1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/debugfs.h> 16 #include <linux/device.h> 17 #include <linux/err.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/kref.h> 22 #include <linux/list.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 26 #include <linux/pinctrl/consumer.h> 27 #include <linux/pinctrl/devinfo.h> 28 #include <linux/pinctrl/machine.h> 29 #include <linux/pinctrl/pinctrl.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include "../gpio/gpiolib.h" 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinconf.h" 38 #include "pinmux.h" 39 40 static bool pinctrl_dummy_state; 41 42 /* Mutex taken to protect pinctrl_list */ 43 static DEFINE_MUTEX(pinctrl_list_mutex); 44 45 /* Mutex taken to protect pinctrl_maps */ 46 DEFINE_MUTEX(pinctrl_maps_mutex); 47 48 /* Mutex taken to protect pinctrldev_list */ 49 static DEFINE_MUTEX(pinctrldev_list_mutex); 50 51 /* Global list of pin control devices (struct pinctrl_dev) */ 52 static LIST_HEAD(pinctrldev_list); 53 54 /* List of pin controller handles (struct pinctrl) */ 55 static LIST_HEAD(pinctrl_list); 56 57 /* List of pinctrl maps (struct pinctrl_maps) */ 58 LIST_HEAD(pinctrl_maps); 59 60 61 /** 62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 63 * 64 * Usually this function is called by platforms without pinctrl driver support 65 * but run with some shared drivers using pinctrl APIs. 66 * After calling this function, the pinctrl core will return successfully 67 * with creating a dummy state for the driver to keep going smoothly. 68 */ 69 void pinctrl_provide_dummies(void) 70 { 71 pinctrl_dummy_state = true; 72 } 73 74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 75 { 76 /* We're not allowed to register devices without name */ 77 return pctldev->desc->name; 78 } 79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 80 81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 82 { 83 return dev_name(pctldev->dev); 84 } 85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 86 87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 88 { 89 return pctldev->driver_data; 90 } 91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 92 93 /** 94 * get_pinctrl_dev_from_devname() - look up pin controller device 95 * @devname: the name of a device instance, as returned by dev_name() 96 * 97 * Looks up a pin control device matching a certain device name or pure device 98 * pointer, the pure device pointer will take precedence. 99 */ 100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 101 { 102 struct pinctrl_dev *pctldev; 103 104 if (!devname) 105 return NULL; 106 107 mutex_lock(&pinctrldev_list_mutex); 108 109 list_for_each_entry(pctldev, &pinctrldev_list, node) { 110 if (!strcmp(dev_name(pctldev->dev), devname)) { 111 /* Matched on device name */ 112 mutex_unlock(&pinctrldev_list_mutex); 113 return pctldev; 114 } 115 } 116 117 mutex_unlock(&pinctrldev_list_mutex); 118 119 return NULL; 120 } 121 122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 123 { 124 struct pinctrl_dev *pctldev; 125 126 mutex_lock(&pinctrldev_list_mutex); 127 128 list_for_each_entry(pctldev, &pinctrldev_list, node) 129 if (device_match_of_node(pctldev->dev, np)) { 130 mutex_unlock(&pinctrldev_list_mutex); 131 return pctldev; 132 } 133 134 mutex_unlock(&pinctrldev_list_mutex); 135 136 return NULL; 137 } 138 139 /** 140 * pin_get_from_name() - look up a pin number from a name 141 * @pctldev: the pin control device to lookup the pin on 142 * @name: the name of the pin to look up 143 */ 144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 145 { 146 unsigned i, pin; 147 148 /* The pin number can be retrived from the pin controller descriptor */ 149 for (i = 0; i < pctldev->desc->npins; i++) { 150 struct pin_desc *desc; 151 152 pin = pctldev->desc->pins[i].number; 153 desc = pin_desc_get(pctldev, pin); 154 /* Pin space may be sparse */ 155 if (desc && !strcmp(name, desc->name)) 156 return pin; 157 } 158 159 return -EINVAL; 160 } 161 162 /** 163 * pin_get_name() - look up a pin name from a pin id 164 * @pctldev: the pin control device to lookup the pin on 165 * @pin: pin number/id to look up 166 */ 167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 168 { 169 const struct pin_desc *desc; 170 171 desc = pin_desc_get(pctldev, pin); 172 if (!desc) { 173 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 174 pin); 175 return NULL; 176 } 177 178 return desc->name; 179 } 180 EXPORT_SYMBOL_GPL(pin_get_name); 181 182 /* Deletes a range of pin descriptors */ 183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 184 const struct pinctrl_pin_desc *pins, 185 unsigned num_pins) 186 { 187 int i; 188 189 for (i = 0; i < num_pins; i++) { 190 struct pin_desc *pindesc; 191 192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 193 pins[i].number); 194 if (pindesc) { 195 radix_tree_delete(&pctldev->pin_desc_tree, 196 pins[i].number); 197 if (pindesc->dynamic_name) 198 kfree(pindesc->name); 199 } 200 kfree(pindesc); 201 } 202 } 203 204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 205 const struct pinctrl_pin_desc *pin) 206 { 207 struct pin_desc *pindesc; 208 209 pindesc = pin_desc_get(pctldev, pin->number); 210 if (pindesc) { 211 dev_err(pctldev->dev, "pin %d already registered\n", 212 pin->number); 213 return -EINVAL; 214 } 215 216 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 217 if (!pindesc) 218 return -ENOMEM; 219 220 /* Set owner */ 221 pindesc->pctldev = pctldev; 222 223 /* Copy basic pin info */ 224 if (pin->name) { 225 pindesc->name = pin->name; 226 } else { 227 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 228 if (!pindesc->name) { 229 kfree(pindesc); 230 return -ENOMEM; 231 } 232 pindesc->dynamic_name = true; 233 } 234 235 pindesc->drv_data = pin->drv_data; 236 237 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 238 pr_debug("registered pin %d (%s) on %s\n", 239 pin->number, pindesc->name, pctldev->desc->name); 240 return 0; 241 } 242 243 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 244 const struct pinctrl_pin_desc *pins, 245 unsigned num_descs) 246 { 247 unsigned i; 248 int ret = 0; 249 250 for (i = 0; i < num_descs; i++) { 251 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 252 if (ret) 253 return ret; 254 } 255 256 return 0; 257 } 258 259 /** 260 * gpio_to_pin() - GPIO range GPIO number to pin number translation 261 * @range: GPIO range used for the translation 262 * @gpio: gpio pin to translate to a pin number 263 * 264 * Finds the pin number for a given GPIO using the specified GPIO range 265 * as a base for translation. The distinction between linear GPIO ranges 266 * and pin list based GPIO ranges is managed correctly by this function. 267 * 268 * This function assumes the gpio is part of the specified GPIO range, use 269 * only after making sure this is the case (e.g. by calling it on the 270 * result of successful pinctrl_get_device_gpio_range calls)! 271 */ 272 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 273 unsigned int gpio) 274 { 275 unsigned int offset = gpio - range->base; 276 if (range->pins) 277 return range->pins[offset]; 278 else 279 return range->pin_base + offset; 280 } 281 282 /** 283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 284 * @pctldev: pin controller device to check 285 * @gpio: gpio pin to check taken from the global GPIO pin space 286 * 287 * Tries to match a GPIO pin number to the ranges handled by a certain pin 288 * controller, return the range or NULL 289 */ 290 static struct pinctrl_gpio_range * 291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 292 { 293 struct pinctrl_gpio_range *range; 294 295 mutex_lock(&pctldev->mutex); 296 /* Loop over the ranges */ 297 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 298 /* Check if we're in the valid range */ 299 if (gpio >= range->base && 300 gpio < range->base + range->npins) { 301 mutex_unlock(&pctldev->mutex); 302 return range; 303 } 304 } 305 mutex_unlock(&pctldev->mutex); 306 return NULL; 307 } 308 309 /** 310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 311 * the same GPIO chip are in range 312 * @gpio: gpio pin to check taken from the global GPIO pin space 313 * 314 * This function is complement of pinctrl_match_gpio_range(). If the return 315 * value of pinctrl_match_gpio_range() is NULL, this function could be used 316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 317 * of the same GPIO chip don't have back-end pinctrl interface. 