xref: /openbmc/linux/drivers/perf/arm_cspmu/arm_cspmu.c (revision 8d59a64cbec8cebf2e1ec9977de4f67fc7341dc6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM CoreSight Architecture PMU driver.
4  *
5  * This driver adds support for uncore PMU based on ARM CoreSight Performance
6  * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7  * like other uncore PMUs, it does not support process specific events and
8  * cannot be used in sampling mode.
9  *
10  * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11  * generic implementation to operate the PMU according to CoreSight PMU
12  * architecture and ACPI ARM PMU table (APMT) documents below:
13  *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14  *   - APMT document number: ARM DEN0117.
15  *
16  * The user should refer to the vendor technical documentation to get details
17  * about the supported events.
18  *
19  * Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20  *
21  */
22 
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/perf_event.h>
30 #include <linux/platform_device.h>
31 
32 #include "arm_cspmu.h"
33 #include "nvidia_cspmu.h"
34 
35 #define PMUNAME "arm_cspmu"
36 #define DRVNAME "arm-cs-arch-pmu"
37 
38 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config)			\
39 	ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,	\
40 				(unsigned long)_config)
41 
42 /*
43  * CoreSight PMU Arch register offsets.
44  */
45 #define PMEVCNTR_LO					0x0
46 #define PMEVCNTR_HI					0x4
47 #define PMEVTYPER					0x400
48 #define PMCCFILTR					0x47C
49 #define PMEVFILTR					0xA00
50 #define PMCNTENSET					0xC00
51 #define PMCNTENCLR					0xC20
52 #define PMINTENSET					0xC40
53 #define PMINTENCLR					0xC60
54 #define PMOVSCLR					0xC80
55 #define PMOVSSET					0xCC0
56 #define PMCFGR						0xE00
57 #define PMCR						0xE04
58 #define PMIIDR						0xE08
59 
60 /* PMCFGR register field */
61 #define PMCFGR_NCG					GENMASK(31, 28)
62 #define PMCFGR_HDBG					BIT(24)
63 #define PMCFGR_TRO					BIT(23)
64 #define PMCFGR_SS					BIT(22)
65 #define PMCFGR_FZO					BIT(21)
66 #define PMCFGR_MSI					BIT(20)
67 #define PMCFGR_UEN					BIT(19)
68 #define PMCFGR_NA					BIT(17)
69 #define PMCFGR_EX					BIT(16)
70 #define PMCFGR_CCD					BIT(15)
71 #define PMCFGR_CC					BIT(14)
72 #define PMCFGR_SIZE					GENMASK(13, 8)
73 #define PMCFGR_N					GENMASK(7, 0)
74 
75 /* PMCR register field */
76 #define PMCR_TRO					BIT(11)
77 #define PMCR_HDBG					BIT(10)
78 #define PMCR_FZO					BIT(9)
79 #define PMCR_NA						BIT(8)
80 #define PMCR_DP						BIT(5)
81 #define PMCR_X						BIT(4)
82 #define PMCR_D						BIT(3)
83 #define PMCR_C						BIT(2)
84 #define PMCR_P						BIT(1)
85 #define PMCR_E						BIT(0)
86 
87 /* Each SET/CLR register supports up to 32 counters. */
88 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT		5
89 #define ARM_CSPMU_SET_CLR_COUNTER_NUM		\
90 	(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
91 
92 /* Convert counter idx into SET/CLR register number. */
93 #define COUNTER_TO_SET_CLR_ID(idx)			\
94 	(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
95 
96 /* Convert counter idx into SET/CLR register bit. */
97 #define COUNTER_TO_SET_CLR_BIT(idx)			\
98 	(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
99 
100 #define ARM_CSPMU_ACTIVE_CPU_MASK		0x0
101 #define ARM_CSPMU_ASSOCIATED_CPU_MASK		0x1
102 
103 /* Check and use default if implementer doesn't provide attribute callback */
104 #define CHECK_DEFAULT_IMPL_OPS(ops, callback)			\
105 	do {							\
106 		if (!ops->callback)				\
107 			ops->callback = arm_cspmu_ ## callback;	\
108 	} while (0)
109 
110 /*
111  * Maximum poll count for reading counter value using high-low-high sequence.
112  */
113 #define HILOHI_MAX_POLL	1000
114 
115 /* JEDEC-assigned JEP106 identification code */
116 #define ARM_CSPMU_IMPL_ID_NVIDIA		0x36B
117 
118 static unsigned long arm_cspmu_cpuhp_state;
119 
120 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
121 {
122 	return *(struct acpi_apmt_node **)dev_get_platdata(dev);
123 }
124 
125 /*
126  * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
127  * counter register. The counter register can be implemented as 32-bit or 64-bit
128  * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
129  * single-copy 64-bit atomic support is implementation defined. APMT node flag
130  * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
131  * single copy atomic is not supported, the driver treats the register as a pair
132  * of 32-bit register.
