xref: /openbmc/linux/drivers/ras/cec.c (revision f3c74b38a55aefe1004200d15a83f109b510068c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/kernel.h>
5 
6 #include <asm/mce.h>
7 
8 #include "debugfs.h"
9 
10 /*
11  * RAS Correctable Errors Collector
12  *
13  * This is a simple gadget which collects correctable errors and counts their
14  * occurrence per physical page address.
15  *
16  * We've opted for possibly the simplest data structure to collect those - an
17  * array of the size of a memory page. It stores 512 u64's with the following
18  * structure:
19  *
20  * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
21  *
22  * The generation in the two highest order bits is two bits which are set to 11b
23  * on every insertion. During the course of each entry's existence, the
24  * generation field gets decremented during spring cleaning to 10b, then 01b and
25  * then 00b.
26  *
27  * This way we're employing the natural numeric ordering to make sure that newly
28  * inserted/touched elements have higher 12-bit counts (which we've manufactured)
29  * and thus iterating over the array initially won't kick out those elements
30  * which were inserted last.
31  *
32  * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
33  * elements entered into the array, during which, we're decaying all elements.
34  * If, after decay, an element gets inserted again, its generation is set to 11b
35  * to make sure it has higher numerical count than other, older elements and
36  * thus emulate an an LRU-like behavior when deleting elements to free up space
37  * in the page.
38  *
39  * When an element reaches it's max count of count_threshold, we try to poison
40  * it by assuming that errors triggered count_threshold times in a single page
41  * are excessive and that page shouldn't be used anymore. count_threshold is
42  * initialized to COUNT_MASK which is the maximum.
43  *
44  * That error event entry causes cec_add_elem() to return !0 value and thus
45  * signal to its callers to log the error.
46  *
47  * To the question why we've chosen a page and moving elements around with
48  * memmove(), it is because it is a very simple structure to handle and max data
49  * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
50  * We wanted to avoid the pointer traversal of more complex structures like a
51  * linked list or some sort of a balancing search tree.
52  *
53  * Deleting an element takes O(n) but since it is only a single page, it should
54  * be fast enough and it shouldn't happen all too often depending on error
55  * patterns.
56  */
57 
58 #undef pr_fmt
59 #define pr_fmt(fmt) "RAS: " fmt
60 
61 /*
62  * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
63  * elements have stayed in the array without having been accessed again.
64  */
65 #define DECAY_BITS		2
66 #define DECAY_MASK		((1ULL << DECAY_BITS) - 1)
67 #define MAX_ELEMS		(PAGE_SIZE / sizeof(u64))
68 
69 /*
70  * Threshold amount of inserted elements after which we start spring
71  * cleaning.
72  */
73 #define CLEAN_ELEMS		(MAX_ELEMS >> DECAY_BITS)
74 
75 /* Bits which count the number of errors happened in this 4K page. */
76 #define COUNT_BITS		(PAGE_SHIFT - DECAY_BITS)
77 #define COUNT_MASK		((1ULL << COUNT_BITS) - 1)
78 #define FULL_COUNT_MASK		(PAGE_SIZE - 1)
79 
80 /*
81  * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
82  */
83 
84 #define PFN(e)			((e) >> PAGE_SHIFT)
85 #define DECAY(e)		(((e) >> COUNT_BITS) & DECAY_MASK)
86 #define COUNT(e)		((unsigned int)(e) & COUNT_MASK)
87 #define FULL_COUNT(e)		((e) & (PAGE_SIZE - 1))
88 
89 static struct ce_array {
90 	u64 *array;			/* container page */
91 	unsigned int n;			/* number of elements in the array */
92 
93 	unsigned int decay_count;	/*
94 					 * number of element insertions/increments
95 					 * since the last spring cleaning.
96 					 */
97 
98 	u64 pfns_poisoned;		/*
99 					 * number of PFNs which got poisoned.
100 					 */
101 
102 	u64 ces_entered;		/*
103 					 * The number of correctable errors
104 					 * entered into the collector.
