } 534c8a1d8a5SArnaud Ebalard 535c8a1d8a5SArnaud Ebalard /* 536c8a1d8a5SArnaud Ebalard * The chip has an alarm which is only accurate to the minute. In order to 537c8a1d8a5SArnaud Ebalard * handle alarms below that limit, we use the watchdog timer function of 538c8a1d8a5SArnaud Ebalard * timer A. More precisely, the timer method is used for alarms below 240 539c8a1d8a5SArnaud Ebalard * seconds. 540c8a1d8a5SArnaud Ebalard */ 541c8a1d8a5SArnaud Ebalard static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 542c8a1d8a5SArnaud Ebalard { 543c8a1d8a5SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 544c8a1d8a5SArnaud Ebalard struct rtc_time *alarm_tm = &alarm->time; 545c8a1d8a5SArnaud Ebalard unsigned long rtc_secs, alarm_secs; 546c8a1d8a5SArnaud Ebalard struct rtc_time rtc_tm; 547c8a1d8a5SArnaud Ebalard int ret; 548c8a1d8a5SArnaud Ebalard 549c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 550c8a1d8a5SArnaud Ebalard if (ret) 5515d049837SAlexandre Belloni return ret; 552c8a1d8a5SArnaud Ebalard 5538a941124SAlexandre Belloni rtc_secs = rtc_tm_to_time64(&rtc_tm); 5548a941124SAlexandre Belloni alarm_secs = rtc_tm_to_time64(alarm_tm); 555c8a1d8a5SArnaud Ebalard 556c8a1d8a5SArnaud Ebalard /* Let's first disable both the alarm and the timer interrupts */ 557c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_update_alarm(dev, false); 558c8a1d8a5SArnaud Ebalard if (ret < 0) { 559c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, 560c8a1d8a5SArnaud Ebalard ret); 5615d049837SAlexandre Belloni return ret; 562c8a1d8a5SArnaud Ebalard } 563c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_update_timer(dev, false); 564c8a1d8a5SArnaud Ebalard if (ret < 0) { 565c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, 566c8a1d8a5SArnaud Ebalard ret); 5675d049837SAlexandre Belloni return ret; 568c8a1d8a5SArnaud Ebalard } 569c8a1d8a5SArnaud Ebalard 570c8a1d8a5SArnaud Ebalard data->timer_alarm = 0; 571c8a1d8a5SArnaud Ebalard 572c8a1d8a5SArnaud Ebalard /* 573c8a1d8a5SArnaud Ebalard * Let's now configure the alarm; if we are expected to ring in 574c8a1d8a5SArnaud Ebalard * more than 240s, then we setup an alarm. Otherwise, a timer. 575c8a1d8a5SArnaud Ebalard */ 576c8a1d8a5SArnaud Ebalard if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) 577c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_set_timer(dev, alarm, 578c8a1d8a5SArnaud Ebalard alarm_secs - rtc_secs); 579c8a1d8a5SArnaud Ebalard else 580c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_set_alarm(dev, alarm); 581c8a1d8a5SArnaud Ebalard 582c8a1d8a5SArnaud Ebalard if (ret) 583c8a1d8a5SArnaud Ebalard dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, 584c8a1d8a5SArnaud Ebalard ret); 585c8a1d8a5SArnaud Ebalard 5860b2f6228SArnaud Ebalard return ret; 5870b2f6228SArnaud Ebalard } 5880b2f6228SArnaud Ebalard 5890b2f6228SArnaud Ebalard /* Enable or disable battery low irq generation */ 5900b2f6228SArnaud Ebalard static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, 5910b2f6228SArnaud Ebalard bool enable) 5920b2f6228SArnaud Ebalard { 5930b2f6228SArnaud Ebalard return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, 5940b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL3_BLIE, 5950b2f6228SArnaud Ebalard enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); 5960b2f6228SArnaud Ebalard } 5970b2f6228SArnaud Ebalard 5980b2f6228SArnaud Ebalard /* 5990b2f6228SArnaud Ebalard * Check current RTC status and enable/disable what needs to be. Return 0 if 600ac246738SAlexandre Belloni * everything went ok and a negative value upon error. 