133  */
134 
135 /*
136  * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
137  */
138 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
139 {
140 	u32 val_lo, val_hi;
141 	u64 val;
142 
143 	/* Use high-low-high sequence to avoid tearing */
144 	do {
145 		if (max_poll_count-- == 0) {
146 			pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
147 			return 0;
148 		}
149 
150 		val_hi = readl(addr + 4);
151 		val_lo = readl(addr);
152 	} while (val_hi != readl(addr + 4));
153 
154 	val = (((u64)val_hi << 32) | val_lo);
155 
156 	return val;
157 }
158 
159 /* Check if cycle counter is supported. */
160 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
161 {
162 	return (cspmu->pmcfgr & PMCFGR_CC);
163 }
164 
165 /* Get counter size, which is (PMCFGR_SIZE + 1). */
166 static inline u32 counter_size(const struct arm_cspmu *cspmu)
167 {
168 	return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
169 }
170 
171 /* Get counter mask. */
172 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
173 {
174 	return GENMASK_ULL(counter_size(cspmu) - 1, 0);
175 }
176 
177 /* Check if counter is implemented as 64-bit register. */
178 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
179 {
180 	return (counter_size(cspmu) > 32);
181 }
182 
183 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
184 				struct device_attribute *attr, char *buf)
185 {
186 	struct perf_pmu_events_attr *pmu_attr;
187 
188 	pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
189 	return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
190 }
191 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
192 
193 /* Default event list. */
194 static struct attribute *arm_cspmu_event_attrs[] = {
195 	ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
196 	NULL,
197 };
198 
199 static struct attribute **
200 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
201 {
202 	struct attribute **attrs;
203 
204 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
205 		sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
206 
207 	return attrs;
208 }
209 
210 static umode_t
211 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
212 				struct attribute *attr, int unused)
213 {
214 	struct device *dev = kobj_to_dev(kobj);
215 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
216 	struct perf_pmu_events_attr *eattr;
217 
218 	eattr = container_of(attr, typeof(*eattr), attr.attr);
219 
220 	/* Hide cycle event if not supported */
221 	if (!supports_cycle_counter(cspmu) &&
222 	    eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
223 		return 0;
224 
225 	return attr->mode;
226 }
227 
228 ssize_t arm_cspmu_sysfs_format_show(struct device *dev,
229 				struct device_attribute *attr,
230 				char *buf)
231 {
232 	struct dev_ext_attribute *eattr =
233 		container_of(attr, struct dev_ext_attribute, attr);
234 	return sysfs_emit(buf, "%s\n", (char *)eattr->var);
235 }
236 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show);
237 
238 static struct attribute *arm_cspmu_format_attrs[] = {
239 	ARM_CSPMU_FORMAT_EVENT_ATTR,
240 	ARM_CSPMU_FORMAT_FILTER_ATTR,
241 	NULL,
242 };
243 
244 static struct attribute **
245 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
246 {
247 	struct attribute **attrs;
248 
249 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
250 		sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
251 
252 	return attrs;
253 }
254 
255 static u32 arm_cspmu_event_type(const struct perf_event *event)
256 {
257 	return event->attr.config & ARM_CSPMU_EVENT_MASK;
258 }
259 
260 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
261 {
262 	return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
263 }
264 
265 static u32 arm_cspmu_event_filter(const struct perf_event *event)
266 {
267 	return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
268 }
269 
270 static ssize_t arm_cspmu_identifier_show(struct device *dev,
271 					 struct device_attribute *attr,
272 					 char *page)
273 {
274 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
275 
276 	return sysfs_emit(page, "%s\n", cspmu->identifier);
277 }
278 
279 static struct device_attribute arm_cspmu_identifier_attr =
280 	__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
281 
282 static struct attribute *arm_cspmu_identifier_attrs[] = {
283 	&arm_cspmu_identifier_attr.attr,
284 	NULL,
285 };
286 
287 static struct attribute_group arm_cspmu_identifier_attr_group = {
288 	.attrs = arm_cspmu_identifier_attrs,
289 };
290 
291 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
292 {
293 	const char *identifier =
294 		devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
295 			       cspmu->impl.pmiidr);
296 	return identifier;
297 }
298 
299 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
300 	"mc",
301 	"smmu",
302 	"pcie",
303 	"acpi",
304 	"cache",
305 };
306 
307 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
308 {
309 	struct device *dev;
310 	struct acpi_apmt_node *apmt_node;
311 	u8 pmu_type;
312 	char *name;
