xref: /openbmc/linux/drivers/powercap/intel_rapl_common.c (revision 641e969114c781ff269e1bf1b1f8d3cc33bc4a1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common code for Intel Running Average Power Limit (RAPL) support.
4  * Copyright (c) 2019, Intel Corporation.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/types.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/log2.h>
15 #include <linux/bitmap.h>
16 #include <linux/delay.h>
17 #include <linux/sysfs.h>
18 #include <linux/cpu.h>
19 #include <linux/powercap.h>
20 #include <linux/suspend.h>
21 #include <linux/intel_rapl.h>
22 #include <linux/processor.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/iosf_mbi.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/intel-family.h>
28 
29 /* bitmasks for RAPL MSRs, used by primitive access functions */
30 #define ENERGY_STATUS_MASK      0xffffffff
31 
32 #define POWER_LIMIT1_MASK       0x7FFF
33 #define POWER_LIMIT1_ENABLE     BIT(15)
34 #define POWER_LIMIT1_CLAMP      BIT(16)
35 
36 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
37 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
38 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
39 #define POWER_HIGH_LOCK         BIT_ULL(63)
40 #define POWER_LOW_LOCK          BIT(31)
41 
42 #define POWER_LIMIT4_MASK		0x1FFF
43 
44 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
45 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
46 
47 #define POWER_UNIT_OFFSET	0
48 #define POWER_UNIT_MASK		0x0F
49 
50 #define ENERGY_UNIT_OFFSET	0x08
51 #define ENERGY_UNIT_MASK	0x1F00
52 
53 #define TIME_UNIT_OFFSET	0x10
54 #define TIME_UNIT_MASK		0xF0000
55 
56 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
57 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
58 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
59 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
60 
61 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
62 #define PP_POLICY_MASK         0x1F
63 
64 /*
65  * SPR has different layout for Psys Domain PowerLimit registers.
66  * There are 17 bits of PL1 and PL2 instead of 15 bits.
67  * The Enable bits and TimeWindow bits are also shifted as a result.
68  */
69 #define PSYS_POWER_LIMIT1_MASK       0x1FFFF
70 #define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
71 
72 #define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
73 #define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
74 
75 #define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
76 #define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
77 
78 /* bitmasks for RAPL TPMI, used by primitive access functions */
79 #define TPMI_POWER_LIMIT_MASK	0x3FFFF
80 #define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
81 #define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
82 #define TPMI_INFO_SPEC_MASK	0x3FFFF
83 #define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
84 #define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
85 #define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
86 
87 /* Non HW constants */
88 #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
89 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
90 
91 #define TIME_WINDOW_MAX_MSEC 40000
92 #define TIME_WINDOW_MIN_MSEC 250
93 #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
94 enum unit_type {
95 	ARBITRARY_UNIT,		/* no translation */
96 	POWER_UNIT,
97 	ENERGY_UNIT,
98 	TIME_UNIT,
99 };
100 
101 /* per domain data, some are optional */
102 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
103 
104 #define	DOMAIN_STATE_INACTIVE           BIT(0)
105 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
106 
107 static const char *pl_names[NR_POWER_LIMITS] = {
108 	[POWER_LIMIT1] = "long_term",
109 	[POWER_LIMIT2] = "short_term",
110 	[POWER_LIMIT4] = "peak_power",
111 };
112 
113 enum pl_prims {
114 	PL_ENABLE,
115 	PL_CLAMP,
116 	PL_LIMIT,
117 	PL_TIME_WINDOW,
118 	PL_MAX_POWER,
119 	PL_LOCK,
120 };
121 
122 static bool is_pl_valid(struct rapl_domain *rd, int pl)
123 {
124 	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
125 		return false;
126 	return rd->rpl[pl].name ? true : false;
127 }
128 
129 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
130 {
131 	if (rd->rp->priv->type == RAPL_IF_TPMI) {
132 		if (pl == POWER_LIMIT1)
133 			return PL1_LOCK;
134 		if (pl == POWER_LIMIT2)
135 			return PL2_LOCK;
136 		if (pl == POWER_LIMIT4)
137 			return PL4_LOCK;
138 	}
139 
140 	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
141 	if (pl == POWER_LIMIT4)
142 		return -EINVAL;
143 
144 	/*
145 	 * Power Limit register that supports two power limits has a different
146 	 * bit position for the Lock bit.
147 	 */
148 	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
149 		return FW_HIGH_LOCK;
150 	return FW_LOCK;
151 }
152 
153 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
154 {
155 	switch (pl) {
156 	case POWER_LIMIT1:
157 		if (prim == PL_ENABLE)
158 			return PL1_ENABLE;
159 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
160 			return PL1_CLAMP;
161 		if (prim == PL_LIMIT)
162 			return POWER_LIMIT1;
163 		if (prim == PL_TIME_WINDOW)
164 			return TIME_WINDOW1;
165 		if (prim == PL_MAX_POWER)
166 			return THERMAL_SPEC_POWER;
167 		if (prim == PL_LOCK)
168 			return get_pl_lock_prim(rd, pl);
169 		return -EINVAL;
170 	case POWER_LIMIT2:
171 		if (prim == PL_ENABLE)
172 			return PL2_ENABLE;
173 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
174 			return PL2_CLAMP;
175 		if (prim == PL_LIMIT)
176 			return POWER_LIMIT2;
177 		if (prim == PL_TIME_WINDOW)
178 			return TIME_WINDOW2;
179 		if (prim == PL_MAX_POWER)
180 			return MAX_POWER;
181 		if (prim == PL_LOCK)
182 			return get_pl_lock_prim(rd, pl);
183 		return -EINVAL;
184 	case POWER_LIMIT4:
185 		if (prim == PL_LIMIT)
186 			return POWER_LIMIT4;
187 		if (prim == PL_ENABLE)
188 			return PL4_ENABLE;
189 		/* PL4 would be around two times PL2, use same prim as PL2. */
190 		if (prim == PL_MAX_POWER)
191 			return MAX_POWER;
192 		if (prim == PL_LOCK)
193 			return get_pl_lock_prim(rd, pl);
194 		return -EINVAL;
195 	default:
196 		return -EINVAL;
197 	}
198 }
199 
200 #define power_zone_to_rapl_domain(_zone) \
201 	container_of(_zone, struct rapl_domain, power_zone)
202 
203 struct rapl_defaults {
204 	u8 floor_freq_reg_addr;
205 	int (*check_unit)(struct rapl_domain *rd);
206 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
207 	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
208 				    bool to_raw);
209 	unsigned int dram_domain_energy_unit;
210 	unsigned int psys_domain_energy_unit;
211 	bool spr_psys_bits;
212 };
213 static struct rapl_defaults *defaults_msr;
214 static const struct rapl_defaults defaults_tpmi;
215 
216 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
217 {
218 	return rp->priv->defaults;
219 }
220 
221 /* Sideband MBI registers */
222 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
223 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
224 
225 #define PACKAGE_PLN_INT_SAVED   BIT(0)
226 #define MAX_PRIM_NAME (32)
227 
228 /* per domain data. used to describe individual knobs such that access function
229  * can be consolidated into one instead of many inline functions.
