xref: /openbmc/linux/drivers/remoteproc/pru_rproc.c (revision 9ebdff9aac5ded7bb515e80478afacaaa3abd799)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PRU-ICSS remoteproc driver for various TI SoCs
4  *
5  * Copyright (C) 2014-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *
7  * Author(s):
8  *	Suman Anna <s-anna@ti.com>
9  *	Andrew F. Davis <afd@ti.com>
10  *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
11  *	Puranjay Mohan <p-mohan@ti.com>
12  *	Md Danish Anwar <danishanwar@ti.com>
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/debugfs.h>
17 #include <linux/irqdomain.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/of_irq.h>
21 #include <linux/remoteproc/pruss.h>
22 #include <linux/pruss_driver.h>
23 #include <linux/remoteproc.h>
24 
25 #include "remoteproc_internal.h"
26 #include "remoteproc_elf_helpers.h"
27 #include "pru_rproc.h"
28 
29 /* PRU_ICSS_PRU_CTRL registers */
30 #define PRU_CTRL_CTRL		0x0000
31 #define PRU_CTRL_STS		0x0004
32 #define PRU_CTRL_WAKEUP_EN	0x0008
33 #define PRU_CTRL_CYCLE		0x000C
34 #define PRU_CTRL_STALL		0x0010
35 #define PRU_CTRL_CTBIR0		0x0020
36 #define PRU_CTRL_CTBIR1		0x0024
37 #define PRU_CTRL_CTPPR0		0x0028
38 #define PRU_CTRL_CTPPR1		0x002C
39 
40 /* CTRL register bit-fields */
41 #define CTRL_CTRL_SOFT_RST_N	BIT(0)
42 #define CTRL_CTRL_EN		BIT(1)
43 #define CTRL_CTRL_SLEEPING	BIT(2)
44 #define CTRL_CTRL_CTR_EN	BIT(3)
45 #define CTRL_CTRL_SINGLE_STEP	BIT(8)
46 #define CTRL_CTRL_RUNSTATE	BIT(15)
47 
48 /* PRU_ICSS_PRU_DEBUG registers */
49 #define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
50 #define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)
51 
52 /* PRU/RTU/Tx_PRU Core IRAM address masks */
53 #define PRU_IRAM_ADDR_MASK	0x3ffff
54 #define PRU0_IRAM_ADDR_MASK	0x34000
55 #define PRU1_IRAM_ADDR_MASK	0x38000
56 #define RTU0_IRAM_ADDR_MASK	0x4000
57 #define RTU1_IRAM_ADDR_MASK	0x6000
58 #define TX_PRU0_IRAM_ADDR_MASK	0xa000
59 #define TX_PRU1_IRAM_ADDR_MASK	0xc000
60 
61 /* PRU device addresses for various type of PRU RAMs */
62 #define PRU_IRAM_DA	0	/* Instruction RAM */
63 #define PRU_PDRAM_DA	0	/* Primary Data RAM */
64 #define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
65 #define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */
66 
67 #define MAX_PRU_SYS_EVENTS 160
68 
69 /**
70  * enum pru_iomem - PRU core memory/register range identifiers
71  *
72  * @PRU_IOMEM_IRAM: PRU Instruction RAM range
73  * @PRU_IOMEM_CTRL: PRU Control register range
74  * @PRU_IOMEM_DEBUG: PRU Debug register range
75  * @PRU_IOMEM_MAX: just keep this one at the end
76  */
77 enum pru_iomem {
78 	PRU_IOMEM_IRAM = 0,
79 	PRU_IOMEM_CTRL,
80 	PRU_IOMEM_DEBUG,
81 	PRU_IOMEM_MAX,
82 };
83 
84 /**
85  * enum pru_type - PRU core type identifier
86  *
87  * @PRU_TYPE_PRU: Programmable Real-time Unit
88  * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
89  * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
90  * @PRU_TYPE_MAX: just keep this one at the end
91  */
92 enum pru_type {
93 	PRU_TYPE_PRU = 0,
94 	PRU_TYPE_RTU,
95 	PRU_TYPE_TX_PRU,
96 	PRU_TYPE_MAX,
97 };
98 
99 /**
100  * struct pru_private_data - device data for a PRU core
101  * @type: type of the PRU core (PRU, RTU, Tx_PRU)
102  * @is_k3: flag used to identify the need for special load handling
103  */
104 struct pru_private_data {
105 	enum pru_type type;
106 	unsigned int is_k3 : 1;
107 };
108 
109 /**
110  * struct pru_rproc - PRU remoteproc structure
111  * @id: id of the PRU core within the PRUSS
112  * @dev: PRU core device pointer
113  * @pruss: back-reference to parent PRUSS structure
114  * @rproc: remoteproc pointer for this PRU core
115  * @data: PRU core specific data
