1 #undef DEBUG 2 3 /* 4 * ARM performance counter support. 5 * 6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 8 * 9 * This code is based on the sparc64 perf event code, which is in turn based 10 * on the x86 code. 11 */ 12 #define pr_fmt(fmt) "hw perfevents: " fmt 13 14 #include <linux/bitmap.h> 15 #include <linux/cpumask.h> 16 #include <linux/export.h> 17 #include <linux/kernel.h> 18 #include <linux/of_device.h> 19 #include <linux/perf/arm_pmu.h> 20 #include <linux/platform_device.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/irq.h> 24 #include <linux/irqdesc.h> 25 26 #include <asm/cputype.h> 27 #include <asm/irq_regs.h> 28 29 static int 30 armpmu_map_cache_event(const unsigned (*cache_map) 31 [PERF_COUNT_HW_CACHE_MAX] 32 [PERF_COUNT_HW_CACHE_OP_MAX] 33 [PERF_COUNT_HW_CACHE_RESULT_MAX], 34 u64 config) 35 { 36 unsigned int cache_type, cache_op, cache_result, ret; 37 38 cache_type = (config >> 0) & 0xff; 39 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 40 return -EINVAL; 41 42 cache_op = (config >> 8) & 0xff; 43 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 44 return -EINVAL; 45 46 cache_result = (config >> 16) & 0xff; 47 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 48 return -EINVAL; 49 50 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 51 52 if (ret == CACHE_OP_UNSUPPORTED) 53 return -ENOENT; 54 55 return ret; 56 } 57 58 static int 59 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 60 { 61 int mapping; 62 63 if (config >= PERF_COUNT_HW_MAX) 64 return -EINVAL; 65 66 mapping = (*event_map)[config]; 67 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 68 } 69 70 static int 71 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 72 { 73 return (int)(config & raw_event_mask); 74 } 75 76 int 77 armpmu_map_event(struct perf_event *event, 78 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 79 const unsigned (*cache_map) 80 [PERF_COUNT_HW_CACHE_MAX] 81 [PERF_COUNT_HW_CACHE_OP_MAX] 82 [PERF_COUNT_HW_CACHE_RESULT_MAX], 83 u32 raw_event_mask) 84 { 85 u64 config = event->attr.config; 86 int type = event->attr.type; 87 88 if (type == event->pmu->type) 89 return armpmu_map_raw_event(raw_event_mask, config); 90 91 switch (type) { 92 case PERF_TYPE_HARDWARE: 93 return armpmu_map_hw_event(event_map, config); 94 case PERF_TYPE_HW_CACHE: 95 return armpmu_map_cache_event(cache_map, config); 96 case PERF_TYPE_RAW: 97 return armpmu_map_raw_event(raw_event_mask, config); 98 } 99 100 return -ENOENT; 101 } 102 103 int armpmu_event_set_period(struct perf_event *event) 104 { 105 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 106 struct hw_perf_event *hwc = &event->hw; 107 s64 left = local64_read(&hwc->period_left); 108 s64 period = hwc->sample_period; 109 int ret = 0; 110 111 if (unlikely(left <= -period)) { 112 left = period; 113 local64_set(&hwc->period_left, left); 114 hwc->last_period = period; 115 ret = 1; 116 } 117 118 if (unlikely(left <= 0)) { 119 left += period; 120 local64_set(&hwc->period_left, left); 121 hwc->last_period = period; 122 ret = 1; 123 } 124 125 /* 126 * Limit the maximum period to prevent the counter value 127 * from overtaking the one we are about to program. In 128 * effect we are reducing max_period to account for 129 * interrupt latency (and we are being very conservative). 130 */ 131 if (left > (armpmu->max_period >> 1)) 132 left = armpmu->max_period >> 1; 133 134 local64_set(&hwc->prev_count, (u64)-left); 135 136 armpmu->write_counter(event, (u64)(-left) & 0xffffffff); 137 138 perf_event_update_userpage(event); 139 140 return ret; 141 } 142 143 u64 armpmu_event_update(struct perf_event *event) 144 { 145 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 146 struct hw_perf_event *hwc = &event->hw; 147 u64 delta, prev_raw_count, new_raw_count; 148 149 again: 150 prev_raw_count = local64_read(&hwc->prev_count); 151 new_raw_count = armpmu->read_counter(event); 152 153 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 154 new_raw_count) != prev_raw_count) 155 goto again; 156 157 delta = (new_raw_count - prev_raw_count) & armpmu->max_period; 158 159 local64_add(delta, &event->count); 160 local64_sub(delta, &hwc->period_left); 161 162 return new_raw_count; 163 } 164 165 static void 166 armpmu_read(struct perf_event *event) 167 { 168 armpmu_event_update(event); 169 } 170 171 static void 172 armpmu_stop(struct perf_event *event, int flags) 173 { 174 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 175 struct hw_perf_event *hwc = &event->hw; 176 177 /* 178 * ARM pmu always has to update the counter, so ignore 179 * PERF_EF_UPDATE, see comments in armpmu_start(). 