xref: /openbmc/linux/drivers/pci/pci.c (revision d92a208d086063ecc785b4588f74ab42268cbc4b)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29 
30 const char *pci_power_names[] = {
31 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34 
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37 
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40 
41 unsigned int pci_pm_d3_delay;
42 
43 static void pci_pme_list_scan(struct work_struct *work);
44 
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48 
49 struct pci_pme_device {
50 	struct list_head list;
51 	struct pci_dev *dev;
52 };
53 
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55 
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 	unsigned int delay = dev->d3_delay;
59 
60 	if (delay < pci_pm_d3_delay)
61 		delay = pci_pm_d3_delay;
62 
63 	msleep(delay);
64 }
65 
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69 
70 #define DEFAULT_CARDBUS_IO_SIZE		(256)
71 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75 
76 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81 
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83 
84 /*
85  * The default CLS is used if arch didn't set CLS explicitly and not
86  * all pci devices agree on the same value.  Arch can override either
87  * the dfl or actual value as it sees fit.  Don't forget this is
88  * measured in 32-bit words, not bytes.
89  */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92 
93 /*
94  * If we set up a device for bus mastering, we need to check the latency
95  * timer as certain BIOSes forget to set it properly.
96  */
97 unsigned int pcibios_max_latency = 255;
98 
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101 
102 /**
103  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104  * @bus: pointer to PCI bus structure to search
105  *
106  * Given a PCI bus, returns the highest PCI bus number present in the set
107  * including the given PCI bus and its list of child PCI buses.
108  */
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 {
111 	struct pci_bus *tmp;
112 	unsigned char max, n;
113 
114 	max = bus->busn_res.end;
115 	list_for_each_entry(tmp, &bus->children, node) {
116 		n = pci_bus_max_busnr(tmp);
117 		if(n > max)
118 			max = n;
119 	}
120 	return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123 
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 	/*
128 	 * Make sure the BAR is actually a memory resource, not an IO resource
129 	 */
130 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 		WARN_ON(1);
132 		return NULL;
133 	}
134 	return ioremap_nocache(pci_resource_start(pdev, bar),
135 				     pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139 
140 #define PCI_FIND_CAP_TTL	48
141 
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 				   u8 pos, int cap, int *ttl)
144 {
145 	u8 id;
146 
147 	while ((*ttl)--) {
148 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 		if (pos < 0x40)
150 			break;
151 		pos &= ~3;
152 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 					 &id);
154 		if (id == 0xff)
155 			break;
156 		if (id == cap)
157 			return pos;
158 		pos += PCI_CAP_LIST_NEXT;
159 	}
160 	return 0;
161 }
162 
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 			       u8 pos, int cap)
165 {
166 	int ttl = PCI_FIND_CAP_TTL;
167 
168 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170 
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 	return __pci_find_next_cap(dev->bus, dev->devfn,
174 				   pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177 
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 				    unsigned int devfn, u8 hdr_type)
180 {
181 	u16 status;
182 
183 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 	if (!(status & PCI_STATUS_CAP_LIST))
185 		return 0;
186 
187 	switch (hdr_type) {
188 	case PCI_HEADER_TYPE_NORMAL:
189 	case PCI_HEADER_TYPE_BRIDGE:
190 		return PCI_CAPABILITY_LIST;
191 	case PCI_HEADER_TYPE_CARDBUS:
192 		return PCI_CB_CAPABILITY_LIST;
193 	default:
194 		return 0;
195 	}
196 
197 	return 0;
198 }
199 
200 /**
201  * pci_find_capability - query for devices' capabilities
202  * @dev: PCI device to query
203  * @cap: capability code
204  *
205  * Tell if a device supports a given PCI capability.
206  * Returns the address of the requested capability structure within the
207  * device's PCI configuration space or 0 in case the device does not
208  * support it.  Possible values for @cap:
209  *
210  *  %PCI_CAP_ID_PM           Power Management
211  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
212  *  %PCI_CAP_ID_VPD          Vital Product Data
213  *  %PCI_CAP_ID_SLOTID       Slot Identification
214  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
215  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
216  *  %PCI_CAP_ID_PCIX         PCI-X
217  *  %PCI_CAP_ID_EXP          PCI Express
218  */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 	int pos;
222 
223 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 	if (pos)
225 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226 
227 	return pos;
228 }
229 
230 /**
231  * pci_bus_find_capability - query for devices' capabilities
232  * @bus:   the PCI bus to query
233  * @devfn: PCI device to query
234  * @cap:   capability code
235  *
236  * Like pci_find_capability() but works for pci devices that do not have a
237  * pci_dev structure set up yet.
238  *
239  * Returns the address of the requested capability structure within the
240  * device's PCI configuration space or 0 in case the device does not
241  * support it.
242  */
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244 {
245 	int pos;
246 	u8 hdr_type;
247 
248 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249 
250 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 	if (pos)
252 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
253 
254 	return pos;
255 }
256 
257 /**
258  * pci_find_next_ext_capability - Find an extended capability
259  * @dev: PCI device to query
260  * @start: address at which to start looking (0 to start at beginning of list)
261  * @cap: capability code
262  *
263  * Returns the address of the next matching extended capability structure
264  * within the device's PCI configuration space or 0 if the device does
265  * not support it.  Some capabilities can occur several times, e.g., the
266  * vendor-specific capability, and this provides a way to find them all.
267  */
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269 {
270 	u32 header;
271 	int ttl;
272 	int pos = PCI_CFG_SPACE_SIZE;
273 
274 	/* minimum 8 bytes per capability */
275 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276 
277 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 		return 0;
279 
280 	if (start)
281 		pos = start;
282 
283 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 		return 0;
285 
286 	/*
287 	 * If we have no capabilities, this is indicated by cap ID,
288 	 * cap version and next pointer all being 0.
289 	 */
290 	if (header == 0)
291 		return 0;
292 
293 	while (ttl-- > 0) {
294 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 			return pos;
296 
297 		pos = PCI_EXT_CAP_NEXT(header);
298 		if (pos < PCI_CFG_SPACE_SIZE)
299 			break;
300 
301 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 			break;
303 	}
304 
305 	return 0;
306 }
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308 
309 /**
310  * pci_find_ext_capability - Find an extended capability
311  * @dev: PCI device to query
312  * @cap: capability code
313  *
314  * Returns the address of the requested extended capability structure
315  * within the device's PCI configuration space or 0 if the device does
316  * not support it.  Possible values for @cap:
317  *
318  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
319  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
320  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
321  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
322  */
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
324 {
325 	return pci_find_next_ext_capability(dev, 0, cap);
326 }
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328 
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330 {
331 	int rc, ttl = PCI_FIND_CAP_TTL;
332 	u8 cap, mask;
333 
334 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 		mask = HT_3BIT_CAP_MASK;
336 	else
337 		mask = HT_5BIT_CAP_MASK;
338 
339 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 				      PCI_CAP_ID_HT, &ttl);
341 	while (pos) {
342 		rc = pci_read_config_byte(dev, pos + 3, &cap);
343 		if (rc != PCIBIOS_SUCCESSFUL)
344 			return 0;
345 
346 		if ((cap & mask) == ht_cap)
347 			return pos;
348 
349 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 					      pos + PCI_CAP_LIST_NEXT,
351 					      PCI_CAP_ID_HT, &ttl);
352 	}
353 
354 	return 0;
355 }
356 /**
357  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358  * @dev: PCI device to query
359  * @pos: Position from which to continue searching
360  * @ht_cap: Hypertransport capability code
361  *
362  * To be used in conjunction with pci_find_ht_capability() to search for
363  * all capabilities matching @ht_cap. @pos should always be a value returned
364  * from pci_find_ht_capability().
365  *
366  * NB. To be 100% safe against broken PCI devices, the caller should take
367  * steps to avoid an infinite loop.
368  */
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370 {
371 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372 }
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374 
375 /**
376  * pci_find_ht_capability - query a device's Hypertransport capabilities
377  * @dev: PCI device to query
378  * @ht_cap: Hypertransport capability code
379  *
380  * Tell if a device supports a given Hypertransport capability.
381  * Returns an address within the device's PCI configuration space
382  * or 0 in case the device does not support the request capability.
383  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384  * which has a Hypertransport capability matching @ht_cap.
385  */
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387 {
388 	int pos;
389 
390 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 	if (pos)
392 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393 
394 	return pos;
395 }
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397 
398 /**
399  * pci_find_parent_resource - return resource region of parent bus of given region
400  * @dev: PCI device structure contains resources to be searched
401  * @res: child resource record for which parent is sought
402  *
403  *  For given resource region of given device, return the resource
404  *  region of parent bus the given region is contained in.
405  */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 	const struct pci_bus *bus = dev->bus;
410 	struct resource *r;
411 	int i;
412 
413 	pci_bus_for_each_resource(bus, r, i) {
414 		if (!r)
415 			continue;
416 		if (res->start && resource_contains(r, res)) {
417 
418 			/*
419 			 * If the window is prefetchable but the BAR is
420 			 * not, the allocator made a mistake.
421 			 */
422 			if (r->flags & IORESOURCE_PREFETCH &&
423 			    !(res->flags & IORESOURCE_PREFETCH))
424 				return NULL;
425 
426 			/*
427 			 * If we're below a transparent bridge, there may
428 			 * be both a positively-decoded aperture and a
429 			 * subtractively-decoded region that contain the BAR.
430 			 * We want the positively-decoded one, so this depends
431 			 * on pci_bus_for_each_resource() giving us those
432 			 * first.