313 	char acpi_hid_string[ACPI_ID_LEN] = { 0 };
314 	static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
315 
316 	dev = cspmu->dev;
317 	apmt_node = arm_cspmu_apmt_node(dev);
318 	pmu_type = apmt_node->type;
319 
320 	if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
321 		dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
322 		return NULL;
323 	}
324 
325 	if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
326 		memcpy(acpi_hid_string,
327 			&apmt_node->inst_primary,
328 			sizeof(apmt_node->inst_primary));
329 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
330 				      arm_cspmu_type_str[pmu_type],
331 				      acpi_hid_string,
332 				      apmt_node->inst_secondary);
333 	} else {
334 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
335 				      arm_cspmu_type_str[pmu_type],
336 				      atomic_fetch_inc(&pmu_idx[pmu_type]));
337 	}
338 
339 	return name;
340 }
341 
342 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
343 				      struct device_attribute *attr,
344 				      char *buf)
345 {
346 	struct pmu *pmu = dev_get_drvdata(dev);
347 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
348 	struct dev_ext_attribute *eattr =
349 		container_of(attr, struct dev_ext_attribute, attr);
350 	unsigned long mask_id = (unsigned long)eattr->var;
351 	const cpumask_t *cpumask;
352 
353 	switch (mask_id) {
354 	case ARM_CSPMU_ACTIVE_CPU_MASK:
355 		cpumask = &cspmu->active_cpu;
356 		break;
357 	case ARM_CSPMU_ASSOCIATED_CPU_MASK:
358 		cpumask = &cspmu->associated_cpus;
359 		break;
360 	default:
361 		return 0;
362 	}
363 	return cpumap_print_to_pagebuf(true, buf, cpumask);
364 }
365 
366 static struct attribute *arm_cspmu_cpumask_attrs[] = {
367 	ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
368 	ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
369 	NULL,
370 };
371 
372 static struct attribute_group arm_cspmu_cpumask_attr_group = {
373 	.attrs = arm_cspmu_cpumask_attrs,
374 };
375 
376 struct impl_match {
377 	u32 pmiidr;
378 	u32 mask;
379 	int (*impl_init_ops)(struct arm_cspmu *cspmu);
380 };
381 
382 static const struct impl_match impl_match[] = {
383 	{
384 	  .pmiidr = ARM_CSPMU_IMPL_ID_NVIDIA,
385 	  .mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
386 	  .impl_init_ops = nv_cspmu_init_ops
387 	},
388 	{}
389 };
390 
391 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
392 {
393 	int ret;
394 	struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
395 	struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
396 	const struct impl_match *match = impl_match;
397 
398 	/*
399 	 * Get PMU implementer and product id from APMT node.
400 	 * If APMT node doesn't have implementer/product id, try get it
401 	 * from PMIIDR.
402 	 */
403 	cspmu->impl.pmiidr =
404 		(apmt_node->impl_id) ? apmt_node->impl_id :
405 				       readl(cspmu->base0 + PMIIDR);
406 
407 	/* Find implementer specific attribute ops. */
408 	for (; match->pmiidr; match++) {
409 		const u32 mask = match->mask;
410 
411 		if ((match->pmiidr & mask) == (cspmu->impl.pmiidr & mask)) {
412 			ret = match->impl_init_ops(cspmu);
413 			if (ret)
414 				return ret;
415 
416 			break;
417 		}
418 	}
419 
420 	/* Use default callbacks if implementer doesn't provide one. */
421 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs);
422 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs);
423 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier);
424 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name);
425 	CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event);
426 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type);
427 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter);
428 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible);
429 
430 	return 0;
431 }
432 
433 static struct attribute_group *
434 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
435 {
436 	struct attribute_group *event_group;
437 	struct device *dev = cspmu->dev;
438 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
439 
440 	event_group =
441 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
442 	if (!event_group)
443 		return NULL;
444 
445 	event_group->name = "events";
446 	event_group->is_visible = impl_ops->event_attr_is_visible;
447 	event_group->attrs = impl_ops->get_event_attrs(cspmu);
448 
449 	if (!event_group->attrs)
450 		return NULL;
451 
452 	return event_group;
453 }
454 
455 static struct attribute_group *
456 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
457 {
458 	struct attribute_group *format_group;
459 	struct device *dev = cspmu->dev;
460 
461 	format_group =
462 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
463 	if (!format_group)
464 		return NULL;
465 
466 	format_group->name = "format";
467 	format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
468 
469 	if (!format_group->attrs)
470 		return NULL;
471 
472 	return format_group;
473 }
474 
475 static struct attribute_group **
476 arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu)
477 {