6010b2f6228SArnaud Ebalard */ 6020b2f6228SArnaud Ebalard static int abb5zes3_rtc_check_setup(struct device *dev) 6030b2f6228SArnaud Ebalard { 6040b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 6050b2f6228SArnaud Ebalard struct regmap *regmap = data->regmap; 6060b2f6228SArnaud Ebalard unsigned int reg; 6070b2f6228SArnaud Ebalard int ret; 6080b2f6228SArnaud Ebalard u8 mask; 6090b2f6228SArnaud Ebalard 6100b2f6228SArnaud Ebalard /* 6110b2f6228SArnaud Ebalard * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It 6120b2f6228SArnaud Ebalard * is disabled here to prevent polluting the interrupt line and 6130b2f6228SArnaud Ebalard * uselessly triggering the IRQ handler we install for alarm and battery 6140b2f6228SArnaud Ebalard * low events. Note: this is done before clearing int. status below 6150b2f6228SArnaud Ebalard * in this function. 6160b2f6228SArnaud Ebalard * We also disable all timers and set timer interrupt to permanent (not 6170b2f6228SArnaud Ebalard * pulsed). 6180b2f6228SArnaud Ebalard */ 6190b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | 6200b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | 6210b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | 6220b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); 6230b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, 6249c3ab855SAlexandre Belloni ABB5ZES3_REG_TIM_CLK_COF0 | 6259c3ab855SAlexandre Belloni ABB5ZES3_REG_TIM_CLK_COF1 | 6260b2f6228SArnaud Ebalard ABB5ZES3_REG_TIM_CLK_COF2); 6270b2f6228SArnaud Ebalard if (ret < 0) { 6280b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to initialize clkout register (%d)\n", 6290b2f6228SArnaud Ebalard __func__, ret); 6300b2f6228SArnaud Ebalard return ret; 6310b2f6228SArnaud Ebalard } 6320b2f6228SArnaud Ebalard 6330b2f6228SArnaud Ebalard /* 6340b2f6228SArnaud Ebalard * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled 6350b2f6228SArnaud Ebalard * individually by clearing/setting MSB of each associated register. So, 6360b2f6228SArnaud Ebalard * we set all alarm enable bits to disable current alarm setting. 6370b2f6228SArnaud Ebalard */ 6380b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | 6390b2f6228SArnaud Ebalard ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); 6400b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); 6410b2f6228SArnaud Ebalard if (ret < 0) { 6420b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to disable alarm setting (%d)\n", 6430b2f6228SArnaud Ebalard __func__, ret); 6440b2f6228SArnaud Ebalard return ret; 6450b2f6228SArnaud Ebalard } 6460b2f6228SArnaud Ebalard 6470b2f6228SArnaud Ebalard /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ 6480b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | 6490b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | 6500b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); 6510b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); 6520b2f6228SArnaud Ebalard if (ret < 0) { 6530b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", 6540b2f6228SArnaud Ebalard __func__, ret); 6550b2f6228SArnaud Ebalard return ret; 6560b2f6228SArnaud Ebalard } 6570b2f6228SArnaud Ebalard 6580b2f6228SArnaud Ebalard /* 6590b2f6228SArnaud Ebalard * Set Control 2 register (timer int. disabled, alarm status cleared). 6600b2f6228SArnaud Ebalard * WTAF is read-only and cleared automatically by reading the register. 