433 			 */
434 			return r;
435 		}
436 	}
437 	return NULL;
438 }
439 
440 /**
441  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
442  * @dev: the PCI device to operate on
443  * @pos: config space offset of status word
444  * @mask: mask of bit(s) to care about in status word
445  *
446  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
447  */
448 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
449 {
450 	int i;
451 
452 	/* Wait for Transaction Pending bit clean */
453 	for (i = 0; i < 4; i++) {
454 		u16 status;
455 		if (i)
456 			msleep((1 << (i - 1)) * 100);
457 
458 		pci_read_config_word(dev, pos, &status);
459 		if (!(status & mask))
460 			return 1;
461 	}
462 
463 	return 0;
464 }
465 
466 /**
467  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
468  * @dev: PCI device to have its BARs restored
469  *
470  * Restore the BAR values for a given device, so as to make it
471  * accessible by its driver.
472  */
473 static void
474 pci_restore_bars(struct pci_dev *dev)
475 {
476 	int i;
477 
478 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
479 		pci_update_resource(dev, i);
480 }
481 
482 static struct pci_platform_pm_ops *pci_platform_pm;
483 
484 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
485 {
486 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
487 	    || !ops->sleep_wake)
488 		return -EINVAL;
489 	pci_platform_pm = ops;
490 	return 0;
491 }
492 
493 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
494 {
495 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
496 }
497 
498 static inline int platform_pci_set_power_state(struct pci_dev *dev,
499                                                 pci_power_t t)
500 {
501 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
502 }
503 
504 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
505 {
506 	return pci_platform_pm ?
507 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
508 }
509 
510 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
511 {
512 	return pci_platform_pm ?
513 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
514 }
515 
516 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
517 {
518 	return pci_platform_pm ?
519 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
520 }
521 
522 /**
523  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
524  *                           given PCI device
525  * @dev: PCI device to handle.
526  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
527  *
528  * RETURN VALUE:
529  * -EINVAL if the requested state is invalid.
530  * -EIO if device does not support PCI PM or its PM capabilities register has a
531  * wrong version, or device doesn't support the requested state.
532  * 0 if device already is in the requested state.
533  * 0 if device's power state has been successfully changed.
534  */
535 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
536 {
537 	u16 pmcsr;
538 	bool need_restore = false;
539 
540 	/* Check if we're already there */
541 	if (dev->current_state == state)
542 		return 0;
543 
544 	if (!dev->pm_cap)
545 		return -EIO;
546 
547 	if (state < PCI_D0 || state > PCI_D3hot)
548 		return -EINVAL;
549 
550 	/* Validate current state:
551 	 * Can enter D0 from any state, but if we can only go deeper
552 	 * to sleep if we're already in a low power state
553 	 */
554 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
555 	    && dev->current_state > state) {
556 		dev_err(&dev->dev, "invalid power transition "
557 			"(from state %d to %d)\n", dev->current_state, state);
558 		return -EINVAL;
559 	}
560 
561 	/* check if this device supports the desired state */
562 	if ((state == PCI_D1 && !dev->d1_support)
563 	   || (state == PCI_D2 && !dev->d2_support))
564 		return -EIO;
565 
566 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
567 
568 	/* If we're (effectively) in D3, force entire word to 0.
569 	 * This doesn't affect PME_Status, disables PME_En, and
570 	 * sets PowerState to 0.
571 	 */
572 	switch (dev->current_state) {
573 	case PCI_D0:
574 	case PCI_D1:
575 	case PCI_D2:
576 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
577 		pmcsr |= state;
578 		break;
579 	case PCI_D3hot:
580 	case PCI_D3cold:
581 	case PCI_UNKNOWN: /* Boot-up */
582 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
583 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
584 			need_restore = true;
585 		/* Fall-through: force to D0 */
586 	default:
587 		pmcsr = 0;
588 		break;
589 	}
590 
591 	/* enter specified state */
592 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
593 
594 	/* Mandatory power management transition delays */
595 	/* see PCI PM 1.1 5.6.1 table 18 */
596 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
597 		pci_dev_d3_sleep(dev);
598 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
599 		udelay(PCI_PM_D2_DELAY);
600 
601 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
602 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
603 	if (dev->current_state != state && printk_ratelimit())
604 		dev_info(&dev->dev, "Refused to change power state, "
605 			"currently in D%d\n", dev->current_state);
606 
607 	/*
608 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
609 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
610 	 * from D3hot to D0 _may_ perform an internal reset, thereby
611 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
612 	 * For example, at least some versions of the 3c905B and the
613 	 * 3c556B exhibit this behaviour.
614 	 *
615 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
616 	 * devices in a D3hot state at boot.  Consequently, we need to
617 	 * restore at least the BARs so that the device will be
618 	 * accessible to its driver.
619 	 */
620 	if (need_restore)
621 		pci_restore_bars(dev);
622 
623 	if (dev->bus->self)
624 		pcie_aspm_pm_state_change(dev->bus->self);
625 
626 	return 0;
627 }
628 
629 /**
630  * pci_update_current_state - Read PCI power state of given device from its
631  *                            PCI PM registers and cache it
632  * @dev: PCI device to handle.
633  * @state: State to cache in case the device doesn't have the PM capability
634  */
635 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
636 {
637 	if (dev->pm_cap) {
638 		u16 pmcsr;
639 
640 		/*
641 		 * Configuration space is not accessible for device in
642 		 * D3cold, so just keep or set D3cold for safety
643 		 */
644 		if (dev->current_state == PCI_D3cold)
645 			return;
646 		if (state == PCI_D3cold) {
647 			dev->current_state = PCI_D3cold;
648 			return;
649 		}
650 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
651 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
652 	} else {
653 		dev->current_state = state;
654 	}
655 }
656 
657 /**
658  * pci_power_up - Put the given device into D0 forcibly
659  * @dev: PCI device to power up
660  */
661 void pci_power_up(struct pci_dev *dev)
662 {
663 	if (platform_pci_power_manageable(dev))
664 		platform_pci_set_power_state(dev, PCI_D0);
665 
666 	pci_raw_set_power_state(dev, PCI_D0);
667 	pci_update_current_state(dev, PCI_D0);
668 }
669 
670 /**
671  * pci_platform_power_transition - Use platform to change device power state
672  * @dev: PCI device to handle.
673  * @state: State to put the device into.
674  */
675 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
676 {
677 	int error;
678 
679 	if (platform_pci_power_manageable(dev)) {
680 		error = platform_pci_set_power_state(dev, state);
681 		if (!error)
682 			pci_update_current_state(dev, state);
683 	} else
684 		error = -ENODEV;
685 
686 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
687 		dev->current_state = PCI_D0;
688 
689 	return error;
690 }
691 
692 /**
693  * pci_wakeup - Wake up a PCI device
694  * @pci_dev: Device to handle.
695  * @ign: ignored parameter
696  */
697 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
698 {
699 	pci_wakeup_event(pci_dev);
700 	pm_request_resume(&pci_dev->dev);
701 	return 0;
702 }
703 
704 /**
705  * pci_wakeup_bus - Walk given bus and wake up devices on it
706  * @bus: Top bus of the subtree to walk.
707  */
708 static void pci_wakeup_bus(struct pci_bus *bus)
709 {
710 	if (bus)
711 		pci_walk_bus(bus, pci_wakeup, NULL);
712 }
713 
714 /**
715  * __pci_start_power_transition - Start power transition of a PCI device
716  * @dev: PCI device to handle.
717  * @state: State to put the device into.
718  */
719 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
720 {
721 	if (state == PCI_D0) {
722 		pci_platform_power_transition(dev, PCI_D0);
723 		/*
724 		 * Mandatory power management transition delays, see
725 		 * PCI Express Base Specification Revision 2.0 Section
726 		 * 6.6.1: Conventional Reset.  Do not delay for
727 		 * devices powered on/off by corresponding bridge,
728 		 * because have already delayed for the bridge.
729 		 */
730 		if (dev->runtime_d3cold) {
731 			msleep(dev->d3cold_delay);
732 			/*
733 			 * When powering on a bridge from D3cold, the
734 			 * whole hierarchy may be powered on into
735 			 * D0uninitialized state, resume them to give
736 			 * them a chance to suspend again
737 			 */
738 			pci_wakeup_bus(dev->subordinate);
739 		}
740 	}
741 }
742 
743 /**
744  * __pci_dev_set_current_state - Set current state of a PCI device
745  * @dev: Device to handle
746  * @data: pointer to state to be set
747  */
748 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
749 {
750 	pci_power_t state = *(pci_power_t *)data;
751 
752 	dev->current_state = state;
753 	return 0;
754 }
755 
756 /**
757  * __pci_bus_set_current_state - Walk given bus and set current state of devices
758  * @bus: Top bus of the subtree to walk.
759  * @state: state to be set
760  */
761 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
762 {
763 	if (bus)
764 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
765 }
766 
767 /**
768  * __pci_complete_power_transition - Complete power transition of a PCI device
769  * @dev: PCI device to handle.
770  * @state: State to put the device into.
771  *
772  * This function should not be called directly by device drivers.
773  */
774 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 	int ret;
777 
778 	if (state <= PCI_D0)
779 		return -EINVAL;
780 	ret = pci_platform_power_transition(dev, state);
781 	/* Power off the bridge may power off the whole hierarchy */
782 	if (!ret && state == PCI_D3cold)
783 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
784 	return ret;
785 }
786 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
787 
788 /**
789  * pci_set_power_state - Set the power state of a PCI device
790  * @dev: PCI device to handle.
791  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
792  *
793  * Transition a device to a new power state, using the platform firmware and/or
794  * the device's PCI PM registers.
795  *
796  * RETURN VALUE:
797  * -EINVAL if the requested state is invalid.
798  * -EIO if device does not support PCI PM or its PM capabilities register has a
799  * wrong version, or device doesn't support the requested state.
800  * 0 if device already is in the requested state.
801  * 0 if device's power state has been successfully changed.
802  */
803 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
804 {
805 	int error;
806 
807 	/* bound the state we're entering */
808 	if (state > PCI_D3cold)
809 		state = PCI_D3cold;
810 	else if (state < PCI_D0)
811 		state = PCI_D0;
812 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
813 		/*
814 		 * If the device or the parent bridge do not support PCI PM,
815 		 * ignore the request if we're doing anything other than putting
816 		 * it into D0 (which would only happen on boot).
