xref: /openbmc/linux/drivers/pinctrl/core.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (desc == NULL) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc != NULL) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    unsigned number, const char *name)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, number);
233 	if (pindesc != NULL) {
234 		dev_err(pctldev->dev, "pin %d already registered\n", number);
235 		return -EINVAL;
236 	}
237 
238 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 	if (pindesc == NULL) {
240 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241 		return -ENOMEM;
242 	}
243 
244 	/* Set owner */
245 	pindesc->pctldev = pctldev;
246 
247 	/* Copy basic pin info */
248 	if (name) {
249 		pindesc->name = name;
250 	} else {
251 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 		if (pindesc->name == NULL) {
253 			kfree(pindesc);
254 			return -ENOMEM;
255 		}
256 		pindesc->dynamic_name = true;
257 	}
258 
259 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 	pr_debug("registered pin %d (%s) on %s\n",
261 		 number, pindesc->name, pctldev->desc->name);
262 	return 0;
263 }
264 
265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 				 struct pinctrl_pin_desc const *pins,
267 				 unsigned num_descs)
268 {
269 	unsigned i;
270 	int ret = 0;
271 
272 	for (i = 0; i < num_descs; i++) {
273 		ret = pinctrl_register_one_pin(pctldev,
274 					       pins[i].number, pins[i].name);
275 		if (ret)
276 			return ret;
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * gpio_to_pin() - GPIO range GPIO number to pin number translation
284  * @range: GPIO range used for the translation
285  * @gpio: gpio pin to translate to a pin number
286  *
287  * Finds the pin number for a given GPIO using the specified GPIO range
288  * as a base for translation. The distinction between linear GPIO ranges
289  * and pin list based GPIO ranges is managed correctly by this function.
290  *
291  * This function assumes the gpio is part of the specified GPIO range, use
292  * only after making sure this is the case (e.g. by calling it on the
293  * result of successful pinctrl_get_device_gpio_range calls)!
294  */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 				unsigned int gpio)
297 {
298 	unsigned int offset = gpio - range->base;
299 	if (range->pins)
300 		return range->pins[offset];
301 	else
302 		return range->pin_base + offset;
303 }
304 
305 /**
306  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307  * @pctldev: pin controller device to check
308  * @gpio: gpio pin to check taken from the global GPIO pin space
309  *
310  * Tries to match a GPIO pin number to the ranges handled by a certain pin
311  * controller, return the range or NULL
312  */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316 	struct pinctrl_gpio_range *range = NULL;
317 
318 	mutex_lock(&pctldev->mutex);
319 	/* Loop over the ranges */
320 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 		/* Check if we're in the valid range */
322 		if (gpio >= range->base &&
323 		    gpio < range->base + range->npins) {
324 			mutex_unlock(&pctldev->mutex);
325 			return range;
326 		}
327 	}
328 	mutex_unlock(&pctldev->mutex);
329 	return NULL;
330 }
331 
332 /**
333  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334  * the same GPIO chip are in range
335  * @gpio: gpio pin to check taken from the global GPIO pin space
336  *
337  * This function is complement of pinctrl_match_gpio_range(). If the return
338  * value of pinctrl_match_gpio_range() is NULL, this function could be used
339  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340  * of the same GPIO chip don't have back-end pinctrl interface.
341  * If the return value is true, it means that pinctrl device is ready & the
342  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343  * is false, it means that pinctrl device may not be ready.
344  */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348 	struct pinctrl_dev *pctldev;
349 	struct pinctrl_gpio_range *range = NULL;
350 	struct gpio_chip *chip = gpio_to_chip(gpio);
351 
352 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 		return false;
354 
355 	mutex_lock(&pinctrldev_list_mutex);
356 
357 	/* Loop over the pin controllers */
358 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 		/* Loop over the ranges */
360 		mutex_lock(&pctldev->mutex);
361 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 			/* Check if any gpio range overlapped with gpio chip */
363 			if (range->base + range->npins - 1 < chip->base ||
364 			    range->base > chip->base + chip->ngpio - 1)
365 				continue;
366 			mutex_unlock(&pctldev->mutex);
367 			mutex_unlock(&pinctrldev_list_mutex);
368 			return true;
369 		}
370 		mutex_unlock(&pctldev->mutex);
371 	}
372 
373 	mutex_unlock(&pinctrldev_list_mutex);
374 
375 	return false;
376 }
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
380 
381 /**
382  * pinctrl_get_device_gpio_range() - find device for GPIO range
383  * @gpio: the pin to locate the pin controller for
384  * @outdev: the pin control device if found
385  * @outrange: the GPIO range if found
386  *
387  * Find the pin controller handling a certain GPIO pin from the pinspace of
388  * the GPIO subsystem, return the device and the matching GPIO range. Returns
389  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390  * may still have not been registered.
391  */
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 					 struct pinctrl_dev **outdev,
394 					 struct pinctrl_gpio_range **outrange)
395 {
396 	struct pinctrl_dev *pctldev = NULL;
397 
398 	mutex_lock(&pinctrldev_list_mutex);
399 
400 	/* Loop over the pin controllers */
401 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 		struct pinctrl_gpio_range *range;
403 
404 		range = pinctrl_match_gpio_range(pctldev, gpio);
405 		if (range != NULL) {
406 			*outdev = pctldev;
407 			*outrange = range;
408 			mutex_unlock(&pinctrldev_list_mutex);
409 			return 0;
410 		}
411 	}
412 
413 	mutex_unlock(&pinctrldev_list_mutex);
414 
415 	return -EPROBE_DEFER;
416 }
417 
418 /**
419  * pinctrl_add_gpio_range() - register a GPIO range for a controller
420  * @pctldev: pin controller device to add the range to
421  * @range: the GPIO range to add
422  *
423  * This adds a range of GPIOs to be handled by a certain pin controller. Call
424  * this to register handled ranges after registering your pin controller.