116  * @mem_regions: data for each of the PRU memory regions
117  * @client_np: client device node
118  * @lock: mutex to protect client usage
119  * @fw_name: name of firmware image used during loading
120  * @mapped_irq: virtual interrupt numbers of created fw specific mapping
121  * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
122  * @pru_interrupt_map_sz: pru_interrupt_map size
123  * @rmw_lock: lock for read, modify, write operations on registers
124  * @dbg_single_step: debug state variable to set PRU into single step mode
125  * @dbg_continuous: debug state variable to restore PRU execution mode
126  * @evt_count: number of mapped events
127  */
128 struct pru_rproc {
129 	int id;
130 	struct device *dev;
131 	struct pruss *pruss;
132 	struct rproc *rproc;
133 	const struct pru_private_data *data;
134 	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
135 	struct device_node *client_np;
136 	struct mutex lock;
137 	const char *fw_name;
138 	unsigned int *mapped_irq;
139 	struct pru_irq_rsc *pru_interrupt_map;
140 	size_t pru_interrupt_map_sz;
141 	spinlock_t rmw_lock;
142 	u32 dbg_single_step;
143 	u32 dbg_continuous;
144 	u8 evt_count;
145 };
146 
147 static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
148 {
149 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
150 }
151 
152 static inline
153 void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
154 {
155 	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
156 }
157 
158 static inline
159 void pru_control_set_reg(struct pru_rproc *pru, unsigned int reg,
160 			 u32 mask, u32 set)
161 {
162 	u32 val;
163 	unsigned long flags;
164 
165 	spin_lock_irqsave(&pru->rmw_lock, flags);
166 
167 	val = pru_control_read_reg(pru, reg);
168 	val &= ~mask;
169 	val |= (set & mask);
170 	pru_control_write_reg(pru, reg, val);
171 
172 	spin_unlock_irqrestore(&pru->rmw_lock, flags);
173 }
174 
175 /**
176  * pru_rproc_set_firmware() - set firmware for a PRU core
177  * @rproc: the rproc instance of the PRU
178  * @fw_name: the new firmware name, or NULL if default is desired
179  *
180  * Return: 0 on success, or errno in error case.
181  */
182 static int pru_rproc_set_firmware(struct rproc *rproc, const char *fw_name)
183 {
184 	struct pru_rproc *pru = rproc->priv;
185 
186 	if (!fw_name)
187 		fw_name = pru->fw_name;
188 
189 	return rproc_set_firmware(rproc, fw_name);
190 }
191 
192 static struct rproc *__pru_rproc_get(struct device_node *np, int index)
193 {
194 	struct rproc *rproc;
195 	phandle rproc_phandle;
196 	int ret;
197 
198 	ret = of_property_read_u32_index(np, "ti,prus", index, &rproc_phandle);
199 	if (ret)
200 		return ERR_PTR(ret);
201 
202 	rproc = rproc_get_by_phandle(rproc_phandle);
203 	if (!rproc) {
204 		ret = -EPROBE_DEFER;
205 		return ERR_PTR(ret);
206 	}
207 
208 	/* make sure it is PRU rproc */
209 	if (!is_pru_rproc(rproc->dev.parent)) {
210 		rproc_put(rproc);
211 		return ERR_PTR(-ENODEV);
212 	}
213 
214 	return rproc;
215 }
216 
217 /**
218  * pru_rproc_get() - get the PRU rproc instance from a device node
219  * @np: the user/client device node
220  * @index: index to use for the ti,prus property
221  * @pru_id: optional pointer to return the PRU remoteproc processor id
222  *
223  * This function looks through a client device node's "ti,prus" property at
224  * index @index and returns the rproc handle for a valid PRU remote processor if
225  * found. The function allows only one user to own the PRU rproc resource at a
226  * time. Caller must call pru_rproc_put() when done with using the rproc, not
227  * required if the function returns a failure.
228  *
229  * When optional @pru_id pointer is passed the PRU remoteproc processor id is
230  * returned.
