xref: /openbmc/linux/drivers/pwm/pwm-sl28cpld.c (revision 9db33d221efcca9503ac481edcbf2b3f4404bdb8)
1*9db33d22SMichael Walle // SPDX-License-Identifier: GPL-2.0-only
2*9db33d22SMichael Walle /*
3*9db33d22SMichael Walle  * sl28cpld PWM driver
4*9db33d22SMichael Walle  *
5*9db33d22SMichael Walle  * Copyright (c) 2020 Michael Walle <michael@walle.cc>
6*9db33d22SMichael Walle  *
7*9db33d22SMichael Walle  * There is no public datasheet available for this PWM core. But it is easy
8*9db33d22SMichael Walle  * enough to be briefly explained. It consists of one 8-bit counter. The PWM
9*9db33d22SMichael Walle  * supports four distinct frequencies by selecting when to reset the counter.
10*9db33d22SMichael Walle  * With the prescaler setting you can select which bit of the counter is used
11*9db33d22SMichael Walle  * to reset it. This implies that the higher the frequency the less remaining
12*9db33d22SMichael Walle  * bits are available for the actual counter.
13*9db33d22SMichael Walle  *
14*9db33d22SMichael Walle  * Let cnt[7:0] be the counter, clocked at 32kHz:
15*9db33d22SMichael Walle  * +-----------+--------+--------------+-----------+---------------+
16*9db33d22SMichael Walle  * | prescaler |  reset | counter bits | frequency | period length |
17*9db33d22SMichael Walle  * +-----------+--------+--------------+-----------+---------------+
18*9db33d22SMichael Walle  * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
19*9db33d22SMichael Walle  * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
20*9db33d22SMichael Walle  * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
21*9db33d22SMichael Walle  * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
22*9db33d22SMichael Walle  * +-----------+--------+--------------+-----------+---------------+
23*9db33d22SMichael Walle  *
24*9db33d22SMichael Walle  * Limitations:
25*9db33d22SMichael Walle  * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
26*9db33d22SMichael Walle  * - The hardware cannot atomically set the prescaler and the counter value,
27*9db33d22SMichael Walle  *   which might lead to glitches and inconsistent states if a write fails.
28*9db33d22SMichael Walle  * - The counter is not reset if you switch the prescaler which leads
29*9db33d22SMichael Walle  *   to glitches, too.
30*9db33d22SMichael Walle  * - The duty cycle will switch immediately and not after a complete cycle.
31*9db33d22SMichael Walle  * - Depending on the actual implementation, disabling the PWM might have
32*9db33d22SMichael Walle  *   side effects. For example, if the output pin is shared with a GPIO pin
33*9db33d22SMichael Walle  *   it will automatically switch back to GPIO mode.
34*9db33d22SMichael Walle  */
35*9db33d22SMichael Walle 
36*9db33d22SMichael Walle #include <linux/bitfield.h>
37*9db33d22SMichael Walle #include <linux/kernel.h>
38*9db33d22SMichael Walle #include <linux/mod_devicetable.h>
39*9db33d22SMichael Walle #include <linux/module.h>
40*9db33d22SMichael Walle #include <linux/platform_device.h>
41*9db33d22SMichael Walle #include <linux/pwm.h>
42*9db33d22SMichael Walle #include <linux/regmap.h>
43*9db33d22SMichael Walle 
44*9db33d22SMichael Walle /*
45*9db33d22SMichael Walle  * PWM timer block registers.
46*9db33d22SMichael Walle  */
47*9db33d22SMichael Walle #define SL28CPLD_PWM_CTRL			0x00
48*9db33d22SMichael Walle #define   SL28CPLD_PWM_CTRL_ENABLE		BIT(7)
49*9db33d22SMichael Walle #define   SL28CPLD_PWM_CTRL_PRESCALER_MASK	GENMASK(1, 0)
50*9db33d22SMichael Walle #define SL28CPLD_PWM_CYCLE			0x01
51*9db33d22SMichael Walle #define   SL28CPLD_PWM_CYCLE_MAX		GENMASK(6, 0)
52*9db33d22SMichael Walle 
53*9db33d22SMichael Walle #define SL28CPLD_PWM_CLK			32000 /* 32 kHz */
54*9db33d22SMichael Walle #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)	(1 << (7 - (prescaler)))
55*9db33d22SMichael Walle #define SL28CPLD_PWM_PERIOD(prescaler) \
56*9db33d22SMichael Walle 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
57*9db33d22SMichael Walle 
58*9db33d22SMichael Walle /*
59*9db33d22SMichael Walle  * We calculate the duty cycle like this:
60*9db33d22SMichael Walle  *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
61*9db33d22SMichael Walle  *
62*9db33d22SMichael Walle  * With
63*9db33d22SMichael Walle  *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
64*9db33d22SMichael Walle  *   max_duty_cycle = 1 << (7 - prescaler)
65*9db33d22SMichael Walle  * this then simplifies to:
66*9db33d22SMichael Walle  *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
67*9db33d22SMichael Walle  *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
68*9db33d22SMichael Walle  *
69*9db33d22SMichael Walle  * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
70*9db33d22SMichael Walle  * precision by doing the divison first.
