xref: /openbmc/linux/drivers/rtc/interface.c (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, interface functions
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * based on arch/arm/common/rtctime.c
9  */
10 
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	time64_t secs;
26 
27 	if (!rtc->offset_secs)
28 		return;
29 
30 	secs = rtc_tm_to_time64(tm);
31 
32 	/*
33 	 * Since the reading time values from RTC device are always in the RTC
34 	 * original valid range, but we need to skip the overlapped region
35 	 * between expanded range and original range, which is no need to add
36 	 * the offset.
37 	 */
38 	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 	    (rtc->start_secs < rtc->range_min &&
40 	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 		return;
42 
43 	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44 }
45 
46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	time64_t secs;
49 
50 	if (!rtc->offset_secs)
51 		return;
52 
53 	secs = rtc_tm_to_time64(tm);
54 
55 	/*
56 	 * If the setting time values are in the valid range of RTC hardware
57 	 * device, then no need to subtract the offset when setting time to RTC
58 	 * device. Otherwise we need to subtract the offset to make the time
59 	 * values are valid for RTC hardware device.
60 	 */
61 	if (secs >= rtc->range_min && secs <= rtc->range_max)
62 		return;
63 
64 	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65 }
66 
67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68 {
69 	if (rtc->range_min != rtc->range_max) {
70 		time64_t time = rtc_tm_to_time64(tm);
71 		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 			rtc->range_min;
73 		timeu64_t range_max = rtc->set_start_time ?
74 			(rtc->start_secs + rtc->range_max - rtc->range_min) :
75 			rtc->range_max;
76 
77 		if (time < range_min || time > range_max)
78 			return -ERANGE;
79 	}
80 
81 	return 0;
82 }
83 
84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
85 {
86 	int err;
87 
88 	if (!rtc->ops) {
89 		err = -ENODEV;
90 	} else if (!rtc->ops->read_time) {
91 		err = -EINVAL;
92 	} else {
93 		memset(tm, 0, sizeof(struct rtc_time));
94 		err = rtc->ops->read_time(rtc->dev.parent, tm);
95 		if (err < 0) {
96 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 				err);
98 			return err;
99 		}
100 
101 		rtc_add_offset(rtc, tm);
102 
103 		err = rtc_valid_tm(tm);
104 		if (err < 0)
105 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
106 	}
107 	return err;
108 }
109 
110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111 {
112 	int err;
113 
114 	err = mutex_lock_interruptible(&rtc->ops_lock);
115 	if (err)
116 		return err;
117 
118 	err = __rtc_read_time(rtc, tm);
119 	mutex_unlock(&rtc->ops_lock);
120 
121 	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(rtc_read_time);
125 
126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
127 {
128 	int err, uie;
129 
130 	err = rtc_valid_tm(tm);
131 	if (err != 0)
132 		return err;
133 
134 	err = rtc_valid_range(rtc, tm);
135 	if (err)
136 		return err;
137 
138 	rtc_subtract_offset(rtc, tm);
139 
140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 	uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142 #else
143 	uie = rtc->uie_rtctimer.enabled;
144 #endif
145 	if (uie) {
146 		err = rtc_update_irq_enable(rtc, 0);
147 		if (err)
148 			return err;
149 	}
150 
151 	err = mutex_lock_interruptible(&rtc->ops_lock);
152 	if (err)
153 		return err;
154 
155 	if (!rtc->ops)
156 		err = -ENODEV;
157 	else if (rtc->ops->set_time)
158 		err = rtc->ops->set_time(rtc->dev.parent, tm);
159 	else
160 		err = -EINVAL;
161 
162 	pm_stay_awake(rtc->dev.parent);
163 	mutex_unlock(&rtc->ops_lock);
164 	/* A timer might have just expired */
165 	schedule_work(&rtc->irqwork);
166 
167 	if (uie) {
168 		err = rtc_update_irq_enable(rtc, 1);
169 		if (err)
170 			return err;
171 	}
172 
173 	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
174 	return err;
175 }
176 EXPORT_SYMBOL_GPL(rtc_set_time);
177 