425  */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 			    struct pinctrl_gpio_range *range)
428 {
429 	mutex_lock(&pctldev->mutex);
430 	list_add_tail(&range->node, &pctldev->gpio_ranges);
431 	mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434 
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 			     struct pinctrl_gpio_range *ranges,
437 			     unsigned nranges)
438 {
439 	int i;
440 
441 	for (i = 0; i < nranges; i++)
442 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445 
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 		struct pinctrl_gpio_range *range)
448 {
449 	struct pinctrl_dev *pctldev;
450 
451 	pctldev = get_pinctrl_dev_from_devname(devname);
452 
453 	/*
454 	 * If we can't find this device, let's assume that is because
455 	 * it has not probed yet, so the driver trying to register this
456 	 * range need to defer probing.
457 	 */
458 	if (!pctldev) {
459 		return ERR_PTR(-EPROBE_DEFER);
460 	}
461 	pinctrl_add_gpio_range(pctldev, range);
462 
463 	return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466 
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 				const unsigned **pins, unsigned *num_pins)
469 {
470 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 	int gs;
472 
473 	if (!pctlops->get_group_pins)
474 		return -EINVAL;
475 
476 	gs = pinctrl_get_group_selector(pctldev, pin_group);
477 	if (gs < 0)
478 		return gs;
479 
480 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483 
484 /**
485  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
486  * @pctldev: the pin controller device to look in
487  * @pin: a controller-local number to find the range for
488  */
489 struct pinctrl_gpio_range *
490 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
491 				 unsigned int pin)
492 {
493 	struct pinctrl_gpio_range *range;
494 
495 	mutex_lock(&pctldev->mutex);
496 	/* Loop over the ranges */
497 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
498 		/* Check if we're in the valid range */
499 		if (range->pins) {
500 			int a;
501 			for (a = 0; a < range->npins; a++) {
502 				if (range->pins[a] == pin)
503 					goto out;
504 			}
505 		} else if (pin >= range->pin_base &&
506 			   pin < range->pin_base + range->npins)
507 			goto out;
508 	}
509 	range = NULL;
510 out:
511 	mutex_unlock(&pctldev->mutex);
512 	return range;
513 }
514 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
515 
516 /**
517  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
518  * @pctldev: pin controller device to remove the range from
519  * @range: the GPIO range to remove
520  */
521 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
522 			       struct pinctrl_gpio_range *range)
523 {
524 	mutex_lock(&pctldev->mutex);
525 	list_del(&range->node);
526 	mutex_unlock(&pctldev->mutex);
527 }
528 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
529 
530 /**
531  * pinctrl_get_group_selector() - returns the group selector for a group
532  * @pctldev: the pin controller handling the group
533  * @pin_group: the pin group to look up
534  */
535 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
536 			       const char *pin_group)
537 {
538 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
539 	unsigned ngroups = pctlops->get_groups_count(pctldev);
540 	unsigned group_selector = 0;
541 
542 	while (group_selector < ngroups) {
543 		const char *gname = pctlops->get_group_name(pctldev,
544 							    group_selector);
545 		if (!strcmp(gname, pin_group)) {
546 			dev_dbg(pctldev->dev,
547 				"found group selector %u for %s\n",
548 				group_selector,
549 				pin_group);
550 			return group_selector;
551 		}
552 
553 		group_selector++;
554 	}
555 
556 	dev_err(pctldev->dev, "does not have pin group %s\n",
557 		pin_group);
558 
559 	return -EINVAL;
560 }
561 
562 /**
563  * pinctrl_request_gpio() - request a single pin to be used as GPIO
564  * @gpio: the GPIO pin number from the GPIO subsystem number space
565  *
566  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
567  * as part of their gpio_request() semantics, platforms and individual drivers
568  * shall *NOT* request GPIO pins to be muxed in.
569  */
570 int pinctrl_request_gpio(unsigned gpio)
571 {
572 	struct pinctrl_dev *pctldev;
573 	struct pinctrl_gpio_range *range;
574 	int ret;
575 	int pin;
576 
577 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
578 	if (ret) {
579 		if (pinctrl_ready_for_gpio_range(gpio))
580 			ret = 0;
581 		return ret;
582 	}
583 
584 	mutex_lock(&pctldev->mutex);
585 
586 	/* Convert to the pin controllers number space */
587 	pin = gpio_to_pin(range, gpio);
588 
589 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
590 
591 	mutex_unlock(&pctldev->mutex);
592 
593 	return ret;
594 }
595 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
596 
597 /**
598  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
599  * @gpio: the GPIO pin number from the GPIO subsystem number space
600  *
601  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
602  * as part of their gpio_free() semantics, platforms and individual drivers
603  * shall *NOT* request GPIO pins to be muxed out.
604  */
605 void pinctrl_free_gpio(unsigned gpio)
606 {
607 	struct pinctrl_dev *pctldev;
608 	struct pinctrl_gpio_range *range;
609 	int ret;
610 	int pin;
611 
612 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
613 	if (ret) {
614 		return;
615 	}
616 	mutex_lock(&pctldev->mutex);
617 
618 	/* Convert to the pin controllers number space */
619 	pin = gpio_to_pin(range, gpio);
620 
621 	pinmux_free_gpio(pctldev, pin, range);
622 
623 	mutex_unlock(&pctldev->mutex);
624 }
625 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
626 
627 static int pinctrl_gpio_direction(unsigned gpio, bool input)
628 {
629 	struct pinctrl_dev *pctldev;
630 	struct pinctrl_gpio_range *range;
631 	int ret;
632 	int pin;
633 
634 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
635 	if (ret) {
636 		return ret;
637 	}
638 
639 	mutex_lock(&pctldev->mutex);
640 
641 	/* Convert to the pin controllers number space */
642 	pin = gpio_to_pin(range, gpio);
643 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
644 
645 	mutex_unlock(&pctldev->mutex);
646 
647 	return ret;
648 }
649 
650 /**
651  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
652  * @gpio: the GPIO pin number from the GPIO subsystem number space
653  *
654  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
655  * as part of their gpio_direction_input() semantics, platforms and individual
656  * drivers shall *NOT* touch pin control GPIO calls.