180 */ 181 if (!(hwc->state & PERF_HES_STOPPED)) { 182 armpmu->disable(event); 183 armpmu_event_update(event); 184 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 185 } 186 } 187 188 static void armpmu_start(struct perf_event *event, int flags) 189 { 190 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 191 struct hw_perf_event *hwc = &event->hw; 192 193 /* 194 * ARM pmu always has to reprogram the period, so ignore 195 * PERF_EF_RELOAD, see the comment below. 196 */ 197 if (flags & PERF_EF_RELOAD) 198 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 199 200 hwc->state = 0; 201 /* 202 * Set the period again. Some counters can't be stopped, so when we 203 * were stopped we simply disabled the IRQ source and the counter 204 * may have been left counting. If we don't do this step then we may 205 * get an interrupt too soon or *way* too late if the overflow has 206 * happened since disabling. 207 */ 208 armpmu_event_set_period(event); 209 armpmu->enable(event); 210 } 211 212 static void 213 armpmu_del(struct perf_event *event, int flags) 214 { 215 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 216 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 217 struct hw_perf_event *hwc = &event->hw; 218 int idx = hwc->idx; 219 220 armpmu_stop(event, PERF_EF_UPDATE); 221 hw_events->events[idx] = NULL; 222 clear_bit(idx, hw_events->used_mask); 223 if (armpmu->clear_event_idx) 224 armpmu->clear_event_idx(hw_events, event); 225 226 perf_event_update_userpage(event); 227 } 228 229 static int 230 armpmu_add(struct perf_event *event, int flags) 231 { 232 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 233 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 234 struct hw_perf_event *hwc = &event->hw; 235 int idx; 236 int err = 0; 237 238 /* An event following a process won't be stopped earlier */ 239 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 240 return -ENOENT; 241 242 perf_pmu_disable(event->pmu); 243 244 /* If we don't have a space for the counter then finish early. */ 245 idx = armpmu->get_event_idx(hw_events, event); 246 if (idx < 0) { 247 err = idx; 248 goto out; 249 } 250 251 /* 252 * If there is an event in the counter we are going to use then make 253 * sure it is disabled. 254 */ 255 event->hw.idx = idx; 256 armpmu->disable(event); 257 hw_events->events[idx] = event; 258 259 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 260 if (flags & PERF_EF_START) 261 armpmu_start(event, PERF_EF_RELOAD); 262 263 /* Propagate our changes to the userspace mapping. */ 264 perf_event_update_userpage(event); 265 266 out: 267 perf_pmu_enable(event->pmu); 268 return err; 269 } 270 271 static int 272 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 273 struct perf_event *event) 274 { 275 struct arm_pmu *armpmu; 276 277 if (is_software_event(event)) 278 return 1; 279 280 /* 281 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 282 * core perf code won't check that the pmu->ctx == leader->ctx 283 * until after pmu->event_init(event). 284 */ 285 if (event->pmu != pmu) 286 return 0; 287 288 if (event->state < PERF_EVENT_STATE_OFF) 289 return 1; 290 291 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 292 return 1; 293 294 armpmu = to_arm_pmu(event->pmu); 295 return armpmu->get_event_idx(hw_events, event) >= 0; 296 } 297 298 static int 299 validate_group(struct perf_event *event) 300 { 301 struct perf_event *sibling, *leader = event->group_leader; 302 struct pmu_hw_events fake_pmu; 303 304 /* 305 * Initialise the fake PMU. We only need to populate the 306 * used_mask for the purposes of validation. 