178 static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 				   struct rtc_wkalrm *alarm)
180 {
181 	int err;
182 
183 	err = mutex_lock_interruptible(&rtc->ops_lock);
184 	if (err)
185 		return err;
186 
187 	if (!rtc->ops) {
188 		err = -ENODEV;
189 	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
190 		err = -EINVAL;
191 	} else {
192 		alarm->enabled = 0;
193 		alarm->pending = 0;
194 		alarm->time.tm_sec = -1;
195 		alarm->time.tm_min = -1;
196 		alarm->time.tm_hour = -1;
197 		alarm->time.tm_mday = -1;
198 		alarm->time.tm_mon = -1;
199 		alarm->time.tm_year = -1;
200 		alarm->time.tm_wday = -1;
201 		alarm->time.tm_yday = -1;
202 		alarm->time.tm_isdst = -1;
203 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
204 	}
205 
206 	mutex_unlock(&rtc->ops_lock);
207 
208 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
209 	return err;
210 }
211 
212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
213 {
214 	int err;
215 	struct rtc_time before, now;
216 	int first_time = 1;
217 	time64_t t_now, t_alm;
218 	enum { none, day, month, year } missing = none;
219 	unsigned int days;
220 
221 	/* The lower level RTC driver may return -1 in some fields,
222 	 * creating invalid alarm->time values, for reasons like:
223 	 *
224 	 *   - The hardware may not be capable of filling them in;
225 	 *     many alarms match only on time-of-day fields, not
226 	 *     day/month/year calendar data.
227 	 *
228 	 *   - Some hardware uses illegal values as "wildcard" match
229 	 *     values, which non-Linux firmware (like a BIOS) may try
230 	 *     to set up as e.g. "alarm 15 minutes after each hour".
231 	 *     Linux uses only oneshot alarms.
232 	 *
233 	 * When we see that here, we deal with it by using values from
234 	 * a current RTC timestamp for any missing (-1) values.  The
235 	 * RTC driver prevents "periodic alarm" modes.
236 	 *
237 	 * But this can be racey, because some fields of the RTC timestamp
238 	 * may have wrapped in the interval since we read the RTC alarm,
239 	 * which would lead to us inserting inconsistent values in place
240 	 * of the -1 fields.
241 	 *
242 	 * Reading the alarm and timestamp in the reverse sequence
243 	 * would have the same race condition, and not solve the issue.
244 	 *
245 	 * So, we must first read the RTC timestamp,
246 	 * then read the RTC alarm value,
247 	 * and then read a second RTC timestamp.
248 	 *
249 	 * If any fields of the second timestamp have changed
250 	 * when compared with the first timestamp, then we know
251 	 * our timestamp may be inconsistent with that used by
252 	 * the low-level rtc_read_alarm_internal() function.
253 	 *
254 	 * So, when the two timestamps disagree, we just loop and do
255 	 * the process again to get a fully consistent set of values.
256 	 *
257 	 * This could all instead be done in the lower level driver,
258 	 * but since more than one lower level RTC implementation needs it,
259 	 * then it's probably best best to do it here instead of there..
260 	 */
261 
262 	/* Get the "before" timestamp */
263 	err = rtc_read_time(rtc, &before);
264 	if (err < 0)
265 		return err;
266 	do {
267 		if (!first_time)
268 			memcpy(&before, &now, sizeof(struct rtc_time));
269 		first_time = 0;
270 
271 		/* get the RTC alarm values, which may be incomplete */
272 		err = rtc_read_alarm_internal(rtc, alarm);
273 		if (err)
274 			return err;
275 
276 		/* full-function RTCs won't have such missing fields */
277 		if (rtc_valid_tm(&alarm->time) == 0) {
278 			rtc_add_offset(rtc, &alarm->time);
279 			return 0;
280 		}
281 
282 		/* get the "after" timestamp, to detect wrapped fields */
283 		err = rtc_read_time(rtc, &now);
284 		if (err < 0)
285 			return err;
286 
287 		/* note that tm_sec is a "don't care" value here: */
288 	} while (before.tm_min  != now.tm_min ||
289 		 before.tm_hour != now.tm_hour ||
290 		 before.tm_mon  != now.tm_mon ||
291 		 before.tm_year != now.tm_year);
292 
293 	/* Fill in the missing alarm fields using the timestamp; we
294 	 * know there's at least one since alarm->time is invalid.