657  */
658 int pinctrl_gpio_direction_input(unsigned gpio)
659 {
660 	return pinctrl_gpio_direction(gpio, true);
661 }
662 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
663 
664 /**
665  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
666  * @gpio: the GPIO pin number from the GPIO subsystem number space
667  *
668  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
669  * as part of their gpio_direction_output() semantics, platforms and individual
670  * drivers shall *NOT* touch pin control GPIO calls.
671  */
672 int pinctrl_gpio_direction_output(unsigned gpio)
673 {
674 	return pinctrl_gpio_direction(gpio, false);
675 }
676 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
677 
678 static struct pinctrl_state *find_state(struct pinctrl *p,
679 					const char *name)
680 {
681 	struct pinctrl_state *state;
682 
683 	list_for_each_entry(state, &p->states, node)
684 		if (!strcmp(state->name, name))
685 			return state;
686 
687 	return NULL;
688 }
689 
690 static struct pinctrl_state *create_state(struct pinctrl *p,
691 					  const char *name)
692 {
693 	struct pinctrl_state *state;
694 
695 	state = kzalloc(sizeof(*state), GFP_KERNEL);
696 	if (state == NULL) {
697 		dev_err(p->dev,
698 			"failed to alloc struct pinctrl_state\n");
699 		return ERR_PTR(-ENOMEM);
700 	}
701 
702 	state->name = name;
703 	INIT_LIST_HEAD(&state->settings);
704 
705 	list_add_tail(&state->node, &p->states);
706 
707 	return state;
708 }
709 
710 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
711 {
712 	struct pinctrl_state *state;
713 	struct pinctrl_setting *setting;
714 	int ret;
715 
716 	state = find_state(p, map->name);
717 	if (!state)
718 		state = create_state(p, map->name);
719 	if (IS_ERR(state))
720 		return PTR_ERR(state);
721 
722 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
723 		return 0;
724 
725 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
726 	if (setting == NULL) {
727 		dev_err(p->dev,
728 			"failed to alloc struct pinctrl_setting\n");
729 		return -ENOMEM;
730 	}
731 
732 	setting->type = map->type;
733 
734 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
735 	if (setting->pctldev == NULL) {
736 		kfree(setting);
737 		/* Do not defer probing of hogs (circular loop) */
738 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
739 			return -ENODEV;
740 		/*
741 		 * OK let us guess that the driver is not there yet, and
742 		 * let's defer obtaining this pinctrl handle to later...
743 		 */
744 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
745 			map->ctrl_dev_name);
746 		return -EPROBE_DEFER;
747 	}
748 
749 	setting->dev_name = map->dev_name;
750 
751 	switch (map->type) {
752 	case PIN_MAP_TYPE_MUX_GROUP:
753 		ret = pinmux_map_to_setting(map, setting);
754 		break;
755 	case PIN_MAP_TYPE_CONFIGS_PIN:
756 	case PIN_MAP_TYPE_CONFIGS_GROUP:
757 		ret = pinconf_map_to_setting(map, setting);
758 		break;
759 	default:
760 		ret = -EINVAL;
761 		break;
762 	}
763 	if (ret < 0) {
764 		kfree(setting);
765 		return ret;
766 	}
767 
768 	list_add_tail(&setting->node, &state->settings);
769 
770 	return 0;
771 }
772 
773 static struct pinctrl *find_pinctrl(struct device *dev)
774 {
775 	struct pinctrl *p;
776 
777 	mutex_lock(&pinctrl_list_mutex);
778 	list_for_each_entry(p, &pinctrl_list, node)
779 		if (p->dev == dev) {
780 			mutex_unlock(&pinctrl_list_mutex);
781 			return p;
782 		}
783 
784 	mutex_unlock(&pinctrl_list_mutex);
785 	return NULL;
786 }
787 
788 static void pinctrl_free(struct pinctrl *p, bool inlist);
789 
790 static struct pinctrl *create_pinctrl(struct device *dev)
791 {
792 	struct pinctrl *p;
793 	const char *devname;
794 	struct pinctrl_maps *maps_node;
795 	int i;
796 	struct pinctrl_map const *map;
797 	int ret;
798 
799 	/*
800 	 * create the state cookie holder struct pinctrl for each
801 	 * mapping, this is what consumers will get when requesting
802 	 * a pin control handle with pinctrl_get()
803 	 */
804 	p = kzalloc(sizeof(*p), GFP_KERNEL);
805 	if (p == NULL) {
806 		dev_err(dev, "failed to alloc struct pinctrl\n");
807 		return ERR_PTR(-ENOMEM);
808 	}
809 	p->dev = dev;
810 	INIT_LIST_HEAD(&p->states);
811 	INIT_LIST_HEAD(&p->dt_maps);
812 
813 	ret = pinctrl_dt_to_map(p);
814 	if (ret < 0) {
815 		kfree(p);
816 		return ERR_PTR(ret);
817 	}
818 
819 	devname = dev_name(dev);
820 
821 	mutex_lock(&pinctrl_maps_mutex);
822 	/* Iterate over the pin control maps to locate the right ones */
823 	for_each_maps(maps_node, i, map) {
824 		/* Map must be for this device */
825 		if (strcmp(map->dev_name, devname))
826 			continue;
827 
828 		ret = add_setting(p, map);
829 		/*
830 		 * At this point the adding of a setting may:
831 		 *
832 		 * - Defer, if the pinctrl device is not yet available
833 		 * - Fail, if the pinctrl device is not yet available,
834 		 *   AND the setting is a hog. We cannot defer that, since
835 		 *   the hog will kick in immediately after the device
836 		 *   is registered.
837 		 *
838 		 * If the error returned was not -EPROBE_DEFER then we
839 		 * accumulate the errors to see if we end up with
840 		 * an -EPROBE_DEFER later, as that is the worst case.