105 					 */
106 
107 	u64 decays_done;		/*
108 					 * Times we did spring cleaning.
109 					 */
110 
111 	union {
112 		struct {
113 			__u32	disabled : 1,	/* cmdline disabled */
114 			__resv   : 31;
115 		};
116 		__u32 flags;
117 	};
118 } ce_arr;
119 
120 static DEFINE_MUTEX(ce_mutex);
121 static u64 dfs_pfn;
122 
123 /* Amount of errors after which we offline */
124 static unsigned int count_threshold = COUNT_MASK;
125 
126 /*
127  * The timer "decays" element count each timer_interval which is 24hrs by
128  * default.
129  */
130 
131 #define CEC_TIMER_DEFAULT_INTERVAL	24 * 60 * 60	/* 24 hrs */
132 #define CEC_TIMER_MIN_INTERVAL		 1 * 60 * 60	/* 1h */
133 #define CEC_TIMER_MAX_INTERVAL	   30 *	24 * 60 * 60	/* one month */
134 static struct timer_list cec_timer;
135 static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL;
136 
137 /*
138  * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
139  * element in the array. On insertion and any access, it gets reset to max.
140  */
141 static void do_spring_cleaning(struct ce_array *ca)
142 {
143 	int i;
144 
145 	for (i = 0; i < ca->n; i++) {
146 		u8 decay = DECAY(ca->array[i]);
147 
148 		if (!decay)
149 			continue;
150 
151 		decay--;
152 
153 		ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
154 		ca->array[i] |= (decay << COUNT_BITS);
155 	}
156 	ca->decay_count = 0;
157 	ca->decays_done++;
158 }
159 
160 /*
161  * @interval in seconds
162  */
163 static void cec_mod_timer(struct timer_list *t, unsigned long interval)
164 {
165 	unsigned long iv;
166 
167 	iv = interval * HZ + jiffies;
168 
169 	mod_timer(t, round_jiffies(iv));
170 }
171 
172 static void cec_timer_fn(struct timer_list *unused)
173 {
174 	do_spring_cleaning(&ce_arr);
175 
176 	cec_mod_timer(&cec_timer, timer_interval);
177 }
178 
179 /*
180  * @to: index of the smallest element which is >= then @pfn.
181  *
182  * Return the index of the pfn if found, otherwise negative value.
183  */
184 static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
185 {
186 	int min = 0, max = ca->n - 1;
187 	u64 this_pfn;
188 
189 	while (min <= max) {
190 		int i = (min + max) >> 1;
191 
192 		this_pfn = PFN(ca->array[i]);
193 
194 		if (this_pfn < pfn)
195 			min = i + 1;
196 		else if (this_pfn > pfn)
197 			max = i - 1;
198 		else if (this_pfn == pfn) {
199 			if (to)
200 				*to = i;
201 
202 			return i;
203 		}
204 	}
205 
206 	/*
207 	 * When the loop terminates without finding @pfn, min has the index of
208 	 * the element slot where the new @pfn should be inserted. The loop
209 	 * terminates when min > max, which means the min index points to the
210 	 * bigger element while the max index to the smaller element, in-between
211 	 * which the new @pfn belongs to.
212 	 *
213 	 * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3.
214 	 */
215 	if (to)
216 		*to = min;
217 
218 	return -ENOKEY;
219 }
220 
221 static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
222 {
223 	WARN_ON(!to);
224 
225 	if (!ca->n) {
226 		*to = 0;
227 		return -ENOKEY;
228 	}
229 	return __find_elem(ca, pfn, to);
230 }
231 
232 static void del_elem(struct ce_array *ca, int idx)
233 {
234 	/* Save us a function call when deleting the last element. */
235 	if (ca->n - (idx + 1))
236 		memmove((void *)&ca->array[idx],
237 			(void *)&ca->array[idx + 1],
238 			(ca->n - (idx + 1)) * sizeof(u64));
239 
240 	ca->n--;
241 }
242 
243 static u64 del_lru_elem_unlocked(struct ce_array *ca)
244 {
245 	unsigned int min = FULL_COUNT_MASK;
246 	int i, min_idx = 0;
247 
248 	for (i = 0; i < ca->n; i++) {
249 		unsigned int this = FULL_COUNT(ca->array[i]);
250 
251 		if (min > this) {
252 			min = this;
253 			min_idx = i;
254 		}
255 	}
256 
257 	del_elem(ca, min_idx);
258 
259 	return PFN(ca->array[min_idx]);
260 }
261 
262 /*
263  * We return the 0th pfn in the error case under the assumption that it cannot
264  * be poisoned and excessive CEs in there are a serious deal anyway.