817 		 */
818 		return 0;
819 
820 	/* Check if we're already there */
821 	if (dev->current_state == state)
822 		return 0;
823 
824 	__pci_start_power_transition(dev, state);
825 
826 	/* This device is quirked not to be put into D3, so
827 	   don't put it in D3 */
828 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
829 		return 0;
830 
831 	/*
832 	 * To put device in D3cold, we put device into D3hot in native
833 	 * way, then put device into D3cold with platform ops
834 	 */
835 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
836 					PCI_D3hot : state);
837 
838 	if (!__pci_complete_power_transition(dev, state))
839 		error = 0;
840 	/*
841 	 * When aspm_policy is "powersave" this call ensures
842 	 * that ASPM is configured.
843 	 */
844 	if (!error && dev->bus->self)
845 		pcie_aspm_powersave_config_link(dev->bus->self);
846 
847 	return error;
848 }
849 
850 /**
851  * pci_choose_state - Choose the power state of a PCI device
852  * @dev: PCI device to be suspended
853  * @state: target sleep state for the whole system. This is the value
854  *	that is passed to suspend() function.
855  *
856  * Returns PCI power state suitable for given device and given system
857  * message.
858  */
859 
860 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
861 {
862 	pci_power_t ret;
863 
864 	if (!dev->pm_cap)
865 		return PCI_D0;
866 
867 	ret = platform_pci_choose_state(dev);
868 	if (ret != PCI_POWER_ERROR)
869 		return ret;
870 
871 	switch (state.event) {
872 	case PM_EVENT_ON:
873 		return PCI_D0;
874 	case PM_EVENT_FREEZE:
875 	case PM_EVENT_PRETHAW:
876 		/* REVISIT both freeze and pre-thaw "should" use D0 */
877 	case PM_EVENT_SUSPEND:
878 	case PM_EVENT_HIBERNATE:
879 		return PCI_D3hot;
880 	default:
881 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
882 			 state.event);
883 		BUG();
884 	}
885 	return PCI_D0;
886 }
887 
888 EXPORT_SYMBOL(pci_choose_state);
889 
890 #define PCI_EXP_SAVE_REGS	7
891 
892 
893 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
894 						       u16 cap, bool extended)
895 {
896 	struct pci_cap_saved_state *tmp;
897 
898 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
899 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
900 			return tmp;
901 	}
902 	return NULL;
903 }
904 
905 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
906 {
907 	return _pci_find_saved_cap(dev, cap, false);
908 }
909 
910 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
911 {
912 	return _pci_find_saved_cap(dev, cap, true);
913 }
914 
915 static int pci_save_pcie_state(struct pci_dev *dev)
916 {
917 	int i = 0;
918 	struct pci_cap_saved_state *save_state;
919 	u16 *cap;
920 
921 	if (!pci_is_pcie(dev))
922 		return 0;
923 
924 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
925 	if (!save_state) {
926 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 		return -ENOMEM;
928 	}
929 
930 	cap = (u16 *)&save_state->cap.data[0];
931 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
932 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
933 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
934 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
935 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
936 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
937 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
938 
939 	return 0;
940 }
941 
942 static void pci_restore_pcie_state(struct pci_dev *dev)
943 {
944 	int i = 0;
945 	struct pci_cap_saved_state *save_state;
946 	u16 *cap;
947 
948 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
949 	if (!save_state)
950 		return;
951 
952 	cap = (u16 *)&save_state->cap.data[0];
953 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
954 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
955 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
956 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
957 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
958 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
959 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
960 }
961 
962 
963 static int pci_save_pcix_state(struct pci_dev *dev)
964 {
965 	int pos;
966 	struct pci_cap_saved_state *save_state;
967 
968 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
969 	if (pos <= 0)
970 		return 0;
971 
972 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
973 	if (!save_state) {
974 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
975 		return -ENOMEM;
976 	}
977 
978 	pci_read_config_word(dev, pos + PCI_X_CMD,
979 			     (u16 *)save_state->cap.data);
980 
981 	return 0;
982 }
983 
984 static void pci_restore_pcix_state(struct pci_dev *dev)
985 {
986 	int i = 0, pos;
987 	struct pci_cap_saved_state *save_state;
988 	u16 *cap;
989 
990 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
991 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
992 	if (!save_state || pos <= 0)
993 		return;
994 	cap = (u16 *)&save_state->cap.data[0];
995 
996 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
997 }
998 
999 
1000 /**
1001  * pci_save_state - save the PCI configuration space of a device before suspending
1002  * @dev: - PCI device that we're dealing with
1003  */
1004 int
1005 pci_save_state(struct pci_dev *dev)
1006 {
1007 	int i;
1008 	/* XXX: 100% dword access ok here? */
1009 	for (i = 0; i < 16; i++)
1010 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011 	dev->state_saved = true;
1012 	if ((i = pci_save_pcie_state(dev)) != 0)
1013 		return i;
1014 	if ((i = pci_save_pcix_state(dev)) != 0)
1015 		return i;
1016 	if ((i = pci_save_vc_state(dev)) != 0)
1017 		return i;
1018 	return 0;
1019 }
1020 
1021 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1022 				     u32 saved_val, int retry)
1023 {
1024 	u32 val;
1025 
1026 	pci_read_config_dword(pdev, offset, &val);
1027 	if (val == saved_val)
1028 		return;
1029 
1030 	for (;;) {
1031 		dev_dbg(&pdev->dev, "restoring config space at offset "
1032 			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1033 		pci_write_config_dword(pdev, offset, saved_val);
1034 		if (retry-- <= 0)
1035 			return;
1036 
1037 		pci_read_config_dword(pdev, offset, &val);
1038 		if (val == saved_val)
1039 			return;
1040 
1041 		mdelay(1);
1042 	}
1043 }
1044 
1045 static void pci_restore_config_space_range(struct pci_dev *pdev,
1046 					   int start, int end, int retry)
1047 {
1048 	int index;
1049 
1050 	for (index = end; index >= start; index--)
1051 		pci_restore_config_dword(pdev, 4 * index,
1052 					 pdev->saved_config_space[index],
1053 					 retry);
1054 }
1055 
1056 static void pci_restore_config_space(struct pci_dev *pdev)
1057 {
1058 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1059 		pci_restore_config_space_range(pdev, 10, 15, 0);
1060 		/* Restore BARs before the command register. */
1061 		pci_restore_config_space_range(pdev, 4, 9, 10);
1062 		pci_restore_config_space_range(pdev, 0, 3, 0);
1063 	} else {
1064 		pci_restore_config_space_range(pdev, 0, 15, 0);
1065 	}
1066 }
1067 
1068 /**
1069  * pci_restore_state - Restore the saved state of a PCI device
1070  * @dev: - PCI device that we're dealing with
1071  */
1072 void pci_restore_state(struct pci_dev *dev)
1073 {
1074 	if (!dev->state_saved)
1075 		return;
1076 
1077 	/* PCI Express register must be restored first */
1078 	pci_restore_pcie_state(dev);
1079 	pci_restore_ats_state(dev);
1080 	pci_restore_vc_state(dev);
1081 
1082 	pci_restore_config_space(dev);
1083 
1084 	pci_restore_pcix_state(dev);
1085 	pci_restore_msi_state(dev);
1086 	pci_restore_iov_state(dev);
1087 
1088 	dev->state_saved = false;
1089 }
1090 
1091 struct pci_saved_state {
1092 	u32 config_space[16];
1093 	struct pci_cap_saved_data cap[0];
1094 };
1095 
1096 /**
1097  * pci_store_saved_state - Allocate and return an opaque struct containing
1098  *			   the device saved state.
1099  * @dev: PCI device that we're dealing with
1100  *
1101  * Return NULL if no state or error.
1102  */
1103 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1104 {
1105 	struct pci_saved_state *state;
1106 	struct pci_cap_saved_state *tmp;
1107 	struct pci_cap_saved_data *cap;
1108 	size_t size;
1109 
1110 	if (!dev->state_saved)
1111 		return NULL;
1112 
1113 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1114 
1115 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1116 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1117 
1118 	state = kzalloc(size, GFP_KERNEL);
1119 	if (!state)
1120 		return NULL;
1121 
1122 	memcpy(state->config_space, dev->saved_config_space,
1123 	       sizeof(state->config_space));
1124 
1125 	cap = state->cap;
1126 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1127 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1128 		memcpy(cap, &tmp->cap, len);
1129 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1130 	}
1131 	/* Empty cap_save terminates list */
1132 
1133 	return state;
1134 }
1135 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1136 
1137 /**
1138  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1139  * @dev: PCI device that we're dealing with
1140  * @state: Saved state returned from pci_store_saved_state()
1141  */
1142 static int pci_load_saved_state(struct pci_dev *dev,
1143 				struct pci_saved_state *state)
1144 {
1145 	struct pci_cap_saved_data *cap;
1146 
1147 	dev->state_saved = false;
1148 
1149 	if (!state)
1150 		return 0;
1151 
1152 	memcpy(dev->saved_config_space, state->config_space,
1153 	       sizeof(state->config_space));
1154 
1155 	cap = state->cap;
1156 	while (cap->size) {
1157 		struct pci_cap_saved_state *tmp;
1158 
1159 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1160 		if (!tmp || tmp->cap.size != cap->size)
1161 			return -EINVAL;
1162 
1163 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1164 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1165 		       sizeof(struct pci_cap_saved_data) + cap->size);
1166 	}
1167 
1168 	dev->state_saved = true;
1169 	return 0;
1170 }
1171 
1172 /**
1173  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174  *				   and free the memory allocated for it.