841 		 */
842 		if (ret == -EPROBE_DEFER) {
843 			pinctrl_free(p, false);
844 			mutex_unlock(&pinctrl_maps_mutex);
845 			return ERR_PTR(ret);
846 		}
847 	}
848 	mutex_unlock(&pinctrl_maps_mutex);
849 
850 	if (ret < 0) {
851 		/* If some other error than deferral occured, return here */
852 		pinctrl_free(p, false);
853 		return ERR_PTR(ret);
854 	}
855 
856 	kref_init(&p->users);
857 
858 	/* Add the pinctrl handle to the global list */
859 	mutex_lock(&pinctrl_list_mutex);
860 	list_add_tail(&p->node, &pinctrl_list);
861 	mutex_unlock(&pinctrl_list_mutex);
862 
863 	return p;
864 }
865 
866 /**
867  * pinctrl_get() - retrieves the pinctrl handle for a device
868  * @dev: the device to obtain the handle for
869  */
870 struct pinctrl *pinctrl_get(struct device *dev)
871 {
872 	struct pinctrl *p;
873 
874 	if (WARN_ON(!dev))
875 		return ERR_PTR(-EINVAL);
876 
877 	/*
878 	 * See if somebody else (such as the device core) has already
879 	 * obtained a handle to the pinctrl for this device. In that case,
880 	 * return another pointer to it.
881 	 */
882 	p = find_pinctrl(dev);
883 	if (p != NULL) {
884 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
885 		kref_get(&p->users);
886 		return p;
887 	}
888 
889 	return create_pinctrl(dev);
890 }
891 EXPORT_SYMBOL_GPL(pinctrl_get);
892 
893 static void pinctrl_free_setting(bool disable_setting,
894 				 struct pinctrl_setting *setting)
895 {
896 	switch (setting->type) {
897 	case PIN_MAP_TYPE_MUX_GROUP:
898 		if (disable_setting)
899 			pinmux_disable_setting(setting);
900 		pinmux_free_setting(setting);
901 		break;
902 	case PIN_MAP_TYPE_CONFIGS_PIN:
903 	case PIN_MAP_TYPE_CONFIGS_GROUP:
904 		pinconf_free_setting(setting);
905 		break;
906 	default:
907 		break;
908 	}
909 }
910 
911 static void pinctrl_free(struct pinctrl *p, bool inlist)
912 {
913 	struct pinctrl_state *state, *n1;
914 	struct pinctrl_setting *setting, *n2;
915 
916 	mutex_lock(&pinctrl_list_mutex);
917 	list_for_each_entry_safe(state, n1, &p->states, node) {
918 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
919 			pinctrl_free_setting(state == p->state, setting);
920 			list_del(&setting->node);
921 			kfree(setting);
922 		}
923 		list_del(&state->node);
924 		kfree(state);
925 	}
926 
927 	pinctrl_dt_free_maps(p);
928 
929 	if (inlist)
930 		list_del(&p->node);
931 	kfree(p);
932 	mutex_unlock(&pinctrl_list_mutex);
933 }
934 
935 /**
936  * pinctrl_release() - release the pinctrl handle
937  * @kref: the kref in the pinctrl being released
938  */
939 static void pinctrl_release(struct kref *kref)
940 {
941 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
942 
943 	pinctrl_free(p, true);
944 }
945 
946 /**
947  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
948  * @p: the pinctrl handle to release
949  */
950 void pinctrl_put(struct pinctrl *p)
951 {
952 	kref_put(&p->users, pinctrl_release);
953 }
954 EXPORT_SYMBOL_GPL(pinctrl_put);
955 
956 /**
957  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
958  * @p: the pinctrl handle to retrieve the state from
959  * @name: the state name to retrieve
960  */
961 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
962 						 const char *name)
963 {
964 	struct pinctrl_state *state;
965 
966 	state = find_state(p, name);
967 	if (!state) {
968 		if (pinctrl_dummy_state) {
969 			/* create dummy state */
970 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
971 				name);
972 			state = create_state(p, name);
973 		} else
974 			state = ERR_PTR(-ENODEV);
975 	}
976 
977 	return state;
978 }
979 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
980 
981 /**
982  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
983  * @p: the pinctrl handle for the device that requests configuration
984  * @state: the state handle to select/activate/program
985  */
986 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
987 {
988 	struct pinctrl_setting *setting, *setting2;
989 	struct pinctrl_state *old_state = p->state;
990 	int ret;
991 
992 	if (p->state == state)
993 		return 0;
994 
995 	if (p->state) {
996 		/*
997 		 * For each pinmux setting in the old state, forget SW's record
998 		 * of mux owner for that pingroup. Any pingroups which are
999 		 * still owned by the new state will be re-acquired by the call
1000 		 * to pinmux_enable_setting() in the loop below.
1001 		 */
1002 		list_for_each_entry(setting, &p->state->settings, node) {
1003 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1004 				continue;
1005 			pinmux_disable_setting(setting);
1006 		}
1007 	}
1008 
1009 	p->state = NULL;
1010 
1011 	/* Apply all the settings for the new state */
1012 	list_for_each_entry(setting, &state->settings, node) {
1013 		switch (setting->type) {
1014 		case PIN_MAP_TYPE_MUX_GROUP:
1015 			ret = pinmux_enable_setting(setting);
1016 			break;
1017 		case PIN_MAP_TYPE_CONFIGS_PIN:
1018 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1019 			ret = pinconf_apply_setting(setting);
1020 			break;
1021 		default:
1022 			ret = -EINVAL;
1023 			break;
1024 		}
1025 
1026 		if (ret < 0) {
1027 			goto unapply_new_state;
1028 		}
1029 	}
1030 
1031 	p->state = state;
1032 
1033 	return 0;
1034 
1035 unapply_new_state:
1036 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1037 
1038 	list_for_each_entry(setting2, &state->settings, node) {
1039 		if (&setting2->node == &setting->node)
1040 			break;
1041 		/*
1042 		 * All we can do here is pinmux_disable_setting.
1043 		 * That means that some pins are muxed differently now
1044 		 * than they were before applying the setting (We can't
1045 		 * "unmux a pin"!), but it's not a big deal since the pins
1046 		 * are free to be muxed by another apply_setting.