478 	struct attribute_group **attr_groups = NULL;
479 	struct device *dev = cspmu->dev;
480 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
481 	int ret;
482 
483 	ret = arm_cspmu_init_impl_ops(cspmu);
484 	if (ret)
485 		return NULL;
486 
487 	cspmu->identifier = impl_ops->get_identifier(cspmu);
488 	cspmu->name = impl_ops->get_name(cspmu);
489 
490 	if (!cspmu->identifier || !cspmu->name)
491 		return NULL;
492 
493 	attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *),
494 				   GFP_KERNEL);
495 	if (!attr_groups)
496 		return NULL;
497 
498 	attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
499 	attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
500 	attr_groups[2] = &arm_cspmu_identifier_attr_group;
501 	attr_groups[3] = &arm_cspmu_cpumask_attr_group;
502 
503 	if (!attr_groups[0] || !attr_groups[1])
504 		return NULL;
505 
506 	return attr_groups;
507 }
508 
509 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
510 {
511 	u32 pmcr = 0;
512 
513 	pmcr |= PMCR_P;
514 	pmcr |= PMCR_C;
515 	writel(pmcr, cspmu->base0 + PMCR);
516 }
517 
518 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
519 {
520 	writel(PMCR_E, cspmu->base0 + PMCR);
521 }
522 
523 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
524 {
525 	writel(0, cspmu->base0 + PMCR);
526 }
527 
528 static void arm_cspmu_enable(struct pmu *pmu)
529 {
530 	bool disabled;
531 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
532 
533 	disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
534 				cspmu->num_logical_ctrs);
535 
536 	if (disabled)
537 		return;
538 
539 	arm_cspmu_start_counters(cspmu);
540 }
541 
542 static void arm_cspmu_disable(struct pmu *pmu)
543 {
544 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
545 
546 	arm_cspmu_stop_counters(cspmu);
547 }
548 
549 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
550 				struct perf_event *event)
551 {
552 	int idx;
553 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
554 
555 	if (supports_cycle_counter(cspmu)) {
556 		if (cspmu->impl.ops.is_cycle_counter_event(event)) {
557 			/* Search for available cycle counter. */
558 			if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
559 					     hw_events->used_ctrs))
560 				return -EAGAIN;
561 
562 			return cspmu->cycle_counter_logical_idx;
563 		}
564 
565 		/*
566 		 * Search a regular counter from the used counter bitmap.
567 		 * The cycle counter divides the bitmap into two parts. Search
568 		 * the first then second half to exclude the cycle counter bit.
569 		 */
570 		idx = find_first_zero_bit(hw_events->used_ctrs,
571 					  cspmu->cycle_counter_logical_idx);
572 		if (idx >= cspmu->cycle_counter_logical_idx) {
573 			idx = find_next_zero_bit(
574 				hw_events->used_ctrs,
575 				cspmu->num_logical_ctrs,
576 				cspmu->cycle_counter_logical_idx + 1);
577 		}
578 	} else {
579 		idx = find_first_zero_bit(hw_events->used_ctrs,
580 					  cspmu->num_logical_ctrs);
581 	}
582 
583 	if (idx >= cspmu->num_logical_ctrs)
584 		return -EAGAIN;
585 
586 	set_bit(idx, hw_events->used_ctrs);
587 
588 	return idx;
589 }
590 
591 static bool arm_cspmu_validate_event(struct pmu *pmu,
592 				 struct arm_cspmu_hw_events *hw_events,
593 				 struct perf_event *event)
594 {
595 	if (is_software_event(event))
596 		return true;
597 
598 	/* Reject groups spanning multiple HW PMUs. */
599 	if (event->pmu != pmu)
600 		return false;
601 
602 	return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
603 }
604 
605 /*
606  * Make sure the group of events can be scheduled at once
607  * on the PMU.
608  */
609 static bool arm_cspmu_validate_group(struct perf_event *event)
610 {
611 	struct perf_event *sibling, *leader = event->group_leader;
612 	struct arm_cspmu_hw_events fake_hw_events;
613 
614 	if (event->group_leader == event)
615 		return true;
616 
617 	memset(&fake_hw_events, 0, sizeof(fake_hw_events));
618 
619 	if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
620 		return false;
621 
622 	for_each_sibling_event(sibling, leader) {
623 		if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
624 						  sibling))
625 			return false;
626 	}
627 
628 	return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
629 }
630 
631 static int arm_cspmu_event_init(struct perf_event *event)
632 {
633 	struct arm_cspmu *cspmu;
634 	struct hw_perf_event *hwc = &event->hw;
635 
636 	cspmu = to_arm_cspmu(event->pmu);
637 
638 	if (event->attr.type != event->pmu->type)
639 		return -ENOENT;
640 
641 	/*
642 	 * Following other "uncore" PMUs, we do not support sampling mode or
643 	 * attach to a task (per-process mode).
644 	 */
645 	if (is_sampling_event(event)) {
646 		dev_dbg(cspmu->pmu.dev,
647 			"Can't support sampling events\n");
648 		return -EOPNOTSUPP;
649 	}
650 
651 	if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
652 		dev_dbg(cspmu->pmu.dev,
653 			"Can't support per-task counters\n");
654 		return -EINVAL;
655 	}
656 
657 	/*
658 	 * Make sure the CPU assignment is on one of the CPUs associated with
659 	 * this PMU.