231  *
232  * Return: rproc handle on success, and an ERR_PTR on failure using one
233  * of the following error values
234  *    -ENODEV if device is not found
235  *    -EBUSY if PRU is already acquired by anyone
236  *    -EPROBE_DEFER is PRU device is not probed yet
237  */
238 struct rproc *pru_rproc_get(struct device_node *np, int index,
239 			    enum pruss_pru_id *pru_id)
240 {
241 	struct rproc *rproc;
242 	struct pru_rproc *pru;
243 	struct device *dev;
244 	const char *fw_name;
245 	int ret;
246 
247 	rproc = __pru_rproc_get(np, index);
248 	if (IS_ERR(rproc))
249 		return rproc;
250 
251 	pru = rproc->priv;
252 	dev = &rproc->dev;
253 
254 	mutex_lock(&pru->lock);
255 
256 	if (pru->client_np) {
257 		mutex_unlock(&pru->lock);
258 		ret = -EBUSY;
259 		goto err_no_rproc_handle;
260 	}
261 
262 	pru->client_np = np;
263 	rproc->sysfs_read_only = true;
264 
265 	mutex_unlock(&pru->lock);
266 
267 	if (pru_id)
268 		*pru_id = pru->id;
269 
270 	ret = of_property_read_string_index(np, "firmware-name", index,
271 					    &fw_name);
272 	if (!ret) {
273 		ret = pru_rproc_set_firmware(rproc, fw_name);
274 		if (ret) {
275 			dev_err(dev, "failed to set firmware: %d\n", ret);
276 			goto err;
277 		}
278 	}
279 
280 	return rproc;
281 
282 err_no_rproc_handle:
283 	rproc_put(rproc);
284 	return ERR_PTR(ret);
285 
286 err:
287 	pru_rproc_put(rproc);
288 	return ERR_PTR(ret);
289 }
290 EXPORT_SYMBOL_GPL(pru_rproc_get);
291 
292 /**
293  * pru_rproc_put() - release the PRU rproc resource
294  * @rproc: the rproc resource to release
295  *
296  * Releases the PRU rproc resource and makes it available to other
297  * users.
298  */
299 void pru_rproc_put(struct rproc *rproc)
300 {
301 	struct pru_rproc *pru;
302 
303 	if (IS_ERR_OR_NULL(rproc) || !is_pru_rproc(rproc->dev.parent))
304 		return;
305 
306 	pru = rproc->priv;
307 
308 	pru_rproc_set_firmware(rproc, NULL);
309 
310 	mutex_lock(&pru->lock);
311 
312 	if (!pru->client_np) {
313 		mutex_unlock(&pru->lock);
314 		return;
315 	}
316 
317 	pru->client_np = NULL;
318 	rproc->sysfs_read_only = false;
319 	mutex_unlock(&pru->lock);
320 
321 	rproc_put(rproc);
322 }
323 EXPORT_SYMBOL_GPL(pru_rproc_put);
324 
325 /**
326  * pru_rproc_set_ctable() - set the constant table index for the PRU
327  * @rproc: the rproc instance of the PRU
328  * @c: constant table index to set
329  * @addr: physical address to set it to
330  *
331  * Return: 0 on success, or errno in error case.
332  */
333 int pru_rproc_set_ctable(struct rproc *rproc, enum pru_ctable_idx c, u32 addr)
334 {
335 	struct pru_rproc *pru = rproc->priv;
336 	unsigned int reg;
337 	u32 mask, set;
338 	u16 idx;
339 	u16 idx_mask;
340 
341 	if (IS_ERR_OR_NULL(rproc))
342 		return -EINVAL;
343 
344 	if (!rproc->dev.parent || !is_pru_rproc(rproc->dev.parent))
345 		return -ENODEV;
346 
347 	/* pointer is 16 bit and index is 8-bit so mask out the rest */
348 	idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF;
349 
350 	/* ctable uses bit 8 and upwards only */
351 	idx = (addr >> 8) & idx_mask;
352 
353 	/* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */
354 	reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1);
355 	mask = idx_mask << (16 * (c & 1));
356 	set = idx << (16 * (c & 1));
357 
358 	pru_control_set_reg(pru, reg, mask, set);
359 
360 	return 0;
361 }
362 EXPORT_SYMBOL_GPL(pru_rproc_set_ctable);
363 
364 static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
365 {
366 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
367 }
368 
369 static int regs_show(struct seq_file *s, void *data)
370 {
371 	struct rproc *rproc = s->private;
372 	struct pru_rproc *pru = rproc->priv;
373 	int i, nregs = 32;
374 	u32 pru_sts;
375 	int pru_is_running;
376 
377 	seq_puts(s, "============== Control Registers ==============\n");
378 	seq_printf(s, "CTRL      := 0x%08x\n",
379 		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
380 	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
381 	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
382 	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
383 		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
384 	seq_printf(s, "CYCLE     := 0x%08x\n",
385 		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
386 	seq_printf(s, "STALL     := 0x%08x\n",
387 		   pru_control_read_reg(pru, PRU_CTRL_STALL));
388 	seq_printf(s, "CTBIR0    := 0x%08x\n",
389 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
390 	seq_printf(s, "CTBIR1    := 0x%08x\n",
391 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
392 	seq_printf(s, "CTPPR0    := 0x%08x\n",
393 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
394 	seq_printf(s, "CTPPR1    := 0x%08x\n",
395 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
396 
397 	seq_puts(s, "=============== Debug Registers ===============\n");
398 	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
399 				CTRL_CTRL_RUNSTATE;
400 	if (pru_is_running) {
401 		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
402 		return 0;
403 	}
404 
405 	for (i = 0; i < nregs; i++) {
406 		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
407 			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
408 			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
409 	}
410 
411 	return 0;
412 }
413 DEFINE_SHOW_ATTRIBUTE(regs);
414 
415 /*
416  * Control PRU single-step mode
417  *
418  * This is a debug helper function used for controlling the single-step
419  * mode of the PRU. The PRU Debug registers are not accessible when the
420  * PRU is in RUNNING state.