1047 		 */
1048 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1049 			pinmux_disable_setting(setting2);
1050 	}
1051 
1052 	/* There's no infinite recursive loop here because p->state is NULL */
1053 	if (old_state)
1054 		pinctrl_select_state(p, old_state);
1055 
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1059 
1060 static void devm_pinctrl_release(struct device *dev, void *res)
1061 {
1062 	pinctrl_put(*(struct pinctrl **)res);
1063 }
1064 
1065 /**
1066  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1067  * @dev: the device to obtain the handle for
1068  *
1069  * If there is a need to explicitly destroy the returned struct pinctrl,
1070  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1071  */
1072 struct pinctrl *devm_pinctrl_get(struct device *dev)
1073 {
1074 	struct pinctrl **ptr, *p;
1075 
1076 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1077 	if (!ptr)
1078 		return ERR_PTR(-ENOMEM);
1079 
1080 	p = pinctrl_get(dev);
1081 	if (!IS_ERR(p)) {
1082 		*ptr = p;
1083 		devres_add(dev, ptr);
1084 	} else {
1085 		devres_free(ptr);
1086 	}
1087 
1088 	return p;
1089 }
1090 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1091 
1092 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1093 {
1094 	struct pinctrl **p = res;
1095 
1096 	return *p == data;
1097 }
1098 
1099 /**
1100  * devm_pinctrl_put() - Resource managed pinctrl_put()
1101  * @p: the pinctrl handle to release
1102  *
1103  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1104  * this function will not need to be called and the resource management
1105  * code will ensure that the resource is freed.
1106  */
1107 void devm_pinctrl_put(struct pinctrl *p)
1108 {
1109 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1110 			       devm_pinctrl_match, p));
1111 }
1112 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1113 
1114 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1115 			 bool dup)
1116 {
1117 	int i, ret;
1118 	struct pinctrl_maps *maps_node;
1119 
1120 	pr_debug("add %u pinctrl maps\n", num_maps);
1121 
1122 	/* First sanity check the new mapping */
1123 	for (i = 0; i < num_maps; i++) {
1124 		if (!maps[i].dev_name) {
1125 			pr_err("failed to register map %s (%d): no device given\n",
1126 			       maps[i].name, i);
1127 			return -EINVAL;
1128 		}
1129 
1130 		if (!maps[i].name) {
1131 			pr_err("failed to register map %d: no map name given\n",
1132 			       i);
1133 			return -EINVAL;
1134 		}
1135 
1136 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1137 				!maps[i].ctrl_dev_name) {
1138 			pr_err("failed to register map %s (%d): no pin control device given\n",
1139 			       maps[i].name, i);
1140 			return -EINVAL;
1141 		}
1142 
1143 		switch (maps[i].type) {
1144 		case PIN_MAP_TYPE_DUMMY_STATE:
1145 			break;
1146 		case PIN_MAP_TYPE_MUX_GROUP:
1147 			ret = pinmux_validate_map(&maps[i], i);
1148 			if (ret < 0)
1149 				return ret;
1150 			break;
1151 		case PIN_MAP_TYPE_CONFIGS_PIN:
1152 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1153 			ret = pinconf_validate_map(&maps[i], i);
1154 			if (ret < 0)
1155 				return ret;
1156 			break;
1157 		default:
1158 			pr_err("failed to register map %s (%d): invalid type given\n",
1159 			       maps[i].name, i);
1160 			return -EINVAL;
1161 		}
1162 	}
1163 
1164 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1165 	if (!maps_node) {
1166 		pr_err("failed to alloc struct pinctrl_maps\n");
1167 		return -ENOMEM;
1168 	}
1169 
1170 	maps_node->num_maps = num_maps;
1171 	if (dup) {
1172 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1173 					  GFP_KERNEL);
1174 		if (!maps_node->maps) {
1175 			pr_err("failed to duplicate mapping table\n");
1176 			kfree(maps_node);
1177 			return -ENOMEM;
1178 		}
1179 	} else {
1180 		maps_node->maps = maps;
1181 	}
1182 
1183 	mutex_lock(&pinctrl_maps_mutex);
1184 	list_add_tail(&maps_node->node, &pinctrl_maps);
1185 	mutex_unlock(&pinctrl_maps_mutex);
1186 
1187 	return 0;
1188 }
1189 
1190 /**
1191  * pinctrl_register_mappings() - register a set of pin controller mappings
1192  * @maps: the pincontrol mappings table to register. This should probably be
1193  *	marked with __initdata so it can be discarded after boot. This
1194  *	function will perform a shallow copy for the mapping entries.