295 	 */
296 	if (alarm->time.tm_sec == -1)
297 		alarm->time.tm_sec = now.tm_sec;
298 	if (alarm->time.tm_min == -1)
299 		alarm->time.tm_min = now.tm_min;
300 	if (alarm->time.tm_hour == -1)
301 		alarm->time.tm_hour = now.tm_hour;
302 
303 	/* For simplicity, only support date rollover for now */
304 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
305 		alarm->time.tm_mday = now.tm_mday;
306 		missing = day;
307 	}
308 	if ((unsigned int)alarm->time.tm_mon >= 12) {
309 		alarm->time.tm_mon = now.tm_mon;
310 		if (missing == none)
311 			missing = month;
312 	}
313 	if (alarm->time.tm_year == -1) {
314 		alarm->time.tm_year = now.tm_year;
315 		if (missing == none)
316 			missing = year;
317 	}
318 
319 	/* Can't proceed if alarm is still invalid after replacing
320 	 * missing fields.
321 	 */
322 	err = rtc_valid_tm(&alarm->time);
323 	if (err)
324 		goto done;
325 
326 	/* with luck, no rollover is needed */
327 	t_now = rtc_tm_to_time64(&now);
328 	t_alm = rtc_tm_to_time64(&alarm->time);
329 	if (t_now < t_alm)
330 		goto done;
331 
332 	switch (missing) {
333 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
334 	 * that will trigger at 5am will do so at 5am Tuesday, which
335 	 * could also be in the next month or year.  This is a common
336 	 * case, especially for PCs.
337 	 */
338 	case day:
339 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
340 		t_alm += 24 * 60 * 60;
341 		rtc_time64_to_tm(t_alm, &alarm->time);
342 		break;
343 
344 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
345 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
346 	 * may end up in the month after that!  Many newer PCs support
347 	 * this type of alarm.
348 	 */
349 	case month:
350 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
351 		do {
352 			if (alarm->time.tm_mon < 11) {
353 				alarm->time.tm_mon++;
354 			} else {
355 				alarm->time.tm_mon = 0;
356 				alarm->time.tm_year++;
357 			}
358 			days = rtc_month_days(alarm->time.tm_mon,
359 					      alarm->time.tm_year);
360 		} while (days < alarm->time.tm_mday);
361 		break;
362 
363 	/* Year rollover ... easy except for leap years! */
364 	case year:
365 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
366 		do {
367 			alarm->time.tm_year++;
368 		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
369 			 rtc_valid_tm(&alarm->time) != 0);
370 		break;
371 
372 	default:
373 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
374 	}
375 
376 	err = rtc_valid_tm(&alarm->time);
377 
378 done:
379 	if (err)
380 		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
381 			 &alarm->time);
382 
383 	return err;
384 }
385 
386 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387 {
388 	int err;
389 
390 	err = mutex_lock_interruptible(&rtc->ops_lock);
391 	if (err)
392 		return err;
393 	if (!rtc->ops) {
394 		err = -ENODEV;
395 	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
396 		err = -EINVAL;
397 	} else {
398 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
399 		alarm->enabled = rtc->aie_timer.enabled;
400 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
401 	}
402 	mutex_unlock(&rtc->ops_lock);
403 
404 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
405 	return err;
406 }
407 EXPORT_SYMBOL_GPL(rtc_read_alarm);
408 
409 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
410 {
411 	struct rtc_time tm;
412 	time64_t now, scheduled;
413 	int err;
414 
415 	err = rtc_valid_tm(&alarm->time);
416 	if (err)
417 		return err;
418 
419 	scheduled = rtc_tm_to_time64(&alarm->time);
420 
421 	/* Make sure we're not setting alarms in the past */
422 	err = __rtc_read_time(rtc, &tm);
423 	if (err)
424 		return err;
425 	now = rtc_tm_to_time64(&tm);
426 	if (scheduled <= now)
427 		return -ETIME;
428 	/*
429 	 * XXX - We just checked to make sure the alarm time is not
430 	 * in the past, but there is still a race window where if
431 	 * the is alarm set for the next second and the second ticks
432 	 * over right here, before we set the alarm.
