1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/gfp.h> 4 #include <linux/kernel.h> 5 6 #include <asm/mce.h> 7 8 #include "debugfs.h" 9 10 /* 11 * RAS Correctable Errors Collector 12 * 13 * This is a simple gadget which collects correctable errors and counts their 14 * occurrence per physical page address. 15 * 16 * We've opted for possibly the simplest data structure to collect those - an 17 * array of the size of a memory page. It stores 512 u64's with the following 18 * structure: 19 * 20 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0] 21 * 22 * The generation in the two highest order bits is two bits which are set to 11b 23 * on every insertion. During the course of each entry's existence, the 24 * generation field gets decremented during spring cleaning to 10b, then 01b and 25 * then 00b. 26 * 27 * This way we're employing the natural numeric ordering to make sure that newly 28 * inserted/touched elements have higher 12-bit counts (which we've manufactured) 29 * and thus iterating over the array initially won't kick out those elements 30 * which were inserted last. 31 * 32 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of 33 * elements entered into the array, during which, we're decaying all elements. 34 * If, after decay, an element gets inserted again, its generation is set to 11b 35 * to make sure it has higher numerical count than other, older elements and 36 * thus emulate an an LRU-like behavior when deleting elements to free up space 37 * in the page. 38 * 39 * When an element reaches it's max count of count_threshold, we try to poison 40 * it by assuming that errors triggered count_threshold times in a single page 41 * are excessive and that page shouldn't be used anymore. count_threshold is 42 * initialized to COUNT_MASK which is the maximum. 43 * 44 * That error event entry causes cec_add_elem() to return !0 value and thus 45 * signal to its callers to log the error. 46 * 47 * To the question why we've chosen a page and moving elements around with 48 * memmove(), it is because it is a very simple structure to handle and max data 49 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable. 50 * We wanted to avoid the pointer traversal of more complex structures like a 51 * linked list or some sort of a balancing search tree. 52 * 53 * Deleting an element takes O(n) but since it is only a single page, it should 54 * be fast enough and it shouldn't happen all too often depending on error 55 * patterns. 56 */ 57 58 #undef pr_fmt 59 #define pr_fmt(fmt) "RAS: " fmt 60 61 /* 62 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long 63 * elements have stayed in the array without having been accessed again. 64 */ 65 #define DECAY_BITS 2 66 #define DECAY_MASK ((1ULL << DECAY_BITS) - 1) 67 #define MAX_ELEMS (PAGE_SIZE / sizeof(u64)) 68 69 /* 70 * Threshold amount of inserted elements after which we start spring 71 * cleaning. 72 */ 73 #define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS) 74 75 /* Bits which count the number of errors happened in this 4K page. */ 76 #define COUNT_BITS (PAGE_SHIFT - DECAY_BITS) 77 #define COUNT_MASK ((1ULL << COUNT_BITS) - 1) 78 #define FULL_COUNT_MASK (PAGE_SIZE - 1) 79 80 /* 81 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ] 82 */ 83 84 #define PFN(e) ((e) >> PAGE_SHIFT) 85 #define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK) 86 #define COUNT(e) ((unsigned int)(e) & COUNT_MASK) 87 #define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1)) 88 89 static struct ce_array { 90 u64 *array; /* container page */ 91 unsigned int n; /* number of elements in the array */ 92 93 unsigned int decay_count; /* 94 * number of element insertions/increments 95 * since the last spring cleaning. 96 */ 97 98 u64 pfns_poisoned; /* 99 * number of PFNs which got poisoned. 100 */ 101 102 u64 ces_entered; /* 103 * The number of correctable errors 104 * entered into the collector. 105 */ 106 107 u64 decays_done; /* 108 * Times we did spring cleaning. 109 */ 110 111 union { 112 struct { 113 __u32 disabled : 1, /* cmdline disabled */ 114 __resv : 31; 115 }; 116 __u32 flags; 117 }; 118 } ce_arr; 119 120 static DEFINE_MUTEX(ce_mutex); 121 static u64 dfs_pfn; 122 123 /* Amount of errors after which we offline */ 124 static unsigned int count_threshold = COUNT_MASK; 125 126 /* 127 * The timer "decays" element count each timer_interval which is 24hrs by 128 * default. 