1175  * @dev: PCI device that we're dealing with
1176  * @state: Pointer to saved state returned from pci_store_saved_state()
1177  */
1178 int pci_load_and_free_saved_state(struct pci_dev *dev,
1179 				  struct pci_saved_state **state)
1180 {
1181 	int ret = pci_load_saved_state(dev, *state);
1182 	kfree(*state);
1183 	*state = NULL;
1184 	return ret;
1185 }
1186 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187 
1188 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189 {
1190 	return pci_enable_resources(dev, bars);
1191 }
1192 
1193 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194 {
1195 	int err;
1196 	u16 cmd;
1197 	u8 pin;
1198 
1199 	err = pci_set_power_state(dev, PCI_D0);
1200 	if (err < 0 && err != -EIO)
1201 		return err;
1202 	err = pcibios_enable_device(dev, bars);
1203 	if (err < 0)
1204 		return err;
1205 	pci_fixup_device(pci_fixup_enable, dev);
1206 
1207 	if (dev->msi_enabled || dev->msix_enabled)
1208 		return 0;
1209 
1210 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1211 	if (pin) {
1212 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1213 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1214 			pci_write_config_word(dev, PCI_COMMAND,
1215 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 /**
1222  * pci_reenable_device - Resume abandoned device
1223  * @dev: PCI device to be resumed
1224  *
1225  *  Note this function is a backend of pci_default_resume and is not supposed
1226  *  to be called by normal code, write proper resume handler and use it instead.
1227  */
1228 int pci_reenable_device(struct pci_dev *dev)
1229 {
1230 	if (pci_is_enabled(dev))
1231 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1232 	return 0;
1233 }
1234 
1235 static void pci_enable_bridge(struct pci_dev *dev)
1236 {
1237 	struct pci_dev *bridge;
1238 	int retval;
1239 
1240 	bridge = pci_upstream_bridge(dev);
1241 	if (bridge)
1242 		pci_enable_bridge(bridge);
1243 
1244 	if (pci_is_enabled(dev)) {
1245 		if (!dev->is_busmaster)
1246 			pci_set_master(dev);
1247 		return;
1248 	}
1249 
1250 	retval = pci_enable_device(dev);
1251 	if (retval)
1252 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1253 			retval);
1254 	pci_set_master(dev);
1255 }
1256 
1257 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1258 {
1259 	struct pci_dev *bridge;
1260 	int err;
1261 	int i, bars = 0;
1262 
1263 	/*
1264 	 * Power state could be unknown at this point, either due to a fresh
1265 	 * boot or a device removal call.  So get the current power state
1266 	 * so that things like MSI message writing will behave as expected
1267 	 * (e.g. if the device really is in D0 at enable time).
1268 	 */
1269 	if (dev->pm_cap) {
1270 		u16 pmcsr;
1271 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1272 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1273 	}
1274 
1275 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1276 		return 0;		/* already enabled */
1277 
1278 	bridge = pci_upstream_bridge(dev);
1279 	if (bridge)
1280 		pci_enable_bridge(bridge);
1281 
1282 	/* only skip sriov related */
1283 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1284 		if (dev->resource[i].flags & flags)
1285 			bars |= (1 << i);
1286 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1287 		if (dev->resource[i].flags & flags)
1288 			bars |= (1 << i);
1289 
1290 	err = do_pci_enable_device(dev, bars);
1291 	if (err < 0)
1292 		atomic_dec(&dev->enable_cnt);
1293 	return err;
1294 }
1295 
1296 /**
1297  * pci_enable_device_io - Initialize a device for use with IO space
1298  * @dev: PCI device to be initialized
1299  *
1300  *  Initialize device before it's used by a driver. Ask low-level code
1301  *  to enable I/O resources. Wake up the device if it was suspended.
1302  *  Beware, this function can fail.
1303  */
1304 int pci_enable_device_io(struct pci_dev *dev)
1305 {
1306 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1307 }
1308 
1309 /**
1310  * pci_enable_device_mem - Initialize a device for use with Memory space
1311  * @dev: PCI device to be initialized
1312  *
1313  *  Initialize device before it's used by a driver. Ask low-level code
1314  *  to enable Memory resources. Wake up the device if it was suspended.
1315  *  Beware, this function can fail.
1316  */
1317 int pci_enable_device_mem(struct pci_dev *dev)
1318 {
1319 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1320 }
1321 
1322 /**
1323  * pci_enable_device - Initialize device before it's used by a driver.
1324  * @dev: PCI device to be initialized
1325  *
1326  *  Initialize device before it's used by a driver. Ask low-level code
1327  *  to enable I/O and memory. Wake up the device if it was suspended.
1328  *  Beware, this function can fail.
1329  *
1330  *  Note we don't actually enable the device many times if we call
1331  *  this function repeatedly (we just increment the count).
1332  */
1333 int pci_enable_device(struct pci_dev *dev)
1334 {
1335 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1336 }
1337 
1338 /*
1339  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1340  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1341  * there's no need to track it separately.  pci_devres is initialized
1342  * when a device is enabled using managed PCI device enable interface.
1343  */
1344 struct pci_devres {
1345 	unsigned int enabled:1;
1346 	unsigned int pinned:1;
1347 	unsigned int orig_intx:1;
1348 	unsigned int restore_intx:1;
1349 	u32 region_mask;
1350 };
1351 
1352 static void pcim_release(struct device *gendev, void *res)
1353 {
1354 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1355 	struct pci_devres *this = res;
1356 	int i;
1357 
1358 	if (dev->msi_enabled)
1359 		pci_disable_msi(dev);
1360 	if (dev->msix_enabled)
1361 		pci_disable_msix(dev);
1362 
1363 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1364 		if (this->region_mask & (1 << i))
1365 			pci_release_region(dev, i);
1366 
1367 	if (this->restore_intx)
1368 		pci_intx(dev, this->orig_intx);
1369 
1370 	if (this->enabled && !this->pinned)
1371 		pci_disable_device(dev);
1372 }
1373 
1374 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1375 {
1376 	struct pci_devres *dr, *new_dr;
1377 
1378 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1379 	if (dr)
1380 		return dr;
1381 
1382 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1383 	if (!new_dr)
1384 		return NULL;
1385 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1386 }
1387 
1388 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1389 {
1390 	if (pci_is_managed(pdev))
1391 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392 	return NULL;
1393 }
1394 
1395 /**
1396  * pcim_enable_device - Managed pci_enable_device()
1397  * @pdev: PCI device to be initialized
1398  *
1399  * Managed pci_enable_device().
1400  */
1401 int pcim_enable_device(struct pci_dev *pdev)
1402 {
1403 	struct pci_devres *dr;
1404 	int rc;
1405 
1406 	dr = get_pci_dr(pdev);
1407 	if (unlikely(!dr))
1408 		return -ENOMEM;
1409 	if (dr->enabled)
1410 		return 0;
1411 
1412 	rc = pci_enable_device(pdev);
1413 	if (!rc) {
1414 		pdev->is_managed = 1;
1415 		dr->enabled = 1;
1416 	}
1417 	return rc;
1418 }
1419 
1420 /**
1421  * pcim_pin_device - Pin managed PCI device
1422  * @pdev: PCI device to pin
1423  *
1424  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1425  * driver detach.  @pdev must have been enabled with
1426  * pcim_enable_device().
1427  */
1428 void pcim_pin_device(struct pci_dev *pdev)
1429 {
1430 	struct pci_devres *dr;
1431 
1432 	dr = find_pci_dr(pdev);
1433 	WARN_ON(!dr || !dr->enabled);
1434 	if (dr)
1435 		dr->pinned = 1;
1436 }
1437 
1438 /*
1439  * pcibios_add_device - provide arch specific hooks when adding device dev
1440  * @dev: the PCI device being added
1441  *
1442  * Permits the platform to provide architecture specific functionality when
1443  * devices are added. This is the default implementation. Architecture
1444  * implementations can override this.
1445  */
1446 int __weak pcibios_add_device (struct pci_dev *dev)
1447 {
1448 	return 0;
1449 }
1450 
1451 /**
1452  * pcibios_release_device - provide arch specific hooks when releasing device dev
1453  * @dev: the PCI device being released
1454  *
1455  * Permits the platform to provide architecture specific functionality when
1456  * devices are released. This is the default implementation. Architecture
1457  * implementations can override this.
1458  */
1459 void __weak pcibios_release_device(struct pci_dev *dev) {}
1460 
1461 /**
1462  * pcibios_disable_device - disable arch specific PCI resources for device dev
1463  * @dev: the PCI device to disable
1464  *
1465  * Disables architecture specific PCI resources for the device. This
1466  * is the default implementation. Architecture implementations can
1467  * override this.
1468  */
1469 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1470 
1471 static void do_pci_disable_device(struct pci_dev *dev)
1472 {
1473 	u16 pci_command;
1474 
1475 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1476 	if (pci_command & PCI_COMMAND_MASTER) {
1477 		pci_command &= ~PCI_COMMAND_MASTER;
1478 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1479 	}
1480 
1481 	pcibios_disable_device(dev);
1482 }
1483 
1484 /**
1485  * pci_disable_enabled_device - Disable device without updating enable_cnt
1486  * @dev: PCI device to disable
1487  *
1488  * NOTE: This function is a backend of PCI power management routines and is
1489  * not supposed to be called drivers.
1490  */
1491 void pci_disable_enabled_device(struct pci_dev *dev)
1492 {
1493 	if (pci_is_enabled(dev))
1494 		do_pci_disable_device(dev);
1495 }
1496 
1497 /**
1498  * pci_disable_device - Disable PCI device after use
1499  * @dev: PCI device to be disabled
1500  *
1501  * Signal to the system that the PCI device is not in use by the system
1502  * anymore.  This only involves disabling PCI bus-mastering, if active.
1503  *
1504  * Note we don't actually disable the device until all callers of
1505  * pci_enable_device() have called pci_disable_device().