433 	 */
434 
435 	rtc_subtract_offset(rtc, &alarm->time);
436 
437 	if (!rtc->ops)
438 		err = -ENODEV;
439 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
440 		err = -EINVAL;
441 	else
442 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
443 
444 	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
445 	return err;
446 }
447 
448 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
449 {
450 	int err;
451 
452 	if (!rtc->ops)
453 		return -ENODEV;
454 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
455 		return -EINVAL;
456 
457 	err = rtc_valid_tm(&alarm->time);
458 	if (err != 0)
459 		return err;
460 
461 	err = rtc_valid_range(rtc, &alarm->time);
462 	if (err)
463 		return err;
464 
465 	err = mutex_lock_interruptible(&rtc->ops_lock);
466 	if (err)
467 		return err;
468 	if (rtc->aie_timer.enabled)
469 		rtc_timer_remove(rtc, &rtc->aie_timer);
470 
471 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
472 	rtc->aie_timer.period = 0;
473 	if (alarm->enabled)
474 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
475 
476 	mutex_unlock(&rtc->ops_lock);
477 
478 	return err;
479 }
480 EXPORT_SYMBOL_GPL(rtc_set_alarm);
481 
482 /* Called once per device from rtc_device_register */
483 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
484 {
485 	int err;
486 	struct rtc_time now;
487 
488 	err = rtc_valid_tm(&alarm->time);
489 	if (err != 0)
490 		return err;
491 
492 	err = rtc_read_time(rtc, &now);
493 	if (err)
494 		return err;
495 
496 	err = mutex_lock_interruptible(&rtc->ops_lock);
497 	if (err)
498 		return err;
499 
500 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
501 	rtc->aie_timer.period = 0;
502 
503 	/* Alarm has to be enabled & in the future for us to enqueue it */
504 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
505 			 rtc->aie_timer.node.expires)) {
506 		rtc->aie_timer.enabled = 1;
507 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
508 		trace_rtc_timer_enqueue(&rtc->aie_timer);
509 	}
510 	mutex_unlock(&rtc->ops_lock);
511 	return err;
512 }
513 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
514 
515 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
516 {
517 	int err;
518 
519 	err = mutex_lock_interruptible(&rtc->ops_lock);
520 	if (err)
521 		return err;
522 
523 	if (rtc->aie_timer.enabled != enabled) {
524 		if (enabled)
525 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
526 		else
527 			rtc_timer_remove(rtc, &rtc->aie_timer);
528 	}
529 
530 	if (err)
531 		/* nothing */;
532 	else if (!rtc->ops)
533 		err = -ENODEV;
534 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
535 		err = -EINVAL;
536 	else
537 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
538 
539 	mutex_unlock(&rtc->ops_lock);
540 
541 	trace_rtc_alarm_irq_enable(enabled, err);
542 	return err;
543 }
544 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
545 
546 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
547 {
548 	int err;
549 
550 	err = mutex_lock_interruptible(&rtc->ops_lock);
551 	if (err)
552 		return err;
553 
554 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
555 	if (enabled == 0 && rtc->uie_irq_active) {
556 		mutex_unlock(&rtc->ops_lock);
557 		return rtc_dev_update_irq_enable_emul(rtc, 0);
558 	}
559 #endif
560 	/* make sure we're changing state */
561 	if (rtc->uie_rtctimer.enabled == enabled)
562 		goto out;
563 
564 	if (rtc->uie_unsupported || !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
565 		mutex_unlock(&rtc->ops_lock);
566 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
567 		return rtc_dev_update_irq_enable_emul(rtc, enabled);
568 #else
569 		return -EINVAL;
570 #endif
571 	}
572 
573 	if (enabled) {
574 		struct rtc_time tm;
575 		ktime_t now, onesec;
576 
577 		err = __rtc_read_time(rtc, &tm);
578 		if (err)
579 			goto out;
580 		onesec = ktime_set(1, 0);