421  *
422  * Writing a non-zero value sets the PRU into single-step mode irrespective
423  * of its previous state. The PRU mode is saved only on the first set into
424  * a single-step mode. Writing a zero value will restore the PRU into its
425  * original mode.
426  */
427 static int pru_rproc_debug_ss_set(void *data, u64 val)
428 {
429 	struct rproc *rproc = data;
430 	struct pru_rproc *pru = rproc->priv;
431 	u32 reg_val;
432 
433 	val = val ? 1 : 0;
434 	if (!val && !pru->dbg_single_step)
435 		return 0;
436 
437 	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
438 
439 	if (val && !pru->dbg_single_step)
440 		pru->dbg_continuous = reg_val;
441 
442 	if (val)
443 		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
444 	else
445 		reg_val = pru->dbg_continuous;
446 
447 	pru->dbg_single_step = val;
448 	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
449 
450 	return 0;
451 }
452 
453 static int pru_rproc_debug_ss_get(void *data, u64 *val)
454 {
455 	struct rproc *rproc = data;
456 	struct pru_rproc *pru = rproc->priv;
457 
458 	*val = pru->dbg_single_step;
459 
460 	return 0;
461 }
462 DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
463 			 pru_rproc_debug_ss_set, "%llu\n");
464 
465 /*
466  * Create PRU-specific debugfs entries
467  *
468  * The entries are created only if the parent remoteproc debugfs directory
469  * exists, and will be cleaned up by the remoteproc core.
470  */
471 static void pru_rproc_create_debug_entries(struct rproc *rproc)
472 {
473 	if (!rproc->dbg_dir)
474 		return;
475 
476 	debugfs_create_file("regs", 0400, rproc->dbg_dir,
477 			    rproc, &regs_fops);
478 	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
479 			    rproc, &pru_rproc_debug_ss_fops);
480 }
481 
482 static void pru_dispose_irq_mapping(struct pru_rproc *pru)
483 {
484 	if (!pru->mapped_irq)
485 		return;
486 
487 	while (pru->evt_count) {
488 		pru->evt_count--;
489 		if (pru->mapped_irq[pru->evt_count] > 0)
490 			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
491 	}
492 
493 	kfree(pru->mapped_irq);
494 	pru->mapped_irq = NULL;
495 }
496 
497 /*
498  * Parse the custom PRU interrupt map resource and configure the INTC
499  * appropriately.
500  */
501 static int pru_handle_intrmap(struct rproc *rproc)
502 {
503 	struct device *dev = rproc->dev.parent;
504 	struct pru_rproc *pru = rproc->priv;
505 	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
506 	struct irq_fwspec fwspec;
507 	struct device_node *parent, *irq_parent;
508 	int i, ret = 0;
509 
510 	/* not having pru_interrupt_map is not an error */
511 	if (!rsc)
512 		return 0;
513 
514 	/* currently supporting only type 0 */
515 	if (rsc->type != 0) {
516 		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
517 		return -EINVAL;
518 	}
519 
520 	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
521 		return -EINVAL;
522 
523 	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
524 	    pru->pru_interrupt_map_sz)
525 		return -EINVAL;
526 
527 	pru->evt_count = rsc->num_evts;
528 	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
529 				  GFP_KERNEL);
530 	if (!pru->mapped_irq) {
531 		pru->evt_count = 0;
532 		return -ENOMEM;
533 	}
534 
535 	/*
536 	 * parse and fill in system event to interrupt channel and
537 	 * channel-to-host mapping. The interrupt controller to be used
538 	 * for these mappings for a given PRU remoteproc is always its
539 	 * corresponding sibling PRUSS INTC node.