265  */
266 static u64 __maybe_unused del_lru_elem(void)
267 {
268 	struct ce_array *ca = &ce_arr;
269 	u64 pfn;
270 
271 	if (!ca->n)
272 		return 0;
273 
274 	mutex_lock(&ce_mutex);
275 	pfn = del_lru_elem_unlocked(ca);
276 	mutex_unlock(&ce_mutex);
277 
278 	return pfn;
279 }
280 
281 
282 int cec_add_elem(u64 pfn)
283 {
284 	struct ce_array *ca = &ce_arr;
285 	unsigned int to;
286 	int count, ret = 0;
287 
288 	/*
289 	 * We can be called very early on the identify_cpu() path where we are
290 	 * not initialized yet. We ignore the error for simplicity.
291 	 */
292 	if (!ce_arr.array || ce_arr.disabled)
293 		return -ENODEV;
294 
295 	mutex_lock(&ce_mutex);
296 
297 	ca->ces_entered++;
298 
299 	if (ca->n == MAX_ELEMS)
300 		WARN_ON(!del_lru_elem_unlocked(ca));
301 
302 	ret = find_elem(ca, pfn, &to);
303 	if (ret < 0) {
304 		/*
305 		 * Shift range [to-end] to make room for one more element.
306 		 */
307 		memmove((void *)&ca->array[to + 1],
308 			(void *)&ca->array[to],
309 			(ca->n - to) * sizeof(u64));
310 
311 		ca->array[to] = (pfn << PAGE_SHIFT) |
312 				(DECAY_MASK << COUNT_BITS) | 1;
313 
314 		ca->n++;
315 
316 		ret = 0;
317 
318 		goto decay;
319 	}
320 
321 	count = COUNT(ca->array[to]);
322 
323 	if (count < count_threshold) {
324 		ca->array[to] |= (DECAY_MASK << COUNT_BITS);
325 		ca->array[to]++;
326 
327 		ret = 0;
328 	} else {
329 		u64 pfn = ca->array[to] >> PAGE_SHIFT;
330 
331 		if (!pfn_valid(pfn)) {
332 			pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
333 		} else {
334 			/* We have reached max count for this page, soft-offline it. */
335 			pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
336 			memory_failure_queue(pfn, MF_SOFT_OFFLINE);
337 			ca->pfns_poisoned++;
338 		}
339 
340 		del_elem(ca, to);
341 
342 		/*
343 		 * Return a >0 value to denote that we've reached the offlining
344 		 * threshold.
