xref: /openbmc/linux/drivers/powercap/dtpm_devfreq.c (revision c0c45238fcf44b05c86f2f7d1dda136df7a83ff9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2021 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * The devfreq device combined with the energy model and the load can
8  * give an estimation of the power consumption as well as limiting the
9  * power.
10  *
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/cpumask.h>
15 #include <linux/devfreq.h>
16 #include <linux/dtpm.h>
17 #include <linux/energy_model.h>
18 #include <linux/of.h>
19 #include <linux/pm_qos.h>
20 #include <linux/slab.h>
21 #include <linux/units.h>
22 
23 struct dtpm_devfreq {
24 	struct dtpm dtpm;
25 	struct dev_pm_qos_request qos_req;
26 	struct devfreq *devfreq;
27 };
28 
29 static struct dtpm_devfreq *to_dtpm_devfreq(struct dtpm *dtpm)
30 {
31 	return container_of(dtpm, struct dtpm_devfreq, dtpm);
32 }
33 
34 static int update_pd_power_uw(struct dtpm *dtpm)
35 {
36 	struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
37 	struct devfreq *devfreq = dtpm_devfreq->devfreq;
38 	struct device *dev = devfreq->dev.parent;
39 	struct em_perf_domain *pd = em_pd_get(dev);
40 
41 	dtpm->power_min = pd->table[0].power;
42 	dtpm->power_min *= MICROWATT_PER_MILLIWATT;
43 
44 	dtpm->power_max = pd->table[pd->nr_perf_states - 1].power;
45 	dtpm->power_max *= MICROWATT_PER_MILLIWATT;
46 
47 	return 0;
48 }
49 
50 static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
51 {
52 	struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
53 	struct devfreq *devfreq = dtpm_devfreq->devfreq;
54 	struct device *dev = devfreq->dev.parent;
55 	struct em_perf_domain *pd = em_pd_get(dev);
56 	unsigned long freq;
57 	u64 power;
58 	int i;
59 
60 	for (i = 0; i < pd->nr_perf_states; i++) {
61 
62 		power = pd->table[i].power * MICROWATT_PER_MILLIWATT;
63 		if (power > power_limit)
64 			break;
65 	}
66 
67 	freq = pd->table[i - 1].frequency;
68 
69 	dev_pm_qos_update_request(&dtpm_devfreq->qos_req, freq);
70 
71 	power_limit = pd->table[i - 1].power * MICROWATT_PER_MILLIWATT;
72 
73 	return power_limit;
74 }
75 
76 static void _normalize_load(struct devfreq_dev_status *status)
77 {
78 	if (status->total_time > 0xfffff) {
79 		status->total_time >>= 10;
80 		status->busy_time >>= 10;
81 	}
82 
83 	status->busy_time <<= 10;
84 	status->busy_time /= status->total_time ? : 1;
85 
86 	status->busy_time = status->busy_time ? : 1;
87 	status->total_time = 1024;
88 }
89 
90 static u64 get_pd_power_uw(struct dtpm *dtpm)
91 {
92 	struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
93 	struct devfreq *devfreq = dtpm_devfreq->devfreq;
94 	struct device *dev = devfreq->dev.parent;
95 	struct em_perf_domain *pd = em_pd_get(dev);
96 	struct devfreq_dev_status status;
97 	unsigned long freq;
98 	u64 power;
99 	int i;
100 
101 	mutex_lock(&devfreq->lock);
102 	status = devfreq->last_status;
103 	mutex_unlock(&devfreq->lock);
104 
105 	freq = DIV_ROUND_UP(status.current_frequency, HZ_PER_KHZ);
106 	_normalize_load(&status);
107 
108 	for (i = 0; i < pd->nr_perf_states; i++) {
109 
110 		if (pd->table[i].frequency < freq)
111 			continue;
112 
113 		power = pd->table[i].power * MICROWATT_PER_MILLIWATT;
114 		power *= status.busy_time;
115 		power >>= 10;
116 
117 		return power;
118 	}
119 
120 	return 0;
121 }
122 
123 static void pd_release(struct dtpm *dtpm)
124 {
125 	struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
126 
127 	if (dev_pm_qos_request_active(&dtpm_devfreq->qos_req))
128 		dev_pm_qos_remove_request(&dtpm_devfreq->qos_req);
129 
130 	kfree(dtpm_devfreq);
131 }
132 
133 static struct dtpm_ops dtpm_ops = {
134 	.set_power_uw = set_pd_power_limit,
135 	.get_power_uw = get_pd_power_uw,
136 	.update_power_uw = update_pd_power_uw,
137 	.release = pd_release,
138 };
139 
140 static int __dtpm_devfreq_setup(struct devfreq *devfreq, struct dtpm *parent)
141 {
142 	struct device *dev = devfreq->dev.parent;
143 	struct dtpm_devfreq *dtpm_devfreq;
144 	struct em_perf_domain *pd;
145 	int ret = -ENOMEM;
146 
147 	pd = em_pd_get(dev);
148 	if (!pd) {
149 		ret = dev_pm_opp_of_register_em(dev, NULL);
150 		if (ret) {
151 			pr_err("No energy model available for '%s'\n", dev_name(dev));
152 			return -EINVAL;
153 		}
154 	}
155 
156 	dtpm_devfreq = kzalloc(sizeof(*dtpm_devfreq), GFP_KERNEL);
157 	if (!dtpm_devfreq)
158 		return -ENOMEM;
159 
160 	dtpm_init(&dtpm_devfreq->dtpm, &dtpm_ops);
161 
162 	dtpm_devfreq->devfreq = devfreq;
163 
164 	ret = dtpm_register(dev_name(dev), &dtpm_devfreq->dtpm, parent);
165 	if (ret) {
166 		pr_err("Failed to register '%s': %d\n", dev_name(dev), ret);
167 		kfree(dtpm_devfreq);
168 		return ret;
169 	}
170 
171 	ret = dev_pm_qos_add_request(dev, &dtpm_devfreq->qos_req,
172 				     DEV_PM_QOS_MAX_FREQUENCY,
173 				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
174 	if (ret) {
175 		pr_err("Failed to add QoS request: %d\n", ret);
176 		goto out_dtpm_unregister;
177 	}
178 
179 	dtpm_update_power(&dtpm_devfreq->dtpm);
180 
181 	return 0;
182 
183 out_dtpm_unregister:
184 	dtpm_unregister(&dtpm_devfreq->dtpm);
185 
186 	return ret;
187 }
188 
189 static int dtpm_devfreq_setup(struct dtpm *dtpm, struct device_node *np)
190 {
191 	struct devfreq *devfreq;
192 
193 	devfreq = devfreq_get_devfreq_by_node(np);
194 	if (IS_ERR(devfreq))
195 		return 0;
196 
197 	return __dtpm_devfreq_setup(devfreq, dtpm);
198 }
199 
200 struct dtpm_subsys_ops dtpm_devfreq_ops = {
201 	.name = KBUILD_MODNAME,
202 	.setup = dtpm_devfreq_setup,
203 };
204