581 		now = rtc_tm_to_ktime(tm);
582 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
583 		rtc->uie_rtctimer.period = ktime_set(1, 0);
584 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
585 	} else {
586 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
587 	}
588 
589 out:
590 	mutex_unlock(&rtc->ops_lock);
591 
592 	return err;
593 }
594 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
595 
596 /**
597  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
598  * @rtc: pointer to the rtc device
599  * @num: number of occurence of the event
600  * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
601  *
602  * This function is called when an AIE, UIE or PIE mode interrupt
603  * has occurred (or been emulated).
604  *
605  */
606 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
607 {
608 	unsigned long flags;
609 
610 	/* mark one irq of the appropriate mode */
611 	spin_lock_irqsave(&rtc->irq_lock, flags);
612 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
613 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
614 
615 	wake_up_interruptible(&rtc->irq_queue);
616 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
617 }
618 
619 /**
620  * rtc_aie_update_irq - AIE mode rtctimer hook
621  * @rtc: pointer to the rtc_device
622  *
623  * This functions is called when the aie_timer expires.
624  */
625 void rtc_aie_update_irq(struct rtc_device *rtc)
626 {
627 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
628 }
629 
630 /**
631  * rtc_uie_update_irq - UIE mode rtctimer hook
632  * @rtc: pointer to the rtc_device
633  *
634  * This functions is called when the uie_timer expires.
635  */
636 void rtc_uie_update_irq(struct rtc_device *rtc)
637 {
638 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
639 }
640 
641 /**
642  * rtc_pie_update_irq - PIE mode hrtimer hook
643  * @timer: pointer to the pie mode hrtimer
644  *
645  * This function is used to emulate PIE mode interrupts
646  * using an hrtimer. This function is called when the periodic
647  * hrtimer expires.
648  */
649 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
650 {
651 	struct rtc_device *rtc;
652 	ktime_t period;
653 	u64 count;
654 
655 	rtc = container_of(timer, struct rtc_device, pie_timer);
656 
657 	period = NSEC_PER_SEC / rtc->irq_freq;
658 	count = hrtimer_forward_now(timer, period);
659 
660 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
661 
662 	return HRTIMER_RESTART;
663 }
664 
665 /**
666  * rtc_update_irq - Triggered when a RTC interrupt occurs.
667  * @rtc: the rtc device
668  * @num: how many irqs are being reported (usually one)
669  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
670  * Context: any
671  */
672 void rtc_update_irq(struct rtc_device *rtc,
673 		    unsigned long num, unsigned long events)
674 {
675 	if (IS_ERR_OR_NULL(rtc))
676 		return;
677 
678 	pm_stay_awake(rtc->dev.parent);
679 	schedule_work(&rtc->irqwork);
680 }
681 EXPORT_SYMBOL_GPL(rtc_update_irq);
682 
683 struct rtc_device *rtc_class_open(const char *name)
684 {
685 	struct device *dev;
686 	struct rtc_device *rtc = NULL;
687 
688 	dev = class_find_device_by_name(rtc_class, name);
689 	if (dev)
690 		rtc = to_rtc_device(dev);
691 
692 	if (rtc) {
693 		if (!try_module_get(rtc->owner)) {
694 			put_device(dev);
695 			rtc = NULL;
696 		}
697 	}
698 
699 	return rtc;
700 }
701 EXPORT_SYMBOL_GPL(rtc_class_open);
702 
703 void rtc_class_close(struct rtc_device *rtc)
704 {
705 	module_put(rtc->owner);
706 	put_device(&rtc->dev);
707 }
708 EXPORT_SYMBOL_GPL(rtc_class_close);
709 
710 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
711 {
712 	/*
713 	 * We always cancel the timer here first, because otherwise
714 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
715 	 * when we manage to start the timer before the callback
716 	 * returns HRTIMER_RESTART.