345 		 */
346 		ret = 1;
347 
348 		goto unlock;
349 	}
350 
351 decay:
352 	ca->decay_count++;
353 
354 	if (ca->decay_count >= CLEAN_ELEMS)
355 		do_spring_cleaning(ca);
356 
357 unlock:
358 	mutex_unlock(&ce_mutex);
359 
360 	return ret;
361 }
362 
363 static int u64_get(void *data, u64 *val)
364 {
365 	*val = *(u64 *)data;
366 
367 	return 0;
368 }
369 
370 static int pfn_set(void *data, u64 val)
371 {
372 	*(u64 *)data = val;
373 
374 	return cec_add_elem(val);
375 }
376 
377 DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
378 
379 static int decay_interval_set(void *data, u64 val)
380 {
381 	*(u64 *)data = val;
382 
383 	if (val < CEC_TIMER_MIN_INTERVAL)
384 		return -EINVAL;
385 
386 	if (val > CEC_TIMER_MAX_INTERVAL)
387 		return -EINVAL;
388 
389 	timer_interval = val;
390 
391 	cec_mod_timer(&cec_timer, timer_interval);
392 	return 0;
393 }
394 DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
395 
396 static int count_threshold_set(void *data, u64 val)
397 {
398 	*(u64 *)data = val;
399 
400 	if (val > COUNT_MASK)
401 		val = COUNT_MASK;
402 
403 	count_threshold = val;
404 
405 	return 0;
406 }
407 DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
408 
409 static int array_dump(struct seq_file *m, void *v)
410 {
411 	struct ce_array *ca = &ce_arr;
412 	u64 prev = 0;
413 	int i;
414 
415 	mutex_lock(&ce_mutex);
416 
417 	seq_printf(m, "{ n: %d\n", ca->n);
418 	for (i = 0; i < ca->n; i++) {
419 		u64 this = PFN(ca->array[i]);
420 
421 		seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
422 
423 		WARN_ON(prev > this);
424 
425 		prev = this;
426 	}
427 
428 	seq_printf(m, "}\n");
429 
430 	seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
431 		   ca->ces_entered, ca->pfns_poisoned);
432 
433 	seq_printf(m, "Flags: 0x%x\n", ca->flags);
434 
435 	seq_printf(m, "Timer interval: %lld seconds\n", timer_interval);
436 	seq_printf(m, "Decays: %lld\n", ca->decays_done);
437 
438 	seq_printf(m, "Action threshold: %d\n", count_threshold);
439 
440 	mutex_unlock(&ce_mutex);
441 
442 	return 0;
443 }
444 
445 static int array_open(struct inode *inode, struct file *filp)
446 {
447 	return single_open(filp, array_dump, NULL);
448 }
449 
450 static const struct file_operations array_ops = {
451 	.owner	 = THIS_MODULE,
452 	.open	 = array_open,
453 	.read	 = seq_read,
454 	.llseek	 = seq_lseek,
455 	.release = single_release,
456 };
457 
458 static int __init create_debugfs_nodes(void)
459 {
460 	struct dentry *d, *pfn, *decay, *count, *array;
461 
462 	d = debugfs_create_dir("cec", ras_debugfs_dir);
463 	if (!d) {
464 		pr_warn("Error creating cec debugfs node!\n");
465 		return -1;
466 	}
467 
468 	pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
469 	if (!pfn) {
470 		pr_warn("Error creating pfn debugfs node!\n");
471 		goto err;
472 	}
473 
474 	array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
475 	if (!array) {
476 		pr_warn("Error creating array debugfs node!\n");
477 		goto err;
478 	}
479 
480 	decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
481 				    &timer_interval, &decay_interval_ops);
482 	if (!decay) {
483 		pr_warn("Error creating decay_interval debugfs node!\n");
484 		goto err;
485 	}
486 
487 	count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
488 				    &count_threshold, &count_threshold_ops);
489 	if (!count) {
490 		pr_warn("Error creating count_threshold debugfs node!\n");
491 		goto err;
492 	}
493 
494 
495 	return 0;
496 
497 err:
498 	debugfs_remove_recursive(d);
499 
500 	return 1;
501 }
502 
503 void __init cec_init(void)
504 {
505 	if (ce_arr.disabled)
506 		return;
507 
508 	ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
509 	if (!ce_arr.array) {
510 		pr_err("Error allocating CE array page!\n");
511 		return;
512 	}
513 
514 	if (create_debugfs_nodes())
515 		return;
516 
517 	timer_setup(&cec_timer, cec_timer_fn, 0);
518 	cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL);
519 
520 	pr_info("Correctable Errors collector initialized.\n");
521 }
522 
523 int __init parse_cec_param(char *str)
524 {
525 	if (!str)
526 		return 0;
527 
528 	if (*str == '=')
529 		str++;
530 
531 	if (!strcmp(str, "cec_disable"))
532 		ce_arr.disabled = 1;
533 	else
534 		return 0;
535 
536 	return 1;
537 }
538