318 * If the return value is true, it means that pinctrl device is ready & the 319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 320 * is false, it means that pinctrl device may not be ready. 321 */ 322 #ifdef CONFIG_GPIOLIB 323 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 324 { 325 struct pinctrl_dev *pctldev; 326 struct pinctrl_gpio_range *range = NULL; 327 /* 328 * FIXME: "gpio" here is a number in the global GPIO numberspace. 329 * get rid of this from the ranges eventually and get the GPIO 330 * descriptor from the gpio_chip. 331 */ 332 struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio)); 333 334 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 335 return false; 336 337 mutex_lock(&pinctrldev_list_mutex); 338 339 /* Loop over the pin controllers */ 340 list_for_each_entry(pctldev, &pinctrldev_list, node) { 341 /* Loop over the ranges */ 342 mutex_lock(&pctldev->mutex); 343 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 344 /* Check if any gpio range overlapped with gpio chip */ 345 if (range->base + range->npins - 1 < chip->base || 346 range->base > chip->base + chip->ngpio - 1) 347 continue; 348 mutex_unlock(&pctldev->mutex); 349 mutex_unlock(&pinctrldev_list_mutex); 350 return true; 351 } 352 mutex_unlock(&pctldev->mutex); 353 } 354 355 mutex_unlock(&pinctrldev_list_mutex); 356 357 return false; 358 } 359 #else 360 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 361 #endif 362 363 /** 364 * pinctrl_get_device_gpio_range() - find device for GPIO range 365 * @gpio: the pin to locate the pin controller for 366 * @outdev: the pin control device if found 367 * @outrange: the GPIO range if found 368 * 369 * Find the pin controller handling a certain GPIO pin from the pinspace of 370 * the GPIO subsystem, return the device and the matching GPIO range. Returns 371 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 372 * may still have not been registered. 373 */ 374 static int pinctrl_get_device_gpio_range(unsigned gpio, 375 struct pinctrl_dev **outdev, 376 struct pinctrl_gpio_range **outrange) 377 { 378 struct pinctrl_dev *pctldev; 379 380 mutex_lock(&pinctrldev_list_mutex); 381 382 /* Loop over the pin controllers */ 383 list_for_each_entry(pctldev, &pinctrldev_list, node) { 384 struct pinctrl_gpio_range *range; 385 386 range = pinctrl_match_gpio_range(pctldev, gpio); 387 if (range) { 388 *outdev = pctldev; 389 *outrange = range; 390 mutex_unlock(&pinctrldev_list_mutex); 391 return 0; 392 } 393 } 394 395 mutex_unlock(&pinctrldev_list_mutex); 396 397 return -EPROBE_DEFER; 398 } 399 400 /** 401 * pinctrl_add_gpio_range() - register a GPIO range for a controller 402 * @pctldev: pin controller device to add the range to 403 * @range: the GPIO range to add 404 * 405 * This adds a range of GPIOs to be handled by a certain pin controller. Call 406 * this to register handled ranges after registering your pin controller. 407 */ 408 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 409 struct pinctrl_gpio_range *range) 410 { 411 mutex_lock(&pctldev->mutex); 412 list_add_tail(&range->node, &pctldev->gpio_ranges); 413 mutex_unlock(&pctldev->mutex); 414 } 415 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 416 417 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 418 struct pinctrl_gpio_range *ranges, 419 unsigned nranges) 420 { 421 int i; 422 423 for (i = 0; i < nranges; i++) 424 pinctrl_add_gpio_range(pctldev, &ranges[i]); 425 } 426 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 427 428 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 429 struct pinctrl_gpio_range *range) 430 { 431 struct pinctrl_dev *pctldev; 432 433 pctldev = get_pinctrl_dev_from_devname(devname); 434 435 /* 436 * If we can't find this device, let's assume that is because 437 * it has not probed yet, so the driver trying to register this 438 * range need to defer probing. 439 */ 440 if (!pctldev) { 441 return ERR_PTR(-EPROBE_DEFER); 442 } 443 pinctrl_add_gpio_range(pctldev, range); 444 445 return pctldev; 446 } 447 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 448 449 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 450 const unsigned **pins, unsigned *num_pins) 451 { 452 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 453 int gs; 454 455 if (!pctlops->get_group_pins) 456 return -EINVAL; 457 458 gs = pinctrl_get_group_selector(pctldev, pin_group); 459 if (gs < 0) 460 return gs; 461 462 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 463 } 464 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 465 466 struct pinctrl_gpio_range * 467 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 468 unsigned int pin) 469 { 470 struct pinctrl_gpio_range *range; 471 472 /* Loop over the ranges */ 473 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 474 /* Check if we're in the valid range */ 475 if (range->pins) { 476 int a; 477 for (a = 0; a < range->npins; a++) { 478 if (range->pins[a] == pin) 479 return range; 480 } 481 } else if (pin >= range->pin_base && 482 pin < range->pin_base + range->npins) 483 return range; 484 } 485 486 return NULL; 487 } 488 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 489 490 /** 491 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 492 * @pctldev: the pin controller device to look in 493 * @pin: a controller-local number to find the range for 494 */ 495 struct pinctrl_gpio_range * 496 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 497 unsigned int pin) 498 { 499 struct pinctrl_gpio_range *range; 500 501 mutex_lock(&pctldev->mutex); 502 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 503 mutex_unlock(&pctldev->mutex); 504 505 return range; 506 } 507 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 508 509 /** 510 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 511 * @pctldev: pin controller device to remove the range from 512 * @range: the GPIO range to remove 513 */ 514 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 515 struct pinctrl_gpio_range *range) 516 { 517 mutex_lock(&pctldev->mutex); 518 list_del(&range->node); 519 mutex_unlock(&pctldev->mutex); 520 } 521 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 522 523 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 524 525 /** 526 * pinctrl_generic_get_group_count() - returns the number of pin groups 527 * @pctldev: pin controller device 528 */ 529 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 530 { 531 return pctldev->num_groups; 532 } 533 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 534 535 /** 536 * pinctrl_generic_get_group_name() - returns the name of a pin group 537 * @pctldev: pin controller device 538 * @selector: group number 539 */ 540 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 541 unsigned int selector) 542 { 543 struct group_desc *group; 544 545 group = radix_tree_lookup(&pctldev->pin_group_tree, 546 selector); 547 if (!group) 548 return NULL; 549 550 return group->name; 551 } 552 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 553 554 /** 555 * pinctrl_generic_get_group_pins() - gets the pin group pins 556 * @pctldev: pin controller device 557 * @selector: group number 558 * @pins: pins in the group 559 * @num_pins: number of pins in the group 560 */ 561 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 562 unsigned int selector, 563 const unsigned int **pins, 564 unsigned int *num_pins) 565 { 566 struct group_desc *group; 567 568 group = radix_tree_lookup(&pctldev->pin_group_tree, 569 selector); 570 if (!group) { 571 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 572 __func__, selector); 573 return -EINVAL; 574 } 575 576 *pins = group->pins; 577 *num_pins = group->num_pins; 578 579 return 0; 580 } 581 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 582 583 /** 584 * pinctrl_generic_get_group() - returns a pin group based on the