129 */ 130 131 #define CEC_TIMER_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */ 132 #define CEC_TIMER_MIN_INTERVAL 1 * 60 * 60 /* 1h */ 133 #define CEC_TIMER_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */ 134 static struct timer_list cec_timer; 135 static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL; 136 137 /* 138 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an 139 * element in the array. On insertion and any access, it gets reset to max. 140 */ 141 static void do_spring_cleaning(struct ce_array *ca) 142 { 143 int i; 144 145 for (i = 0; i < ca->n; i++) { 146 u8 decay = DECAY(ca->array[i]); 147 148 if (!decay) 149 continue; 150 151 decay--; 152 153 ca->array[i] &= ~(DECAY_MASK << COUNT_BITS); 154 ca->array[i] |= (decay << COUNT_BITS); 155 } 156 ca->decay_count = 0; 157 ca->decays_done++; 158 } 159 160 /* 161 * @interval in seconds 162 */ 163 static void cec_mod_timer(struct timer_list *t, unsigned long interval) 164 { 165 unsigned long iv; 166 167 iv = interval * HZ + jiffies; 168 169 mod_timer(t, round_jiffies(iv)); 170 } 171 172 static void cec_timer_fn(struct timer_list *unused) 173 { 174 do_spring_cleaning(&ce_arr); 175 176 cec_mod_timer(&cec_timer, timer_interval); 177 } 178 179 /* 180 * @to: index of the smallest element which is >= then @pfn. 181 * 182 * Return the index of the pfn if found, otherwise negative value. 183 */ 184 static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) 185 { 186 int min = 0, max = ca->n - 1; 187 u64 this_pfn; 188 189 while (min <= max) { 190 int i = (min + max) >> 1; 191 192 this_pfn = PFN(ca->array[i]); 193 194 if (this_pfn < pfn) 195 min = i + 1; 196 else if (this_pfn > pfn) 197 max = i - 1; 198 else if (this_pfn == pfn) { 199 if (to) 200 *to = i; 201 202 return i; 203 } 204 } 205 206 /* 207 * When the loop terminates without finding @pfn, min has the index of 208 * the element slot where the new @pfn should be inserted. The loop 209 * terminates when min > max, which means the min index points to the 210 * bigger element while the max index to the smaller element, in-between 211 * which the new @pfn belongs to. 212 * 213 * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3. 214 */ 215 if (to) 216 *to = min; 217 218 return -ENOKEY; 219 } 220 221 static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) 222 { 223 WARN_ON(!to); 224 225 if (!ca->n) { 226 *to = 0; 227 return -ENOKEY; 228 } 229 return __find_elem(ca, pfn, to); 230 } 231 232 static void del_elem(struct ce_array *ca, int idx) 233 { 234 /* Save us a function call when deleting the last element. */ 235 if (ca->n - (idx + 1)) 236 memmove((void *)&ca->array[idx], 237 (void *)&ca->array[idx + 1], 238 (ca->n - (idx + 1)) * sizeof(u64)); 239 240 ca->n--; 241 } 242 243 static u64 del_lru_elem_unlocked(struct ce_array *ca) 244 { 245 unsigned int min = FULL_COUNT_MASK; 246 int i, min_idx = 0; 247 248 for (i = 0; i < ca->n; i++) { 249 unsigned int this = FULL_COUNT(ca->array[i]); 250 251 if (min > this) { 252 min = this; 253 min_idx = i; 254 } 255 } 256 257 del_elem(ca, min_idx); 258 259 return PFN(ca->array[min_idx]); 260 } 261 262 /* 263 * We return the 0th pfn in the error case under the assumption that it cannot 264 * be poisoned and excessive CEs in there are a serious deal anyway. 265 */ 266 static u64 __maybe_unused del_lru_elem(void) 267 { 268 struct ce_array *ca = &ce_arr; 269 u64 pfn; 270 271 if (!ca->n) 272 return 0; 273 274 mutex_lock(&ce_mutex); 275 pfn = del_lru_elem_unlocked(ca); 276 mutex_unlock(&ce_mutex); 277 278 return pfn; 279 } 280 281 282 int cec_add_elem(u64 pfn) 283 { 284 struct ce_array *ca = &ce_arr; 285 unsigned int to; 286 int count, ret = 0; 287 288 /* 289 * We can be called very early on the identify_cpu() path where we are 290 * not initialized yet. We ignore the error for simplicity. 291 */ 292 if (!ce_arr.array || ce_arr.disabled) 293 return -ENODEV; 294 295 mutex_lock(&ce_mutex); 296 297 ca->ces_entered++; 298 299 if (ca->n == MAX_ELEMS) 300 WARN_ON(!del_lru_elem_unlocked(ca)); 301 302 ret = find_elem(ca, pfn, &to); 303 if (ret < 0) { 304 /* 305 * Shift range [to-end] to make room for one more element. 306 */ 307 memmove((void *)&ca->array[to + 1], 308 (void *)&ca->array[to], 309 (ca->n - to) * sizeof(u64)); 310 311 ca->array[to] = (pfn << PAGE_SHIFT) | 312 (DECAY_MASK << COUNT_BITS) | 1; 313 314 ca->n++; 315 316 ret = 0; 317 318 goto decay; 319 } 320 321 count = COUNT(ca->array[to]); 322 323 if (count < count_threshold) { 324 ca->array[to] |= (DECAY_MASK << COUNT_BITS); 325 ca->array[to]++; 326 327 ret = 0; 328 } else { 329 u64 pfn = ca->array[to] >> PAGE_SHIFT; 330 331 if (!pfn_valid(pfn)) { 332 pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn); 333 } else { 334 /* We have reached max count for this page, soft-offline it. */ 335 pr_err("Soft-offlining pfn: 0x%llx\n", pfn); 336 memory_failure_queue(pfn, MF_SOFT_OFFLINE); 337 ca->pfns_poisoned++; 338 } 339 340 del_elem(ca, to); 341 342 /* 343 * Return a >0 value to denote that we've reached the offlining 344 * threshold. 