307 */ 308 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 309 310 if (!validate_event(event->pmu, &fake_pmu, leader)) 311 return -EINVAL; 312 313 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 314 if (!validate_event(event->pmu, &fake_pmu, sibling)) 315 return -EINVAL; 316 } 317 318 if (!validate_event(event->pmu, &fake_pmu, event)) 319 return -EINVAL; 320 321 return 0; 322 } 323 324 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 325 { 326 struct arm_pmu *armpmu; 327 struct platform_device *plat_device; 328 struct arm_pmu_platdata *plat; 329 int ret; 330 u64 start_clock, finish_clock; 331 332 /* 333 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 334 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 335 * do any necessary shifting, we just need to perform the first 336 * dereference. 337 */ 338 armpmu = *(void **)dev; 339 plat_device = armpmu->plat_device; 340 plat = dev_get_platdata(&plat_device->dev); 341 342 start_clock = sched_clock(); 343 if (plat && plat->handle_irq) 344 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq); 345 else 346 ret = armpmu->handle_irq(irq, armpmu); 347 finish_clock = sched_clock(); 348 349 perf_sample_event_took(finish_clock - start_clock); 350 return ret; 351 } 352 353 static void 354 armpmu_release_hardware(struct arm_pmu *armpmu) 355 { 356 armpmu->free_irq(armpmu); 357 } 358 359 static int 360 armpmu_reserve_hardware(struct arm_pmu *armpmu) 361 { 362 int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq); 363 if (err) { 364 armpmu_release_hardware(armpmu); 365 return err; 366 } 367 368 return 0; 369 } 370 371 static void 372 hw_perf_event_destroy(struct perf_event *event) 373 { 374 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 375 atomic_t *active_events = &armpmu->active_events; 376 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; 377 378 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { 379 armpmu_release_hardware(armpmu); 380 mutex_unlock(pmu_reserve_mutex); 381 } 382 } 383 384 static int 385 event_requires_mode_exclusion(struct perf_event_attr *attr) 386 { 387 return attr->exclude_idle || attr->exclude_user || 388 attr->exclude_kernel || attr->exclude_hv; 389 } 390 391 static int 392 __hw_perf_event_init(struct perf_event *event) 393 { 394 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 395 struct hw_perf_event *hwc = &event->hw; 396 int mapping; 397 398 mapping = armpmu->map_event(event); 399 400 if (mapping < 0) { 401 pr_debug("event %x:%llx not supported\n", event->attr.type, 402 event->attr.config); 403 return mapping; 404 } 405 406 /* 407 * We don't assign an index until we actually place the event onto 408 * hardware. Use -1 to signify that we haven't decided where to put it 409 * yet. For SMP systems, each core has it's own PMU so we can't do any 410 * clever allocation or constraints checking at this point. 411 */ 412 hwc->idx = -1; 413 hwc->config_base = 0; 414 hwc->config = 0; 415 hwc->event_base = 0; 416 417 /* 418 * Check whether we need to exclude the counter from certain modes. 419 */ 420 if ((!armpmu->set_event_filter || 421 armpmu->set_event_filter(hwc, &event->attr)) && 422 event_requires_mode_exclusion(&event->attr)) { 423 pr_debug("ARM performance counters do not support " 424 "mode exclusion\n"); 425 return -EOPNOTSUPP; 426 } 427 428 /* 429 * Store the event encoding into the config_base field. 430 */ 431 hwc->config_base |= (unsigned long)mapping; 432 433 if (!is_sampling_event(event)) { 434 /* 435 * For non-sampling runs, limit the sample_period to half 436 * of the counter width. That way, the new counter value 437 * is far less likely to overtake the previous one unless 438 * you have some serious IRQ latency issues. 