number 585 * @pctldev: pin controller device 586 * @selector: group number 587 */ 588 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 589 unsigned int selector) 590 { 591 struct group_desc *group; 592 593 group = radix_tree_lookup(&pctldev->pin_group_tree, 594 selector); 595 if (!group) 596 return NULL; 597 598 return group; 599 } 600 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 601 602 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 603 const char *function) 604 { 605 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 606 int ngroups = ops->get_groups_count(pctldev); 607 int selector = 0; 608 609 /* See if this pctldev has this group */ 610 while (selector < ngroups) { 611 const char *gname = ops->get_group_name(pctldev, selector); 612 613 if (gname && !strcmp(function, gname)) 614 return selector; 615 616 selector++; 617 } 618 619 return -EINVAL; 620 } 621 622 /** 623 * pinctrl_generic_add_group() - adds a new pin group 624 * @pctldev: pin controller device 625 * @name: name of the pin group 626 * @pins: pins in the pin group 627 * @num_pins: number of pins in the pin group 628 * @data: pin controller driver specific data 629 * 630 * Note that the caller must take care of locking. 631 */ 632 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 633 int *pins, int num_pins, void *data) 634 { 635 struct group_desc *group; 636 int selector, error; 637 638 if (!name) 639 return -EINVAL; 640 641 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 642 if (selector >= 0) 643 return selector; 644 645 selector = pctldev->num_groups; 646 647 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 648 if (!group) 649 return -ENOMEM; 650 651 group->name = name; 652 group->pins = pins; 653 group->num_pins = num_pins; 654 group->data = data; 655 656 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group); 657 if (error) 658 return error; 659 660 pctldev->num_groups++; 661 662 return selector; 663 } 664 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 665 666 /** 667 * pinctrl_generic_remove_group() - removes a numbered pin group 668 * @pctldev: pin controller device 669 * @selector: group number 670 * 671 * Note that the caller must take care of locking. 672 */ 673 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 674 unsigned int selector) 675 { 676 struct group_desc *group; 677 678 group = radix_tree_lookup(&pctldev->pin_group_tree, 679 selector); 680 if (!group) 681 return -ENOENT; 682 683 radix_tree_delete(&pctldev->pin_group_tree, selector); 684 devm_kfree(pctldev->dev, group); 685 686 pctldev->num_groups--; 687 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 691 692 /** 693 * pinctrl_generic_free_groups() - removes all pin groups 694 * @pctldev: pin controller device 695 * 696 * Note that the caller must take care of locking. The pinctrl groups 697 * are allocated with devm_kzalloc() so no need to free them here. 698 */ 699 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 700 { 701 struct radix_tree_iter iter; 702 void __rcu **slot; 703 704 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 705 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 706 707 pctldev->num_groups = 0; 708 } 709 710 #else 711 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 712 { 713 } 714 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 715 716 /** 717 * pinctrl_get_group_selector() - returns the group selector for a group 718 * @pctldev: the pin controller handling the group 719 * @pin_group: the pin group to look up 720 */ 721 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 722 const char *pin_group) 723 { 724 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 725 unsigned ngroups = pctlops->get_groups_count(pctldev); 726 unsigned group_selector = 0; 727 728 while (group_selector < ngroups) { 729 const char *gname = pctlops->get_group_name(pctldev, 730 group_selector); 731 if (gname && !strcmp(gname, pin_group)) { 732 dev_dbg(pctldev->dev, 733 "found group selector %u for %s\n", 734 group_selector, 735 pin_group); 736 return group_selector; 737 } 738 739 group_selector++; 740 } 741 742 dev_err(pctldev->dev, "does not have pin group %s\n", 743 pin_group); 744 745 return -EINVAL; 746 } 747 748 bool pinctrl_gpio_can_use_line(unsigned gpio) 749 { 750 struct pinctrl_dev *pctldev; 751 struct pinctrl_gpio_range *range; 752 bool result; 753 int pin; 754 755 /* 756 * Try to obtain GPIO range, if it fails 757 * we're probably dealing with GPIO driver 758 * without a backing pin controller - bail out. 759 */ 760 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) 761 return true; 762 763 mutex_lock(&pctldev->mutex); 764 765 /* Convert to the pin controllers number space */ 766 pin = gpio_to_pin(range, gpio); 767 768 result = pinmux_can_be_used_for_gpio(pctldev, pin); 769 770 mutex_unlock(&pctldev->mutex); 771 772 return result; 773 } 774 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 775 776 /** 777 * pinctrl_gpio_request() - request a single pin to be used as GPIO 778 * @gpio: the GPIO pin number from the GPIO subsystem number space 779 * 780 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 781 * as part of their gpio_request() semantics, platforms and individual drivers 782 * shall *NOT* request GPIO pins to be muxed in. 783 */ 784 int pinctrl_gpio_request(unsigned gpio) 785 { 786 struct pinctrl_dev *pctldev; 787 struct pinctrl_gpio_range *range; 788 int ret; 789 int pin; 790 791 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 792 if (ret) { 793 if (pinctrl_ready_for_gpio_range(gpio)) 794 ret = 0; 795 return ret; 796 } 797 798 mutex_lock(&pctldev->mutex); 799 800 /* Convert to the pin controllers number space */ 801 pin = gpio_to_pin(range, gpio); 802 803 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 804 805 mutex_unlock(&pctldev->mutex); 806 807 return ret; 808 } 809 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 810 811 /** 812 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 813 * @gpio: the GPIO pin number from the GPIO subsystem number space 814 * 815 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 816 * as part of their gpio_free() semantics, platforms and individual drivers 817 * shall *NOT* request GPIO pins to be muxed out. 818 */ 819 void pinctrl_gpio_free(unsigned gpio) 820 { 821 struct pinctrl_dev *pctldev; 822 struct pinctrl_gpio_range *range; 823 int ret; 824 int pin; 825 826 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 827 if (ret) { 828 return; 829 } 830 mutex_lock(&pctldev->mutex); 831 832 /* Convert to the pin controllers number space */ 833 pin = gpio_to_pin(range, gpio); 834 835 pinmux_free_gpio(pctldev, pin, range); 836 837 mutex_unlock(&pctldev->mutex); 838 } 839 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 840 841 static int pinctrl_gpio_direction(unsigned gpio, bool input) 842 { 843 struct pinctrl_dev *pctldev; 844 struct pinctrl_gpio_range *range; 845 int ret; 846 int pin; 847 848 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 849 if (ret) { 850 return ret; 851 } 852 853 mutex_lock(&pctldev->mutex); 854 855 /* Convert to the pin controllers number space */ 856 pin = gpio_to_pin(range, gpio); 857 ret = pinmux_gpio_direction(pctldev, range, pin, input); 858 859 mutex_unlock(&pctldev->mutex); 860 861 return ret; 862 } 863 864 /** 865 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 866 * @gpio: the GPIO pin number from the GPIO subsystem number space 867 * 868 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 869 * as part of their gpio_direction_input() semantics, platforms and individual 870 * drivers shall *NOT* touch pin control GPIO calls. 871 */ 872 int pinctrl_gpio_direction_input(unsigned gpio) 873 { 874 return pinctrl_gpio_direction(gpio, true); 875 } 876 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 877 878 /** 879 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 880 * @gpio: the GPIO pin number from the GPIO subsystem number space 881 * 882 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 883 * as part of their gpio_direction_output() semantics, platforms and individual 884 * drivers shall *NOT* touch pin control GPIO calls. 