1506  */
1507 void
1508 pci_disable_device(struct pci_dev *dev)
1509 {
1510 	struct pci_devres *dr;
1511 
1512 	dr = find_pci_dr(dev);
1513 	if (dr)
1514 		dr->enabled = 0;
1515 
1516 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1517 		      "disabling already-disabled device");
1518 
1519 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1520 		return;
1521 
1522 	do_pci_disable_device(dev);
1523 
1524 	dev->is_busmaster = 0;
1525 }
1526 
1527 /**
1528  * pcibios_set_pcie_reset_state - set reset state for device dev
1529  * @dev: the PCIe device reset
1530  * @state: Reset state to enter into
1531  *
1532  *
1533  * Sets the PCIe reset state for the device. This is the default
1534  * implementation. Architecture implementations can override this.
1535  */
1536 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1537 					enum pcie_reset_state state)
1538 {
1539 	return -EINVAL;
1540 }
1541 
1542 /**
1543  * pci_set_pcie_reset_state - set reset state for device dev
1544  * @dev: the PCIe device reset
1545  * @state: Reset state to enter into
1546  *
1547  *
1548  * Sets the PCI reset state for the device.
1549  */
1550 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1551 {
1552 	return pcibios_set_pcie_reset_state(dev, state);
1553 }
1554 
1555 /**
1556  * pci_check_pme_status - Check if given device has generated PME.
1557  * @dev: Device to check.
1558  *
1559  * Check the PME status of the device and if set, clear it and clear PME enable
1560  * (if set).  Return 'true' if PME status and PME enable were both set or
1561  * 'false' otherwise.
1562  */
1563 bool pci_check_pme_status(struct pci_dev *dev)
1564 {
1565 	int pmcsr_pos;
1566 	u16 pmcsr;
1567 	bool ret = false;
1568 
1569 	if (!dev->pm_cap)
1570 		return false;
1571 
1572 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1573 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1574 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1575 		return false;
1576 
1577 	/* Clear PME status. */
1578 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1579 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1580 		/* Disable PME to avoid interrupt flood. */
1581 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582 		ret = true;
1583 	}
1584 
1585 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1586 
1587 	return ret;
1588 }
1589 
1590 /**
1591  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1592  * @dev: Device to handle.
1593  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1594  *
1595  * Check if @dev has generated PME and queue a resume request for it in that
1596  * case.
1597  */
1598 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1599 {
1600 	if (pme_poll_reset && dev->pme_poll)
1601 		dev->pme_poll = false;
1602 
1603 	if (pci_check_pme_status(dev)) {
1604 		pci_wakeup_event(dev);
1605 		pm_request_resume(&dev->dev);
1606 	}
1607 	return 0;
1608 }
1609 
1610 /**
1611  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1612  * @bus: Top bus of the subtree to walk.
1613  */
1614 void pci_pme_wakeup_bus(struct pci_bus *bus)
1615 {
1616 	if (bus)
1617 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1618 }
1619 
1620 
1621 /**
1622  * pci_pme_capable - check the capability of PCI device to generate PME#
1623  * @dev: PCI device to handle.
1624  * @state: PCI state from which device will issue PME#.
1625  */
1626 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1627 {
1628 	if (!dev->pm_cap)
1629 		return false;
1630 
1631 	return !!(dev->pme_support & (1 << state));
1632 }
1633 
1634 static void pci_pme_list_scan(struct work_struct *work)
1635 {
1636 	struct pci_pme_device *pme_dev, *n;
1637 
1638 	mutex_lock(&pci_pme_list_mutex);
1639 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1640 		if (pme_dev->dev->pme_poll) {
1641 			struct pci_dev *bridge;
1642 
1643 			bridge = pme_dev->dev->bus->self;
1644 			/*
1645 			 * If bridge is in low power state, the
1646 			 * configuration space of subordinate devices
1647 			 * may be not accessible
1648 			 */
1649 			if (bridge && bridge->current_state != PCI_D0)
1650 				continue;
1651 			pci_pme_wakeup(pme_dev->dev, NULL);
1652 		} else {
1653 			list_del(&pme_dev->list);
1654 			kfree(pme_dev);
1655 		}
1656 	}
1657 	if (!list_empty(&pci_pme_list))
1658 		schedule_delayed_work(&pci_pme_work,
1659 				      msecs_to_jiffies(PME_TIMEOUT));
1660 	mutex_unlock(&pci_pme_list_mutex);
1661 }
1662 
1663 /**
1664  * pci_pme_active - enable or disable PCI device's PME# function
1665  * @dev: PCI device to handle.
1666  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1667  *
1668  * The caller must verify that the device is capable of generating PME# before
1669  * calling this function with @enable equal to 'true'.
1670  */
1671 void pci_pme_active(struct pci_dev *dev, bool enable)
1672 {
1673 	u16 pmcsr;
1674 
1675 	if (!dev->pme_support)
1676 		return;
1677 
1678 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1679 	/* Clear PME_Status by writing 1 to it and enable PME# */
1680 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1681 	if (!enable)
1682 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683 
1684 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1685 
1686 	/*
1687 	 * PCI (as opposed to PCIe) PME requires that the device have
1688 	 * its PME# line hooked up correctly. Not all hardware vendors
1689 	 * do this, so the PME never gets delivered and the device
1690 	 * remains asleep. The easiest way around this is to
1691 	 * periodically walk the list of suspended devices and check
1692 	 * whether any have their PME flag set. The assumption is that
1693 	 * we'll wake up often enough anyway that this won't be a huge
1694 	 * hit, and the power savings from the devices will still be a
1695 	 * win.
1696 	 *
1697 	 * Although PCIe uses in-band PME message instead of PME# line
1698 	 * to report PME, PME does not work for some PCIe devices in
1699 	 * reality.  For example, there are devices that set their PME
1700 	 * status bits, but don't really bother to send a PME message;
1701 	 * there are PCI Express Root Ports that don't bother to
1702 	 * trigger interrupts when they receive PME messages from the
1703 	 * devices below.  So PME poll is used for PCIe devices too.
1704 	 */
1705 
1706 	if (dev->pme_poll) {
1707 		struct pci_pme_device *pme_dev;
1708 		if (enable) {
1709 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1710 					  GFP_KERNEL);
1711 			if (!pme_dev) {
1712 				dev_warn(&dev->dev, "can't enable PME#\n");
1713 				return;
1714 			}
1715 			pme_dev->dev = dev;
1716 			mutex_lock(&pci_pme_list_mutex);
1717 			list_add(&pme_dev->list, &pci_pme_list);
1718 			if (list_is_singular(&pci_pme_list))
1719 				schedule_delayed_work(&pci_pme_work,
1720 						      msecs_to_jiffies(PME_TIMEOUT));
1721 			mutex_unlock(&pci_pme_list_mutex);
1722 		} else {
1723 			mutex_lock(&pci_pme_list_mutex);
1724 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1725 				if (pme_dev->dev == dev) {
1726 					list_del(&pme_dev->list);
1727 					kfree(pme_dev);
1728 					break;
1729 				}
1730 			}
1731 			mutex_unlock(&pci_pme_list_mutex);
1732 		}
1733 	}
1734 
1735 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1736 }
1737 
1738 /**
1739  * __pci_enable_wake - enable PCI device as wakeup event source
1740  * @dev: PCI device affected
1741  * @state: PCI state from which device will issue wakeup events
1742  * @runtime: True if the events are to be generated at run time
1743  * @enable: True to enable event generation; false to disable
1744  *
1745  * This enables the device as a wakeup event source, or disables it.
1746  * When such events involves platform-specific hooks, those hooks are
1747  * called automatically by this routine.
1748  *
1749  * Devices with legacy power management (no standard PCI PM capabilities)
1750  * always require such platform hooks.
1751  *
1752  * RETURN VALUE:
1753  * 0 is returned on success
1754  * -EINVAL is returned if device is not supposed to wake up the system
1755  * Error code depending on the platform is returned if both the platform and
1756  * the native mechanism fail to enable the generation of wake-up events
1757  */
1758 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1759 		      bool runtime, bool enable)
1760 {
1761 	int ret = 0;
1762 
1763 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1764 		return -EINVAL;
1765 
1766 	/* Don't do the same thing twice in a row for one device. */
1767 	if (!!enable == !!dev->wakeup_prepared)
1768 		return 0;
1769 
1770 	/*
1771 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1772 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1773 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1774 	 */
1775 
1776 	if (enable) {
1777 		int error;
1778 
1779 		if (pci_pme_capable(dev, state))
1780 			pci_pme_active(dev, true);
1781 		else
1782 			ret = 1;
1783 		error = runtime ? platform_pci_run_wake(dev, true) :
1784 					platform_pci_sleep_wake(dev, true);
1785 		if (ret)
1786 			ret = error;
1787 		if (!ret)
1788 			dev->wakeup_prepared = true;
1789 	} else {
1790 		if (runtime)
1791 			platform_pci_run_wake(dev, false);
1792 		else
1793 			platform_pci_sleep_wake(dev, false);
1794 		pci_pme_active(dev, false);
1795 		dev->wakeup_prepared = false;
1796 	}
1797 
1798 	return ret;
1799 }
1800 EXPORT_SYMBOL(__pci_enable_wake);
1801 
1802 /**
1803  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1804  * @dev: PCI device to prepare
1805  * @enable: True to enable wake-up event generation; false to disable
1806  *
1807  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1808  * and this function allows them to set that up cleanly - pci_enable_wake()
1809  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1810  * ordering constraints.
1811  *
1812  * This function only returns error code if the device is not capable of
1813  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1814  * enable wake-up power for it.
1815  */
1816 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1817 {
1818 	return pci_pme_capable(dev, PCI_D3cold) ?
1819 			pci_enable_wake(dev, PCI_D3cold, enable) :
1820 			pci_enable_wake(dev, PCI_D3hot, enable);
1821 }
1822 
1823 /**
1824  * pci_target_state - find an appropriate low power state for a given PCI dev
1825  * @dev: PCI device
1826  *
1827  * Use underlying platform code to find a supported low power state for @dev.