230  */
231 struct rapl_primitive_info {
232 	const char *name;
233 	u64 mask;
234 	int shift;
235 	enum rapl_domain_reg_id id;
236 	enum unit_type unit;
237 	u32 flag;
238 };
239 
240 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
241 		.name = #p,			\
242 		.mask = m,			\
243 		.shift = s,			\
244 		.id = i,			\
245 		.unit = u,			\
246 		.flag = f			\
247 	}
248 
249 static void rapl_init_domains(struct rapl_package *rp);
250 static int rapl_read_data_raw(struct rapl_domain *rd,
251 			      enum rapl_primitives prim,
252 			      bool xlate, u64 *data);
253 static int rapl_write_data_raw(struct rapl_domain *rd,
254 			       enum rapl_primitives prim,
255 			       unsigned long long value);
256 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
257 			      enum pl_prims pl_prim,
258 			      bool xlate, u64 *data);
259 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
260 			       enum pl_prims pl_prim,
261 			       unsigned long long value);
262 static u64 rapl_unit_xlate(struct rapl_domain *rd,
263 			   enum unit_type type, u64 value, int to_raw);
264 static void package_power_limit_irq_save(struct rapl_package *rp);
265 
266 static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
267 
268 static const char *const rapl_domain_names[] = {
269 	"package",
270 	"core",
271 	"uncore",
272 	"dram",
273 	"psys",
274 };
275 
276 static int get_energy_counter(struct powercap_zone *power_zone,
277 			      u64 *energy_raw)
278 {
279 	struct rapl_domain *rd;
280 	u64 energy_now;
281 
282 	/* prevent CPU hotplug, make sure the RAPL domain does not go
283 	 * away while reading the counter.
284 	 */
285 	cpus_read_lock();
286 	rd = power_zone_to_rapl_domain(power_zone);
287 
288 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
289 		*energy_raw = energy_now;
290 		cpus_read_unlock();
291 
292 		return 0;
293 	}
294 	cpus_read_unlock();
295 
296 	return -EIO;
297 }
298 
299 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
300 {
301 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
302 
303 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
304 	return 0;
305 }
306 
307 static int release_zone(struct powercap_zone *power_zone)
308 {
309 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
310 	struct rapl_package *rp = rd->rp;
311 
312 	/* package zone is the last zone of a package, we can free
313 	 * memory here since all children has been unregistered.
314 	 */
315 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
316 		kfree(rd);
317 		rp->domains = NULL;
318 	}
319 
320 	return 0;
321 
322 }
323 
324 static int find_nr_power_limit(struct rapl_domain *rd)
325 {
326 	int i, nr_pl = 0;
327 
328 	for (i = 0; i < NR_POWER_LIMITS; i++) {
329 		if (is_pl_valid(rd, i))
330 			nr_pl++;
331 	}
332 
333 	return nr_pl;
334 }
335 
336 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
337 {
338 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
339 	struct rapl_defaults *defaults = get_defaults(rd->rp);
340 	int ret;
341 
342 	cpus_read_lock();
343 	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
344 	if (!ret && defaults->set_floor_freq)
345 		defaults->set_floor_freq(rd, mode);
346 	cpus_read_unlock();
347 
348 	return ret;
349 }
350 
351 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
352 {
353 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
354 	u64 val;
355 	int ret;
356 
357 	if (rd->rpl[POWER_LIMIT1].locked) {
358 		*mode = false;
359 		return 0;
360 	}
361 	cpus_read_lock();
362 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
363 	if (!ret)
364 		*mode = val;
365 	cpus_read_unlock();
366 
367 	return ret;
368 }
369 
370 /* per RAPL domain ops, in the order of rapl_domain_type */
371 static const struct powercap_zone_ops zone_ops[] = {
372 	/* RAPL_DOMAIN_PACKAGE */
373 	{
374 	 .get_energy_uj = get_energy_counter,
375 	 .get_max_energy_range_uj = get_max_energy_counter,
376 	 .release = release_zone,
377 	 .set_enable = set_domain_enable,
378 	 .get_enable = get_domain_enable,
379 	 },
380 	/* RAPL_DOMAIN_PP0 */
381 	{
382 	 .get_energy_uj = get_energy_counter,
383 	 .get_max_energy_range_uj = get_max_energy_counter,
384 	 .release = release_zone,
385 	 .set_enable = set_domain_enable,
386 	 .get_enable = get_domain_enable,
387 	 },
388 	/* RAPL_DOMAIN_PP1 */
389 	{
390 	 .get_energy_uj = get_energy_counter,
391 	 .get_max_energy_range_uj = get_max_energy_counter,
392 	 .release = release_zone,
393 	 .set_enable = set_domain_enable,
394 	 .get_enable = get_domain_enable,
395 	 },
396 	/* RAPL_DOMAIN_DRAM */
397 	{
398 	 .get_energy_uj = get_energy_counter,
399 	 .get_max_energy_range_uj = get_max_energy_counter,
400 	 .release = release_zone,
401 	 .set_enable = set_domain_enable,
402 	 .get_enable = get_domain_enable,
403 	 },
404 	/* RAPL_DOMAIN_PLATFORM */
405 	{
406 	 .get_energy_uj = get_energy_counter,
407 	 .get_max_energy_range_uj = get_max_energy_counter,
408 	 .release = release_zone,
409 	 .set_enable = set_domain_enable,
410 	 .get_enable = get_domain_enable,
411 	 },
412 };
413 
414 /*
415  * Constraint index used by powercap can be different than power limit (PL)
416  * index in that some  PLs maybe missing due to non-existent MSRs. So we
417  * need to convert here by finding the valid PLs only (name populated).