885 */ 886 int pinctrl_gpio_direction_output(unsigned gpio) 887 { 888 return pinctrl_gpio_direction(gpio, false); 889 } 890 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 891 892 /** 893 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 894 * @gpio: the GPIO pin number from the GPIO subsystem number space 895 * @config: the configuration to apply to the GPIO 896 * 897 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 898 * they need to call the underlying pin controller to change GPIO config 899 * (for example set debounce time). 900 */ 901 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 902 { 903 unsigned long configs[] = { config }; 904 struct pinctrl_gpio_range *range; 905 struct pinctrl_dev *pctldev; 906 int ret, pin; 907 908 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 909 if (ret) 910 return ret; 911 912 mutex_lock(&pctldev->mutex); 913 pin = gpio_to_pin(range, gpio); 914 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 915 mutex_unlock(&pctldev->mutex); 916 917 return ret; 918 } 919 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 920 921 static struct pinctrl_state *find_state(struct pinctrl *p, 922 const char *name) 923 { 924 struct pinctrl_state *state; 925 926 list_for_each_entry(state, &p->states, node) 927 if (!strcmp(state->name, name)) 928 return state; 929 930 return NULL; 931 } 932 933 static struct pinctrl_state *create_state(struct pinctrl *p, 934 const char *name) 935 { 936 struct pinctrl_state *state; 937 938 state = kzalloc(sizeof(*state), GFP_KERNEL); 939 if (!state) 940 return ERR_PTR(-ENOMEM); 941 942 state->name = name; 943 INIT_LIST_HEAD(&state->settings); 944 945 list_add_tail(&state->node, &p->states); 946 947 return state; 948 } 949 950 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 951 const struct pinctrl_map *map) 952 { 953 struct pinctrl_state *state; 954 struct pinctrl_setting *setting; 955 int ret; 956 957 state = find_state(p, map->name); 958 if (!state) 959 state = create_state(p, map->name); 960 if (IS_ERR(state)) 961 return PTR_ERR(state); 962 963 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 964 return 0; 965 966 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 967 if (!setting) 968 return -ENOMEM; 969 970 setting->type = map->type; 971 972 if (pctldev) 973 setting->pctldev = pctldev; 974 else 975 setting->pctldev = 976 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 977 if (!setting->pctldev) { 978 kfree(setting); 979 /* Do not defer probing of hogs (circular loop) */ 980 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 981 return -ENODEV; 982 /* 983 * OK let us guess that the driver is not there yet, and 984 * let's defer obtaining this pinctrl handle to later... 985 */ 986 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 987 map->ctrl_dev_name); 988 return -EPROBE_DEFER; 989 } 990 991 setting->dev_name = map->dev_name; 992 993 switch (map->type) { 994 case PIN_MAP_TYPE_MUX_GROUP: 995 ret = pinmux_map_to_setting(map, setting); 996 break; 997 case PIN_MAP_TYPE_CONFIGS_PIN: 998 case PIN_MAP_TYPE_CONFIGS_GROUP: 999 ret = pinconf_map_to_setting(map, setting); 1000 break; 1001 default: 1002 ret = -EINVAL; 1003 break; 1004 } 1005 if (ret < 0) { 1006 kfree(setting); 1007 return ret; 1008 } 1009 1010 list_add_tail(&setting->node, &state->settings); 1011 1012 return 0; 1013 } 1014 1015 static struct pinctrl *find_pinctrl(struct device *dev) 1016 { 1017 struct pinctrl *p; 1018 1019 mutex_lock(&pinctrl_list_mutex); 1020 list_for_each_entry(p, &pinctrl_list, node) 1021 if (p->dev == dev) { 1022 mutex_unlock(&pinctrl_list_mutex); 1023 return p; 1024 } 1025 1026 mutex_unlock(&pinctrl_list_mutex); 1027 return NULL; 1028 } 1029 1030 static void pinctrl_free(struct pinctrl *p, bool inlist); 1031 1032 static struct pinctrl *create_pinctrl(struct device *dev, 1033 struct pinctrl_dev *pctldev) 1034 { 1035 struct pinctrl *p; 1036 const char *devname; 1037 struct pinctrl_maps *maps_node; 1038 const struct pinctrl_map *map; 1039 int ret; 1040 1041 /* 1042 * create the state cookie holder struct pinctrl for each 1043 * mapping, this is what consumers will get when requesting 1044 * a pin control handle with pinctrl_get() 1045 */ 1046 p = kzalloc(sizeof(*p), GFP_KERNEL); 1047 if (!p) 1048 return ERR_PTR(-ENOMEM); 1049 p->dev = dev; 1050 INIT_LIST_HEAD(&p->states); 1051 INIT_LIST_HEAD(&p->dt_maps); 1052 1053 ret = pinctrl_dt_to_map(p, pctldev); 1054 if (ret < 0) { 1055 kfree(p); 1056 return ERR_PTR(ret); 1057 } 1058 1059 devname = dev_name(dev); 1060 1061 mutex_lock(&pinctrl_maps_mutex); 1062 /* Iterate over the pin control maps to locate the right ones */ 1063 for_each_pin_map(maps_node, map) { 1064 /* Map must be for this device */ 1065 if (strcmp(map->dev_name, devname)) 1066 continue; 1067 /* 1068 * If pctldev is not null, we are claiming hog for it, 1069 * that means, setting that is served by pctldev by itself. 1070 * 1071 * Thus we must skip map that is for this device but is served 1072 * by other device. 1073 */ 1074 if (pctldev && 1075 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1076 continue; 1077 1078 ret = add_setting(p, pctldev, map); 1079 /* 1080 * At this point the adding of a setting may: 1081 * 1082 * - Defer, if the pinctrl device is not yet available 1083 * - Fail, if the pinctrl device is not yet available, 1084 * AND the setting is a hog. We cannot defer that, since 1085 * the hog will kick in immediately after the device 1086 * is registered. 1087 * 1088 * If the error returned was not -EPROBE_DEFER then we 1089 * accumulate the errors to see if we end up with 1090 * an -EPROBE_DEFER later, as that is the worst case. 1091 */ 1092 if (ret == -EPROBE_DEFER) { 1093 pinctrl_free(p, false); 1094 mutex_unlock(&pinctrl_maps_mutex); 1095 return ERR_PTR(ret); 1096 } 1097 } 1098 mutex_unlock(&pinctrl_maps_mutex); 1099 1100 if (ret < 0) { 1101 /* If some other error than deferral occurred, return here */ 1102 pinctrl_free(p, false); 1103 return ERR_PTR(ret); 1104 } 1105 1106 kref_init(&p->users); 1107 1108 /* Add the pinctrl handle to the global list */ 1109 mutex_lock(&pinctrl_list_mutex); 1110 list_add_tail(&p->node, &pinctrl_list); 1111 mutex_unlock(&pinctrl_list_mutex); 1112 1113 return p; 1114 } 1115 1116 /** 1117 * pinctrl_get() - retrieves the pinctrl handle for a device 1118 * @dev: the device to obtain the handle for 1119 */ 1120 struct pinctrl *pinctrl_get(struct device *dev) 1121 { 1122 struct pinctrl *p; 1123 1124 if (WARN_ON(!dev)) 1125 return ERR_PTR(-EINVAL); 1126 1127 /* 1128 * See if somebody else (such as the device core) has already 1129 * obtained a handle to the pinctrl for this device. In that case, 1130 * return another pointer to it. 1131 */ 1132 p = find_pinctrl(dev); 1133 if (p) { 1134 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1135 kref_get(&p->users); 1136 return p; 1137 } 1138 1139 return create_pinctrl(dev, NULL); 1140 } 1141 EXPORT_SYMBOL_GPL(pinctrl_get); 1142 1143 static void pinctrl_free_setting(bool disable_setting, 1144 struct pinctrl_setting *setting) 1145 { 1146 switch (setting->type) { 1147 case PIN_MAP_TYPE_MUX_GROUP: 1148 if (disable_setting) 1149 pinmux_disable_setting(setting); 1150 pinmux_free_setting(setting); 1151 break; 1152 case PIN_MAP_TYPE_CONFIGS_PIN: 1153 case PIN_MAP_TYPE_CONFIGS_GROUP: 1154 pinconf_free_setting(setting); 1155 break; 1156 default: 1157 break; 1158 } 1159 } 1160 1161 static void pinctrl_free(struct pinctrl *p, bool inlist) 1162 { 1163 struct pinctrl_state *state, *n1; 1164 struct pinctrl_setting *setting, *n2; 1165 1166 mutex_lock(&pinctrl_list_mutex); 1167 list_for_each_entry_safe(state, n1, &p->states, node) { 1168 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1169 pinctrl_free_setting(state == p->state, setting); 1170 list_del(&setting->node); 1171 kfree(setting); 1172 } 1173 list_del(&state->node); 1174 kfree(state); 1175 } 1176 1177 pinctrl_dt_free_maps(p); 1178 1179 if (inlist) 1180 list_del(&p->node); 1181 kfree(p); 1182 mutex_unlock(&pinctrl_list_mutex); 1183 } 1184 1185 /** 1186 * pinctrl_release() - release the pinctrl handle 1187 * @kref: the kref in the