71*9db33d22SMichael Walle  */
72*9db33d22SMichael Walle #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
73*9db33d22SMichael Walle 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
74*9db33d22SMichael Walle #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
75*9db33d22SMichael Walle 	(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
76*9db33d22SMichael Walle 
77*9db33d22SMichael Walle #define sl28cpld_pwm_read(priv, reg, val) \
78*9db33d22SMichael Walle 	regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
79*9db33d22SMichael Walle #define sl28cpld_pwm_write(priv, reg, val) \
80*9db33d22SMichael Walle 	regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
81*9db33d22SMichael Walle 
82*9db33d22SMichael Walle struct sl28cpld_pwm {
83*9db33d22SMichael Walle 	struct pwm_chip pwm_chip;
84*9db33d22SMichael Walle 	struct regmap *regmap;
85*9db33d22SMichael Walle 	u32 offset;
86*9db33d22SMichael Walle };
87*9db33d22SMichael Walle 
88*9db33d22SMichael Walle static void sl28cpld_pwm_get_state(struct pwm_chip *chip,
89*9db33d22SMichael Walle 				   struct pwm_device *pwm,
90*9db33d22SMichael Walle 				   struct pwm_state *state)
91*9db33d22SMichael Walle {
92*9db33d22SMichael Walle 	struct sl28cpld_pwm *priv = dev_get_drvdata(chip->dev);
93*9db33d22SMichael Walle 	unsigned int reg;
94*9db33d22SMichael Walle 	int prescaler;
95*9db33d22SMichael Walle 
96*9db33d22SMichael Walle 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg);
97*9db33d22SMichael Walle 
98*9db33d22SMichael Walle 	state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
99*9db33d22SMichael Walle 
100*9db33d22SMichael Walle 	prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
101*9db33d22SMichael Walle 	state->period = SL28CPLD_PWM_PERIOD(prescaler);
102*9db33d22SMichael Walle 
103*9db33d22SMichael Walle 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg);
104*9db33d22SMichael Walle 	state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
105*9db33d22SMichael Walle 	state->polarity = PWM_POLARITY_NORMAL;
106*9db33d22SMichael Walle 
107*9db33d22SMichael Walle 	/*
108*9db33d22SMichael Walle 	 * Sanitize values for the PWM core. Depending on the prescaler it
109*9db33d22SMichael Walle 	 * might happen that we calculate a duty_cycle greater than the actual
110*9db33d22SMichael Walle 	 * period. This might happen if someone (e.g. the bootloader) sets an
111*9db33d22SMichael Walle 	 * invalid combination of values. The behavior of the hardware is
112*9db33d22SMichael Walle 	 * undefined in this case. But we need to report sane values back to
113*9db33d22SMichael Walle 	 * the PWM core.
114*9db33d22SMichael Walle 	 */
115*9db33d22SMichael Walle 	state->duty_cycle = min(state->duty_cycle, state->period);
116*9db33d22SMichael Walle }
117*9db33d22SMichael Walle 
118*9db33d22SMichael Walle static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
119*9db33d22SMichael Walle 			      const struct pwm_state *state)
120*9db33d22SMichael Walle {
121*9db33d22SMichael Walle 	struct sl28cpld_pwm *priv = dev_get_drvdata(chip->dev);
122*9db33d22SMichael Walle 	unsigned int cycle, prescaler;
123*9db33d22SMichael Walle 	bool write_duty_cycle_first;
124*9db33d22SMichael Walle 	int ret;
125*9db33d22SMichael Walle 	u8 ctrl;
126*9db33d22SMichael Walle 
127*9db33d22SMichael Walle 	/* Polarity inversion is not supported */
128*9db33d22SMichael Walle 	if (state->polarity != PWM_POLARITY_NORMAL)
129*9db33d22SMichael Walle 		return -EINVAL;
130*9db33d22SMichael Walle 
131*9db33d22SMichael Walle 	/*
132*9db33d22SMichael Walle 	 * Calculate the prescaler. Pick the biggest period that isn't
133*9db33d22SMichael Walle 	 * bigger than the requested period.