418  */
419 static int contraint_to_pl(struct rapl_domain *rd, int cid)
420 {
421 	int i, j;
422 
423 	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
424 		if (is_pl_valid(rd, i) && j++ == cid) {
425 			pr_debug("%s: index %d\n", __func__, i);
426 			return i;
427 		}
428 	}
429 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
430 
431 	return -EINVAL;
432 }
433 
434 static int set_power_limit(struct powercap_zone *power_zone, int cid,
435 			   u64 power_limit)
436 {
437 	struct rapl_domain *rd;
438 	struct rapl_package *rp;
439 	int ret = 0;
440 	int id;
441 
442 	cpus_read_lock();
443 	rd = power_zone_to_rapl_domain(power_zone);
444 	id = contraint_to_pl(rd, cid);
445 	rp = rd->rp;
446 
447 	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
448 	if (!ret)
449 		package_power_limit_irq_save(rp);
450 	cpus_read_unlock();
451 	return ret;
452 }
453 
454 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
455 				   u64 *data)
456 {
457 	struct rapl_domain *rd;
458 	u64 val;
459 	int ret = 0;
460 	int id;
461 
462 	cpus_read_lock();
463 	rd = power_zone_to_rapl_domain(power_zone);
464 	id = contraint_to_pl(rd, cid);
465 
466 	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
467 	if (!ret)
468 		*data = val;
469 
470 	cpus_read_unlock();
471 
472 	return ret;
473 }
474 
475 static int set_time_window(struct powercap_zone *power_zone, int cid,
476 			   u64 window)
477 {
478 	struct rapl_domain *rd;
479 	int ret = 0;
480 	int id;
481 
482 	cpus_read_lock();
483 	rd = power_zone_to_rapl_domain(power_zone);
484 	id = contraint_to_pl(rd, cid);
485 
486 	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
487 
488 	cpus_read_unlock();
489 	return ret;
490 }
491 
492 static int get_time_window(struct powercap_zone *power_zone, int cid,
493 			   u64 *data)
494 {
495 	struct rapl_domain *rd;
496 	u64 val;
497 	int ret = 0;
498 	int id;
499 
500 	cpus_read_lock();
501 	rd = power_zone_to_rapl_domain(power_zone);
502 	id = contraint_to_pl(rd, cid);
503 
504 	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
505 	if (!ret)
506 		*data = val;
507 
508 	cpus_read_unlock();
509 
510 	return ret;
511 }
512 
513 static const char *get_constraint_name(struct powercap_zone *power_zone,
514 				       int cid)
515 {
516 	struct rapl_domain *rd;
517 	int id;
518 
519 	rd = power_zone_to_rapl_domain(power_zone);
520 	id = contraint_to_pl(rd, cid);
521 	if (id >= 0)
522 		return rd->rpl[id].name;
523 
524 	return NULL;
525 }
526 
527 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
528 {
529 	struct rapl_domain *rd;
530 	u64 val;
531 	int ret = 0;
532 	int id;
533 
534 	cpus_read_lock();
535 	rd = power_zone_to_rapl_domain(power_zone);
536 	id = contraint_to_pl(rd, cid);
537 
538 	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
539 	if (!ret)
540 		*data = val;
541 
542 	/* As a generalization rule, PL4 would be around two times PL2. */
543 	if (id == POWER_LIMIT4)
544 		*data = *data * 2;
545 
546 	cpus_read_unlock();
547 
548 	return ret;
549 }
550 
551 static const struct powercap_zone_constraint_ops constraint_ops = {
552 	.set_power_limit_uw = set_power_limit,
553 	.get_power_limit_uw = get_current_power_limit,
554 	.set_time_window_us = set_time_window,
555 	.get_time_window_us = get_time_window,
556 	.get_max_power_uw = get_max_power,
557 	.get_name = get_constraint_name,
558 };
559 
560 /* Return the id used for read_raw/write_raw callback */
561 static int get_rid(struct rapl_package *rp)
562 {
563 	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
564 }
565 
566 /* called after domain detection and package level data are set */
567 static void rapl_init_domains(struct rapl_package *rp)
568 {
569 	enum rapl_domain_type i;
570 	enum rapl_domain_reg_id j;
571 	struct rapl_domain *rd = rp->domains;
572 
573 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
574 		unsigned int mask = rp->domain_map & (1 << i);
575 		int t;
576 
577 		if (!mask)
578 			continue;
579 
580 		rd->rp = rp;
581 
582 		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
583 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
584 				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
585 				rp->id);
586 		} else {
587 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
588 				rapl_domain_names[i]);
589 		}
590 
591 		rd->id = i;
592 
593 		/* PL1 is supported by default */
594 		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
595 
596 		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
597 			if (rp->priv->limits[i] & BIT(t))
598 				rd->rpl[t].name = pl_names[t];
599 		}
600 
601 		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
602 			rd->regs[j] = rp->priv->regs[i][j];
603 
604 		rd++;
605 	}
606 }
607 
608 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
609 			   u64 value, int to_raw)
610 {
611 	u64 units = 1;
612 	struct rapl_defaults *defaults = get_defaults(rd->rp);
613 	u64 scale = 1;
614 
615 	switch (type) {
616 	case POWER_UNIT:
617 		units = rd->power_unit;
618 		break;
619 	case ENERGY_UNIT:
620 		scale = ENERGY_UNIT_SCALE;
621 		units = rd->energy_unit;
622 		break;
623 	case TIME_UNIT:
624 		return defaults->compute_time_window(rd, value, to_raw);
625 	case ARBITRARY_UNIT:
626 	default:
627 		return value;
628 	}
629 
630 	if (to_raw)
631 		return div64_u64(value, units) * scale;
632 
633 	value *= units;
634 
635 	return div64_u64(value, scale);
636 }
637 
638 /* RAPL primitives for MSR and MMIO I/F */
639 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
640 	/* name, mask, shift, msr index, unit divisor */
641 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
642 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
643 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
644 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
645 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
646 				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
647 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
648 			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
649 	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
650 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
651 	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
652 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
653 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
654 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
655 	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
656 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
657 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
658 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
659 	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
660 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
661 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
662 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
663 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
664 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
665 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
666 			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
667 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
668 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
669 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
670 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
671 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
672 			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
673 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
674 			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
675 	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
676 			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
677 	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
678 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
679 	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
680 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