1828  * If the platform can't manage @dev, return the deepest state from which it
1829  * can generate wake events, based on any available PME info.
1830  */
1831 static pci_power_t pci_target_state(struct pci_dev *dev)
1832 {
1833 	pci_power_t target_state = PCI_D3hot;
1834 
1835 	if (platform_pci_power_manageable(dev)) {
1836 		/*
1837 		 * Call the platform to choose the target state of the device
1838 		 * and enable wake-up from this state if supported.
1839 		 */
1840 		pci_power_t state = platform_pci_choose_state(dev);
1841 
1842 		switch (state) {
1843 		case PCI_POWER_ERROR:
1844 		case PCI_UNKNOWN:
1845 			break;
1846 		case PCI_D1:
1847 		case PCI_D2:
1848 			if (pci_no_d1d2(dev))
1849 				break;
1850 		default:
1851 			target_state = state;
1852 		}
1853 	} else if (!dev->pm_cap) {
1854 		target_state = PCI_D0;
1855 	} else if (device_may_wakeup(&dev->dev)) {
1856 		/*
1857 		 * Find the deepest state from which the device can generate
1858 		 * wake-up events, make it the target state and enable device
1859 		 * to generate PME#.
1860 		 */
1861 		if (dev->pme_support) {
1862 			while (target_state
1863 			      && !(dev->pme_support & (1 << target_state)))
1864 				target_state--;
1865 		}
1866 	}
1867 
1868 	return target_state;
1869 }
1870 
1871 /**
1872  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1873  * @dev: Device to handle.
1874  *
1875  * Choose the power state appropriate for the device depending on whether
1876  * it can wake up the system and/or is power manageable by the platform
1877  * (PCI_D3hot is the default) and put the device into that state.
1878  */
1879 int pci_prepare_to_sleep(struct pci_dev *dev)
1880 {
1881 	pci_power_t target_state = pci_target_state(dev);
1882 	int error;
1883 
1884 	if (target_state == PCI_POWER_ERROR)
1885 		return -EIO;
1886 
1887 	/* D3cold during system suspend/hibernate is not supported */
1888 	if (target_state > PCI_D3hot)
1889 		target_state = PCI_D3hot;
1890 
1891 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1892 
1893 	error = pci_set_power_state(dev, target_state);
1894 
1895 	if (error)
1896 		pci_enable_wake(dev, target_state, false);
1897 
1898 	return error;
1899 }
1900 
1901 /**
1902  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1903  * @dev: Device to handle.
1904  *
1905  * Disable device's system wake-up capability and put it into D0.
1906  */
1907 int pci_back_from_sleep(struct pci_dev *dev)
1908 {
1909 	pci_enable_wake(dev, PCI_D0, false);
1910 	return pci_set_power_state(dev, PCI_D0);
1911 }
1912 
1913 /**
1914  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1915  * @dev: PCI device being suspended.
1916  *
1917  * Prepare @dev to generate wake-up events at run time and put it into a low
1918  * power state.
1919  */
1920 int pci_finish_runtime_suspend(struct pci_dev *dev)
1921 {
1922 	pci_power_t target_state = pci_target_state(dev);
1923 	int error;
1924 
1925 	if (target_state == PCI_POWER_ERROR)
1926 		return -EIO;
1927 
1928 	dev->runtime_d3cold = target_state == PCI_D3cold;
1929 
1930 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1931 
1932 	error = pci_set_power_state(dev, target_state);
1933 
1934 	if (error) {
1935 		__pci_enable_wake(dev, target_state, true, false);
1936 		dev->runtime_d3cold = false;
1937 	}
1938 
1939 	return error;
1940 }
1941 
1942 /**
1943  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1944  * @dev: Device to check.
1945  *
1946  * Return true if the device itself is capable of generating wake-up events
1947  * (through the platform or using the native PCIe PME) or if the device supports
1948  * PME and one of its upstream bridges can generate wake-up events.
1949  */
1950 bool pci_dev_run_wake(struct pci_dev *dev)
1951 {
1952 	struct pci_bus *bus = dev->bus;
1953 
1954 	if (device_run_wake(&dev->dev))
1955 		return true;
1956 
1957 	if (!dev->pme_support)
1958 		return false;
1959 
1960 	while (bus->parent) {
1961 		struct pci_dev *bridge = bus->self;
1962 
1963 		if (device_run_wake(&bridge->dev))
1964 			return true;
1965 
1966 		bus = bus->parent;
1967 	}
1968 
1969 	/* We have reached the root bus. */
1970 	if (bus->bridge)
1971 		return device_run_wake(bus->bridge);
1972 
1973 	return false;
1974 }
1975 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1976 
1977 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1978 {
1979 	struct device *dev = &pdev->dev;
1980 	struct device *parent = dev->parent;
1981 
1982 	if (parent)
1983 		pm_runtime_get_sync(parent);
1984 	pm_runtime_get_noresume(dev);
1985 	/*
1986 	 * pdev->current_state is set to PCI_D3cold during suspending,
1987 	 * so wait until suspending completes
1988 	 */
1989 	pm_runtime_barrier(dev);
1990 	/*
1991 	 * Only need to resume devices in D3cold, because config
1992 	 * registers are still accessible for devices suspended but
1993 	 * not in D3cold.
1994 	 */
1995 	if (pdev->current_state == PCI_D3cold)
1996 		pm_runtime_resume(dev);
1997 }
1998 
1999 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2000 {
2001 	struct device *dev = &pdev->dev;
2002 	struct device *parent = dev->parent;
2003 
2004 	pm_runtime_put(dev);
2005 	if (parent)
2006 		pm_runtime_put_sync(parent);
2007 }
2008 
2009 /**
2010  * pci_pm_init - Initialize PM functions of given PCI device
2011  * @dev: PCI device to handle.
2012  */
2013 void pci_pm_init(struct pci_dev *dev)
2014 {
2015 	int pm;
2016 	u16 pmc;
2017 
2018 	pm_runtime_forbid(&dev->dev);
2019 	pm_runtime_set_active(&dev->dev);
2020 	pm_runtime_enable(&dev->dev);
2021 	device_enable_async_suspend(&dev->dev);
2022 	dev->wakeup_prepared = false;
2023 
2024 	dev->pm_cap = 0;
2025 	dev->pme_support = 0;
2026 
2027 	/* find PCI PM capability in list */
2028 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2029 	if (!pm)
2030 		return;
2031 	/* Check device's ability to generate PME# */
2032 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2033 
2034 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2035 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2036 			pmc & PCI_PM_CAP_VER_MASK);
2037 		return;
2038 	}
2039 
2040 	dev->pm_cap = pm;
2041 	dev->d3_delay = PCI_PM_D3_WAIT;
2042 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2043 	dev->d3cold_allowed = true;
2044 
2045 	dev->d1_support = false;
2046 	dev->d2_support = false;
2047 	if (!pci_no_d1d2(dev)) {
2048 		if (pmc & PCI_PM_CAP_D1)
2049 			dev->d1_support = true;
2050 		if (pmc & PCI_PM_CAP_D2)
2051 			dev->d2_support = true;
2052 
2053 		if (dev->d1_support || dev->d2_support)
2054 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2055 				   dev->d1_support ? " D1" : "",
2056 				   dev->d2_support ? " D2" : "");
2057 	}
2058 
2059 	pmc &= PCI_PM_CAP_PME_MASK;
2060 	if (pmc) {
2061 		dev_printk(KERN_DEBUG, &dev->dev,
2062 			 "PME# supported from%s%s%s%s%s\n",
2063 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2064 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2065 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2066 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2067 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2068 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2069 		dev->pme_poll = true;
2070 		/*
2071 		 * Make device's PM flags reflect the wake-up capability, but
2072 		 * let the user space enable it to wake up the system as needed.
2073 		 */
2074 		device_set_wakeup_capable(&dev->dev, true);
2075 		/* Disable the PME# generation functionality */
2076 		pci_pme_active(dev, false);
2077 	}
2078 }
2079 
2080 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2081 	struct pci_cap_saved_state *new_cap)
2082 {
2083 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2084 }
2085 
2086 /**
2087  * _pci_add_cap_save_buffer - allocate buffer for saving given
2088  *                            capability registers
2089  * @dev: the PCI device
2090  * @cap: the capability to allocate the buffer for
2091  * @extended: Standard or Extended capability ID
2092  * @size: requested size of the buffer
2093  */
2094 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2095 				    bool extended, unsigned int size)
2096 {
2097 	int pos;
2098 	struct pci_cap_saved_state *save_state;
2099 
2100 	if (extended)
2101 		pos = pci_find_ext_capability(dev, cap);
2102 	else
2103 		pos = pci_find_capability(dev, cap);
2104 
2105 	if (pos <= 0)
2106 		return 0;
2107 
2108 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2109 	if (!save_state)
2110 		return -ENOMEM;
2111 
2112 	save_state->cap.cap_nr = cap;
2113 	save_state->cap.cap_extended = extended;
2114 	save_state->cap.size = size;
2115 	pci_add_saved_cap(dev, save_state);
2116 
2117 	return 0;
2118 }
2119 
2120 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2121 {
2122 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2123 }
2124 
2125 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2126 {
2127 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2128 }
2129 
2130 /**
2131  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2132  * @dev: the PCI device
2133  */
2134 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2135 {
2136 	int error;
2137 
2138 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2139 					PCI_EXP_SAVE_REGS * sizeof(u16));
2140 	if (error)
2141 		dev_err(&dev->dev,
2142 			"unable to preallocate PCI Express save buffer\n");
2143 
2144 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2145 	if (error)
2146 		dev_err(&dev->dev,
2147 			"unable to preallocate PCI-X save buffer\n");
2148 
2149 	pci_allocate_vc_save_buffers(dev);
2150 }
2151 
2152 void pci_free_cap_save_buffers(struct pci_dev *dev)
2153 {
2154 	struct pci_cap_saved_state *tmp;
2155 	struct hlist_node *n;
2156 
2157 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2158 		kfree(tmp);
2159 }
2160 
2161 /**
2162  * pci_configure_ari - enable or disable ARI forwarding
2163  * @dev: the PCI device
2164  *
2165  * If @dev and its upstream bridge both support ARI, enable ARI in the
2166  * bridge.  Otherwise, disable ARI in the bridge.