540 	 */
541 	parent = of_get_parent(dev_of_node(pru->dev));
542 	if (!parent) {
543 		kfree(pru->mapped_irq);
544 		pru->mapped_irq = NULL;
545 		pru->evt_count = 0;
546 		return -ENODEV;
547 	}
548 
549 	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
550 	of_node_put(parent);
551 	if (!irq_parent) {
552 		kfree(pru->mapped_irq);
553 		pru->mapped_irq = NULL;
554 		pru->evt_count = 0;
555 		return -ENODEV;
556 	}
557 
558 	fwspec.fwnode = of_node_to_fwnode(irq_parent);
559 	fwspec.param_count = 3;
560 	for (i = 0; i < pru->evt_count; i++) {
561 		fwspec.param[0] = rsc->pru_intc_map[i].event;
562 		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
563 		fwspec.param[2] = rsc->pru_intc_map[i].host;
564 
565 		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
566 			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
567 
568 		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
569 		if (!pru->mapped_irq[i]) {
570 			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
571 				i, fwspec.param[0], fwspec.param[1],
572 				fwspec.param[2]);
573 			ret = -EINVAL;
574 			goto map_fail;
575 		}
576 	}
577 	of_node_put(irq_parent);
578 
579 	return ret;
580 
581 map_fail:
582 	pru_dispose_irq_mapping(pru);
583 	of_node_put(irq_parent);
584 
585 	return ret;
586 }
587 
588 static int pru_rproc_start(struct rproc *rproc)
589 {
590 	struct device *dev = &rproc->dev;
591 	struct pru_rproc *pru = rproc->priv;
592 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
593 	u32 val;
594 	int ret;
595 
596 	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
597 		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
598 
599 	ret = pru_handle_intrmap(rproc);
600 	/*
601 	 * reset references to pru interrupt map - they will stop being valid
602 	 * after rproc_start returns
603 	 */
604 	pru->pru_interrupt_map = NULL;
605 	pru->pru_interrupt_map_sz = 0;
606 	if (ret)
607 		return ret;
608 
609 	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
610 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
611 
612 	return 0;
613 }
614 
615 static int pru_rproc_stop(struct rproc *rproc)
616 {
617 	struct device *dev = &rproc->dev;
618 	struct pru_rproc *pru = rproc->priv;
619 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
620 	u32 val;
621 
622 	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
623 
624 	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
625 	val &= ~CTRL_CTRL_EN;
626 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
627 
628 	/* dispose irq mapping - new firmware can provide new mapping */
629 	pru_dispose_irq_mapping(pru);
630 
631 	return 0;
632 }
633 
634 /*
635  * Convert PRU device address (data spaces only) to kernel virtual address.
636  *
637  * Each PRU has access to all data memories within the PRUSS, accessible at
638  * different ranges. So, look through both its primary and secondary Data
639  * RAMs as well as any shared Data RAM to convert a PRU device address to
640  * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
641  * RAM1 is primary Data RAM for PRU1.
642  */
643 static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
644 {
645 	struct pruss_mem_region dram0, dram1, shrd_ram;
646 	struct pruss *pruss = pru->pruss;
647 	u32 offset;
648 	void *va = NULL;
649 
650 	if (len == 0)
651 		return NULL;
652 
653 	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
654 	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
655 	/* PRU1 has its local RAM addresses reversed */
656 	if (pru->id == PRUSS_PRU1)
657 		swap(dram0, dram1);
658 	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
659 
660 	if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
661 		offset = da - PRU_PDRAM_DA;
662 		va = (__force void *)(dram0.va + offset);
663 	} else if (da >= PRU_SDRAM_DA &&
664 		   da + len <= PRU_SDRAM_DA + dram1.size) {
665 		offset = da - PRU_SDRAM_DA;
666 		va = (__force void *)(dram1.va + offset);
667 	} else if (da >= PRU_SHRDRAM_DA &&
668 		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
669 		offset = da - PRU_SHRDRAM_DA;
670 		va = (__force void *)(shrd_ram.va + offset);
671 	}
672 
673 	return va;
674 }
675 
676 /*
677  * Convert PRU device address (instruction space) to kernel virtual address.
678  *
679  * A PRU does not have an unified address space. Each PRU has its very own
680  * private Instruction RAM, and its device address is identical to that of
681  * its primary Data RAM device address.
682  */
683 static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
684 {
685 	u32 offset;
686 	void *va = NULL;
687 
688 	if (len == 0)
689 		return NULL;
690 
691 	/*
692 	 * GNU binutils do not support multiple address spaces. The GNU
693 	 * linker's default linker script places IRAM at an arbitrary high
694 	 * offset, in order to differentiate it from DRAM. Hence we need to
695 	 * strip the artificial offset in the IRAM addresses coming from the
696 	 * ELF file.
697 	 *
698 	 * The TI proprietary linker would never set those higher IRAM address
699 	 * bits anyway. PRU architecture limits the program counter to 16-bit
700 	 * word-address range. This in turn corresponds to 18-bit IRAM
701 	 * byte-address range for ELF.