pinctrl being released 1188 */ 1189 static void pinctrl_release(struct kref *kref) 1190 { 1191 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1192 1193 pinctrl_free(p, true); 1194 } 1195 1196 /** 1197 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1198 * @p: the pinctrl handle to release 1199 */ 1200 void pinctrl_put(struct pinctrl *p) 1201 { 1202 kref_put(&p->users, pinctrl_release); 1203 } 1204 EXPORT_SYMBOL_GPL(pinctrl_put); 1205 1206 /** 1207 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1208 * @p: the pinctrl handle to retrieve the state from 1209 * @name: the state name to retrieve 1210 */ 1211 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1212 const char *name) 1213 { 1214 struct pinctrl_state *state; 1215 1216 state = find_state(p, name); 1217 if (!state) { 1218 if (pinctrl_dummy_state) { 1219 /* create dummy state */ 1220 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1221 name); 1222 state = create_state(p, name); 1223 } else 1224 state = ERR_PTR(-ENODEV); 1225 } 1226 1227 return state; 1228 } 1229 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1230 1231 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1232 struct device *consumer) 1233 { 1234 if (pctldev->desc->link_consumers) 1235 device_link_add(consumer, pctldev->dev, 1236 DL_FLAG_PM_RUNTIME | 1237 DL_FLAG_AUTOREMOVE_CONSUMER); 1238 } 1239 1240 /** 1241 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1242 * @p: the pinctrl handle for the device that requests configuration 1243 * @state: the state handle to select/activate/program 1244 */ 1245 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1246 { 1247 struct pinctrl_setting *setting, *setting2; 1248 struct pinctrl_state *old_state = p->state; 1249 int ret; 1250 1251 if (p->state) { 1252 /* 1253 * For each pinmux setting in the old state, forget SW's record 1254 * of mux owner for that pingroup. Any pingroups which are 1255 * still owned by the new state will be re-acquired by the call 1256 * to pinmux_enable_setting() in the loop below. 1257 */ 1258 list_for_each_entry(setting, &p->state->settings, node) { 1259 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1260 continue; 1261 pinmux_disable_setting(setting); 1262 } 1263 } 1264 1265 p->state = NULL; 1266 1267 /* Apply all the settings for the new state - pinmux first */ 1268 list_for_each_entry(setting, &state->settings, node) { 1269 switch (setting->type) { 1270 case PIN_MAP_TYPE_MUX_GROUP: 1271 ret = pinmux_enable_setting(setting); 1272 break; 1273 case PIN_MAP_TYPE_CONFIGS_PIN: 1274 case PIN_MAP_TYPE_CONFIGS_GROUP: 1275 ret = 0; 1276 break; 1277 default: 1278 ret = -EINVAL; 1279 break; 1280 } 1281 1282 if (ret < 0) 1283 goto unapply_new_state; 1284 1285 /* Do not link hogs (circular dependency) */ 1286 if (p != setting->pctldev->p) 1287 pinctrl_link_add(setting->pctldev, p->dev); 1288 } 1289 1290 /* Apply all the settings for the new state - pinconf after */ 1291 list_for_each_entry(setting, &state->settings, node) { 1292 switch (setting->type) { 1293 case PIN_MAP_TYPE_MUX_GROUP: 1294 ret = 0; 1295 break; 1296 case PIN_MAP_TYPE_CONFIGS_PIN: 1297 case PIN_MAP_TYPE_CONFIGS_GROUP: 1298 ret = pinconf_apply_setting(setting); 1299 break; 1300 default: 1301 ret = -EINVAL; 1302 break; 1303 } 1304 1305 if (ret < 0) { 1306 goto unapply_new_state; 1307 } 1308 1309 /* Do not link hogs (circular dependency) */ 1310 if (p != setting->pctldev->p) 1311 pinctrl_link_add(setting->pctldev, p->dev); 1312 } 1313 1314 p->state = state; 1315 1316 return 0; 1317 1318 unapply_new_state: 1319 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1320 1321 list_for_each_entry(setting2, &state->settings, node) { 1322 if (&setting2->node == &setting->node) 1323 break; 1324 /* 1325 * All we can do here is pinmux_disable_setting. 1326 * That means that some pins are muxed differently now 1327 * than they were before applying the setting (We can't 1328 * "unmux a pin"!), but it's not a big deal since the pins 1329 * are free to be muxed by another apply_setting. 1330 */ 1331 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1332 pinmux_disable_setting(setting2); 1333 } 1334 1335 /* There's no infinite recursive loop here because p->state is NULL */ 1336 if (old_state) 1337 pinctrl_select_state(p, old_state); 1338 1339 return ret; 1340 } 1341 1342 /** 1343 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1344 * @p: the pinctrl handle for the device that requests configuration 1345 * @state: the state handle to select/activate/program 1346 */ 1347 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1348 { 1349 if (p->state == state) 1350 return 0; 1351 1352 return pinctrl_commit_state(p, state); 1353 } 1354 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1355 1356 static void devm_pinctrl_release(struct device *dev, void *res) 1357 { 1358 pinctrl_put(*(struct pinctrl **)res); 1359 } 1360 1361 /** 1362 * devm_pinctrl_get() - Resource managed pinctrl_get() 1363 * @dev: the device to obtain the handle for 1364 * 1365 * If there is a need to explicitly destroy the returned struct pinctrl, 1366 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1367 */ 1368 struct pinctrl *devm_pinctrl_get(struct device *dev) 1369 { 1370 struct pinctrl **ptr, *p; 1371 1372 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1373 if (!ptr) 1374 return ERR_PTR(-ENOMEM); 1375 1376 p = pinctrl_get(dev); 1377 if (!IS_ERR(p)) { 1378 *ptr = p; 1379 devres_add(dev, ptr); 1380 } else { 1381 devres_free(ptr); 1382 } 1383 1384 return p; 1385 } 1386 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1387 1388 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1389 { 1390 struct pinctrl **p = res; 1391 1392 return *p == data; 1393 } 1394 1395 /** 1396 * devm_pinctrl_put() - Resource managed pinctrl_put() 1397 * @p: the pinctrl handle to release 1398 * 1399 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1400 * this function will not need to be called and the resource management 1401 * code will ensure that the resource is freed. 1402 */ 1403 void devm_pinctrl_put(struct pinctrl *p) 1404 { 1405 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1406 devm_pinctrl_match, p)); 1407 } 1408 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1409 1410 /** 1411 * pinctrl_register_mappings() - register a set of pin controller mappings 1412 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1413 * keeps a reference to the passed in maps, so they should _not_ be 1414 * marked with __initdata. 1415 * @num_maps: the number of maps in the mapping table 1416 */ 1417 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1418 unsigned num_maps) 1419 { 1420 int i, ret; 1421 struct pinctrl_maps *maps_node; 1422 1423 pr_debug("add %u pinctrl maps\n", num_maps); 1424 1425 /* First sanity check the new mapping */ 1426 for (i = 0; i < num_maps; i++) { 1427 if (!maps[i].dev_name) { 1428 pr_err("failed to register map %s (%d): no device given\n", 1429 maps[i].name, i); 1430 return -EINVAL; 1431 } 1432 1433 if (!maps[i].name) { 1434 pr_err("failed to register map %d: no map name given\n", 1435 i); 1436 return -EINVAL; 1437 } 1438 1439 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1440 !maps[i].ctrl_dev_name) { 1441 pr_err("failed to register map %s (%d): no pin control device given\n", 1442 maps[i].name, i); 1443 return -EINVAL; 1444 } 1445 1446 switch (maps[i].type) { 1447 case PIN_MAP_TYPE_DUMMY_STATE: 1448 break; 1449 case PIN_MAP_TYPE_MUX_GROUP: 1450 ret = pinmux_validate_map(&maps[i], i); 1451 if (ret < 0) 1452 return ret; 1453 break; 1454 case PIN_MAP_TYPE_CONFIGS_PIN: 1455 case PIN_MAP_TYPE_CONFIGS_GROUP: 1456 ret = pinconf_validate_map(&maps[i], i); 1457 if (ret < 0) 1458 return ret; 1459 break; 1460 default: 1461 pr_err("failed to register map %s (%d): invalid type given\n", 1462 maps[i].name, i); 1463 return -EINVAL; 1464 } 1465 } 1466 1467 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1468 if (!maps_node) 1469 return -ENOMEM; 1470 1471 maps_node->maps = maps; 1472 maps_node->num_maps = num_maps; 1473 1474 mutex_lock(&pinctrl_maps_mutex); 1475 list_add_tail(&maps_node->node, &pinctrl_maps); 1476 mutex_unlock(&pinctrl_maps_mutex); 1477 1478 return 0; 1479 } 1480 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1481 1482 /** 1483 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1484 * @map: the pincontrol mappings table passed to pinctrl_register_mappings() 1485 * when registering the mappings. 