660 	 */
661 	if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
662 		dev_dbg(cspmu->pmu.dev,
663 			"Requested cpu is not associated with the PMU\n");
664 		return -EINVAL;
665 	}
666 
667 	/* Enforce the current active CPU to handle the events in this PMU. */
668 	event->cpu = cpumask_first(&cspmu->active_cpu);
669 	if (event->cpu >= nr_cpu_ids)
670 		return -EINVAL;
671 
672 	if (!arm_cspmu_validate_group(event))
673 		return -EINVAL;
674 
675 	/*
676 	 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
677 	 * The physical counter id is tracked with hw_perf_event.idx.
678 	 * We don't assign an index until we actually place the event onto
679 	 * hardware. Use -1 to signify that we haven't decided where to put it
680 	 * yet.
681 	 */
682 	hwc->idx = -1;
683 	hwc->extra_reg.idx = -1;
684 	hwc->config = cspmu->impl.ops.event_type(event);
685 
686 	return 0;
687 }
688 
689 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
690 {
691 	return (PMEVCNTR_LO + (reg_sz * ctr_idx));
692 }
693 
694 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
695 {
696 	u32 offset;
697 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
698 
699 	if (use_64b_counter_reg(cspmu)) {
700 		offset = counter_offset(sizeof(u64), event->hw.idx);
701 
702 		writeq(val, cspmu->base1 + offset);
703 	} else {
704 		offset = counter_offset(sizeof(u32), event->hw.idx);
705 
706 		writel(lower_32_bits(val), cspmu->base1 + offset);
707 	}
708 }
709 
710 static u64 arm_cspmu_read_counter(struct perf_event *event)
711 {
712 	u32 offset;
713 	const void __iomem *counter_addr;
714 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
715 
716 	if (use_64b_counter_reg(cspmu)) {
717 		offset = counter_offset(sizeof(u64), event->hw.idx);
718 		counter_addr = cspmu->base1 + offset;
719 
720 		return cspmu->has_atomic_dword ?
721 			       readq(counter_addr) :
722 			       read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
723 	}
724 
725 	offset = counter_offset(sizeof(u32), event->hw.idx);
726 	return readl(cspmu->base1 + offset);
727 }
728 
729 /*
730  * arm_cspmu_set_event_period: Set the period for the counter.
731  *
732  * To handle cases of extreme interrupt latency, we program
733  * the counter with half of the max count for the counters.
734  */
735 static void arm_cspmu_set_event_period(struct perf_event *event)
736 {
737 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
738 	u64 val = counter_mask(cspmu) >> 1ULL;
739 
740 	local64_set(&event->hw.prev_count, val);
741 	arm_cspmu_write_counter(event, val);
742 }
743 
744 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
745 {
746 	u32 reg_id, reg_bit, inten_off, cnten_off;
747 
748 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
749 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
750 
751 	inten_off = PMINTENSET + (4 * reg_id);
752 	cnten_off = PMCNTENSET + (4 * reg_id);
753 
754 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
755 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
756 }
757 
758 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
759 {
760 	u32 reg_id, reg_bit, inten_off, cnten_off;
761 
762 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
763 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
764 
765 	inten_off = PMINTENCLR + (4 * reg_id);
766 	cnten_off = PMCNTENCLR + (4 * reg_id);
767 
768 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
769 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
770 }
771 
772 static void arm_cspmu_event_update(struct perf_event *event)
773 {
774 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
775 	struct hw_perf_event *hwc = &event->hw;
776 	u64 delta, prev, now;
777 
778 	do {
779 		prev = local64_read(&hwc->prev_count);
780 		now = arm_cspmu_read_counter(event);
781 	} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
782 
783 	delta = (now - prev) & counter_mask(cspmu);
784 	local64_add(delta, &event->count);
785 }
786 
787 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
788 					struct hw_perf_event *hwc)
789 {
790 	u32 offset = PMEVTYPER + (4 * hwc->idx);
791 
792 	writel(hwc->config, cspmu->base0 + offset);
793 }
794 
795 static inline void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
796 					   struct hw_perf_event *hwc,
797 					   u32 filter)
798 {
799 	u32 offset = PMEVFILTR + (4 * hwc->idx);
800 
801 	writel(filter, cspmu->base0 + offset);
802 }
803 
804 static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
805 {
806 	u32 offset = PMCCFILTR;
807 
808 	writel(filter, cspmu->base0 + offset);
809 }
810 
811 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
812 {
813 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
814 	struct hw_perf_event *hwc = &event->hw;
815 	u32 filter;
816 
817 	/* We always reprogram the counter */
818 	if (pmu_flags & PERF_EF_RELOAD)
819 		WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
820 
821 	arm_cspmu_set_event_period(event);
822 
823 	filter = cspmu->impl.ops.event_filter(event);
824 
825 	if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
826 		arm_cspmu_set_cc_filter(cspmu, filter);
827 	} else {
828 		arm_cspmu_set_event(cspmu, hwc);
829 		arm_cspmu_set_ev_filter(cspmu, hwc, filter);
830 	}
831 
832 	hwc->state = 0;
833 
834 	arm_cspmu_enable_counter(cspmu, hwc->idx);
835 }
836 
837 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
838 {
839 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
840 	struct hw_perf_event *hwc = &event->hw;
841 
842 	if (hwc->state & PERF_HES_STOPPED)
843 		return;
844 
845 	arm_cspmu_disable_counter(cspmu, hwc->idx);
846 	arm_cspmu_event_update(event);
847 
848 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
849 }
850 
851 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
852 {
853 	return (idx == cspmu->cycle_counter_logical_idx) ?