134*9db33d22SMichael Walle 	 */
135*9db33d22SMichael Walle 	prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
136*9db33d22SMichael Walle 	prescaler = order_base_2(prescaler);
137*9db33d22SMichael Walle 
138*9db33d22SMichael Walle 	if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
139*9db33d22SMichael Walle 		return -ERANGE;
140*9db33d22SMichael Walle 
141*9db33d22SMichael Walle 	ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
142*9db33d22SMichael Walle 	if (state->enabled)
143*9db33d22SMichael Walle 		ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
144*9db33d22SMichael Walle 
145*9db33d22SMichael Walle 	cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
146*9db33d22SMichael Walle 	cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
147*9db33d22SMichael Walle 
148*9db33d22SMichael Walle 	/*
149*9db33d22SMichael Walle 	 * Work around the hardware limitation. See also above. Trap 100% duty
150*9db33d22SMichael Walle 	 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
151*9db33d22SMichael Walle 	 * care about the frequency because its "all-one" in either case.
152*9db33d22SMichael Walle 	 *
153*9db33d22SMichael Walle 	 * We don't need to check the actual prescaler setting, because only
154*9db33d22SMichael Walle 	 * if the prescaler is 0 we can have this particular value.
155*9db33d22SMichael Walle 	 */
156*9db33d22SMichael Walle 	if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
157*9db33d22SMichael Walle 		ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
158*9db33d22SMichael Walle 		ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
159*9db33d22SMichael Walle 		cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
160*9db33d22SMichael Walle 	}
161*9db33d22SMichael Walle 
162*9db33d22SMichael Walle 	/*
163*9db33d22SMichael Walle 	 * To avoid glitches when we switch the prescaler, we have to make sure
164*9db33d22SMichael Walle 	 * we have a valid duty cycle for the new mode.
165*9db33d22SMichael Walle 	 *
166*9db33d22SMichael Walle 	 * Take the current prescaler (or the current period length) into
167*9db33d22SMichael Walle 	 * account to decide whether we have to write the duty cycle or the new
168*9db33d22SMichael Walle 	 * prescaler first. If the period length is decreasing we have to
169*9db33d22SMichael Walle 	 * write the duty cycle first.
170*9db33d22SMichael Walle 	 */
171*9db33d22SMichael Walle 	write_duty_cycle_first = pwm->state.period > state->period;
172*9db33d22SMichael Walle 
173*9db33d22SMichael Walle 	if (write_duty_cycle_first) {
174*9db33d22SMichael Walle 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
175*9db33d22SMichael Walle 		if (ret)
176*9db33d22SMichael Walle 			return ret;
177*9db33d22SMichael Walle 	}
178*9db33d22SMichael Walle 
179*9db33d22SMichael Walle 	ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
180*9db33d22SMichael Walle 	if (ret)
181*9db33d22SMichael Walle 		return ret;
182*9db33d22SMichael Walle 
183*9db33d22SMichael Walle 	if (!write_duty_cycle_first) {
184*9db33d22SMichael Walle 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
185*9db33d22SMichael Walle 		if (ret)
186*9db33d22SMichael Walle 			return ret;
187*9db33d22SMichael Walle 	}
188*9db33d22SMichael Walle 
189*9db33d22SMichael Walle 	return 0;
190*9db33d22SMichael Walle }
191*9db33d22SMichael Walle 
192*9db33d22SMichael Walle static const struct pwm_ops sl28cpld_pwm_ops = {
193*9db33d22SMichael Walle 	.apply = sl28cpld_pwm_apply,
194*9db33d22SMichael Walle 	.get_state = sl28cpld_pwm_get_state,
195*9db33d22SMichael Walle 	.owner = THIS_MODULE,
196*9db33d22SMichael Walle };
197*9db33d22SMichael Walle 