345 */ 346 ret = 1; 347 348 goto unlock; 349 } 350 351 decay: 352 ca->decay_count++; 353 354 if (ca->decay_count >= CLEAN_ELEMS) 355 do_spring_cleaning(ca); 356 357 unlock: 358 mutex_unlock(&ce_mutex); 359 360 return ret; 361 } 362 363 static int u64_get(void *data, u64 *val) 364 { 365 *val = *(u64 *)data; 366 367 return 0; 368 } 369 370 static int pfn_set(void *data, u64 val) 371 { 372 *(u64 *)data = val; 373 374 return cec_add_elem(val); 375 } 376 377 DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n"); 378 379 static int decay_interval_set(void *data, u64 val) 380 { 381 *(u64 *)data = val; 382 383 if (val < CEC_TIMER_MIN_INTERVAL) 384 return -EINVAL; 385 386 if (val > CEC_TIMER_MAX_INTERVAL) 387 return -EINVAL; 388 389 timer_interval = val; 390 391 cec_mod_timer(&cec_timer, timer_interval); 392 return 0; 393 } 394 DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n"); 395 396 static int count_threshold_set(void *data, u64 val) 397 { 398 *(u64 *)data = val; 399 400 if (val > COUNT_MASK) 401 val = COUNT_MASK; 402 403 count_threshold = val; 404 405 return 0; 406 } 407 DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n"); 408 409 static int array_dump(struct seq_file *m, void *v) 410 { 411 struct ce_array *ca = &ce_arr; 412 u64 prev = 0; 413 int i; 414 415 mutex_lock(&ce_mutex); 416 417 seq_printf(m, "{ n: %d\n", ca->n); 418 for (i = 0; i < ca->n; i++) { 419 u64 this = PFN(ca->array[i]); 420 421 seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i])); 422 423 WARN_ON(prev > this); 424 425 prev = this; 426 } 427 428 seq_printf(m, "}\n"); 429 430 seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n", 431 ca->ces_entered, ca->pfns_poisoned); 432 433 seq_printf(m, "Flags: 0x%x\n", ca->flags); 434 435 seq_printf(m, "Timer interval: %lld seconds\n", timer_interval); 436 seq_printf(m, "Decays: %lld\n", ca->decays_done); 437 438 seq_printf(m, "Action threshold: %d\n", count_threshold); 439 440 mutex_unlock(&ce_mutex); 441 442 return 0; 443 } 444 445 static int array_open(struct inode *inode, struct file *filp) 446 { 447 return single_open(filp, array_dump, NULL); 448 } 449 450 static const struct file_operations array_ops = { 451 .owner = THIS_MODULE, 452 .open = array_open, 453 .read = seq_read, 454 .llseek = seq_lseek, 455 .release = single_release, 456 }; 457 458 static int __init create_debugfs_nodes(void) 459 { 460 struct dentry *d, *pfn, *decay, *count, *array; 461 462 d = debugfs_create_dir("cec", ras_debugfs_dir); 463 if (!d) { 464 pr_warn("Error creating cec debugfs node!\n"); 465 return -1; 466 } 467 468 pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops); 469 if (!pfn) { 470 pr_warn("Error creating pfn debugfs node!\n"); 471 goto err; 472 } 473 474 array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops); 475 if (!array) { 476 pr_warn("Error creating array debugfs node!\n"); 477 goto err; 478 } 479 480 decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d, 481 &timer_interval, &decay_interval_ops); 482 if (!decay) { 483 pr_warn("Error creating decay_interval debugfs node!\n"); 484 goto err; 485 } 486 487 count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d, 488 &count_threshold, &count_threshold_ops); 489 if (!count) { 490 pr_warn("Error creating count_threshold debugfs node!\n"); 491 goto err; 492 } 493 494 495 return 0; 496 497 err: 498 debugfs_remove_recursive(d); 499 500 return 1; 501 } 502 503 void __init cec_init(void) 504 { 505 if (ce_arr.disabled) 506 return; 507 508 ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL); 509 if (!ce_arr.array) { 510 pr_err("Error allocating CE array page!\n"); 511 return; 512 } 513 514 if (create_debugfs_nodes()) 515 return; 516 517 timer_setup(&cec_timer, cec_timer_fn, 0); 518 cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL); 519 520 pr_info("Correctable Errors collector initialized.\n"); 521 } 522 523 int __init parse_cec_param(char *str) 524 { 525 if (!str) 526 return 0; 527 528 if (*str == '=') 529 str++; 530 531 if (!strcmp(str, "cec_disable")) 532 ce_arr.disabled = 1; 533 else 534 return 0; 535 536 return 1; 537 } 538