854 		ARM_CSPMU_CYCLE_CNTR_IDX : idx;
855 }
856 
857 static int arm_cspmu_add(struct perf_event *event, int flags)
858 {
859 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
860 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
861 	struct hw_perf_event *hwc = &event->hw;
862 	int idx;
863 
864 	if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
865 					   &cspmu->associated_cpus)))
866 		return -ENOENT;
867 
868 	idx = arm_cspmu_get_event_idx(hw_events, event);
869 	if (idx < 0)
870 		return idx;
871 
872 	hw_events->events[idx] = event;
873 	hwc->idx = to_phys_idx(cspmu, idx);
874 	hwc->extra_reg.idx = idx;
875 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
876 
877 	if (flags & PERF_EF_START)
878 		arm_cspmu_start(event, PERF_EF_RELOAD);
879 
880 	/* Propagate changes to the userspace mapping. */
881 	perf_event_update_userpage(event);
882 
883 	return 0;
884 }
885 
886 static void arm_cspmu_del(struct perf_event *event, int flags)
887 {
888 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
889 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
890 	struct hw_perf_event *hwc = &event->hw;
891 	int idx = hwc->extra_reg.idx;
892 
893 	arm_cspmu_stop(event, PERF_EF_UPDATE);
894 
895 	hw_events->events[idx] = NULL;
896 
897 	clear_bit(idx, hw_events->used_ctrs);
898 
899 	perf_event_update_userpage(event);
900 }
901 
902 static void arm_cspmu_read(struct perf_event *event)
903 {
904 	arm_cspmu_event_update(event);
905 }
906 
907 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
908 {
909 	struct acpi_apmt_node *apmt_node;
910 	struct arm_cspmu *cspmu;
911 	struct device *dev = &pdev->dev;
912 
913 	cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
914 	if (!cspmu)
915 		return NULL;
916 
917 	cspmu->dev = dev;
918 	platform_set_drvdata(pdev, cspmu);
919 
920 	apmt_node = arm_cspmu_apmt_node(dev);
921 	cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
922 
923 	return cspmu;
924 }
925 
926 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
927 {
928 	struct device *dev;
929 	struct platform_device *pdev;
930 
931 	dev = cspmu->dev;
932 	pdev = to_platform_device(dev);
933 
934 	/* Base address for page 0. */
935 	cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
936 	if (IS_ERR(cspmu->base0)) {
937 		dev_err(dev, "ioremap failed for page-0 resource\n");
938 		return PTR_ERR(cspmu->base0);
939 	}
940 
941 	/* Base address for page 1 if supported. Otherwise point to page 0. */
942 	cspmu->base1 = cspmu->base0;
943 	if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
944 		cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
945 		if (IS_ERR(cspmu->base1)) {
946 			dev_err(dev, "ioremap failed for page-1 resource\n");
947 			return PTR_ERR(cspmu->base1);
948 		}
949 	}
950 
951 	cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
952 
953 	cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
954 
955 	cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
956 
957 	if (supports_cycle_counter(cspmu)) {
958 		/*
959 		 * The last logical counter is mapped to cycle counter if
960 		 * there is a gap between regular and cycle counter. Otherwise,
961 		 * logical and physical have 1-to-1 mapping.