1486 */ 1487 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1488 { 1489 struct pinctrl_maps *maps_node; 1490 1491 mutex_lock(&pinctrl_maps_mutex); 1492 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1493 if (maps_node->maps == map) { 1494 list_del(&maps_node->node); 1495 kfree(maps_node); 1496 mutex_unlock(&pinctrl_maps_mutex); 1497 return; 1498 } 1499 } 1500 mutex_unlock(&pinctrl_maps_mutex); 1501 } 1502 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1503 1504 /** 1505 * pinctrl_force_sleep() - turn a given controller device into sleep state 1506 * @pctldev: pin controller device 1507 */ 1508 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1509 { 1510 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1511 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1512 return 0; 1513 } 1514 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1515 1516 /** 1517 * pinctrl_force_default() - turn a given controller device into default state 1518 * @pctldev: pin controller device 1519 */ 1520 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1521 { 1522 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1523 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1524 return 0; 1525 } 1526 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1527 1528 /** 1529 * pinctrl_init_done() - tell pinctrl probe is done 1530 * 1531 * We'll use this time to switch the pins from "init" to "default" unless the 1532 * driver selected some other state. 1533 * 1534 * @dev: device to that's done probing 1535 */ 1536 int pinctrl_init_done(struct device *dev) 1537 { 1538 struct dev_pin_info *pins = dev->pins; 1539 int ret; 1540 1541 if (!pins) 1542 return 0; 1543 1544 if (IS_ERR(pins->init_state)) 1545 return 0; /* No such state */ 1546 1547 if (pins->p->state != pins->init_state) 1548 return 0; /* Not at init anyway */ 1549 1550 if (IS_ERR(pins->default_state)) 1551 return 0; /* No default state */ 1552 1553 ret = pinctrl_select_state(pins->p, pins->default_state); 1554 if (ret) 1555 dev_err(dev, "failed to activate default pinctrl state\n"); 1556 1557 return ret; 1558 } 1559 1560 static int pinctrl_select_bound_state(struct device *dev, 1561 struct pinctrl_state *state) 1562 { 1563 struct dev_pin_info *pins = dev->pins; 1564 int ret; 1565 1566 if (IS_ERR(state)) 1567 return 0; /* No such state */ 1568 ret = pinctrl_select_state(pins->p, state); 1569 if (ret) 1570 dev_err(dev, "failed to activate pinctrl state %s\n", 1571 state->name); 1572 return ret; 1573 } 1574 1575 /** 1576 * pinctrl_select_default_state() - select default pinctrl state 1577 * @dev: device to select default state for 1578 */ 1579 int pinctrl_select_default_state(struct device *dev) 1580 { 1581 if (!dev->pins) 1582 return 0; 1583 1584 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1585 } 1586 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1587 1588 #ifdef CONFIG_PM 1589 1590 /** 1591 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1592 * @dev: device to select default state for 1593 */ 1594 int pinctrl_pm_select_default_state(struct device *dev) 1595 { 1596 return pinctrl_select_default_state(dev); 1597 } 1598 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1599 1600 /** 1601 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1602 * @dev: device to select sleep state for 1603 */ 1604 int pinctrl_pm_select_sleep_state(struct device *dev) 1605 { 1606 if (!dev->pins) 1607 return 0; 1608 1609 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1610 } 1611 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1612 1613 /** 1614 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1615 * @dev: device to select idle state for 1616 */ 1617 int pinctrl_pm_select_idle_state(struct device *dev) 1618 { 1619 if (!dev->pins) 1620 return 0; 1621 1622 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1623 } 1624 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1625 #endif 1626 1627 #ifdef CONFIG_DEBUG_FS 1628 1629 static int pinctrl_pins_show(struct seq_file *s, void *what) 1630 { 1631 struct pinctrl_dev *pctldev = s->private; 1632 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1633 unsigned i, pin; 1634 #ifdef CONFIG_GPIOLIB 1635 struct pinctrl_gpio_range *range; 1636 struct gpio_chip *chip; 1637 int gpio_num; 1638 #endif 1639 1640 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1641 1642 mutex_lock(&pctldev->mutex); 1643 1644 /* The pin number can be retrived from the pin controller descriptor */ 1645 for (i = 0; i < pctldev->desc->npins; i++) { 1646 struct pin_desc *desc; 1647 1648 pin = pctldev->desc->pins[i].number; 1649 desc = pin_desc_get(pctldev, pin); 1650 /* Pin space may be sparse */ 1651 if (!desc) 1652 continue; 1653 1654 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1655 1656 #ifdef CONFIG_GPIOLIB 1657 gpio_num = -1; 1658 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1659 if ((pin >= range->pin_base) && 1660 (pin < (range->pin_base + range->npins))) { 1661 gpio_num = range->base + (pin - range->pin_base); 1662 break; 1663 } 1664 } 1665 if (gpio_num >= 0) 1666 /* 1667 * FIXME: gpio_num comes from the global GPIO numberspace. 1668 * we need to get rid of the range->base eventually and 1669 * get the descriptor directly from the gpio_chip. 1670 */ 1671 chip = gpiod_to_chip(gpio_to_desc(gpio_num)); 1672 else 1673 chip = NULL; 1674 if (chip) 1675 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label); 1676 else 1677 seq_puts(s, "0:? "); 1678 #endif 1679 1680 /* Driver-specific info per pin */ 1681 if (ops->pin_dbg_show) 1682 ops->pin_dbg_show(pctldev, s, pin); 1683 1684 seq_puts(s, "\n"); 1685 } 1686 1687 mutex_unlock(&pctldev->mutex); 1688 1689 return 0; 1690 } 1691 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1692 1693 static int pinctrl_groups_show(struct seq_file *s, void *what) 1694 { 1695 struct pinctrl_dev *pctldev = s->private; 1696 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1697 unsigned ngroups, selector = 0; 1698 1699 mutex_lock(&pctldev->mutex); 1700 1701 ngroups = ops->get_groups_count(pctldev); 1702 1703 seq_puts(s, "registered pin groups:\n"); 1704 while (selector < ngroups) { 1705 const unsigned *pins = NULL; 1706 unsigned num_pins = 0; 1707 const char *gname = ops->get_group_name(pctldev, selector); 1708 const char *pname; 1709 int ret = 0; 1710 int i; 1711 1712 if (ops->get_group_pins) 1713 ret = ops->get_group_pins(pctldev, selector, 1714 &pins, &num_pins); 1715 if (ret) 1716 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1717 gname); 1718 else { 1719 seq_printf(s, "group: %s\n", gname); 1720 for (i = 0; i < num_pins; i++) { 1721 pname = pin_get_name(pctldev, pins[i]); 1722 if (WARN_ON(!pname)) { 1723 mutex_unlock(&pctldev->mutex); 1724 return -EINVAL; 1725 } 1726 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1727 } 1728 seq_puts(s, "\n"); 1729 } 1730 selector++; 1731 } 1732 1733 mutex_unlock(&pctldev->mutex); 1734 1735 return 0; 1736 } 1737 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1738 1739 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1740 { 1741 struct pinctrl_dev *pctldev = s->private; 1742 struct pinctrl_gpio_range *range; 1743 1744 seq_puts(s, "GPIO ranges handled:\n"); 1745 1746 mutex_lock(&pctldev->mutex); 1747 1748 /* Loop over the ranges */ 1749 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1750 if (range->pins) { 1751 int a; 1752 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1753 range->id, range->name, 1754 range->base, (range->base + range->npins - 1)); 1755 for (a = 0; a < range->npins - 1; a++) 1756 seq_printf(s, "%u, ", range->pins[a]); 1757 seq_printf(s, "%u}\n", range->pins[a]); 1758 } 1759 else 1760 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1761 range->id, range->name, 1762 range->base, (range->base + range->npins - 1), 1763 range->pin_base, 