6610b2f6228SArnaud Ebalard */ 6620b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | 6630b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | 6640b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | 6650b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL2_CTAF); 6660b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); 6670b2f6228SArnaud Ebalard if (ret < 0) { 6680b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", 6690b2f6228SArnaud Ebalard __func__, ret); 6700b2f6228SArnaud Ebalard return ret; 6710b2f6228SArnaud Ebalard } 6720b2f6228SArnaud Ebalard 6730b2f6228SArnaud Ebalard /* 6740b2f6228SArnaud Ebalard * Enable battery low detection function and battery switchover function 6750b2f6228SArnaud Ebalard * (standard mode). Disable associated interrupts. Clear battery 6760b2f6228SArnaud Ebalard * switchover flag but not battery low flag. The latter is checked 6770b2f6228SArnaud Ebalard * later below. 6780b2f6228SArnaud Ebalard */ 6790b2f6228SArnaud Ebalard mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 | 6800b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE | 6810b2f6228SArnaud Ebalard ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF); 6820b2f6228SArnaud Ebalard ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); 6830b2f6228SArnaud Ebalard if (ret < 0) { 6840b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", 6850b2f6228SArnaud Ebalard __func__, ret); 6860b2f6228SArnaud Ebalard return ret; 6870b2f6228SArnaud Ebalard } 6880b2f6228SArnaud Ebalard 6890b2f6228SArnaud Ebalard /* Check oscillator integrity flag */ 6900b2f6228SArnaud Ebalard ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); 6910b2f6228SArnaud Ebalard if (ret < 0) { 6920b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", 6930b2f6228SArnaud Ebalard __func__, ret); 6940b2f6228SArnaud Ebalard return ret; 6950b2f6228SArnaud Ebalard } 6960b2f6228SArnaud Ebalard 6970b2f6228SArnaud Ebalard if (reg & ABB5ZES3_REG_RTC_SC_OSC) { 6989c3ab855SAlexandre Belloni dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n"); 6999c3ab855SAlexandre Belloni dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n"); 7000b2f6228SArnaud Ebalard } 7010b2f6228SArnaud Ebalard 7020b2f6228SArnaud Ebalard /* 7030b2f6228SArnaud Ebalard * Check battery low flag at startup: this allows reporting battery 7040b2f6228SArnaud Ebalard * is low at startup when IRQ line is not connected. Note: we record 7050b2f6228SArnaud Ebalard * current status to avoid reenabling this interrupt later in probe 7060b2f6228SArnaud Ebalard * function if battery is low. 7070b2f6228SArnaud Ebalard */ 7080b2f6228SArnaud Ebalard ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); 7090b2f6228SArnaud Ebalard if (ret < 0) { 7100b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to read battery low flag (%d)\n", 7110b2f6228SArnaud Ebalard __func__, ret); 7120b2f6228SArnaud Ebalard return ret; 7130b2f6228SArnaud Ebalard } 7140b2f6228SArnaud Ebalard 7150b2f6228SArnaud Ebalard data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; 7160b2f6228SArnaud Ebalard if (data->battery_low) { 7179c3ab855SAlexandre Belloni dev_err(dev, "RTC battery is low; please, consider changing it!\n"); 7180b2f6228SArnaud Ebalard 7190b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); 7200b2f6228SArnaud Ebalard if (ret) 7219c3ab855SAlexandre Belloni dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n", 7229c3ab855SAlexandre Belloni __func__, ret); 7230b2f6228SArnaud Ebalard } 7240b2f6228SArnaud Ebalard 7250b2f6228SArnaud Ebalard return ret; 7260b2f6228SArnaud Ebalard } 7270b2f6228SArnaud Ebalard 7280b2f6228SArnaud Ebalard static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, 7290b2f6228SArnaud Ebalard unsigned int enable) 7300b2f6228SArnaud Ebalard { 7310b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 7320b2f6228SArnaud Ebalard int ret = 0; 7330b2f6228SArnaud Ebalard 7340b2f6228SArnaud Ebalard if (rtc_data->irq) { 735c8a1d8a5SArnaud Ebalard if (rtc_data->timer_alarm) 736c8a1d8a5SArnaud