439 */ 440 hwc->sample_period = armpmu->max_period >> 1; 441 hwc->last_period = hwc->sample_period; 442 local64_set(&hwc->period_left, hwc->sample_period); 443 } 444 445 if (event->group_leader != event) { 446 if (validate_group(event) != 0) 447 return -EINVAL; 448 } 449 450 return 0; 451 } 452 453 static int armpmu_event_init(struct perf_event *event) 454 { 455 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 456 int err = 0; 457 atomic_t *active_events = &armpmu->active_events; 458 459 /* 460 * Reject CPU-affine events for CPUs that are of a different class to 461 * that which this PMU handles. Process-following events (where 462 * event->cpu == -1) can be migrated between CPUs, and thus we have to 463 * reject them later (in armpmu_add) if they're scheduled on a 464 * different class of CPU. 465 */ 466 if (event->cpu != -1 && 467 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 468 return -ENOENT; 469 470 /* does not support taken branch sampling */ 471 if (has_branch_stack(event)) 472 return -EOPNOTSUPP; 473 474 if (armpmu->map_event(event) == -ENOENT) 475 return -ENOENT; 476 477 event->destroy = hw_perf_event_destroy; 478 479 if (!atomic_inc_not_zero(active_events)) { 480 mutex_lock(&armpmu->reserve_mutex); 481 if (atomic_read(active_events) == 0) 482 err = armpmu_reserve_hardware(armpmu); 483 484 if (!err) 485 atomic_inc(active_events); 486 mutex_unlock(&armpmu->reserve_mutex); 487 } 488 489 if (err) 490 return err; 491 492 err = __hw_perf_event_init(event); 493 if (err) 494 hw_perf_event_destroy(event); 495 496 return err; 497 } 498 499 static void armpmu_enable(struct pmu *pmu) 500 { 501 struct arm_pmu *armpmu = to_arm_pmu(pmu); 502 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 503 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 504 505 /* For task-bound events we may be called on other CPUs */ 506 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 507 return; 508 509 if (enabled) 510 armpmu->start(armpmu); 511 } 512 513 static void armpmu_disable(struct pmu *pmu) 514 { 515 struct arm_pmu *armpmu = to_arm_pmu(pmu); 516 517 /* For task-bound events we may be called on other CPUs */ 518 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 519 return; 520 521 armpmu->stop(armpmu); 522 } 523 524 /* 525 * In heterogeneous systems, events are specific to a particular 526 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 527 * the same microarchitecture. 528 */ 529 static int armpmu_filter_match(struct perf_event *event) 530 { 531 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 532 unsigned int cpu = smp_processor_id(); 533 return cpumask_test_cpu(cpu, &armpmu->supported_cpus); 534 } 535 536 static void armpmu_init(struct arm_pmu *armpmu) 537 { 538 atomic_set(&armpmu->active_events, 0); 539 mutex_init(&armpmu->reserve_mutex); 540 541 armpmu->pmu = (struct pmu) { 542 .pmu_enable = armpmu_enable, 543 .pmu_disable = armpmu_disable, 544 .event_init = armpmu_event_init, 545 .add = armpmu_add, 546 .del = armpmu_del, 547 .start = armpmu_start, 548 .stop = armpmu_stop, 549 .read = armpmu_read, 550 .filter_match = armpmu_filter_match, 551 }; 552 } 553 554 int armpmu_register(struct arm_pmu *armpmu, int type) 555 { 556 armpmu_init(armpmu); 557 pr_info("enabled with %s PMU driver, %d counters available\n", 558 armpmu->name, armpmu->num_events); 559 return perf_pmu_register(&armpmu->pmu, armpmu->name, type); 560 } 561 562 /* Set at runtime when we know what CPU type we are. */ 563 static struct arm_pmu *__oprofile_cpu_pmu; 564 565 /* 566 * Despite the names, these two functions are CPU-specific and are used 567 * by the OProfile/perf code. 568 */ 569 const char *perf_pmu_name(void) 570 { 571 if (!__oprofile_cpu_pmu) 572 return NULL; 573 574 return __oprofile_cpu_pmu->name; 575 } 576 EXPORT_SYMBOL_GPL(perf_pmu_name); 577 578 int perf_num_counters(void) 579 { 580 int max_events = 0; 581 582 if (__oprofile_cpu_pmu != NULL) 583 max_events = __oprofile_cpu_pmu->num_events; 584 585 return max_events; 586 } 587 EXPORT_SYMBOL_GPL(perf_num_counters); 588 589 static void cpu_pmu_enable_percpu_irq(void *data) 590 { 591 int irq = *(int *)data; 592 593 enable_percpu_irq(irq, IRQ_TYPE_NONE); 594 } 595 596 static void cpu_pmu_disable_percpu_irq(void *data) 597 { 598 int irq = *(int *)data; 599 600 disable_percpu_irq(irq); 601 } 602 603 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu) 604 { 605 int i, irq, irqs; 606 struct platform_device *pmu_device = cpu_pmu->plat_device; 607 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events; 608 609 irqs = min(pmu_device->num_resources, num_possible_cpus()); 610 611 irq = platform_get_irq(pmu_device, 0); 612 if (irq >= 0 && irq_is_percpu(irq)) { 613 on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1); 614 free_percpu_irq(irq, &hw_events->percpu_pmu); 615 } else { 616 for (i = 0; i < irqs; ++i) { 617 int cpu = i; 618 619 if (cpu_pmu->irq_affinity) 620 cpu = cpu_pmu->irq_affinity[i]; 621 622 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs)) 623 continue; 624 irq = platform_get_irq(pmu_device, i); 625 if (irq >= 0) 626 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu)); 627 } 628 } 629 } 630 631 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler) 632 { 633 int i, err, irq, irqs; 634 struct platform_device *pmu_device = cpu_pmu->plat_device; 635 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events; 636 637 if (!pmu_device) 638 return -ENODEV; 639 640 irqs = min(pmu_device->num_resources, num_possible_cpus()); 641 if (irqs < 1) { 642 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n"); 643 return 0; 644 } 645 646 irq = platform_get_irq(pmu_device, 0); 647 if (irq >= 0 && irq_is_percpu(irq)) { 648 err = request_percpu_irq(irq, handler, "arm-pmu", 649 &hw_events->percpu_pmu); 650 if (err) { 651 pr_err("unable to request IRQ%d for ARM PMU counters\n", 652 irq); 653 return err; 654 } 655 on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1); 656 } else { 657 for (i = 0; i < irqs; ++i) { 658 int cpu = i; 659 660 err = 0; 661 irq = platform_get_irq(pmu_device, i); 662 if (irq < 0) 663 continue; 664 665 if (cpu_pmu->irq_affinity) 666 cpu = cpu_pmu->irq_affinity[i]; 667 668 /* 669 * If we have a single PMU interrupt that we can't shift, 670 * assume that we're running on a uniprocessor machine and 671 * continue. Otherwise, continue without this interrupt. 672 */ 673 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) { 674 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 675 irq, cpu); 676 continue; 677 } 678 679 err = request_irq(irq, handler, 680 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu", 681 per_cpu_ptr(&hw_events->percpu_pmu, cpu)); 682 if (err) { 683 pr_err("unable to request IRQ%d for ARM PMU counters\n", 684 irq); 685 return err; 686 } 687 688 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs); 689 } 690 } 691 692 return 0; 693 } 694 695 /* 696 * PMU hardware loses all context when a CPU goes offline. 697 * When a CPU is hotplugged back in, since some hardware registers are 698 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 699 * junk values out of them. 700 */ 701 static int cpu_pmu_notify(struct notifier_block *b, unsigned long action, 702 void *hcpu) 703 { 704 int cpu = (unsigned long)hcpu; 705 struct arm_pmu *pmu = container_of(b, struct arm_pmu, hotplug_nb); 706 707 if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING) 708 return NOTIFY_DONE; 709 710 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 711 return NOTIFY_DONE; 712 713 if (pmu->reset) 714 pmu->reset(pmu); 715 else 716 return NOTIFY_DONE; 717 718 return NOTIFY_OK; 719 } 720 721 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 722 { 723 int err; 724 int cpu; 725 struct pmu_hw_events __percpu *cpu_hw_events; 726 727 cpu_hw_events = alloc_percpu(struct pmu_hw_events); 728 if (!cpu_hw_events) 729 return -ENOMEM; 730 731 cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify; 732 err = register_cpu_notifier(&cpu_pmu->hotplug_nb); 733 if (err) 734 goto out_hw_events; 735 736 for_each_possible_cpu(cpu) { 737 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu); 738 raw_spin_lock_init(&events->pmu_lock); 739 events->percpu_pmu = cpu_pmu; 740 } 741 742 cpu_pmu->hw_events = cpu_hw_events; 743 cpu_pmu->request_irq = cpu_pmu_request_irq; 744 cpu_pmu->free_irq = cpu_pmu_free_irq; 745 746 /* Ensure the PMU has sane values out of reset. */ 747 if (cpu_pmu->reset) 748 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset, 749 cpu_pmu, 1); 750 751 /* If no interrupts available, set the corresponding capability flag */ 752 if (!platform_get_irq(cpu_pmu->plat_device, 0)) 753 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 754 755 return 0; 756 757 out_hw_events: 758 free_percpu(cpu_hw_events); 759 return err; 760 } 761 762 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 763 { 764 unregister_cpu_notifier(&cpu_pmu->hotplug_nb); 765 free_percpu(cpu_pmu->hw_events); 766 } 767 768 /* 769 * CPU PMU identification and probing. 