681 	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
682 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
683 	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
684 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
685 	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
686 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
687 	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
688 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
689 	/* non-hardware */
690 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
691 			    RAPL_PRIMITIVE_DERIVED),
692 };
693 
694 /* RAPL primitives for TPMI I/F */
695 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
696 	/* name, mask, shift, msr index, unit divisor */
697 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
698 		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
699 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
700 		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
701 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
702 		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
703 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
704 		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
705 	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
706 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
707 	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
708 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
709 	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
710 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
711 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
712 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
713 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
714 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
715 	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
716 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
717 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
718 		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
719 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
720 		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
721 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
722 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
723 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
724 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
725 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
726 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
727 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
728 		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
729 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
730 		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
731 	/* non-hardware */
732 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
733 		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
734 };
735 
736 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
737 {
738 	struct rapl_primitive_info *rpi = rp->priv->rpi;
739 
740 	if (prim < 0 || prim > NR_RAPL_PRIMITIVES || !rpi)
741 		return NULL;
742 
743 	return &rpi[prim];
744 }
745 
746 static int rapl_config(struct rapl_package *rp)
747 {
748 	switch (rp->priv->type) {
749 	/* MMIO I/F shares the same register layout as MSR registers */
750 	case RAPL_IF_MMIO:
751 	case RAPL_IF_MSR:
752 		rp->priv->defaults = (void *)defaults_msr;
753 		rp->priv->rpi = (void *)rpi_msr;
754 		break;
755 	case RAPL_IF_TPMI:
756 		rp->priv->defaults = (void *)&defaults_tpmi;
757 		rp->priv->rpi = (void *)rpi_tpmi;
758 		break;
759 	default:
760 		return -EINVAL;
761 	}
762 	return 0;
763 }
764 
765 static enum rapl_primitives
766 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
767 {
768 	struct rapl_defaults *defaults = get_defaults(rd->rp);
769 
770 	if (!defaults->spr_psys_bits)
771 		return prim;
772 
773 	if (rd->id != RAPL_DOMAIN_PLATFORM)
774 		return prim;
775 
776 	switch (prim) {
777 	case POWER_LIMIT1:
778 		return PSYS_POWER_LIMIT1;
779 	case POWER_LIMIT2:
780 		return PSYS_POWER_LIMIT2;
781 	case PL1_ENABLE:
782 		return PSYS_PL1_ENABLE;
783 	case PL2_ENABLE:
784 		return PSYS_PL2_ENABLE;
785 	case TIME_WINDOW1:
786 		return PSYS_TIME_WINDOW1;
787 	case TIME_WINDOW2:
788 		return PSYS_TIME_WINDOW2;
789 	default:
790 		return prim;
791 	}
792 }
793 
794 /* Read primitive data based on its related struct rapl_primitive_info.
795  * if xlate flag is set, return translated data based on data units, i.e.
796  * time, energy, and power.
797  * RAPL MSRs are non-architectual and are laid out not consistently across
798  * domains. Here we use primitive info to allow writing consolidated access
799  * functions.
800  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
801  * is pre-assigned based on RAPL unit MSRs read at init time.
802  * 63-------------------------- 31--------------------------- 0
803  * |                           xxxxx (mask)                   |
804  * |                                |<- shift ----------------|
805  * 63-------------------------- 31--------------------------- 0
806  */
807 static int rapl_read_data_raw(struct rapl_domain *rd,
808 			      enum rapl_primitives prim, bool xlate, u64 *data)
809 {
810 	u64 value;
811 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
812 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
813 	struct reg_action ra;
814 
815 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
816 		return -EINVAL;
817 
818 	ra.reg = rd->regs[rpi->id];
819 	if (!ra.reg.val)
820 		return -EINVAL;
821 
822 	/* non-hardware data are collected by the polling thread */
823 	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
824 		*data = rd->rdd.primitives[prim];
825 		return 0;
826 	}
827 
828 	ra.mask = rpi->mask;
829 
830 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
831 		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
832 		return -EIO;
833 	}
834 
835 	value = ra.value >> rpi->shift;
836 
837 	if (xlate)
838 		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
839 	else
840 		*data = value;
841 
842 	return 0;
843 }
844 
845 /* Similar use of primitive info in the read counterpart */
846 static int rapl_write_data_raw(struct rapl_domain *rd,
847 			       enum rapl_primitives prim,
848 			       unsigned long long value)
849 {
850 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
851 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
852 	u64 bits;
853 	struct reg_action ra;
854 	int ret;
855 
856 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
857 		return -EINVAL;
858 
859 	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
860 	bits <<= rpi->shift;
861 	bits &= rpi->mask;
862 
863 	memset(&ra, 0, sizeof(ra));
864 
865 	ra.reg = rd->regs[rpi->id];
866 	ra.mask = rpi->mask;
867 	ra.value = bits;
868 
869 	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
870 
871 	return ret;
872 }
873 
874 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
875 			      enum pl_prims pl_prim, bool xlate, u64 *data)
876 {
877 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
878 
879 	if (!is_pl_valid(rd, pl))
880 		return -EINVAL;
881 
882 	return rapl_read_data_raw(rd, prim, xlate, data);
883 }
884 
885 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
886 			       enum pl_prims pl_prim,
887 			       unsigned long long value)
888 {
889 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
890 
891 	if (!is_pl_valid(rd, pl))
892 		return -EINVAL;
893 
894 	if (rd->rpl[pl].locked) {
895 		pr_warn("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
896 		return -EACCES;
897 	}
898 
899 	return rapl_write_data_raw(rd, prim, value);
900 }
901 /*
902  * Raw RAPL data stored in MSRs are in certain scales. We need to
903  * convert them into standard units based on the units reported in
904  * the RAPL unit MSRs. This is specific to CPUs as the method to
905  * calculate units differ on different CPUs.