717 	 *
718 	 * We cannot use hrtimer_cancel() here as a running callback
719 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
720 	 * would spin forever.
721 	 */
722 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
723 		return -1;
724 
725 	if (enabled) {
726 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
727 
728 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
729 	}
730 	return 0;
731 }
732 
733 /**
734  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
735  * @rtc: the rtc device
736  * @enabled: true to enable periodic IRQs
737  * Context: any
738  *
739  * Note that rtc_irq_set_freq() should previously have been used to
740  * specify the desired frequency of periodic IRQ.
741  */
742 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
743 {
744 	int err = 0;
745 
746 	while (rtc_update_hrtimer(rtc, enabled) < 0)
747 		cpu_relax();
748 
749 	rtc->pie_enabled = enabled;
750 
751 	trace_rtc_irq_set_state(enabled, err);
752 	return err;
753 }
754 
755 /**
756  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
757  * @rtc: the rtc device
758  * @freq: positive frequency
759  * Context: any
760  *
761  * Note that rtc_irq_set_state() is used to enable or disable the
762  * periodic IRQs.
763  */
764 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
765 {
766 	int err = 0;
767 
768 	if (freq <= 0 || freq > RTC_MAX_FREQ)
769 		return -EINVAL;
770 
771 	rtc->irq_freq = freq;
772 	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
773 		cpu_relax();
774 
775 	trace_rtc_irq_set_freq(freq, err);
776 	return err;
777 }
778 
779 /**
780  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
781  * @rtc: rtc device
782  * @timer: timer being added.
783  *
784  * Enqueues a timer onto the rtc devices timerqueue and sets
785  * the next alarm event appropriately.
786  *
787  * Sets the enabled bit on the added timer.
788  *
789  * Must hold ops_lock for proper serialization of timerqueue
790  */
791 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
792 {
793 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
794 	struct rtc_time tm;
795 	ktime_t now;
796 
797 	timer->enabled = 1;
798 	__rtc_read_time(rtc, &tm);
799 	now = rtc_tm_to_ktime(tm);
800 
801 	/* Skip over expired timers */
802 	while (next) {
803 		if (next->expires >= now)
804 			break;
805 		next = timerqueue_iterate_next(next);
806 	}
807 
808 	timerqueue_add(&rtc->timerqueue, &timer->node);
809 	trace_rtc_timer_enqueue(timer);
810 	if (!next || ktime_before(timer->node.expires, next->expires)) {
811 		struct rtc_wkalrm alarm;
812 		int err;
813 
814 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
815 		alarm.enabled = 1;
816 		err = __rtc_set_alarm(rtc, &alarm);
817 		if (err == -ETIME) {
818 			pm_stay_awake(rtc->dev.parent);
819 			schedule_work(&rtc->irqwork);
820 		} else if (err) {
821 			timerqueue_del(&rtc->timerqueue, &timer->node);
822 			trace_rtc_timer_dequeue(timer);
823 			timer->enabled = 0;
824 			return err;
825 		}
826 	}
827 	return 0;
828 }
829 
830 static void rtc_alarm_disable(struct rtc_device *rtc)
831 {
832 	if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
833 		return;
834 
835 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
836 	trace_rtc_alarm_irq_enable(0, 0);
837 }
838 
839 /**
840  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
841  * @rtc: rtc device
842  * @timer: timer being removed.