962 		 */
963 		cspmu->cycle_counter_logical_idx =
964 			(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
965 				cspmu->num_logical_ctrs - 1 :
966 				ARM_CSPMU_CYCLE_CNTR_IDX;
967 	}
968 
969 	cspmu->num_set_clr_reg =
970 		DIV_ROUND_UP(cspmu->num_logical_ctrs,
971 				ARM_CSPMU_SET_CLR_COUNTER_NUM);
972 
973 	cspmu->hw_events.events =
974 		devm_kcalloc(dev, cspmu->num_logical_ctrs,
975 			     sizeof(*cspmu->hw_events.events), GFP_KERNEL);
976 
977 	if (!cspmu->hw_events.events)
978 		return -ENOMEM;
979 
980 	return 0;
981 }
982 
983 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
984 					       u32 *pmovs)
985 {
986 	int i;
987 	u32 pmovclr_offset = PMOVSCLR;
988 	u32 has_overflowed = 0;
989 
990 	for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
991 		pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
992 		has_overflowed |= pmovs[i];
993 		writel(pmovs[i], cspmu->base1 + pmovclr_offset);
994 		pmovclr_offset += sizeof(u32);
995 	}
996 
997 	return has_overflowed != 0;
998 }
999 
1000 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1001 {
1002 	int idx, has_overflowed;
1003 	struct perf_event *event;
1004 	struct arm_cspmu *cspmu = dev;
1005 	DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1006 	bool handled = false;
1007 
1008 	arm_cspmu_stop_counters(cspmu);
1009 
1010 	has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1011 	if (!has_overflowed)
1012 		goto done;
1013 
1014 	for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1015 			cspmu->num_logical_ctrs) {
1016 		event = cspmu->hw_events.events[idx];
1017 
1018 		if (!event)
1019 			continue;
1020 
1021 		if (!test_bit(event->hw.idx, pmovs))
1022 			continue;
1023 
1024 		arm_cspmu_event_update(event);
1025 		arm_cspmu_set_event_period(event);
1026 
1027 		handled = true;
1028 	}
1029 
1030 done:
1031 	arm_cspmu_start_counters(cspmu);
1032 	return IRQ_RETVAL(handled);
1033 }
1034 
1035 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1036 {
1037 	int irq, ret;
1038 	struct device *dev;
1039 	struct platform_device *pdev;
1040 
1041 	dev = cspmu->dev;
1042 	pdev = to_platform_device(dev);
1043 
1044 	/* Skip IRQ request if the PMU does not support overflow interrupt. */
1045 	irq = platform_get_irq_optional(pdev, 0);
1046 	if (irq < 0)
1047 		return irq == -ENXIO ? 0 : irq;
1048 
1049 	ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1050 			       IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1051 			       cspmu);
1052 	if (ret) {
1053 		dev_err(dev, "Could not request IRQ %d\n", irq);
1054 		return ret;
1055 	}
1056 
1057 	cspmu->irq = irq;
1058 
1059 	return 0;
1060 }
1061 
1062 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1063 #include <acpi/processor.h>
1064 
1065 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1066 {
1067 	u32 acpi_uid;
1068 	struct device *cpu_dev;
1069 	struct acpi_device *acpi_dev;
1070 
1071 	cpu_dev = get_cpu_device(cpu);
1072 	if (!cpu_dev)
1073 		return -ENODEV;
1074 
1075 	acpi_dev = ACPI_COMPANION(cpu_dev);
1076 	while (acpi_dev) {
1077 		if (!strcmp(acpi_device_hid(acpi_dev),
1078 			    ACPI_PROCESSOR_CONTAINER_HID) &&
1079 		    !kstrtouint(acpi_device_uid(acpi_dev), 0, &acpi_uid) &&
1080 		    acpi_uid == container_uid)
1081 			return 0;
1082 
1083 		acpi_dev = acpi_dev_parent(acpi_dev);
1084 	}
1085 
1086 	return -ENODEV;
1087 }
1088 
1089 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1090 {
1091 	struct acpi_apmt_node *apmt_node;
1092 	int affinity_flag;
1093 	int cpu;
1094 
1095 	apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1096 	affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1097 
1098 	if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1099 		for_each_possible_cpu(cpu) {
1100 			if (apmt_node->proc_affinity ==
1101 			    get_acpi_id_for_cpu(cpu)) {
1102 				cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1103 				break;
1104 			}
1105 		}
1106 	} else {
1107 		for_each_possible_cpu(cpu) {
1108 			if (arm_cspmu_find_cpu_container(
1109 				    cpu, apmt_node->proc_affinity))
1110 				continue;
1111 
1112 			cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1113 		}
1114 	}
1115 
1116 	if (cpumask_empty(&cspmu->associated_cpus)) {
1117 		dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1118 		return -ENODEV;
1119 	}
1120 
1121 	return 0;
1122 }
1123 #else
1124 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1125 {
1126 	return -ENODEV;
1127 }
1128 #endif
1129 
1130 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1131 {
1132 	return arm_cspmu_acpi_get_cpus(cspmu);
1133 }
1134 
1135 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1136 {
1137 	int ret, capabilities;
1138 	struct attribute_group **attr_groups;