906  * We convert the units to below format based on CPUs.
907  * i.e.
908  * energy unit: picoJoules  : Represented in picoJoules by default
909  * power unit : microWatts  : Represented in milliWatts by default
910  * time unit  : microseconds: Represented in seconds by default
911  */
912 static int rapl_check_unit_core(struct rapl_domain *rd)
913 {
914 	struct reg_action ra;
915 	u32 value;
916 
917 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
918 	ra.mask = ~0;
919 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
920 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
921 			ra.reg.val, rd->rp->name, rd->name);
922 		return -ENODEV;
923 	}
924 
925 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
926 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
927 
928 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
929 	rd->power_unit = 1000000 / (1 << value);
930 
931 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
932 	rd->time_unit = 1000000 / (1 << value);
933 
934 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
935 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
936 
937 	return 0;
938 }
939 
940 static int rapl_check_unit_atom(struct rapl_domain *rd)
941 {
942 	struct reg_action ra;
943 	u32 value;
944 
945 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
946 	ra.mask = ~0;
947 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
948 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
949 			ra.reg.val, rd->rp->name, rd->name);
950 		return -ENODEV;
951 	}
952 
953 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
954 	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
955 
956 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
957 	rd->power_unit = (1 << value) * 1000;
958 
959 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
960 	rd->time_unit = 1000000 / (1 << value);
961 
962 	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
963 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
964 
965 	return 0;
966 }
967 
968 static void power_limit_irq_save_cpu(void *info)
969 {
970 	u32 l, h = 0;
971 	struct rapl_package *rp = (struct rapl_package *)info;
972 
973 	/* save the state of PLN irq mask bit before disabling it */
974 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
975 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
976 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
977 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
978 	}
979 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
980 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
981 }
982 
983 /* REVISIT:
984  * When package power limit is set artificially low by RAPL, LVT
985  * thermal interrupt for package power limit should be ignored
986  * since we are not really exceeding the real limit. The intention
987  * is to avoid excessive interrupts while we are trying to save power.
988  * A useful feature might be routing the package_power_limit interrupt
989  * to userspace via eventfd. once we have a usecase, this is simple
990  * to do by adding an atomic notifier.
991  */
992 
993 static void package_power_limit_irq_save(struct rapl_package *rp)
994 {
995 	if (rp->lead_cpu < 0)
996 		return;
997 
998 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
999 		return;
1000 
1001 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1002 }
1003 
1004 /*
1005  * Restore per package power limit interrupt enable state. Called from cpu
1006  * hotplug code on package removal.
1007  */
1008 static void package_power_limit_irq_restore(struct rapl_package *rp)
1009 {
1010 	u32 l, h;
1011 
1012 	if (rp->lead_cpu < 0)
1013 		return;
1014 
1015 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1016 		return;
1017 
1018 	/* irq enable state not saved, nothing to restore */
1019 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1020 		return;
1021 
1022 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1023 
1024 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1025 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1026 	else
1027 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1028 
1029 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1030 }
1031 
1032 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1033 {
1034 	int i;
1035 
1036 	/* always enable clamp such that p-state can go below OS requested
1037 	 * range. power capping priority over guranteed frequency.
1038 	 */
1039 	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1040 
1041 	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1042 		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1043 		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1044 	}
1045 }
1046 
1047 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1048 {
1049 	static u32 power_ctrl_orig_val;
1050 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1051 	u32 mdata;
1052 
1053 	if (!defaults->floor_freq_reg_addr) {
1054 		pr_err("Invalid floor frequency config register\n");
1055 		return;
1056 	}
1057 
1058 	if (!power_ctrl_orig_val)
1059 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1060 			      defaults->floor_freq_reg_addr,
1061 			      &power_ctrl_orig_val);
1062 	mdata = power_ctrl_orig_val;
1063 	if (enable) {
1064 		mdata &= ~(0x7f << 8);
1065 		mdata |= 1 << 8;
1066 	}
1067 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1068 		       defaults->floor_freq_reg_addr, mdata);
1069 }
1070 
1071 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1072 					 bool to_raw)
1073 {
1074 	u64 f, y;		/* fraction and exp. used for time unit */
1075 
1076 	/*
1077 	 * Special processing based on 2^Y*(1+F/4), refer
1078 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1079 	 */
1080 	if (!to_raw) {
1081 		f = (value & 0x60) >> 5;
1082 		y = value & 0x1f;
1083 		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1084 	} else {
1085 		if (value < rd->time_unit)
1086 			return 0;
1087 
1088 		do_div(value, rd->time_unit);
1089 		y = ilog2(value);
1090 
1091 		/*
1092 		 * The target hardware field is 7 bits wide, so return all ones
1093 		 * if the exponent is too large.
1094 		 */
1095 		if (y > 0x1f)
1096 			return 0x7f;
1097 
1098 		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1099 		value = (y & 0x1f) | ((f & 0x3) << 5);
1100 	}
1101 	return value;
1102 }
1103 
1104 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1105 					 bool to_raw)
1106 {
1107 	/*
1108 	 * Atom time unit encoding is straight forward val * time_unit,
1109 	 * where time_unit is default to 1 sec. Never 0.