843  *
844  * Removes a timer onto the rtc devices timerqueue and sets
845  * the next alarm event appropriately.
846  *
847  * Clears the enabled bit on the removed timer.
848  *
849  * Must hold ops_lock for proper serialization of timerqueue
850  */
851 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
852 {
853 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
854 
855 	timerqueue_del(&rtc->timerqueue, &timer->node);
856 	trace_rtc_timer_dequeue(timer);
857 	timer->enabled = 0;
858 	if (next == &timer->node) {
859 		struct rtc_wkalrm alarm;
860 		int err;
861 
862 		next = timerqueue_getnext(&rtc->timerqueue);
863 		if (!next) {
864 			rtc_alarm_disable(rtc);
865 			return;
866 		}
867 		alarm.time = rtc_ktime_to_tm(next->expires);
868 		alarm.enabled = 1;
869 		err = __rtc_set_alarm(rtc, &alarm);
870 		if (err == -ETIME) {
871 			pm_stay_awake(rtc->dev.parent);
872 			schedule_work(&rtc->irqwork);
873 		}
874 	}
875 }
876 
877 /**
878  * rtc_timer_do_work - Expires rtc timers
879  * @work: work item
880  *
881  * Expires rtc timers. Reprograms next alarm event if needed.
882  * Called via worktask.
883  *
884  * Serializes access to timerqueue via ops_lock mutex
885  */
886 void rtc_timer_do_work(struct work_struct *work)
887 {
888 	struct rtc_timer *timer;
889 	struct timerqueue_node *next;
890 	ktime_t now;
891 	struct rtc_time tm;
892 
893 	struct rtc_device *rtc =
894 		container_of(work, struct rtc_device, irqwork);
895 
896 	mutex_lock(&rtc->ops_lock);
897 again:
898 	__rtc_read_time(rtc, &tm);
899 	now = rtc_tm_to_ktime(tm);
900 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
901 		if (next->expires > now)
902 			break;
903 
904 		/* expire timer */
905 		timer = container_of(next, struct rtc_timer, node);
906 		timerqueue_del(&rtc->timerqueue, &timer->node);
907 		trace_rtc_timer_dequeue(timer);
908 		timer->enabled = 0;
909 		if (timer->func)
910 			timer->func(timer->rtc);
911 
912 		trace_rtc_timer_fired(timer);
913 		/* Re-add/fwd periodic timers */
914 		if (ktime_to_ns(timer->period)) {
915 			timer->node.expires = ktime_add(timer->node.expires,
916 							timer->period);
917 			timer->enabled = 1;
918 			timerqueue_add(&rtc->timerqueue, &timer->node);
919 			trace_rtc_timer_enqueue(timer);
920 		}
921 	}
922 
923 	/* Set next alarm */
924 	if (next) {
925 		struct rtc_wkalrm alarm;
926 		int err;
927 		int retry = 3;
928 
929 		alarm.time = rtc_ktime_to_tm(next->expires);
930 		alarm.enabled = 1;
931 reprogram:
932 		err = __rtc_set_alarm(rtc, &alarm);
933 		if (err == -ETIME) {
934 			goto again;
935 		} else if (err) {
936 			if (retry-- > 0)
937 				goto reprogram;
938 
939 			timer = container_of(next, struct rtc_timer, node);
940 			timerqueue_del(&rtc->timerqueue, &timer->node);
941 			trace_rtc_timer_dequeue(timer);
942 			timer->enabled = 0;
943 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
944 			goto again;
945 		}
946 	} else {
947 		rtc_alarm_disable(rtc);
948 	}
949 
950 	pm_relax(rtc->dev.parent);
951 	mutex_unlock(&rtc->ops_lock);
952 }
953 
954 /* rtc_timer_init - Initializes an rtc_timer
955  * @timer: timer to be intiialized
956  * @f: function pointer to be called when timer fires
957  * @rtc: pointer to the rtc_device
958  *
959  * Kernel interface to initializing an rtc_timer.