198*9db33d22SMichael Walle static int sl28cpld_pwm_probe(struct platform_device *pdev)
199*9db33d22SMichael Walle {
200*9db33d22SMichael Walle 	struct sl28cpld_pwm *priv;
201*9db33d22SMichael Walle 	struct pwm_chip *chip;
202*9db33d22SMichael Walle 	int ret;
203*9db33d22SMichael Walle 
204*9db33d22SMichael Walle 	if (!pdev->dev.parent) {
205*9db33d22SMichael Walle 		dev_err(&pdev->dev, "no parent device\n");
206*9db33d22SMichael Walle 		return -ENODEV;
207*9db33d22SMichael Walle 	}
208*9db33d22SMichael Walle 
209*9db33d22SMichael Walle 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
210*9db33d22SMichael Walle 	if (!priv)
211*9db33d22SMichael Walle 		return -ENOMEM;
212*9db33d22SMichael Walle 
213*9db33d22SMichael Walle 	priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
214*9db33d22SMichael Walle 	if (!priv->regmap) {
215*9db33d22SMichael Walle 		dev_err(&pdev->dev, "could not get parent regmap\n");
216*9db33d22SMichael Walle 		return -ENODEV;
217*9db33d22SMichael Walle 	}
218*9db33d22SMichael Walle 
219*9db33d22SMichael Walle 	ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
220*9db33d22SMichael Walle 	if (ret) {
221*9db33d22SMichael Walle 		dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
222*9db33d22SMichael Walle 			ERR_PTR(ret));
223*9db33d22SMichael Walle 		return -EINVAL;
224*9db33d22SMichael Walle 	}
225*9db33d22SMichael Walle 
226*9db33d22SMichael Walle 	/* Initialize the pwm_chip structure */
227*9db33d22SMichael Walle 	chip = &priv->pwm_chip;
228*9db33d22SMichael Walle 	chip->dev = &pdev->dev;
229*9db33d22SMichael Walle 	chip->ops = &sl28cpld_pwm_ops;
230*9db33d22SMichael Walle 	chip->base = -1;
231*9db33d22SMichael Walle 	chip->npwm = 1;
232*9db33d22SMichael Walle 
233*9db33d22SMichael Walle 	ret = pwmchip_add(&priv->pwm_chip);
234*9db33d22SMichael Walle 	if (ret) {
235*9db33d22SMichael Walle 		dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
236*9db33d22SMichael Walle 			ERR_PTR(ret));
237*9db33d22SMichael Walle 		return ret;
238*9db33d22SMichael Walle 	}
239*9db33d22SMichael Walle 
240*9db33d22SMichael Walle 	platform_set_drvdata(pdev, priv);
241*9db33d22SMichael Walle 
242*9db33d22SMichael Walle 	return 0;
243*9db33d22SMichael Walle }
244*9db33d22SMichael Walle 
245*9db33d22SMichael Walle static int sl28cpld_pwm_remove(struct platform_device *pdev)
246*9db33d22SMichael Walle {
247*9db33d22SMichael Walle 	struct sl28cpld_pwm *priv = platform_get_drvdata(pdev);
248*9db33d22SMichael Walle 
249*9db33d22SMichael Walle 	return pwmchip_remove(&priv->pwm_chip);
250*9db33d22SMichael Walle }
251*9db33d22SMichael Walle 
252*9db33d22SMichael Walle static const struct of_device_id sl28cpld_pwm_of_match[] = {
253*9db33d22SMichael Walle 	{ .compatible = "kontron,sl28cpld-pwm" },
254*9db33d22SMichael Walle 	{}
255*9db33d22SMichael Walle };
256*9db33d22SMichael Walle MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
257*9db33d22SMichael Walle 
258*9db33d22SMichael Walle static struct platform_driver sl28cpld_pwm_driver = {
259*9db33d22SMichael Walle 	.probe = sl28cpld_pwm_probe,
260*9db33d22SMichael Walle 	.remove	= sl28cpld_pwm_remove,
261*9db33d22SMichael Walle 	.driver = {
262*9db33d22SMichael Walle 		.name = "sl28cpld-pwm",
263*9db33d22SMichael Walle 		.of_match_table = sl28cpld_pwm_of_match,
264*9db33d22SMichael Walle 	},
265*9db33d22SMichael Walle };
266*9db33d22SMichael Walle module_platform_driver(sl28cpld_pwm_driver);
267*9db33d22SMichael Walle 
268*9db33d22SMichael Walle MODULE_DESCRIPTION("sl28cpld PWM Driver");
269*9db33d22SMichael Walle MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
270*9db33d22SMichael Walle MODULE_LICENSE("GPL");
271