1195  * @num_maps: the number of maps in the mapping table
1196  */
1197 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1198 			      unsigned num_maps)
1199 {
1200 	return pinctrl_register_map(maps, num_maps, true);
1201 }
1202 
1203 void pinctrl_unregister_map(struct pinctrl_map const *map)
1204 {
1205 	struct pinctrl_maps *maps_node;
1206 
1207 	mutex_lock(&pinctrl_maps_mutex);
1208 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1209 		if (maps_node->maps == map) {
1210 			list_del(&maps_node->node);
1211 			kfree(maps_node);
1212 			mutex_unlock(&pinctrl_maps_mutex);
1213 			return;
1214 		}
1215 	}
1216 	mutex_unlock(&pinctrl_maps_mutex);
1217 }
1218 
1219 /**
1220  * pinctrl_force_sleep() - turn a given controller device into sleep state
1221  * @pctldev: pin controller device
1222  */
1223 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1224 {
1225 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1226 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1227 	return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1230 
1231 /**
1232  * pinctrl_force_default() - turn a given controller device into default state
1233  * @pctldev: pin controller device
1234  */
1235 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1236 {
1237 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1238 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1239 	return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1242 
1243 #ifdef CONFIG_PM
1244 
1245 /**
1246  * pinctrl_pm_select_state() - select pinctrl state for PM
1247  * @dev: device to select default state for
1248  * @state: state to set
1249  */
1250 static int pinctrl_pm_select_state(struct device *dev,
1251 				   struct pinctrl_state *state)
1252 {
1253 	struct dev_pin_info *pins = dev->pins;
1254 	int ret;
1255 
1256 	if (IS_ERR(state))
1257 		return 0; /* No such state */
1258 	ret = pinctrl_select_state(pins->p, state);
1259 	if (ret)
1260 		dev_err(dev, "failed to activate pinctrl state %s\n",
1261 			state->name);
1262 	return ret;
1263 }
1264 
1265 /**
1266  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1267  * @dev: device to select default state for
1268  */
1269 int pinctrl_pm_select_default_state(struct device *dev)
1270 {
1271 	if (!dev->pins)
1272 		return 0;
1273 
1274 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1275 }
1276 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1277 
1278 /**
1279  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1280  * @dev: device to select sleep state for
1281  */
1282 int pinctrl_pm_select_sleep_state(struct device *dev)
1283 {
1284 	if (!dev->pins)
1285 		return 0;
1286 
1287 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1288 }
1289 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1290 
1291 /**
1292  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1293  * @dev: device to select idle state for
1294  */
1295 int pinctrl_pm_select_idle_state(struct device *dev)
1296 {
1297 	if (!dev->pins)
1298 		return 0;
1299 
1300 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1301 }
1302 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1303 #endif
1304 
1305 #ifdef CONFIG_DEBUG_FS
1306 
1307 static int pinctrl_pins_show(struct seq_file *s, void *what)
1308 {
1309 	struct pinctrl_dev *pctldev = s->private;
1310 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1311 	unsigned i, pin;
1312 
1313 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1314 
1315 	mutex_lock(&pctldev->mutex);
1316 
1317 	/* The pin number can be retrived from the pin controller descriptor */
1318 	for (i = 0; i < pctldev->desc->npins; i++) {
1319 		struct pin_desc *desc;
1320 
1321 		pin = pctldev->desc->pins[i].number;
1322 		desc = pin_desc_get(pctldev, pin);
1323 		/* Pin space may be sparse */
1324 		if (desc == NULL)
1325 			continue;
1326 
1327 		seq_printf(s, "pin %d (%s) ", pin,
1328 			   desc->name ? desc->name : "unnamed");
1329 
1330 		/* Driver-specific info per pin */
1331 		if (ops->pin_dbg_show)
1332 			ops->pin_dbg_show(pctldev, s, pin);
1333 
1334 		seq_puts(s, "\n");
1335 	}
1336 
1337 	mutex_unlock(&pctldev->mutex);
1338 
1339 	return 0;
1340 }
1341 
1342 static int pinctrl_groups_show(struct seq_file *s, void *what)
1343 {
1344 	struct pinctrl_dev *pctldev = s->private;
1345 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1346 	unsigned ngroups, selector = 0;
1347 
1348 	mutex_lock(&pctldev->mutex);
1349 
1350 	ngroups = ops->get_groups_count(pctldev);
1351 
1352 	seq_puts(s, "registered pin groups:\n");
1353 	while (selector < ngroups) {
1354 		const unsigned *pins = NULL;
1355 		unsigned num_pins = 0;
1356 		const char *gname = ops->get_group_name(pctldev, selector);
1357 		const char *pname;
1358 		int ret = 0;
1359 		int i;
1360 
1361 		if (ops->get_group_pins)
1362 			ret = ops->get_group_pins(pctldev, selector,
1363 						  &pins, &num_pins);
1364 		if (ret)
1365 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1366 				   gname);
1367 		else {
1368 			seq_printf(s, "group: %s\n", gname);
1369 			for (i = 0; i < num_pins; i++) {
1370 				pname = pin_get_name(pctldev, pins[i]);
1371 				if (WARN_ON(!pname)) {
1372 					mutex_unlock(&pctldev->mutex);
1373 					return -EINVAL;
1374 				}
1375 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1376 			}
1377 			seq_puts(s, "\n");
1378 		}
1379 		selector++;
1380 	}
1381 
1382 	mutex_unlock(&pctldev->mutex);
1383 
1384 	return 0;
1385 }
1386 
1387 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1388 {
1389 	struct pinctrl_dev *pctldev = s->private;
1390 	struct pinctrl_gpio_range *range = NULL;
1391 
1392 	seq_puts(s, "GPIO ranges handled:\n");
1393 
1394 	mutex_lock(&pctldev->mutex);
1395 
1396 	/* Loop over the ranges */
1397 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1398 		if (range->pins) {
1399 			int a;
1400 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1401 				range->id, range->name,
1402 				range->base, (range->base + range->npins - 1));
1403 			for (a = 0; a < range->npins - 1; a++)
1404 				seq_printf(s, "%u, ", range->pins[a]);
1405 			seq_printf(s, "%u}\n", range->pins[a]);
1406 		}
1407 		else
1408 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1409 				range->id, range->name,