960  */
961 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
962 		    struct rtc_device *rtc)
963 {
964 	timerqueue_init(&timer->node);
965 	timer->enabled = 0;
966 	timer->func = f;
967 	timer->rtc = rtc;
968 }
969 
970 /* rtc_timer_start - Sets an rtc_timer to fire in the future
971  * @ rtc: rtc device to be used
972  * @ timer: timer being set
973  * @ expires: time at which to expire the timer
974  * @ period: period that the timer will recur
975  *
976  * Kernel interface to set an rtc_timer
977  */
978 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
979 		    ktime_t expires, ktime_t period)
980 {
981 	int ret = 0;
982 
983 	mutex_lock(&rtc->ops_lock);
984 	if (timer->enabled)
985 		rtc_timer_remove(rtc, timer);
986 
987 	timer->node.expires = expires;
988 	timer->period = period;
989 
990 	ret = rtc_timer_enqueue(rtc, timer);
991 
992 	mutex_unlock(&rtc->ops_lock);
993 	return ret;
994 }
995 
996 /* rtc_timer_cancel - Stops an rtc_timer
997  * @ rtc: rtc device to be used
998  * @ timer: timer being set
999  *
1000  * Kernel interface to cancel an rtc_timer
1001  */
1002 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1003 {
1004 	mutex_lock(&rtc->ops_lock);
1005 	if (timer->enabled)
1006 		rtc_timer_remove(rtc, timer);
1007 	mutex_unlock(&rtc->ops_lock);
1008 }
1009 
1010 /**
1011  * rtc_read_offset - Read the amount of rtc offset in parts per billion
1012  * @rtc: rtc device to be used
1013  * @offset: the offset in parts per billion
1014  *
1015  * see below for details.
1016  *
1017  * Kernel interface to read rtc clock offset
1018  * Returns 0 on success, or a negative number on error.
1019  * If read_offset() is not implemented for the rtc, return -EINVAL
1020  */
1021 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1022 {
1023 	int ret;
1024 
1025 	if (!rtc->ops)
1026 		return -ENODEV;
1027 
1028 	if (!rtc->ops->read_offset)
1029 		return -EINVAL;
1030 
1031 	mutex_lock(&rtc->ops_lock);
1032 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1033 	mutex_unlock(&rtc->ops_lock);
1034 
1035 	trace_rtc_read_offset(*offset, ret);
1036 	return ret;
1037 }
1038 
1039 /**
1040  * rtc_set_offset - Adjusts the duration of the average second
1041  * @rtc: rtc device to be used
1042  * @offset: the offset in parts per billion
1043  *
1044  * Some rtc's allow an adjustment to the average duration of a second
1045  * to compensate for differences in the actual clock rate due to temperature,
1046  * the crystal, capacitor, etc.
1047  *
1048  * The adjustment applied is as follows:
1049  *   t = t0 * (1 + offset * 1e-9)
1050  * where t0 is the measured length of 1 RTC second with offset = 0
1051  *
1052  * Kernel interface to adjust an rtc clock offset.
1053  * Return 0 on success, or a negative number on error.
1054  * If the rtc offset is not setable (or not implemented), return -EINVAL
1055  */
1056 int rtc_set_offset(struct rtc_device *rtc, long offset)
1057 {
1058 	int ret;
1059 
1060 	if (!rtc->ops)
1061 		return -ENODEV;
1062 
1063 	if (!rtc->ops->set_offset)
1064 		return -EINVAL;
1065 
1066 	mutex_lock(&rtc->ops_lock);
1067 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1068 	mutex_unlock(&rtc->ops_lock);
1069 
1070 	trace_rtc_set_offset(offset, ret);
1071 	return ret;
1072 }
1073