1110 	 */
1111 	if (!to_raw)
1112 		return (value) ? value * rd->time_unit : rd->time_unit;
1113 
1114 	value = div64_u64(value, rd->time_unit);
1115 
1116 	return value;
1117 }
1118 
1119 /* TPMI Unit register has different layout */
1120 #define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1121 #define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1122 #define TPMI_ENERGY_UNIT_OFFSET	0x06
1123 #define TPMI_ENERGY_UNIT_MASK	0x7C0
1124 #define TPMI_TIME_UNIT_OFFSET	0x0C
1125 #define TPMI_TIME_UNIT_MASK	0xF000
1126 
1127 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1128 {
1129 	struct reg_action ra;
1130 	u32 value;
1131 
1132 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1133 	ra.mask = ~0;
1134 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1135 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1136 			ra.reg.val, rd->rp->name, rd->name);
1137 		return -ENODEV;
1138 	}
1139 
1140 	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1141 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1142 
1143 	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1144 	rd->power_unit = 1000000 / (1 << value);
1145 
1146 	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1147 	rd->time_unit = 1000000 / (1 << value);
1148 
1149 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1150 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1151 
1152 	return 0;
1153 }
1154 
1155 static const struct rapl_defaults defaults_tpmi = {
1156 	.check_unit = rapl_check_unit_tpmi,
1157 	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1158 	.set_floor_freq = set_floor_freq_default,
1159 	.compute_time_window = rapl_compute_time_window_core,
1160 };
1161 
1162 static const struct rapl_defaults rapl_defaults_core = {
1163 	.floor_freq_reg_addr = 0,
1164 	.check_unit = rapl_check_unit_core,
1165 	.set_floor_freq = set_floor_freq_default,
1166 	.compute_time_window = rapl_compute_time_window_core,
1167 };
1168 
1169 static const struct rapl_defaults rapl_defaults_hsw_server = {
1170 	.check_unit = rapl_check_unit_core,
1171 	.set_floor_freq = set_floor_freq_default,
1172 	.compute_time_window = rapl_compute_time_window_core,
1173 	.dram_domain_energy_unit = 15300,
1174 };
1175 
1176 static const struct rapl_defaults rapl_defaults_spr_server = {
1177 	.check_unit = rapl_check_unit_core,
1178 	.set_floor_freq = set_floor_freq_default,
1179 	.compute_time_window = rapl_compute_time_window_core,
1180 	.psys_domain_energy_unit = 1000000000,
1181 	.spr_psys_bits = true,
1182 };
1183 
1184 static const struct rapl_defaults rapl_defaults_byt = {
1185 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1186 	.check_unit = rapl_check_unit_atom,
1187 	.set_floor_freq = set_floor_freq_atom,
1188 	.compute_time_window = rapl_compute_time_window_atom,
1189 };
1190 
1191 static const struct rapl_defaults rapl_defaults_tng = {
1192 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1193 	.check_unit = rapl_check_unit_atom,
1194 	.set_floor_freq = set_floor_freq_atom,
1195 	.compute_time_window = rapl_compute_time_window_atom,
1196 };
1197 
1198 static const struct rapl_defaults rapl_defaults_ann = {
1199 	.floor_freq_reg_addr = 0,
1200 	.check_unit = rapl_check_unit_atom,
1201 	.set_floor_freq = NULL,
1202 	.compute_time_window = rapl_compute_time_window_atom,
1203 };
1204 
1205 static const struct rapl_defaults rapl_defaults_cht = {
1206 	.floor_freq_reg_addr = 0,
1207 	.check_unit = rapl_check_unit_atom,
1208 	.set_floor_freq = NULL,
1209 	.compute_time_window = rapl_compute_time_window_atom,
1210 };
1211 
1212 static const struct rapl_defaults rapl_defaults_amd = {
1213 	.check_unit = rapl_check_unit_core,
1214 };
1215 
1216 static const struct x86_cpu_id rapl_ids[] __initconst = {
1217 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&rapl_defaults_core),
1218 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&rapl_defaults_core),
1219 
1220 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&rapl_defaults_core),
1221 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&rapl_defaults_core),
1222 
1223 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&rapl_defaults_core),
1224 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&rapl_defaults_core),
1225 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&rapl_defaults_core),
1226 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&rapl_defaults_hsw_server),
1227 
1228 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&rapl_defaults_core),
1229 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&rapl_defaults_core),
1230 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&rapl_defaults_core),
1231 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&rapl_defaults_hsw_server),
1232 
1233 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&rapl_defaults_core),
1234 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&rapl_defaults_core),
1235 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&rapl_defaults_hsw_server),
1236 	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&rapl_defaults_core),
1237 	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&rapl_defaults_core),
1238 	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	&rapl_defaults_core),
1239 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		&rapl_defaults_core),
1240 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,		&rapl_defaults_core),
1241 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	&rapl_defaults_core),
1242 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&rapl_defaults_hsw_server),
1243 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&rapl_defaults_hsw_server),
1244 	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		&rapl_defaults_core),
1245 	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		&rapl_defaults_core),
1246 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		&rapl_defaults_core),
1247 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		&rapl_defaults_core),
1248 	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		&rapl_defaults_core),
1249 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&rapl_defaults_core),
1250 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		&rapl_defaults_core),
1251 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT,	&rapl_defaults_core),
1252 	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		&rapl_defaults_core),
1253 	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P,        &rapl_defaults_core),
1254 	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S,	&rapl_defaults_core),
1255 	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE,		&rapl_defaults_core),
1256 	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L,	&rapl_defaults_core),