Ebalard ret = _abb5zes3_rtc_update_timer(dev, enable); 737c8a1d8a5SArnaud Ebalard else 7380b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_update_alarm(dev, enable); 7390b2f6228SArnaud Ebalard } 7400b2f6228SArnaud Ebalard 7410b2f6228SArnaud Ebalard return ret; 7420b2f6228SArnaud Ebalard } 7430b2f6228SArnaud Ebalard 7440b2f6228SArnaud Ebalard static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) 7450b2f6228SArnaud Ebalard { 7460b2f6228SArnaud Ebalard struct i2c_client *client = data; 7470b2f6228SArnaud Ebalard struct device *dev = &client->dev; 7480b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 7490b2f6228SArnaud Ebalard struct rtc_device *rtc = rtc_data->rtc; 7500b2f6228SArnaud Ebalard u8 regs[ABB5ZES3_CTRL_SEC_LEN]; 7510b2f6228SArnaud Ebalard int ret, handled = IRQ_NONE; 7520b2f6228SArnaud Ebalard 7530b2f6228SArnaud Ebalard ret = regmap_bulk_read(rtc_data->regmap, 0, regs, 7540b2f6228SArnaud Ebalard ABB5ZES3_CTRL_SEC_LEN); 7550b2f6228SArnaud Ebalard if (ret) { 7560b2f6228SArnaud Ebalard dev_err(dev, "%s: unable to read control section (%d)!\n", 7570b2f6228SArnaud Ebalard __func__, ret); 7580b2f6228SArnaud Ebalard return handled; 7590b2f6228SArnaud Ebalard } 7600b2f6228SArnaud Ebalard 7610b2f6228SArnaud Ebalard /* 7620b2f6228SArnaud Ebalard * Check battery low detection flag and disable battery low interrupt 7630b2f6228SArnaud Ebalard * generation if flag is set (interrupt can only be cleared when 7640b2f6228SArnaud Ebalard * battery is replaced). 7650b2f6228SArnaud Ebalard */ 7660b2f6228SArnaud Ebalard if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { 7670b2f6228SArnaud Ebalard dev_err(dev, "RTC battery is low; please change it!\n"); 7680b2f6228SArnaud Ebalard 7690b2f6228SArnaud Ebalard _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); 7700b2f6228SArnaud Ebalard 7710b2f6228SArnaud Ebalard handled = IRQ_HANDLED; 7720b2f6228SArnaud Ebalard } 7730b2f6228SArnaud Ebalard 7740b2f6228SArnaud Ebalard /* Check alarm flag */ 7750b2f6228SArnaud Ebalard if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { 7760b2f6228SArnaud Ebalard dev_dbg(dev, "RTC alarm!\n"); 7770b2f6228SArnaud Ebalard 7780b2f6228SArnaud Ebalard rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); 7790b2f6228SArnaud Ebalard 7800b2f6228SArnaud Ebalard /* Acknowledge and disable the alarm */ 7810b2f6228SArnaud Ebalard _abb5zes3_rtc_clear_alarm(dev); 7820b2f6228SArnaud Ebalard _abb5zes3_rtc_update_alarm(dev, 0); 7830b2f6228SArnaud Ebalard 7840b2f6228SArnaud Ebalard handled = IRQ_HANDLED; 7850b2f6228SArnaud Ebalard } 7860b2f6228SArnaud Ebalard 787c8a1d8a5SArnaud Ebalard /* Check watchdog Timer A flag */ 788c8a1d8a5SArnaud Ebalard if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { 789c8a1d8a5SArnaud Ebalard dev_dbg(dev, "RTC timer!\n"); 790c8a1d8a5SArnaud Ebalard 791c8a1d8a5SArnaud Ebalard rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); 792c8a1d8a5SArnaud Ebalard 793c8a1d8a5SArnaud Ebalard /* 794c8a1d8a5SArnaud Ebalard * Acknowledge and disable the alarm. Note: WTAF 795c8a1d8a5SArnaud Ebalard * flag had been cleared when reading CTRL2 796c8a1d8a5SArnaud Ebalard */ 797c8a1d8a5SArnaud Ebalard _abb5zes3_rtc_update_timer(dev, 0); 798c8a1d8a5SArnaud Ebalard 799c8a1d8a5SArnaud Ebalard rtc_data->timer_alarm = 0; 800c8a1d8a5SArnaud Ebalard 801c8a1d8a5SArnaud Ebalard handled = IRQ_HANDLED; 802c8a1d8a5SArnaud Ebalard } 803c8a1d8a5SArnaud Ebalard 8040b2f6228SArnaud Ebalard return handled; 8050b2f6228SArnaud Ebalard } 8060b2f6228SArnaud Ebalard 8070b2f6228SArnaud Ebalard static const struct rtc_class_ops rtc_ops = { 8080b2f6228SArnaud Ebalard .read_time = _abb5zes3_rtc_read_time, 8090b2f6228SArnaud Ebalard .set_time = abb5zes3_rtc_set_time, 8100b2f6228SArnaud Ebalard .read_alarm = abb5zes3_rtc_read_alarm, 8110b2f6228SArnaud Ebalard .set_alarm = abb5zes3_rtc_set_alarm, 8120b2f6228SArnaud Ebalard .