1764 (range->pin_base + range->npins - 1)); 1765 } 1766 1767 mutex_unlock(&pctldev->mutex); 1768 1769 return 0; 1770 } 1771 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1772 1773 static int pinctrl_devices_show(struct seq_file *s, void *what) 1774 { 1775 struct pinctrl_dev *pctldev; 1776 1777 seq_puts(s, "name [pinmux] [pinconf]\n"); 1778 1779 mutex_lock(&pinctrldev_list_mutex); 1780 1781 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1782 seq_printf(s, "%s ", pctldev->desc->name); 1783 if (pctldev->desc->pmxops) 1784 seq_puts(s, "yes "); 1785 else 1786 seq_puts(s, "no "); 1787 if (pctldev->desc->confops) 1788 seq_puts(s, "yes"); 1789 else 1790 seq_puts(s, "no"); 1791 seq_puts(s, "\n"); 1792 } 1793 1794 mutex_unlock(&pinctrldev_list_mutex); 1795 1796 return 0; 1797 } 1798 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1799 1800 static inline const char *map_type(enum pinctrl_map_type type) 1801 { 1802 static const char * const names[] = { 1803 "INVALID", 1804 "DUMMY_STATE", 1805 "MUX_GROUP", 1806 "CONFIGS_PIN", 1807 "CONFIGS_GROUP", 1808 }; 1809 1810 if (type >= ARRAY_SIZE(names)) 1811 return "UNKNOWN"; 1812 1813 return names[type]; 1814 } 1815 1816 static int pinctrl_maps_show(struct seq_file *s, void *what) 1817 { 1818 struct pinctrl_maps *maps_node; 1819 const struct pinctrl_map *map; 1820 1821 seq_puts(s, "Pinctrl maps:\n"); 1822 1823 mutex_lock(&pinctrl_maps_mutex); 1824 for_each_pin_map(maps_node, map) { 1825 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1826 map->dev_name, map->name, map_type(map->type), 1827 map->type); 1828 1829 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1830 seq_printf(s, "controlling device %s\n", 1831 map->ctrl_dev_name); 1832 1833 switch (map->type) { 1834 case PIN_MAP_TYPE_MUX_GROUP: 1835 pinmux_show_map(s, map); 1836 break; 1837 case PIN_MAP_TYPE_CONFIGS_PIN: 1838 case PIN_MAP_TYPE_CONFIGS_GROUP: 1839 pinconf_show_map(s, map); 1840 break; 1841 default: 1842 break; 1843 } 1844 1845 seq_putc(s, '\n'); 1846 } 1847 mutex_unlock(&pinctrl_maps_mutex); 1848 1849 return 0; 1850 } 1851 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1852 1853 static int pinctrl_show(struct seq_file *s, void *what) 1854 { 1855 struct pinctrl *p; 1856 struct pinctrl_state *state; 1857 struct pinctrl_setting *setting; 1858 1859 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1860 1861 mutex_lock(&pinctrl_list_mutex); 1862 1863 list_for_each_entry(p, &pinctrl_list, node) { 1864 seq_printf(s, "device: %s current state: %s\n", 1865 dev_name(p->dev), 1866 p->state ? p->state->name : "none"); 1867 1868 list_for_each_entry(state, &p->states, node) { 1869 seq_printf(s, " state: %s\n", state->name); 1870 1871 list_for_each_entry(setting, &state->settings, node) { 1872 struct pinctrl_dev *pctldev = setting->pctldev; 1873 1874 seq_printf(s, " type: %s controller %s ", 1875 map_type(setting->type), 1876 pinctrl_dev_get_name(pctldev)); 1877 1878 switch (setting->type) { 1879 case PIN_MAP_TYPE_MUX_GROUP: 1880 pinmux_show_setting(s, setting); 1881 break; 1882 case PIN_MAP_TYPE_CONFIGS_PIN: 1883 case PIN_MAP_TYPE_CONFIGS_GROUP: 1884 pinconf_show_setting(s, setting); 1885 break; 1886 default: 1887 break; 1888 } 1889 } 1890 } 1891 } 1892 1893 mutex_unlock(&pinctrl_list_mutex); 1894 1895 return 0; 1896 } 1897 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1898 1899 static struct dentry *debugfs_root; 1900 1901 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1902 { 1903 struct dentry *device_root; 1904 const char *debugfs_name; 1905 1906 if (pctldev->desc->name && 1907 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1908 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1909 "%s-%s", dev_name(pctldev->dev), 1910 pctldev->desc->name); 1911 if (!debugfs_name) { 1912 pr_warn("failed to determine debugfs dir name for %s\n", 1913 dev_name(pctldev->dev)); 1914 return; 1915 } 1916 } else { 1917 debugfs_name = dev_name(pctldev->dev); 1918 } 1919 1920 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1921 pctldev->device_root = device_root; 1922 1923 if (IS_ERR(device_root) || !device_root) { 1924 pr_warn("failed to create debugfs directory for %s\n", 1925 dev_name(pctldev->dev)); 1926 return; 1927 } 1928 debugfs_create_file("pins", 0444, 1929 device_root, pctldev, &pinctrl_pins_fops); 1930 debugfs_create_file("pingroups", 0444, 1931 device_root, pctldev, &pinctrl_groups_fops); 1932 debugfs_create_file("gpio-ranges", 0444, 1933 device_root, pctldev, &pinctrl_gpioranges_fops); 1934 if (pctldev->desc->pmxops) 1935 pinmux_init_device_debugfs(device_root, pctldev); 1936 if (pctldev->desc->confops) 1937 pinconf_init_device_debugfs(device_root, pctldev); 1938 } 1939 1940 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1941 { 1942 debugfs_remove_recursive(pctldev->device_root); 1943 } 1944 1945 static void pinctrl_init_debugfs(void) 1946 { 1947 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1948 if (IS_ERR(debugfs_root) || !debugfs_root) { 1949 pr_warn("failed to create debugfs directory\n"); 1950 debugfs_root = NULL; 1951 return; 1952 } 1953 1954 debugfs_create_file("pinctrl-devices", 0444, 1955 debugfs_root, NULL, &pinctrl_devices_fops); 1956 debugfs_create_file("pinctrl-maps", 0444, 1957 debugfs_root, NULL, &pinctrl_maps_fops); 1958 debugfs_create_file("pinctrl-handles", 0444, 1959 debugfs_root, NULL, &pinctrl_fops); 1960 } 1961 1962 #else /* CONFIG_DEBUG_FS */ 1963 1964 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1965 { 1966 } 1967 1968 static void pinctrl_init_debugfs(void) 1969 { 1970 } 1971 1972 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1973 { 1974 } 1975 1976 #endif 1977 1978 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1979 { 1980 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1981 1982 if (!ops || 1983 !ops->get_groups_count || 1984 !ops->get_group_name) 1985 return -EINVAL; 1986 1987 return 0; 1988 } 1989 1990 /** 1991 * pinctrl_init_controller() - init a pin controller device 1992 * @pctldesc: descriptor for this pin controller 1993 * @dev: parent device for this pin controller 1994 * @driver_data: private pin controller data for this pin controller 1995 */ 1996 static struct pinctrl_dev * 1997 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1998 void *driver_data) 1999 { 2000 struct pinctrl_dev *pctldev; 2001 int ret; 2002 2003 if (!pctldesc) 2004 return ERR_PTR(-EINVAL); 2005 if (!pctldesc->name) 2006 return ERR_PTR(-EINVAL); 2007 2008 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 2009 if (!pctldev) 2010 return ERR_PTR(-ENOMEM); 2011 2012 /* Initialize pin control device struct */ 2013 pctldev->owner = pctldesc->owner; 2014 pctldev->desc = pctldesc; 2015 pctldev->driver_data = driver_data; 2016 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 2017 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 2018 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 2019 #endif 2020 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 2021 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 2022 #endif 2023 INIT_LIST_HEAD(&pctldev->gpio_ranges); 2024 INIT_LIST_HEAD(&pctldev->node); 2025 pctldev->dev = dev; 2026 mutex_init(&pctldev->mutex); 2027 2028 /* check core ops for sanity */ 2029 ret = pinctrl_check_ops(pctldev); 2030 if (ret) { 2031 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 2032 goto out_err; 2033 } 2034 2035 /* If we're implementing pinmuxing, check the ops for sanity */ 2036 if (pctldesc->pmxops) { 2037 ret = pinmux_check_ops(pctldev); 2038 if (ret) 2039 goto out_err; 2040 } 2041 2042 /* If we're implementing pinconfig, check the ops for sanity */ 2043 if (pctldesc->confops) { 2044 ret = pinconf_check_ops(pctldev); 2045 if (ret) 2046 goto out_err; 2047 } 2048 2049 /* Register all the pins */ 2050 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2051 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2052 if (ret) { 2053 dev_err(dev, "error during pin registration\n"); 2054 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2055 pctldesc->npins); 2056 goto out_err; 2057 } 2058 2059 return pctldev; 2060 2061 out_err: 2062 