702 	 *
703 	 * Two more bits are added just in case to make the final 20-bit mask.
704 	 * Idea is to have a safeguard in case TI decides to add banking
705 	 * in future SoCs.
706 	 */
707 	da &= 0xfffff;
708 
709 	if (da >= PRU_IRAM_DA &&
710 	    da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
711 		offset = da - PRU_IRAM_DA;
712 		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
713 				      offset);
714 	}
715 
716 	return va;
717 }
718 
719 /*
720  * Provide address translations for only PRU Data RAMs through the remoteproc
721  * core for any PRU client drivers. The PRU Instruction RAM access is restricted
722  * only to the PRU loader code.
723  */
724 static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
725 {
726 	struct pru_rproc *pru = rproc->priv;
727 
728 	return pru_d_da_to_va(pru, da, len);
729 }
730 
731 /* PRU-specific address translator used by PRU loader. */
732 static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
733 {
734 	struct pru_rproc *pru = rproc->priv;
735 	void *va;
736 
737 	if (is_iram)
738 		va = pru_i_da_to_va(pru, da, len);
739 	else
740 		va = pru_d_da_to_va(pru, da, len);
741 
742 	return va;
743 }
744 
745 static struct rproc_ops pru_rproc_ops = {
746 	.start		= pru_rproc_start,
747 	.stop		= pru_rproc_stop,
748 	.da_to_va	= pru_rproc_da_to_va,
749 };
750 
751 /*
752  * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
753  *
754  * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
755  * memories, that is not seen on previous generation SoCs. The data is reflected
756  * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
757  * copies result in all the other pre-existing bytes zeroed out within that
758  * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
759  * IRAM memory port interface does not allow any 8-byte copies (as commonly used
760  * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
761  * ports do not show this behavior.
762  */
763 static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
764 {
765 	const u32 *s = src;
766 	u32 *d = dest;
767 	size_t size = count / 4;
768 	u32 *tmp_src = NULL;
769 
770 	/*
771 	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
772 	 * sizes
773 	 */
774 	if ((long)dest % 4 || count % 4)
775 		return -EINVAL;
776 
777 	/* src offsets in ELF firmware image can be non-aligned */
778 	if ((long)src % 4) {
779 		tmp_src = kmemdup(src, count, GFP_KERNEL);
780 		if (!tmp_src)
781 			return -ENOMEM;
782 		s = tmp_src;
783 	}
784 
785 	while (size--)
786 		*d++ = *s++;
787 
788 	kfree(tmp_src);
789 
790 	return 0;
791 }
792 
793 static int
794 pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
795 {
796 	struct pru_rproc *pru = rproc->priv;
797 	struct device *dev = &rproc->dev;
798 	struct elf32_hdr *ehdr;
799 	struct elf32_phdr *phdr;
800 	int i, ret = 0;
801 	const u8 *elf_data = fw->data;
802 
803 	ehdr = (struct elf32_hdr *)elf_data;
804 	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
805 
806 	/* go through the available ELF segments */
807 	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
808 		u32 da = phdr->p_paddr;
809 		u32 memsz = phdr->p_memsz;
810 		u32 filesz = phdr->p_filesz;
811 		u32 offset = phdr->p_offset;
812 		bool is_iram;
813 		void *ptr;
814 
815 		if (phdr->p_type != PT_LOAD || !filesz)
816 			continue;
817 
818 		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
819 			phdr->p_type, da, memsz, filesz);
820 
821 		if (filesz > memsz) {
822 			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
823 				filesz, memsz);
824 			ret = -EINVAL;
825 			break;
826 		}
827 
828 		if (offset + filesz > fw->size) {
829 			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
830 				offset + filesz, fw->size);
831 			ret = -EINVAL;
832 			break;
833 		}
834 
835 		/* grab the kernel address for this device address */
836 		is_iram = phdr->p_flags & PF_X;
837 		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
838 		if (!ptr) {
839 			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
840 			ret = -EINVAL;
841 			break;
842 		}
843 
844 		if (pru->data->is_k3) {
845 			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
846 					       filesz);
847 			if (ret) {
848 				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
849 					da, memsz);
850 				break;
851 			}
852 		} else {
853 			memcpy(ptr, elf_data + phdr->p_offset, filesz);
854 		}
855 
856 		/* skip the memzero logic performed by remoteproc ELF loader */
857 	}
858 
859 	return ret;
860 }
861 
862 static const void *
863 pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
864 {
865 	struct elf32_shdr *shdr, *name_table_shdr;
866 	const char *name_table;
867 	const u8 *elf_data = fw->data;
868 	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
869 	u16 shnum = ehdr->e_shnum;
870 	u16 shstrndx = ehdr->e_shstrndx;
871 	int i;
872 
873 	/* first, get the section header */