1410 				range->base, (range->base + range->npins - 1),
1411 				range->pin_base,
1412 				(range->pin_base + range->npins - 1));
1413 	}
1414 
1415 	mutex_unlock(&pctldev->mutex);
1416 
1417 	return 0;
1418 }
1419 
1420 static int pinctrl_devices_show(struct seq_file *s, void *what)
1421 {
1422 	struct pinctrl_dev *pctldev;
1423 
1424 	seq_puts(s, "name [pinmux] [pinconf]\n");
1425 
1426 	mutex_lock(&pinctrldev_list_mutex);
1427 
1428 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1429 		seq_printf(s, "%s ", pctldev->desc->name);
1430 		if (pctldev->desc->pmxops)
1431 			seq_puts(s, "yes ");
1432 		else
1433 			seq_puts(s, "no ");
1434 		if (pctldev->desc->confops)
1435 			seq_puts(s, "yes");
1436 		else
1437 			seq_puts(s, "no");
1438 		seq_puts(s, "\n");
1439 	}
1440 
1441 	mutex_unlock(&pinctrldev_list_mutex);
1442 
1443 	return 0;
1444 }
1445 
1446 static inline const char *map_type(enum pinctrl_map_type type)
1447 {
1448 	static const char * const names[] = {
1449 		"INVALID",
1450 		"DUMMY_STATE",
1451 		"MUX_GROUP",
1452 		"CONFIGS_PIN",
1453 		"CONFIGS_GROUP",
1454 	};
1455 
1456 	if (type >= ARRAY_SIZE(names))
1457 		return "UNKNOWN";
1458 
1459 	return names[type];
1460 }
1461 
1462 static int pinctrl_maps_show(struct seq_file *s, void *what)
1463 {
1464 	struct pinctrl_maps *maps_node;
1465 	int i;
1466 	struct pinctrl_map const *map;
1467 
1468 	seq_puts(s, "Pinctrl maps:\n");
1469 
1470 	mutex_lock(&pinctrl_maps_mutex);
1471 	for_each_maps(maps_node, i, map) {
1472 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1473 			   map->dev_name, map->name, map_type(map->type),
1474 			   map->type);
1475 
1476 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1477 			seq_printf(s, "controlling device %s\n",
1478 				   map->ctrl_dev_name);
1479 
1480 		switch (map->type) {
1481 		case PIN_MAP_TYPE_MUX_GROUP:
1482 			pinmux_show_map(s, map);
1483 			break;
1484 		case PIN_MAP_TYPE_CONFIGS_PIN:
1485 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1486 			pinconf_show_map(s, map);
1487 			break;
1488 		default:
1489 			break;
1490 		}
1491 
1492 		seq_printf(s, "\n");
1493 	}
1494 	mutex_unlock(&pinctrl_maps_mutex);
1495 
1496 	return 0;
1497 }
1498 
1499 static int pinctrl_show(struct seq_file *s, void *what)
1500 {
1501 	struct pinctrl *p;
1502 	struct pinctrl_state *state;
1503 	struct pinctrl_setting *setting;
1504 
1505 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1506 
1507 	mutex_lock(&pinctrl_list_mutex);
1508 
1509 	list_for_each_entry(p, &pinctrl_list, node) {
1510 		seq_printf(s, "device: %s current state: %s\n",
1511 			   dev_name(p->dev),
1512 			   p->state ? p->state->name : "none");
1513 
1514 		list_for_each_entry(state, &p->states, node) {
1515 			seq_printf(s, "  state: %s\n", state->name);
1516 
1517 			list_for_each_entry(setting, &state->settings, node) {
1518 				struct pinctrl_dev *pctldev = setting->pctldev;
1519 
1520 				seq_printf(s, "    type: %s controller %s ",
1521 					   map_type(setting->type),
1522 					   pinctrl_dev_get_name(pctldev));
1523 
1524 				switch (setting->type) {
1525 				case PIN_MAP_TYPE_MUX_GROUP:
1526 					pinmux_show_setting(s, setting);
1527 					break;
1528 				case PIN_MAP_TYPE_CONFIGS_PIN:
1529 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1530 					pinconf_show_setting(s, setting);
1531 					break;
1532 				default:
1533 					break;
1534 				}
1535 			}
1536 		}
1537 	}
1538 
1539 	mutex_unlock(&pinctrl_list_mutex);
1540 
1541 	return 0;
1542 }
1543 
1544 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1545 {
1546 	return single_open(file, pinctrl_pins_show, inode->i_private);
1547 }
1548 
1549 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1550 {
1551 	return single_open(file, pinctrl_groups_show, inode->i_private);
1552 }
1553 
1554 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1555 {
1556 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1557 }
1558 
1559 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1560 {
1561 	return single_open(file, pinctrl_devices_show, NULL);
1562 }
1563 
1564 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1565 {
1566 	return single_open(file, pinctrl_maps_show, NULL);
1567 }
1568 
1569 static int pinctrl_open(struct inode *inode, struct file *file)
1570 {
1571 	return single_open(file, pinctrl_show, NULL);
1572 }
1573 
1574 static const struct file_operations pinctrl_pins_ops = {
1575 	.open		= pinctrl_pins_open,
1576 	.read		= seq_read,
1577 	.llseek		= seq_lseek,
1578 	.release	= single_release,
1579 };
1580 
1581 static const struct file_operations pinctrl_groups_ops = {
1582 	.open		= pinctrl_groups_open,
1583 	.read		= seq_read,
1584 	.llseek		= seq_lseek,
1585 	.release	= single_release,
1586 };
1587 
1588 static const struct file_operations pinctrl_gpioranges_ops = {
1589 	.open		= pinctrl_gpioranges_open,
1590 	.read		= seq_read,
1591 	.llseek		= seq_lseek,
1592 	.release	= single_release,
1593 };
1594 
1595 static const struct file_operations pinctrl_devices_ops = {
1596 	.open		= pinctrl_devices_open,
1597 	.read		= seq_read,
1598 	.llseek		= seq_lseek,
1599 	.release	= single_release,
1600 };
1601 
1602 static const struct file_operations pinctrl_maps_ops = {
1603 	.open		= pinctrl_maps_open,
1604 	.read		= seq_read,
1605 	.llseek		= seq_lseek,
1606 	.release	= single_release,
1607 };
1608 
1609 static const struct file_operations pinctrl_ops = {
1610 	.open		= pinctrl_open,
1611 	.read		= seq_read,
1612 	.llseek		= seq_lseek,
1613 	.release	= single_release,
1614 };
1615 
1616 static struct dentry *debugfs_root;
1617 
1618 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1619 {
1620 	struct dentry *device_root;
1621 
1622 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1623 					 debugfs_root);
1624 	pctldev->device_root = device_root;
1625 
1626 	if (IS_ERR(device_root) || !device_root) {
1627 		pr_warn("failed to create debugfs directory for %s\n",
1628 			dev_name(pctldev->dev));
1629 		return;
1630 	}
1631 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1632 			    device_root, pctldev, &pinctrl_pins_ops);
1633 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1634 			    device_root, pctldev, &pinctrl_groups_ops);