mutex_destroy(&pctldev->mutex); 2063 kfree(pctldev); 2064 return ERR_PTR(ret); 2065 } 2066 2067 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2068 { 2069 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2070 if (PTR_ERR(pctldev->p) == -ENODEV) { 2071 dev_dbg(pctldev->dev, "no hogs found\n"); 2072 2073 return 0; 2074 } 2075 2076 if (IS_ERR(pctldev->p)) { 2077 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2078 PTR_ERR(pctldev->p)); 2079 2080 return PTR_ERR(pctldev->p); 2081 } 2082 2083 pctldev->hog_default = 2084 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2085 if (IS_ERR(pctldev->hog_default)) { 2086 dev_dbg(pctldev->dev, 2087 "failed to lookup the default state\n"); 2088 } else { 2089 if (pinctrl_select_state(pctldev->p, 2090 pctldev->hog_default)) 2091 dev_err(pctldev->dev, 2092 "failed to select default state\n"); 2093 } 2094 2095 pctldev->hog_sleep = 2096 pinctrl_lookup_state(pctldev->p, 2097 PINCTRL_STATE_SLEEP); 2098 if (IS_ERR(pctldev->hog_sleep)) 2099 dev_dbg(pctldev->dev, 2100 "failed to lookup the sleep state\n"); 2101 2102 return 0; 2103 } 2104 2105 int pinctrl_enable(struct pinctrl_dev *pctldev) 2106 { 2107 int error; 2108 2109 error = pinctrl_claim_hogs(pctldev); 2110 if (error) { 2111 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2112 error); 2113 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2114 pctldev->desc->npins); 2115 mutex_destroy(&pctldev->mutex); 2116 kfree(pctldev); 2117 2118 return error; 2119 } 2120 2121 mutex_lock(&pinctrldev_list_mutex); 2122 list_add_tail(&pctldev->node, &pinctrldev_list); 2123 mutex_unlock(&pinctrldev_list_mutex); 2124 2125 pinctrl_init_device_debugfs(pctldev); 2126 2127 return 0; 2128 } 2129 EXPORT_SYMBOL_GPL(pinctrl_enable); 2130 2131 /** 2132 * pinctrl_register() - register a pin controller device 2133 * @pctldesc: descriptor for this pin controller 2134 * @dev: parent device for this pin controller 2135 * @driver_data: private pin controller data for this pin controller 2136 * 2137 * Note that pinctrl_register() is known to have problems as the pin 2138 * controller driver functions are called before the driver has a 2139 * struct pinctrl_dev handle. To avoid issues later on, please use the 2140 * new pinctrl_register_and_init() below instead. 2141 */ 2142 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2143 struct device *dev, void *driver_data) 2144 { 2145 struct pinctrl_dev *pctldev; 2146 int error; 2147 2148 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2149 if (IS_ERR(pctldev)) 2150 return pctldev; 2151 2152 error = pinctrl_enable(pctldev); 2153 if (error) 2154 return ERR_PTR(error); 2155 2156 return pctldev; 2157 } 2158 EXPORT_SYMBOL_GPL(pinctrl_register); 2159 2160 /** 2161 * pinctrl_register_and_init() - register and init pin controller device 2162 * @pctldesc: descriptor for this pin controller 2163 * @dev: parent device for this pin controller 2164 * @driver_data: private pin controller data for this pin controller 2165 * @pctldev: pin controller device 2166 * 2167 * Note that pinctrl_enable() still needs to be manually called after 2168 * this once the driver is ready. 2169 */ 2170 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2171 struct device *dev, void *driver_data, 2172 struct pinctrl_dev **pctldev) 2173 { 2174 struct pinctrl_dev *p; 2175 2176 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2177 if (IS_ERR(p)) 2178 return PTR_ERR(p); 2179 2180 /* 2181 * We have pinctrl_start() call functions in the pin controller 2182 * driver with create_pinctrl() for at least dt_node_to_map(). So 2183 * let's make sure pctldev is properly initialized for the 2184 * pin controller driver before we do anything. 2185 */ 2186 *pctldev = p; 2187 2188 return 0; 2189 } 2190 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2191 2192 /** 2193 * pinctrl_unregister() - unregister pinmux 2194 * @pctldev: pin controller to unregister 2195 * 2196 * Called by pinmux drivers to unregister a pinmux. 2197 */ 2198 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2199 { 2200 struct pinctrl_gpio_range *range, *n; 2201 2202 if (!pctldev) 2203 return; 2204 2205 mutex_lock(&pctldev->mutex); 2206 pinctrl_remove_device_debugfs(pctldev); 2207 mutex_unlock(&pctldev->mutex); 2208 2209 if (!IS_ERR_OR_NULL(pctldev->p)) 2210 pinctrl_put(pctldev->p); 2211 2212 mutex_lock(&pinctrldev_list_mutex); 2213 mutex_lock(&pctldev->mutex); 2214 /* TODO: check that no pinmuxes are still active? */ 2215 list_del(&pctldev->node); 2216 pinmux_generic_free_functions(pctldev); 2217 pinctrl_generic_free_groups(pctldev); 2218 /* Destroy descriptor tree */ 2219 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2220 pctldev->desc->npins); 2221 /* remove gpio ranges map */ 2222 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2223 list_del(&range->node); 2224 2225 mutex_unlock(&pctldev->mutex); 2226 mutex_destroy(&pctldev->mutex); 2227 kfree(pctldev); 2228 mutex_unlock(&pinctrldev_list_mutex); 2229 } 2230 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2231 2232 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2233 { 2234 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2235 2236 pinctrl_unregister(pctldev); 2237 } 2238 2239 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2240 { 2241 struct pctldev **r = res; 2242 2243 if (WARN_ON(!r || !*r)) 2244 return 0; 2245 2246 return *r == data; 2247 } 2248 2249 /** 2250 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2251 * @dev: parent device for this pin controller 2252 * @pctldesc: descriptor for this pin controller 2253 * @driver_data: private pin controller data for this pin controller 2254 * 2255 * Returns an error pointer if pincontrol register failed. Otherwise 2256 * it returns valid pinctrl handle. 2257 * 2258 * The pinctrl device will be automatically released when the device is unbound. 2259 */ 2260 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2261 struct pinctrl_desc *pctldesc, 2262 void *driver_data) 2263 { 2264 struct pinctrl_dev **ptr, *pctldev; 2265 2266 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2267 if (!ptr) 2268 return ERR_PTR(-ENOMEM); 2269 2270 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2271 if (IS_ERR(pctldev)) { 2272 devres_free(ptr); 2273 return pctldev; 2274 } 2275 2276 *ptr = pctldev; 2277 devres_add(dev, ptr); 2278 2279 return pctldev; 2280 } 2281 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2282 2283 /** 2284 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2285 * @dev: parent device for this pin controller 2286 * @pctldesc: descriptor for this pin controller 2287 * @driver_data: private pin controller data for this pin controller 2288 * @pctldev: pin controller device 2289 * 2290 * Returns zero on success or an error number on failure. 2291 * 2292 * The pinctrl device will be automatically released when the device is unbound. 2293 */ 2294 int devm_pinctrl_register_and_init(struct device *dev, 2295 struct pinctrl_desc *pctldesc, 2296 void *driver_data, 2297 struct pinctrl_dev **pctldev) 2298 { 2299 struct pinctrl_dev **ptr; 2300 int error; 2301 2302 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2303 if (!ptr) 2304 return -ENOMEM; 2305 2306 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2307 if (error) { 2308 devres_free(ptr); 2309 return error; 2310 } 2311 2312 *ptr = *pctldev; 2313 devres_add(dev, ptr); 2314 2315 return 0; 2316 } 2317 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2318 2319 /** 2320 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2321 * @dev: device for which resource was allocated 2322 * @pctldev: the pinctrl device to unregister. 2323 */ 2324 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2325 { 2326 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2327 devm_pinctrl_dev_match, pctldev)); 2328 } 2329 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2330 2331 static int __init pinctrl_init(void) 2332 { 2333 pr_info("initialized pinctrl subsystem\n"); 2334 pinctrl_init_debugfs(); 2335 return 0; 2336 } 2337 2338 /* init early since many drivers really need to initialized pinmux early */ 2339 core_initcall(pinctrl_init); 2340