874 	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
875 	/* compute name table section header entry in shdr array */
876 	name_table_shdr = shdr + shstrndx;
877 	/* finally, compute the name table section address in elf */
878 	name_table = elf_data + name_table_shdr->sh_offset;
879 
880 	for (i = 0; i < shnum; i++, shdr++) {
881 		u32 size = shdr->sh_size;
882 		u32 offset = shdr->sh_offset;
883 		u32 name = shdr->sh_name;
884 
885 		if (strcmp(name_table + name, ".pru_irq_map"))
886 			continue;
887 
888 		/* make sure we have the entire irq map */
889 		if (offset + size > fw->size || offset + size < size) {
890 			dev_err(dev, ".pru_irq_map section truncated\n");
891 			return ERR_PTR(-EINVAL);
892 		}
893 
894 		/* make sure irq map has at least the header */
895 		if (sizeof(struct pru_irq_rsc) > size) {
896 			dev_err(dev, "header-less .pru_irq_map section\n");
897 			return ERR_PTR(-EINVAL);
898 		}
899 
900 		return shdr;
901 	}
902 
903 	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
904 
905 	return NULL;
906 }
907 
908 /*
909  * Use a custom parse_fw callback function for dealing with PRU firmware
910  * specific sections.
911  *
912  * The firmware blob can contain optional ELF sections: .resource_table section
913  * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
914  * description, which needs to be setup before powering on the PRU core. To
915  * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
916  * firmware linker) and therefore is not loaded to PRU memory.
917  */
918 static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
919 {
920 	struct device *dev = &rproc->dev;
921 	struct pru_rproc *pru = rproc->priv;
922 	const u8 *elf_data = fw->data;
923 	const void *shdr;
924 	u8 class = fw_elf_get_class(fw);
925 	u64 sh_offset;
926 	int ret;
927 
928 	/* load optional rsc table */
929 	ret = rproc_elf_load_rsc_table(rproc, fw);
930 	if (ret == -EINVAL)
931 		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
932 	else if (ret)
933 		return ret;
934 
935 	/* find .pru_interrupt_map section, not having it is not an error */
936 	shdr = pru_rproc_find_interrupt_map(dev, fw);
937 	if (IS_ERR(shdr))
938 		return PTR_ERR(shdr);
939 
940 	if (!shdr)
941 		return 0;
942 
943 	/* preserve pointer to PRU interrupt map together with it size */
944 	sh_offset = elf_shdr_get_sh_offset(class, shdr);
945 	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
946 	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
947 
948 	return 0;
949 }
950 
951 /*
952  * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
953  * always at a particular offset within the PRUSS address space.
954  */
955 static int pru_rproc_set_id(struct pru_rproc *pru)
956 {
957 	int ret = 0;
958 
959 	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
960 	case TX_PRU0_IRAM_ADDR_MASK:
961 		fallthrough;
962 	case RTU0_IRAM_ADDR_MASK:
963 		fallthrough;
964 	case PRU0_IRAM_ADDR_MASK:
965 		pru->id = PRUSS_PRU0;
966 		break;
967 	case TX_PRU1_IRAM_ADDR_MASK:
968 		fallthrough;
969 	case RTU1_IRAM_ADDR_MASK:
970 		fallthrough;
971 	case PRU1_IRAM_ADDR_MASK:
972 		pru->id = PRUSS_PRU1;
973 		break;
974 	default:
975 		ret = -EINVAL;
976 	}
977 
978 	return ret;
979 }
980 
981 static int pru_rproc_probe(struct platform_device *pdev)
982 {
983 	struct device *dev = &pdev->dev;
984 	struct device_node *np = dev->of_node;
985 	struct platform_device *ppdev = to_platform_device(dev->parent);
986 	struct pru_rproc *pru;
987 	const char *fw_name;
988 	struct rproc *rproc = NULL;
989 	struct resource *res;
990 	int i, ret;
991 	const struct pru_private_data *data;
992 	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
993 
994 	data = of_device_get_match_data(&pdev->dev);
995 	if (!data)
996 		return -ENODEV;
997 
998 	ret = of_property_read_string(np, "firmware-name", &fw_name);
999 	if (ret) {
1000 		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
1001 		return ret;
1002 	}
1003 
1004 	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
1005 				 sizeof(*pru));
1006 	if (!rproc) {
1007 		dev_err(dev, "rproc_alloc failed\n");
1008 		return -ENOMEM;
1009 	}
1010 	/* use a custom load function to deal with PRU-specific quirks */
1011 	rproc->ops->load = pru_rproc_load_elf_segments;
1012 
1013 	/* use a custom parse function to deal with PRU-specific resources */
1014 	rproc->ops->parse_fw = pru_rproc_parse_fw;
1015 
1016 	/* error recovery is not supported for PRUs */
1017 	rproc->recovery_disabled = true;
1018 
1019 	/*
1020 	 * rproc_add will auto-boot the processor normally, but this is not
1021 	 * desired with PRU client driven boot-flow methodology. A PRU
1022 	 * application/client driver will boot the corresponding PRU
1023 	 * remote-processor as part of its state machine either through the
1024 	 * remoteproc sysfs interface or through the equivalent kernel API.