1257 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1258 	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1259 	X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,		&rapl_defaults_core),
1260 
1261 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&rapl_defaults_byt),
1262 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&rapl_defaults_cht),
1263 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&rapl_defaults_tng),
1264 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1265 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&rapl_defaults_core),
1266 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1267 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&rapl_defaults_core),
1268 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	&rapl_defaults_core),
1269 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&rapl_defaults_core),
1270 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	&rapl_defaults_core),
1271 
1272 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1273 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1274 
1275 	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1276 	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1277 	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1278 	{}
1279 };
1280 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1281 
1282 /* Read once for all raw primitive data for domains */
1283 static void rapl_update_domain_data(struct rapl_package *rp)
1284 {
1285 	int dmn, prim;
1286 	u64 val;
1287 
1288 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1289 		pr_debug("update %s domain %s data\n", rp->name,
1290 			 rp->domains[dmn].name);
1291 		/* exclude non-raw primitives */
1292 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1293 			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1294 
1295 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1296 						rpi->unit, &val))
1297 				rp->domains[dmn].rdd.primitives[prim] = val;
1298 		}
1299 	}
1300 
1301 }
1302 
1303 static int rapl_package_register_powercap(struct rapl_package *rp)
1304 {
1305 	struct rapl_domain *rd;
1306 	struct powercap_zone *power_zone = NULL;
1307 	int nr_pl, ret;
1308 
1309 	/* Update the domain data of the new package */
1310 	rapl_update_domain_data(rp);
1311 
1312 	/* first we register package domain as the parent zone */
1313 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1314 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1315 			nr_pl = find_nr_power_limit(rd);
1316 			pr_debug("register package domain %s\n", rp->name);
1317 			power_zone = powercap_register_zone(&rd->power_zone,
1318 					    rp->priv->control_type, rp->name,
1319 					    NULL, &zone_ops[rd->id], nr_pl,
1320 					    &constraint_ops);
1321 			if (IS_ERR(power_zone)) {
1322 				pr_debug("failed to register power zone %s\n",
1323 					 rp->name);
1324 				return PTR_ERR(power_zone);
1325 			}
1326 			/* track parent zone in per package/socket data */
1327 			rp->power_zone = power_zone;
1328 			/* done, only one package domain per socket */
1329 			break;
1330 		}
1331 	}
1332 	if (!power_zone) {
1333 		pr_err("no package domain found, unknown topology!\n");
1334 		return -ENODEV;
1335 	}
1336 	/* now register domains as children of the socket/package */
1337 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1338 		struct powercap_zone *parent = rp->power_zone;
1339 
1340 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1341 			continue;
1342 		if (rd->id == RAPL_DOMAIN_PLATFORM)
1343 			parent = NULL;
1344 		/* number of power limits per domain varies */
1345 		nr_pl = find_nr_power_limit(rd);
1346 		power_zone = powercap_register_zone(&rd->power_zone,
1347 						    rp->priv->control_type,
1348 						    rd->name, parent,
1349 						    &zone_ops[rd->id], nr_pl,
1350 						    &constraint_ops);
1351 
1352 		if (IS_ERR(power_zone)) {
1353 			pr_debug("failed to register power_zone, %s:%s\n",
1354 				 rp->name, rd->name);
1355 			ret = PTR_ERR(power_zone);
1356 			goto err_cleanup;
1357 		}
1358 	}
1359 	return 0;
1360 
1361 err_cleanup:
1362 	/*
1363 	 * Clean up previously initialized domains within the package if we
1364 	 * failed after the first domain setup.
1365 	 */
1366 	while (--rd >= rp->domains) {
1367 		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1368 		powercap_unregister_zone(rp->priv->control_type,
1369 					 &rd->power_zone);
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 static int rapl_check_domain(int domain, struct rapl_package *rp)
1376 {
1377 	struct reg_action ra;
1378 
1379 	switch (domain) {
1380 	case RAPL_DOMAIN_PACKAGE:
1381 	case RAPL_DOMAIN_PP0:
1382 	case RAPL_DOMAIN_PP1:
1383 	case RAPL_DOMAIN_DRAM:
1384 	case RAPL_DOMAIN_PLATFORM:
1385 		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1386 		break;
1387 	default:
1388 		pr_err("invalid domain id %d\n", domain);
1389 		return -EINVAL;
1390 	}
1391 	/* make sure domain counters are available and contains non-zero
1392 	 * values, otherwise skip it.
1393 	 */
1394 
1395 	ra.mask = ENERGY_STATUS_MASK;
1396 	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1397 		return -ENODEV;
1398 
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Get per domain energy/power/time unit.
1404  * RAPL Interfaces without per domain unit register will use the package
1405  * scope unit register to set per domain units.
1406  */
1407 static int rapl_get_domain_unit(struct rapl_domain *rd)
1408 {
1409 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1410 	int ret;
1411 
1412 	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1413 		if (!rd->rp->priv->reg_unit.val) {
1414 			pr_err("No valid Unit register found\n");
1415 			return -ENODEV;
1416 		}
1417 		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1418 	}
1419 
1420 	if (!defaults->check_unit) {
1421 		pr_err("missing .check_unit() callback\n");
1422 		return -ENODEV;
1423 	}
1424 
1425 	ret = defaults->check_unit(rd);
1426 	if (ret)
1427 		return ret;
1428 
1429 	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1430 		rd->energy_unit = defaults->dram_domain_energy_unit;
1431 	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1432 		rd->energy_unit = defaults->psys_domain_energy_unit;
1433 	return 0;
1434 }
1435 
1436 /*
1437  * Check if power limits are available. Two cases when they are not available:
1438  * 1. Locked by BIOS, in this case we still provide read-only access so that
1439  *    users can see what limit is set by the BIOS.
1440  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1441  *    exist at all. In this case, we do not show the constraints in powercap.
1442  *
1443  * Called after domains are detected and initialized.