2167  */
2168 void pci_configure_ari(struct pci_dev *dev)
2169 {
2170 	u32 cap;
2171 	struct pci_dev *bridge;
2172 
2173 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2174 		return;
2175 
2176 	bridge = dev->bus->self;
2177 	if (!bridge)
2178 		return;
2179 
2180 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2181 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2182 		return;
2183 
2184 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2185 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2186 					 PCI_EXP_DEVCTL2_ARI);
2187 		bridge->ari_enabled = 1;
2188 	} else {
2189 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2190 					   PCI_EXP_DEVCTL2_ARI);
2191 		bridge->ari_enabled = 0;
2192 	}
2193 }
2194 
2195 static int pci_acs_enable;
2196 
2197 /**
2198  * pci_request_acs - ask for ACS to be enabled if supported
2199  */
2200 void pci_request_acs(void)
2201 {
2202 	pci_acs_enable = 1;
2203 }
2204 
2205 /**
2206  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2207  * @dev: the PCI device
2208  */
2209 static int pci_std_enable_acs(struct pci_dev *dev)
2210 {
2211 	int pos;
2212 	u16 cap;
2213 	u16 ctrl;
2214 
2215 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2216 	if (!pos)
2217 		return -ENODEV;
2218 
2219 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2220 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2221 
2222 	/* Source Validation */
2223 	ctrl |= (cap & PCI_ACS_SV);
2224 
2225 	/* P2P Request Redirect */
2226 	ctrl |= (cap & PCI_ACS_RR);
2227 
2228 	/* P2P Completion Redirect */
2229 	ctrl |= (cap & PCI_ACS_CR);
2230 
2231 	/* Upstream Forwarding */
2232 	ctrl |= (cap & PCI_ACS_UF);
2233 
2234 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2235 
2236 	return 0;
2237 }
2238 
2239 /**
2240  * pci_enable_acs - enable ACS if hardware support it
2241  * @dev: the PCI device
2242  */
2243 void pci_enable_acs(struct pci_dev *dev)
2244 {
2245 	if (!pci_acs_enable)
2246 		return;
2247 
2248 	if (!pci_std_enable_acs(dev))
2249 		return;
2250 
2251 	pci_dev_specific_enable_acs(dev);
2252 }
2253 
2254 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2255 {
2256 	int pos;
2257 	u16 cap, ctrl;
2258 
2259 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2260 	if (!pos)
2261 		return false;
2262 
2263 	/*
2264 	 * Except for egress control, capabilities are either required
2265 	 * or only required if controllable.  Features missing from the
2266 	 * capability field can therefore be assumed as hard-wired enabled.
2267 	 */
2268 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2269 	acs_flags &= (cap | PCI_ACS_EC);
2270 
2271 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2272 	return (ctrl & acs_flags) == acs_flags;
2273 }
2274 
2275 /**
2276  * pci_acs_enabled - test ACS against required flags for a given device
2277  * @pdev: device to test
2278  * @acs_flags: required PCI ACS flags
2279  *
2280  * Return true if the device supports the provided flags.  Automatically
2281  * filters out flags that are not implemented on multifunction devices.
2282  *
2283  * Note that this interface checks the effective ACS capabilities of the
2284  * device rather than the actual capabilities.  For instance, most single
2285  * function endpoints are not required to support ACS because they have no
2286  * opportunity for peer-to-peer access.  We therefore return 'true'
2287  * regardless of whether the device exposes an ACS capability.  This makes
2288  * it much easier for callers of this function to ignore the actual type
2289  * or topology of the device when testing ACS support.
2290  */
2291 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2292 {
2293 	int ret;
2294 
2295 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2296 	if (ret >= 0)
2297 		return ret > 0;
2298 
2299 	/*
2300 	 * Conventional PCI and PCI-X devices never support ACS, either
2301 	 * effectively or actually.  The shared bus topology implies that
2302 	 * any device on the bus can receive or snoop DMA.
2303 	 */
2304 	if (!pci_is_pcie(pdev))
2305 		return false;
2306 
2307 	switch (pci_pcie_type(pdev)) {
2308 	/*
2309 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2310 	 * but since their primary interface is PCI/X, we conservatively
2311 	 * handle them as we would a non-PCIe device.
2312 	 */
2313 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2314 	/*
2315 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2316 	 * applicable... must never implement an ACS Extended Capability...".
2317 	 * This seems arbitrary, but we take a conservative interpretation
2318 	 * of this statement.
2319 	 */
2320 	case PCI_EXP_TYPE_PCI_BRIDGE:
2321 	case PCI_EXP_TYPE_RC_EC:
2322 		return false;
2323 	/*
2324 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2325 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2326 	 * regardless of whether they are single- or multi-function devices.
2327 	 */
2328 	case PCI_EXP_TYPE_DOWNSTREAM:
2329 	case PCI_EXP_TYPE_ROOT_PORT:
2330 		return pci_acs_flags_enabled(pdev, acs_flags);
2331 	/*
2332 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2333 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2334 	 * capabilities, but only when they are part of a multifunction
2335 	 * device.  The footnote for section 6.12 indicates the specific
2336 	 * PCIe types included here.
2337 	 */
2338 	case PCI_EXP_TYPE_ENDPOINT:
2339 	case PCI_EXP_TYPE_UPSTREAM:
2340 	case PCI_EXP_TYPE_LEG_END:
2341 	case PCI_EXP_TYPE_RC_END:
2342 		if (!pdev->multifunction)
2343 			break;
2344 
2345 		return pci_acs_flags_enabled(pdev, acs_flags);
2346 	}
2347 
2348 	/*
2349 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2350 	 * to single function devices with the exception of downstream ports.
2351 	 */
2352 	return true;
2353 }
2354 
2355 /**
2356  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2357  * @start: starting downstream device
2358  * @end: ending upstream device or NULL to search to the root bus
2359  * @acs_flags: required flags
2360  *
2361  * Walk up a device tree from start to end testing PCI ACS support.  If
2362  * any step along the way does not support the required flags, return false.
2363  */
2364 bool pci_acs_path_enabled(struct pci_dev *start,
2365 			  struct pci_dev *end, u16 acs_flags)
2366 {
2367 	struct pci_dev *pdev, *parent = start;
2368 
2369 	do {
2370 		pdev = parent;
2371 
2372 		if (!pci_acs_enabled(pdev, acs_flags))
2373 			return false;
2374 
2375 		if (pci_is_root_bus(pdev->bus))
2376 			return (end == NULL);
2377 
2378 		parent = pdev->bus->self;
2379 	} while (pdev != end);
2380 
2381 	return true;
2382 }
2383 
2384 /**
2385  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2386  * @dev: the PCI device
2387  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2388  *
2389  * Perform INTx swizzling for a device behind one level of bridge.  This is
2390  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2391  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2392  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2393  * the PCI Express Base Specification, Revision 2.1)
2394  */
2395 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2396 {
2397 	int slot;
2398 
2399 	if (pci_ari_enabled(dev->bus))
2400 		slot = 0;
2401 	else
2402 		slot = PCI_SLOT(dev->devfn);
2403 
2404 	return (((pin - 1) + slot) % 4) + 1;
2405 }
2406 
2407 int
2408 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2409 {
2410 	u8 pin;
2411 
2412 	pin = dev->pin;
2413 	if (!pin)
2414 		return -1;
2415 
2416 	while (!pci_is_root_bus(dev->bus)) {
2417 		pin = pci_swizzle_interrupt_pin(dev, pin);
2418 		dev = dev->bus->self;
2419 	}
2420 	*bridge = dev;
2421 	return pin;
2422 }
2423 
2424 /**
2425  * pci_common_swizzle - swizzle INTx all the way to root bridge
2426  * @dev: the PCI device
2427  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2428  *
2429  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2430  * bridges all the way up to a PCI root bus.
2431  */
2432 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2433 {
2434 	u8 pin = *pinp;
2435 
2436 	while (!pci_is_root_bus(dev->bus)) {
2437 		pin = pci_swizzle_interrupt_pin(dev, pin);
2438 		dev = dev->bus->self;
2439 	}
2440 	*pinp = pin;
2441 	return PCI_SLOT(dev->devfn);
2442 }
2443 
2444 /**
2445  *	pci_release_region - Release a PCI bar
2446  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2447  *	@bar: BAR to release
2448  *
2449  *	Releases the PCI I/O and memory resources previously reserved by a
2450  *	successful call to pci_request_region.  Call this function only
2451  *	after all use of the PCI regions has ceased.
2452  */
2453 void pci_release_region(struct pci_dev *pdev, int bar)
2454 {
2455 	struct pci_devres *dr;
2456 
2457 	if (pci_resource_len(pdev, bar) == 0)
2458 		return;
2459 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2460 		release_region(pci_resource_start(pdev, bar),
2461 				pci_resource_len(pdev, bar));
2462 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2463 		release_mem_region(pci_resource_start(pdev, bar),
2464 				pci_resource_len(pdev, bar));
2465 
2466 	dr = find_pci_dr(pdev);
2467 	if (dr)
2468 		dr->region_mask &= ~(1 << bar);
2469 }
2470 
2471 /**
2472  *	__pci_request_region - Reserved PCI I/O and memory resource
2473  *	@pdev: PCI device whose resources are to be reserved
2474  *	@bar: BAR to be reserved
2475  *	@res_name: Name to be associated with resource.
2476  *	@exclusive: whether the region access is exclusive or not
2477  *
2478  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2479  *	being reserved by owner @res_name.  Do not access any
2480  *	address inside the PCI regions unless this call returns
2481  *	successfully.