1025 	 */
1026 	rproc->auto_boot = false;
1027 
1028 	pru = rproc->priv;
1029 	pru->dev = dev;
1030 	pru->data = data;
1031 	pru->pruss = platform_get_drvdata(ppdev);
1032 	pru->rproc = rproc;
1033 	pru->fw_name = fw_name;
1034 	pru->client_np = NULL;
1035 	spin_lock_init(&pru->rmw_lock);
1036 	mutex_init(&pru->lock);
1037 
1038 	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
1039 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1040 						   mem_names[i]);
1041 		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
1042 		if (IS_ERR(pru->mem_regions[i].va)) {
1043 			dev_err(dev, "failed to parse and map memory resource %d %s\n",
1044 				i, mem_names[i]);
1045 			ret = PTR_ERR(pru->mem_regions[i].va);
1046 			return ret;
1047 		}
1048 		pru->mem_regions[i].pa = res->start;
1049 		pru->mem_regions[i].size = resource_size(res);
1050 
1051 		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
1052 			mem_names[i], &pru->mem_regions[i].pa,
1053 			pru->mem_regions[i].size, pru->mem_regions[i].va);
1054 	}
1055 
1056 	ret = pru_rproc_set_id(pru);
1057 	if (ret < 0)
1058 		return ret;
1059 
1060 	platform_set_drvdata(pdev, rproc);
1061 
1062 	ret = devm_rproc_add(dev, pru->rproc);
1063 	if (ret) {
1064 		dev_err(dev, "rproc_add failed: %d\n", ret);
1065 		return ret;
1066 	}
1067 
1068 	pru_rproc_create_debug_entries(rproc);
1069 
1070 	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
1071 
1072 	return 0;
1073 }
1074 
1075 static int pru_rproc_remove(struct platform_device *pdev)
1076 {
1077 	struct device *dev = &pdev->dev;
1078 	struct rproc *rproc = platform_get_drvdata(pdev);
1079 
1080 	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
1081 
1082 	return 0;
1083 }
1084 
1085 static const struct pru_private_data pru_data = {
1086 	.type = PRU_TYPE_PRU,
1087 };
1088 
1089 static const struct pru_private_data k3_pru_data = {
1090 	.type = PRU_TYPE_PRU,
1091 	.is_k3 = 1,
1092 };
1093 
1094 static const struct pru_private_data k3_rtu_data = {
1095 	.type = PRU_TYPE_RTU,
1096 	.is_k3 = 1,
1097 };
1098 
1099 static const struct pru_private_data k3_tx_pru_data = {
1100 	.type = PRU_TYPE_TX_PRU,
1101 	.is_k3 = 1,
1102 };
1103 
1104 static const struct of_device_id pru_rproc_match[] = {
1105 	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
1106 	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
1107 	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
1108 	{ .compatible = "ti,am642-pru",		.data = &k3_pru_data },
1109 	{ .compatible = "ti,am642-rtu",		.data = &k3_rtu_data },
1110 	{ .compatible = "ti,am642-tx-pru",	.data = &k3_tx_pru_data },
1111 	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
1112 	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
1113 	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
1114 	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
1115 	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
1116 	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
1117 	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
1118 	{ .compatible = "ti,am625-pru",		.data = &k3_pru_data },
1119 	{},
1120 };
1121 MODULE_DEVICE_TABLE(of, pru_rproc_match);
1122 
1123 static struct platform_driver pru_rproc_driver = {
1124 	.driver = {
1125 		.name   = PRU_RPROC_DRVNAME,
1126 		.of_match_table = pru_rproc_match,
1127 		.suppress_bind_attrs = true,
1128 	},
1129 	.probe  = pru_rproc_probe,
1130 	.remove = pru_rproc_remove,
1131 };
1132 module_platform_driver(pru_rproc_driver);
1133 
1134 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1135 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
1136 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
1137 MODULE_AUTHOR("Puranjay Mohan <p-mohan@ti.com>");
1138 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
1139 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
1140 MODULE_LICENSE("GPL v2");
1141