770 */ 771 static int probe_current_pmu(struct arm_pmu *pmu, 772 const struct pmu_probe_info *info) 773 { 774 int cpu = get_cpu(); 775 unsigned int cpuid = read_cpuid_id(); 776 int ret = -ENODEV; 777 778 pr_info("probing PMU on CPU %d\n", cpu); 779 780 for (; info->init != NULL; info++) { 781 if ((cpuid & info->mask) != info->cpuid) 782 continue; 783 ret = info->init(pmu); 784 break; 785 } 786 787 put_cpu(); 788 return ret; 789 } 790 791 static int of_pmu_irq_cfg(struct arm_pmu *pmu) 792 { 793 int *irqs, i = 0; 794 bool using_spi = false; 795 struct platform_device *pdev = pmu->plat_device; 796 797 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL); 798 if (!irqs) 799 return -ENOMEM; 800 801 do { 802 struct device_node *dn; 803 int cpu, irq; 804 805 /* See if we have an affinity entry */ 806 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i); 807 if (!dn) 808 break; 809 810 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */ 811 irq = platform_get_irq(pdev, i); 812 if (irq >= 0) { 813 bool spi = !irq_is_percpu(irq); 814 815 if (i > 0 && spi != using_spi) { 816 pr_err("PPI/SPI IRQ type mismatch for %s!\n", 817 dn->name); 818 kfree(irqs); 819 return -EINVAL; 820 } 821 822 using_spi = spi; 823 } 824 825 /* Now look up the logical CPU number */ 826 for_each_possible_cpu(cpu) { 827 struct device_node *cpu_dn; 828 829 cpu_dn = of_cpu_device_node_get(cpu); 830 of_node_put(cpu_dn); 831 832 if (dn == cpu_dn) 833 break; 834 } 835 836 if (cpu >= nr_cpu_ids) { 837 pr_warn("Failed to find logical CPU for %s\n", 838 dn->name); 839 of_node_put(dn); 840 cpumask_setall(&pmu->supported_cpus); 841 break; 842 } 843 of_node_put(dn); 844 845 /* For SPIs, we need to track the affinity per IRQ */ 846 if (using_spi) { 847 if (i >= pdev->num_resources) { 848 of_node_put(dn); 849 break; 850 } 851 852 irqs[i] = cpu; 853 } 854 855 /* Keep track of the CPUs containing this PMU type */ 856 cpumask_set_cpu(cpu, &pmu->supported_cpus); 857 of_node_put(dn); 858 i++; 859 } while (1); 860 861 /* If we didn't manage to parse anything, claim to support all CPUs */ 862 if (cpumask_weight(&pmu->supported_cpus) == 0) 863 cpumask_setall(&pmu->supported_cpus); 864 865 /* If we matched up the IRQ affinities, use them to route the SPIs */ 866 if (using_spi && i == pdev->num_resources) 867 pmu->irq_affinity = irqs; 868 else 869 kfree(irqs); 870 871 return 0; 872 } 873 874 int arm_pmu_device_probe(struct platform_device *pdev, 875 const struct of_device_id *of_table, 876 const struct pmu_probe_info *probe_table) 877 { 878 const struct of_device_id *of_id; 879 const int (*init_fn)(struct arm_pmu *); 880 struct device_node *node = pdev->dev.of_node; 881 struct arm_pmu *pmu; 882 int ret = -ENODEV; 883 884 pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL); 885 if (!pmu) { 886 pr_info("failed to allocate PMU device!\n"); 887 return -ENOMEM; 888 } 889 890 if (!__oprofile_cpu_pmu) 891 __oprofile_cpu_pmu = pmu; 892 893 pmu->plat_device = pdev; 894 895 if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) { 896 init_fn = of_id->data; 897 898 ret = of_pmu_irq_cfg(pmu); 899 if (!ret) 900 ret = init_fn(pmu); 901 } else { 902 ret = probe_current_pmu(pmu, probe_table); 903 cpumask_setall(&pmu->supported_cpus); 904 } 905 906 if (ret) { 907 pr_info("failed to probe PMU!\n"); 908 goto out_free; 909 } 910 911 ret = cpu_pmu_init(pmu); 912 if (ret) 913 goto out_free; 914 915 ret = armpmu_register(pmu, -1); 916 if (ret) 917 goto out_destroy; 918 919 return 0; 920 921 out_destroy: 922 cpu_pmu_destroy(pmu); 923 out_free: 924 pr_info("failed to register PMU devices!\n"); 925 kfree(pmu); 926 return ret; 927 } 928