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, 8130b2f6228SArnaud Ebalard }; 8140b2f6228SArnaud Ebalard 815ac2a2726SKrzysztof Kozlowski static const struct regmap_config abb5zes3_rtc_regmap_config = { 8160b2f6228SArnaud Ebalard .reg_bits = 8, 8170b2f6228SArnaud Ebalard .val_bits = 8, 8180b2f6228SArnaud Ebalard }; 8190b2f6228SArnaud Ebalard 8200b2f6228SArnaud Ebalard static int abb5zes3_probe(struct i2c_client *client, 8210b2f6228SArnaud Ebalard const struct i2c_device_id *id) 8220b2f6228SArnaud Ebalard { 8230b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *data = NULL; 8240b2f6228SArnaud Ebalard struct device *dev = &client->dev; 8250b2f6228SArnaud Ebalard struct regmap *regmap; 8260b2f6228SArnaud Ebalard int ret; 8270b2f6228SArnaud Ebalard 8280b2f6228SArnaud Ebalard if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | 8290b2f6228SArnaud Ebalard I2C_FUNC_SMBUS_BYTE_DATA | 8305d049837SAlexandre Belloni I2C_FUNC_SMBUS_I2C_BLOCK)) 8315d049837SAlexandre Belloni return -ENODEV; 8320b2f6228SArnaud Ebalard 8330b2f6228SArnaud Ebalard regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); 8340b2f6228SArnaud Ebalard if (IS_ERR(regmap)) { 8350b2f6228SArnaud Ebalard ret = PTR_ERR(regmap); 8360b2f6228SArnaud Ebalard dev_err(dev, "%s: regmap allocation failed: %d\n", 8370b2f6228SArnaud Ebalard __func__, ret); 8385d049837SAlexandre Belloni return ret; 8390b2f6228SArnaud Ebalard } 8400b2f6228SArnaud Ebalard 8410b2f6228SArnaud Ebalard ret = abb5zes3_i2c_validate_chip(regmap); 8420b2f6228SArnaud Ebalard if (ret) 8435d049837SAlexandre Belloni return ret; 8440b2f6228SArnaud Ebalard 8450b2f6228SArnaud Ebalard data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 8465d049837SAlexandre Belloni if (!data) 8475d049837SAlexandre Belloni return -ENOMEM; 8480b2f6228SArnaud Ebalard 8490b2f6228SArnaud Ebalard data->regmap = regmap; 8500b2f6228SArnaud Ebalard dev_set_drvdata(dev, data); 8510b2f6228SArnaud Ebalard 8520b2f6228SArnaud Ebalard ret = abb5zes3_rtc_check_setup(dev); 8530b2f6228SArnaud Ebalard if (ret) 8545d049837SAlexandre Belloni return ret; 8550b2f6228SArnaud Ebalard 8568bde032bSAlexandre Belloni data->rtc = devm_rtc_allocate_device(dev); 8578bde032bSAlexandre Belloni ret = PTR_ERR_OR_ZERO(data->rtc); 8588bde032bSAlexandre Belloni if (ret) { 8598bde032bSAlexandre Belloni dev_err(dev, "%s: unable to allocate RTC device (%d)\n", 8608bde032bSAlexandre Belloni __func__, ret); 8615d049837SAlexandre Belloni return ret; 8628bde032bSAlexandre Belloni } 8638bde032bSAlexandre Belloni 8640b2f6228SArnaud Ebalard if (client->irq > 0) { 8650b2f6228SArnaud Ebalard ret = devm_request_threaded_irq(dev, client->irq, NULL, 8660b2f6228SArnaud Ebalard _abb5zes3_rtc_interrupt, 8670b2f6228SArnaud Ebalard IRQF_SHARED | IRQF_ONESHOT, 8680b2f6228SArnaud Ebalard DRV_NAME, client); 8690b2f6228SArnaud Ebalard if (!ret) { 8700b2f6228SArnaud Ebalard device_init_wakeup(dev, true); 8710b2f6228SArnaud Ebalard data->irq = client->irq; 8720b2f6228SArnaud Ebalard dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, 8730b2f6228SArnaud Ebalard client->irq); 8740b2f6228SArnaud Ebalard } else { 8750b2f6228SArnaud Ebalard dev_err(dev, "%s: irq %d unavailable (%d)\n", 8760b2f6228SArnaud Ebalard __func__, client->irq, ret); 8770b2f6228SArnaud Ebalard goto err; 8780b2f6228SArnaud Ebalard } 8790b2f6228SArnaud Ebalard } 8800b2f6228SArnaud Ebalard 8818bde032bSAlexandre Belloni data->rtc->ops = &rtc_ops; 