1139 
1140 	attr_groups = arm_cspmu_alloc_attr_group(cspmu);
1141 	if (!attr_groups)
1142 		return -ENOMEM;
1143 
1144 	ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1145 				       &cspmu->cpuhp_node);
1146 	if (ret)
1147 		return ret;
1148 
1149 	capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1150 	if (cspmu->irq == 0)
1151 		capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1152 
1153 	cspmu->pmu = (struct pmu){
1154 		.task_ctx_nr	= perf_invalid_context,
1155 		.module		= THIS_MODULE,
1156 		.pmu_enable	= arm_cspmu_enable,
1157 		.pmu_disable	= arm_cspmu_disable,
1158 		.event_init	= arm_cspmu_event_init,
1159 		.add		= arm_cspmu_add,
1160 		.del		= arm_cspmu_del,
1161 		.start		= arm_cspmu_start,
1162 		.stop		= arm_cspmu_stop,
1163 		.read		= arm_cspmu_read,
1164 		.attr_groups	= (const struct attribute_group **)attr_groups,
1165 		.capabilities	= capabilities,
1166 	};
1167 
1168 	/* Hardware counter init */
1169 	arm_cspmu_stop_counters(cspmu);
1170 	arm_cspmu_reset_counters(cspmu);
1171 
1172 	ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1173 	if (ret) {
1174 		cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1175 					    &cspmu->cpuhp_node);
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 static int arm_cspmu_device_probe(struct platform_device *pdev)
1182 {
1183 	int ret;
1184 	struct arm_cspmu *cspmu;
1185 
1186 	cspmu = arm_cspmu_alloc(pdev);
1187 	if (!cspmu)
1188 		return -ENOMEM;
1189 
1190 	ret = arm_cspmu_init_mmio(cspmu);
1191 	if (ret)
1192 		return ret;
1193 
1194 	ret = arm_cspmu_request_irq(cspmu);
1195 	if (ret)
1196 		return ret;
1197 
1198 	ret = arm_cspmu_get_cpus(cspmu);
1199 	if (ret)
1200 		return ret;
1201 
1202 	ret = arm_cspmu_register_pmu(cspmu);
1203 	if (ret)
1204 		return ret;
1205 
1206 	return 0;
1207 }
1208 
1209 static int arm_cspmu_device_remove(struct platform_device *pdev)
1210 {
1211 	struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1212 
1213 	perf_pmu_unregister(&cspmu->pmu);
1214 	cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1215 
1216 	return 0;
1217 }
1218 
1219 static const struct platform_device_id arm_cspmu_id[] = {
1220 	{DRVNAME, 0},
1221 	{ },
1222 };
1223 MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1224 
1225 static struct platform_driver arm_cspmu_driver = {
1226 	.driver = {
1227 			.name = DRVNAME,
1228 			.suppress_bind_attrs = true,
1229 		},
1230 	.probe = arm_cspmu_device_probe,
1231 	.remove = arm_cspmu_device_remove,
1232 	.id_table = arm_cspmu_id,
1233 };
1234 
1235 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1236 {
1237 	cpumask_set_cpu(cpu, &cspmu->active_cpu);
1238 	if (cspmu->irq)
1239 		WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1240 }
1241 
1242 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1243 {
1244 	struct arm_cspmu *cspmu =
1245 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1246 
1247 	if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1248 		return 0;
1249 
1250 	/* If the PMU is already managed, there is nothing to do */
1251 	if (!cpumask_empty(&cspmu->active_cpu))
1252 		return 0;
1253 
1254 	/* Use this CPU for event counting */
1255 	arm_cspmu_set_active_cpu(cpu, cspmu);
1256 
1257 	return 0;
1258 }
1259 
1260 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1261 {
1262 	int dst;
1263 	struct cpumask online_supported;
1264 
1265 	struct arm_cspmu *cspmu =
1266 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1267 
1268 	/* Nothing to do if this CPU doesn't own the PMU */
1269 	if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1270 		return 0;
1271 
1272 	/* Choose a new CPU to migrate ownership of the PMU to */
1273 	cpumask_and(&online_supported, &cspmu->associated_cpus,
1274 		    cpu_online_mask);
1275 	dst = cpumask_any_but(&online_supported, cpu);
1276 	if (dst >= nr_cpu_ids)
1277 		return 0;
1278 
1279 	/* Use this CPU for event counting */
1280 	perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1281 	arm_cspmu_set_active_cpu(dst, cspmu);
1282 
1283 	return 0;
1284 }
1285 
1286 static int __init arm_cspmu_init(void)
1287 {
1288 	int ret;
1289 
1290 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1291 					"perf/arm/cspmu:online",
1292 					arm_cspmu_cpu_online,
1293 					arm_cspmu_cpu_teardown);
1294 	if (ret < 0)
1295 		return ret;
1296 	arm_cspmu_cpuhp_state = ret;
1297 	return platform_driver_register(&arm_cspmu_driver);
1298 }
1299 
1300 static void __exit arm_cspmu_exit(void)
1301 {
1302 	platform_driver_unregister(&arm_cspmu_driver);
1303 	cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1304 }
1305 
1306 module_init(arm_cspmu_init);
1307 module_exit(arm_cspmu_exit);
1308 
1309 MODULE_LICENSE("GPL v2");
1310