1635 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1636 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1637 	if (pctldev->desc->pmxops)
1638 		pinmux_init_device_debugfs(device_root, pctldev);
1639 	if (pctldev->desc->confops)
1640 		pinconf_init_device_debugfs(device_root, pctldev);
1641 }
1642 
1643 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1644 {
1645 	debugfs_remove_recursive(pctldev->device_root);
1646 }
1647 
1648 static void pinctrl_init_debugfs(void)
1649 {
1650 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1651 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1652 		pr_warn("failed to create debugfs directory\n");
1653 		debugfs_root = NULL;
1654 		return;
1655 	}
1656 
1657 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1658 			    debugfs_root, NULL, &pinctrl_devices_ops);
1659 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1660 			    debugfs_root, NULL, &pinctrl_maps_ops);
1661 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1662 			    debugfs_root, NULL, &pinctrl_ops);
1663 }
1664 
1665 #else /* CONFIG_DEBUG_FS */
1666 
1667 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1668 {
1669 }
1670 
1671 static void pinctrl_init_debugfs(void)
1672 {
1673 }
1674 
1675 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1676 {
1677 }
1678 
1679 #endif
1680 
1681 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1682 {
1683 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1684 
1685 	if (!ops ||
1686 	    !ops->get_groups_count ||
1687 	    !ops->get_group_name)
1688 		return -EINVAL;
1689 
1690 	if (ops->dt_node_to_map && !ops->dt_free_map)
1691 		return -EINVAL;
1692 
1693 	return 0;
1694 }
1695 
1696 /**
1697  * pinctrl_register() - register a pin controller device
1698  * @pctldesc: descriptor for this pin controller
1699  * @dev: parent device for this pin controller
1700  * @driver_data: private pin controller data for this pin controller
1701  */
1702 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1703 				    struct device *dev, void *driver_data)
1704 {
1705 	struct pinctrl_dev *pctldev;
1706 	int ret;
1707 
1708 	if (!pctldesc)
1709 		return ERR_PTR(-EINVAL);
1710 	if (!pctldesc->name)
1711 		return ERR_PTR(-EINVAL);
1712 
1713 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1714 	if (pctldev == NULL) {
1715 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1716 		return ERR_PTR(-ENOMEM);
1717 	}
1718 
1719 	/* Initialize pin control device struct */
1720 	pctldev->owner = pctldesc->owner;
1721 	pctldev->desc = pctldesc;
1722 	pctldev->driver_data = driver_data;
1723 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1724 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1725 	pctldev->dev = dev;
1726 	mutex_init(&pctldev->mutex);
1727 
1728 	/* check core ops for sanity */
1729 	ret = pinctrl_check_ops(pctldev);
1730 	if (ret) {
1731 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1732 		goto out_err;
1733 	}
1734 
1735 	/* If we're implementing pinmuxing, check the ops for sanity */
1736 	if (pctldesc->pmxops) {
1737 		ret = pinmux_check_ops(pctldev);
1738 		if (ret)
1739 			goto out_err;
1740 	}
1741 
1742 	/* If we're implementing pinconfig, check the ops for sanity */
1743 	if (pctldesc->confops) {
1744 		ret = pinconf_check_ops(pctldev);
1745 		if (ret)
1746 			goto out_err;
1747 	}
1748 
1749 	/* Register all the pins */
1750 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1751 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1752 	if (ret) {
1753 		dev_err(dev, "error during pin registration\n");
1754 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1755 				      pctldesc->npins);
1756 		goto out_err;
1757 	}
1758 
1759 	mutex_lock(&pinctrldev_list_mutex);
1760 	list_add_tail(&pctldev->node, &pinctrldev_list);
1761 	mutex_unlock(&pinctrldev_list_mutex);
1762 
1763 	pctldev->p = pinctrl_get(pctldev->dev);
1764 
1765 	if (!IS_ERR(pctldev->p)) {
1766 		pctldev->hog_default =
1767 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1768 		if (IS_ERR(pctldev->hog_default)) {
1769 			dev_dbg(dev, "failed to lookup the default state\n");
1770 		} else {
1771 			if (pinctrl_select_state(pctldev->p,
1772 						pctldev->hog_default))
1773 				dev_err(dev,
1774 					"failed to select default state\n");
1775 		}
1776 
1777 		pctldev->hog_sleep =
1778 			pinctrl_lookup_state(pctldev->p,
1779 						    PINCTRL_STATE_SLEEP);
1780 		if (IS_ERR(pctldev->hog_sleep))
1781 			dev_dbg(dev, "failed to lookup the sleep state\n");
1782 	}
1783 
1784 	pinctrl_init_device_debugfs(pctldev);
1785 
1786 	return pctldev;
1787 
1788 out_err:
1789 	mutex_destroy(&pctldev->mutex);
1790 	kfree(pctldev);
1791 	return ERR_PTR(ret);
1792 }
1793 EXPORT_SYMBOL_GPL(pinctrl_register);
1794 
1795 /**
1796  * pinctrl_unregister() - unregister pinmux
1797  * @pctldev: pin controller to unregister
1798  *
1799  * Called by pinmux drivers to unregister a pinmux.
1800  */
1801 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1802 {
1803 	struct pinctrl_gpio_range *range, *n;
1804 	if (pctldev == NULL)
1805 		return;
1806 
1807 	mutex_lock(&pctldev->mutex);
1808 	pinctrl_remove_device_debugfs(pctldev);
1809 	mutex_unlock(&pctldev->mutex);
1810 
1811 	if (!IS_ERR(pctldev->p))
1812 		pinctrl_put(pctldev->p);
1813 
1814 	mutex_lock(&pinctrldev_list_mutex);
1815 	mutex_lock(&pctldev->mutex);
1816 	/* TODO: check that no pinmuxes are still active? */
1817 	list_del(&pctldev->node);
1818 	/* Destroy descriptor tree */
1819 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1820 			      pctldev->desc->npins);
1821 	/* remove gpio ranges map */
1822 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1823 		list_del(&range->node);
1824 
1825 	mutex_unlock(&pctldev->mutex);
1826 	mutex_destroy(&pctldev->mutex);
1827 	kfree(pctldev);
1828 	mutex_unlock(&pinctrldev_list_mutex);
1829 }
1830 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1831 
1832 static int __init pinctrl_init(void)
1833 {
1834 	pr_info("initialized pinctrl subsystem\n");
1835 	pinctrl_init_debugfs();
1836 	return 0;
1837 }
1838 
1839 /* init early since many drivers really need to initialized pinmux early */
1840 core_initcall(pinctrl_init);
1841