1444  */
1445 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1446 {
1447 	u64 val64;
1448 	int i;
1449 
1450 	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1451 		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1452 			if (val64) {
1453 				rd->rpl[i].locked = true;
1454 				pr_info("%s:%s:%s locked by BIOS\n",
1455 					rd->rp->name, rd->name, pl_names[i]);
1456 			}
1457 		}
1458 
1459 		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1460 			rd->rpl[i].name = NULL;
1461 	}
1462 }
1463 
1464 /* Detect active and valid domains for the given CPU, caller must
1465  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1466  */
1467 static int rapl_detect_domains(struct rapl_package *rp)
1468 {
1469 	struct rapl_domain *rd;
1470 	int i;
1471 
1472 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1473 		/* use physical package id to read counters */
1474 		if (!rapl_check_domain(i, rp)) {
1475 			rp->domain_map |= 1 << i;
1476 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1477 		}
1478 	}
1479 	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1480 	if (!rp->nr_domains) {
1481 		pr_debug("no valid rapl domains found in %s\n", rp->name);
1482 		return -ENODEV;
1483 	}
1484 	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1485 
1486 	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1487 			      GFP_KERNEL);
1488 	if (!rp->domains)
1489 		return -ENOMEM;
1490 
1491 	rapl_init_domains(rp);
1492 
1493 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1494 		rapl_get_domain_unit(rd);
1495 		rapl_detect_powerlimit(rd);
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 /* called from CPU hotplug notifier, hotplug lock held */
1502 void rapl_remove_package(struct rapl_package *rp)
1503 {
1504 	struct rapl_domain *rd, *rd_package = NULL;
1505 
1506 	package_power_limit_irq_restore(rp);
1507 
1508 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1509 		int i;
1510 
1511 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1512 			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
1513 			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
1514 		}
1515 
1516 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1517 			rd_package = rd;
1518 			continue;
1519 		}
1520 		pr_debug("remove package, undo power limit on %s: %s\n",
1521 			 rp->name, rd->name);
1522 		powercap_unregister_zone(rp->priv->control_type,
1523 					 &rd->power_zone);
1524 	}
1525 	/* do parent zone last */
1526 	powercap_unregister_zone(rp->priv->control_type,
1527 				 &rd_package->power_zone);
1528 	list_del(&rp->plist);
1529 	kfree(rp);
1530 }
1531 EXPORT_SYMBOL_GPL(rapl_remove_package);
1532 
1533 /* caller to ensure CPU hotplug lock is held */
1534 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1535 {
1536 	struct rapl_package *rp;
1537 	int uid;
1538 
1539 	if (id_is_cpu)
1540 		uid = topology_logical_die_id(id);
1541 	else
1542 		uid = id;
1543 
1544 	list_for_each_entry(rp, &rapl_packages, plist) {
1545 		if (rp->id == uid
1546 		    && rp->priv->control_type == priv->control_type)
1547 			return rp;
1548 	}
1549 
1550 	return NULL;
1551 }
1552 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1553 
1554 /* called from CPU hotplug notifier, hotplug lock held */
1555 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1556 {
1557 	struct rapl_package *rp;
1558 	int ret;
1559 
1560 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1561 	if (!rp)
1562 		return ERR_PTR(-ENOMEM);
1563 
1564 	if (id_is_cpu) {
1565 		rp->id = topology_logical_die_id(id);
1566 		rp->lead_cpu = id;
1567 		if (topology_max_die_per_package() > 1)
1568 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
1569 				 topology_physical_package_id(id), topology_die_id(id));
1570 		else
1571 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1572 				 topology_physical_package_id(id));
1573 	} else {
1574 		rp->id = id;
1575 		rp->lead_cpu = -1;
1576 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
1577 	}
1578 
1579 	rp->priv = priv;
1580 	ret = rapl_config(rp);
1581 	if (ret)
1582 		goto err_free_package;
1583 
1584 	/* check if the package contains valid domains */
1585 	if (rapl_detect_domains(rp)) {
1586 		ret = -ENODEV;
1587 		goto err_free_package;
1588 	}
1589 	ret = rapl_package_register_powercap(rp);
1590 	if (!ret) {
1591 		INIT_LIST_HEAD(&rp->plist);
1592 		list_add(&rp->plist, &rapl_packages);
1593 		return rp;
1594 	}
1595 
1596 err_free_package:
1597 	kfree(rp->domains);
1598 	kfree(rp);
1599 	return ERR_PTR(ret);
1600 }
1601 EXPORT_SYMBOL_GPL(rapl_add_package);
1602 
1603 static void power_limit_state_save(void)
1604 {
1605 	struct rapl_package *rp;
1606 	struct rapl_domain *rd;
1607 	int ret, i;
1608 
1609 	cpus_read_lock();
1610 	list_for_each_entry(rp, &rapl_packages, plist) {
1611 		if (!rp->power_zone)
1612 			continue;
1613 		rd = power_zone_to_rapl_domain(rp->power_zone);
1614 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1615 			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
1616 						 &rd->rpl[i].last_power_limit);
1617 			if (ret)
1618 				rd->rpl[i].last_power_limit = 0;
1619 		}
1620 	}
1621 	cpus_read_unlock();
1622 }
1623 
1624 static void power_limit_state_restore(void)
1625 {
1626 	struct rapl_package *rp;
1627 	struct rapl_domain *rd;
1628 	int i;
1629 
1630 	cpus_read_lock();
1631 	list_for_each_entry(rp, &rapl_packages, plist) {
1632 		if (!rp->power_zone)
1633 			continue;
1634 		rd = power_zone_to_rapl_domain(rp->power_zone);
1635 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
1636 			if (rd->rpl[i].last_power_limit)
1637 				rapl_write_pl_data(rd, i, PL_LIMIT,
1638 					       rd->rpl[i].last_power_limit);
1639 	}
1640 	cpus_read_unlock();
1641 }
1642 
1643 static int rapl_pm_callback(struct notifier_block *nb,
1644 			    unsigned long mode, void *_unused)
1645 {
1646 	switch (mode) {
1647 	case PM_SUSPEND_PREPARE:
1648 		power_limit_state_save();
1649 		break;
1650 	case PM_POST_SUSPEND:
1651 		power_limit_state_restore();
1652 		break;
1653 	}
1654 	return NOTIFY_OK;
1655 }
1656 
1657 static struct notifier_block rapl_pm_notifier = {
1658 	.notifier_call = rapl_pm_callback,
1659 };
1660 
1661 static struct platform_device *rapl_msr_platdev;
1662 
1663 static int __init rapl_init(void)
1664 {
1665 	const struct x86_cpu_id *id;
1666 	int ret;
1667 
1668 	id = x86_match_cpu(rapl_ids);
1669 	if (id) {
1670 		defaults_msr = (struct rapl_defaults *)id->driver_data;
1671 
1672 		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1673 		if (!rapl_msr_platdev)
1674 			return -ENOMEM;
1675 
1676 		ret = platform_device_add(rapl_msr_platdev);
1677 		if (ret) {
1678 			platform_device_put(rapl_msr_platdev);
1679 			return ret;
1680 		}
1681 	}
1682 
1683 	ret = register_pm_notifier(&rapl_pm_notifier);
1684 	if (ret && rapl_msr_platdev) {
1685 		platform_device_del(rapl_msr_platdev);
1686 		platform_device_put(rapl_msr_platdev);
1687 	}
1688 
1689 	return ret;
1690 }
1691 
1692 static void __exit rapl_exit(void)
1693 {
1694 	platform_device_unregister(rapl_msr_platdev);
1695 	unregister_pm_notifier(&rapl_pm_notifier);
1696 }
1697 
1698 fs_initcall(rapl_init);
1699 module_exit(rapl_exit);
1700 
1701 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1702 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1703 MODULE_LICENSE("GPL v2");
1704