882c402f8eaSAlexandre Belloni data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; 883c402f8eaSAlexandre Belloni data->rtc->range_max = RTC_TIMESTAMP_END_2099; 8840b2f6228SArnaud Ebalard 8850b2f6228SArnaud Ebalard /* Enable battery low detection interrupt if battery not already low */ 8860b2f6228SArnaud Ebalard if (!data->battery_low && data->irq) { 8870b2f6228SArnaud Ebalard ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); 8880b2f6228SArnaud Ebalard if (ret) { 8899c3ab855SAlexandre Belloni dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n", 8909c3ab855SAlexandre Belloni __func__, ret); 8910b2f6228SArnaud Ebalard goto err; 8920b2f6228SArnaud Ebalard } 8930b2f6228SArnaud Ebalard } 8940b2f6228SArnaud Ebalard 8958bde032bSAlexandre Belloni ret = rtc_register_device(data->rtc); 8968bde032bSAlexandre Belloni 8970b2f6228SArnaud Ebalard err: 8985d049837SAlexandre Belloni if (ret && data->irq) 8990b2f6228SArnaud Ebalard device_init_wakeup(dev, false); 9000b2f6228SArnaud Ebalard return ret; 9010b2f6228SArnaud Ebalard } 9020b2f6228SArnaud Ebalard 9030b2f6228SArnaud Ebalard #ifdef CONFIG_PM_SLEEP 9040b2f6228SArnaud Ebalard static int abb5zes3_rtc_suspend(struct device *dev) 9050b2f6228SArnaud Ebalard { 9060b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 9070b2f6228SArnaud Ebalard 9080b2f6228SArnaud Ebalard if (device_may_wakeup(dev)) 9090b2f6228SArnaud Ebalard return enable_irq_wake(rtc_data->irq); 9100b2f6228SArnaud Ebalard 9110b2f6228SArnaud Ebalard return 0; 9120b2f6228SArnaud Ebalard } 9130b2f6228SArnaud Ebalard 9140b2f6228SArnaud Ebalard static int abb5zes3_rtc_resume(struct device *dev) 9150b2f6228SArnaud Ebalard { 9160b2f6228SArnaud Ebalard struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 9170b2f6228SArnaud Ebalard 9180b2f6228SArnaud Ebalard if (device_may_wakeup(dev)) 9190b2f6228SArnaud Ebalard return disable_irq_wake(rtc_data->irq); 9200b2f6228SArnaud Ebalard 9210b2f6228SArnaud Ebalard return 0; 9220b2f6228SArnaud Ebalard } 9230b2f6228SArnaud Ebalard #endif 9240b2f6228SArnaud Ebalard 9250b2f6228SArnaud Ebalard static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, 9260b2f6228SArnaud Ebalard abb5zes3_rtc_resume); 9270b2f6228SArnaud Ebalard 9280b2f6228SArnaud Ebalard #ifdef CONFIG_OF 9290b2f6228SArnaud Ebalard static const struct of_device_id abb5zes3_dt_match[] = { 9300b2f6228SArnaud Ebalard { .compatible = "abracon,abb5zes3" }, 9310b2f6228SArnaud Ebalard { }, 9320b2f6228SArnaud Ebalard }; 9331c4fc295SJavier Martinez Canillas MODULE_DEVICE_TABLE(of, abb5zes3_dt_match); 9340b2f6228SArnaud Ebalard #endif 9350b2f6228SArnaud Ebalard 9360b2f6228SArnaud Ebalard static const struct i2c_device_id abb5zes3_id[] = { 9370b2f6228SArnaud Ebalard { "abb5zes3", 0 }, 9380b2f6228SArnaud Ebalard { } 9390b2f6228SArnaud Ebalard }; 9400b2f6228SArnaud Ebalard MODULE_DEVICE_TABLE(i2c, abb5zes3_id); 9410b2f6228SArnaud Ebalard 9420b2f6228SArnaud Ebalard static struct i2c_driver abb5zes3_driver = { 9430b2f6228SArnaud Ebalard .driver = { 9440b2f6228SArnaud Ebalard .name = DRV_NAME, 9450b2f6228SArnaud Ebalard .pm = &abb5zes3_rtc_pm_ops, 9460b2f6228SArnaud Ebalard .of_match_table = of_match_ptr(abb5zes3_dt_match), 9470b2f6228SArnaud Ebalard }, 9480b2f6228SArnaud Ebalard .probe = abb5zes3_probe, 9490b2f6228SArnaud Ebalard .id_table = abb5zes3_id, 9500b2f6228SArnaud Ebalard }; 9510b2f6228SArnaud Ebalard module_i2c_driver(abb5zes3_driver); 9520b2f6228SArnaud Ebalard 9530b2f6228SArnaud Ebalard MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); 9540b2f6228SArnaud Ebalard MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); 9550b2f6228SArnaud Ebalard MODULE_LICENSE("GPL"); 956