2482  *
2483  *	If @exclusive is set, then the region is marked so that userspace
2484  *	is explicitly not allowed to map the resource via /dev/mem or
2485  *	sysfs MMIO access.
2486  *
2487  *	Returns 0 on success, or %EBUSY on error.  A warning
2488  *	message is also printed on failure.
2489  */
2490 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2491 									int exclusive)
2492 {
2493 	struct pci_devres *dr;
2494 
2495 	if (pci_resource_len(pdev, bar) == 0)
2496 		return 0;
2497 
2498 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2499 		if (!request_region(pci_resource_start(pdev, bar),
2500 			    pci_resource_len(pdev, bar), res_name))
2501 			goto err_out;
2502 	}
2503 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2504 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2505 					pci_resource_len(pdev, bar), res_name,
2506 					exclusive))
2507 			goto err_out;
2508 	}
2509 
2510 	dr = find_pci_dr(pdev);
2511 	if (dr)
2512 		dr->region_mask |= 1 << bar;
2513 
2514 	return 0;
2515 
2516 err_out:
2517 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2518 		 &pdev->resource[bar]);
2519 	return -EBUSY;
2520 }
2521 
2522 /**
2523  *	pci_request_region - Reserve PCI I/O and memory resource
2524  *	@pdev: PCI device whose resources are to be reserved
2525  *	@bar: BAR to be reserved
2526  *	@res_name: Name to be associated with resource
2527  *
2528  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2529  *	being reserved by owner @res_name.  Do not access any
2530  *	address inside the PCI regions unless this call returns
2531  *	successfully.
2532  *
2533  *	Returns 0 on success, or %EBUSY on error.  A warning
2534  *	message is also printed on failure.
2535  */
2536 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2537 {
2538 	return __pci_request_region(pdev, bar, res_name, 0);
2539 }
2540 
2541 /**
2542  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2543  *	@pdev: PCI device whose resources are to be reserved
2544  *	@bar: BAR to be reserved
2545  *	@res_name: Name to be associated with resource.
2546  *
2547  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2548  *	being reserved by owner @res_name.  Do not access any
2549  *	address inside the PCI regions unless this call returns
2550  *	successfully.
2551  *
2552  *	Returns 0 on success, or %EBUSY on error.  A warning
2553  *	message is also printed on failure.
2554  *
2555  *	The key difference that _exclusive makes it that userspace is
2556  *	explicitly not allowed to map the resource via /dev/mem or
2557  *	sysfs.
2558  */
2559 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2560 {
2561 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2562 }
2563 /**
2564  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2565  * @pdev: PCI device whose resources were previously reserved
2566  * @bars: Bitmask of BARs to be released
2567  *
2568  * Release selected PCI I/O and memory resources previously reserved.
2569  * Call this function only after all use of the PCI regions has ceased.
2570  */
2571 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2572 {
2573 	int i;
2574 
2575 	for (i = 0; i < 6; i++)
2576 		if (bars & (1 << i))
2577 			pci_release_region(pdev, i);
2578 }
2579 
2580 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2581 				 const char *res_name, int excl)
2582 {
2583 	int i;
2584 
2585 	for (i = 0; i < 6; i++)
2586 		if (bars & (1 << i))
2587 			if (__pci_request_region(pdev, i, res_name, excl))
2588 				goto err_out;
2589 	return 0;
2590 
2591 err_out:
2592 	while(--i >= 0)
2593 		if (bars & (1 << i))
2594 			pci_release_region(pdev, i);
2595 
2596 	return -EBUSY;
2597 }
2598 
2599 
2600 /**
2601  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2602  * @pdev: PCI device whose resources are to be reserved
2603  * @bars: Bitmask of BARs to be requested
2604  * @res_name: Name to be associated with resource
2605  */
2606 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2607 				 const char *res_name)
2608 {
2609 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2610 }
2611 
2612 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2613 				 int bars, const char *res_name)
2614 {
2615 	return __pci_request_selected_regions(pdev, bars, res_name,
2616 			IORESOURCE_EXCLUSIVE);
2617 }
2618 
2619 /**
2620  *	pci_release_regions - Release reserved PCI I/O and memory resources
2621  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2622  *
2623  *	Releases all PCI I/O and memory resources previously reserved by a
2624  *	successful call to pci_request_regions.  Call this function only
2625  *	after all use of the PCI regions has ceased.
2626  */
2627 
2628 void pci_release_regions(struct pci_dev *pdev)
2629 {
2630 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2631 }
2632 
2633 /**
2634  *	pci_request_regions - Reserved PCI I/O and memory resources
2635  *	@pdev: PCI device whose resources are to be reserved
2636  *	@res_name: Name to be associated with resource.
2637  *
2638  *	Mark all PCI regions associated with PCI device @pdev as
2639  *	being reserved by owner @res_name.  Do not access any
2640  *	address inside the PCI regions unless this call returns
2641  *	successfully.
2642  *
2643  *	Returns 0 on success, or %EBUSY on error.  A warning
2644  *	message is also printed on failure.
2645  */
2646 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2647 {
2648 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2649 }
2650 
2651 /**
2652  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2653  *	@pdev: PCI device whose resources are to be reserved
2654  *	@res_name: Name to be associated with resource.
2655  *
2656  *	Mark all PCI regions associated with PCI device @pdev as
2657  *	being reserved by owner @res_name.  Do not access any
2658  *	address inside the PCI regions unless this call returns
2659  *	successfully.
2660  *
2661  *	pci_request_regions_exclusive() will mark the region so that
2662  *	/dev/mem and the sysfs MMIO access will not be allowed.
2663  *
2664  *	Returns 0 on success, or %EBUSY on error.  A warning
2665  *	message is also printed on failure.
2666  */
2667 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2668 {
2669 	return pci_request_selected_regions_exclusive(pdev,
2670 					((1 << 6) - 1), res_name);
2671 }
2672 
2673 static void __pci_set_master(struct pci_dev *dev, bool enable)
2674 {
2675 	u16 old_cmd, cmd;
2676 
2677 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2678 	if (enable)
2679 		cmd = old_cmd | PCI_COMMAND_MASTER;
2680 	else
2681 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2682 	if (cmd != old_cmd) {
2683 		dev_dbg(&dev->dev, "%s bus mastering\n",
2684 			enable ? "enabling" : "disabling");
2685 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2686 	}
2687 	dev->is_busmaster = enable;
2688 }
2689 
2690 /**
2691  * pcibios_setup - process "pci=" kernel boot arguments
2692  * @str: string used to pass in "pci=" kernel boot arguments
2693  *
2694  * Process kernel boot arguments.  This is the default implementation.
2695  * Architecture specific implementations can override this as necessary.
2696  */
2697 char * __weak __init pcibios_setup(char *str)
2698 {
2699 	return str;
2700 }
2701 
2702 /**
2703  * pcibios_set_master - enable PCI bus-mastering for device dev
2704  * @dev: the PCI device to enable
2705  *
2706  * Enables PCI bus-mastering for the device.  This is the default
2707  * implementation.  Architecture specific implementations can override
2708  * this if necessary.
2709  */
2710 void __weak pcibios_set_master(struct pci_dev *dev)
2711 {
2712 	u8 lat;
2713 
2714 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2715 	if (pci_is_pcie(dev))
2716 		return;
2717 
2718 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2719 	if (lat < 16)
2720 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2721 	else if (lat > pcibios_max_latency)
2722 		lat = pcibios_max_latency;
2723 	else
2724 		return;
2725 
2726 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2727 }
2728 
2729 /**
2730  * pci_set_master - enables bus-mastering for device dev
2731  * @dev: the PCI device to enable
2732  *
2733  * Enables bus-mastering on the device and calls pcibios_set_master()
2734  * to do the needed arch specific settings.
2735  */
2736 void pci_set_master(struct pci_dev *dev)
2737 {
2738 	__pci_set_master(dev, true);
2739 	pcibios_set_master(dev);
2740 }
2741 
2742 /**
2743  * pci_clear_master - disables bus-mastering for device dev
2744  * @dev: the PCI device to disable
2745  */
2746 void pci_clear_master(struct pci_dev *dev)
2747 {
2748 	__pci_set_master(dev, false);
2749 }
2750 
2751 /**
2752  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2753  * @dev: the PCI device for which MWI is to be enabled
2754  *
2755  * Helper function for pci_set_mwi.
2756  * Originally copied from drivers/net/acenic.c.
2757  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2758  *
2759  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2760  */
2761 int pci_set_cacheline_size(struct pci_dev *dev)
2762 {
2763 	u8 cacheline_size;
2764 
2765 	if (!pci_cache_line_size)
2766 		return -EINVAL;
2767 
2768 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2769 	   equal to or multiple of the right value. */
2770 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2771 	if (cacheline_size >= pci_cache_line_size &&
2772 	    (cacheline_size % pci_cache_line_size) == 0)
2773 		return 0;
2774 
2775 	/* Write the correct value. */
2776 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2777 	/* Read it back. */
2778 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2779 	if (cacheline_size == pci_cache_line_size)
2780 		return 0;
2781 
2782 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2783 		   "supported\n", pci_cache_line_size << 2);
2784 
2785 	return -EINVAL;
2786 }
2787 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2788 
2789 #ifdef PCI_DISABLE_MWI
2790 int pci_set_mwi(struct pci_dev *dev)
2791 {
2792 	return 0;
2793 }
2794 
2795 int pci_try_set_mwi(struct pci_dev *dev)
2796 {
2797 	return 0;
2798 }
2799 
2800 void pci_clear_mwi(struct pci_dev *dev)
2801 {
2802 }
2803 
2804 #else
2805 
2806 /**
2807  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2808  * @dev: the PCI device for which MWI is enabled
2809  *
2810  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2811  *
2812  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2813  */
2814 int
2815 pci_set_mwi(struct pci_dev *dev)
2816 {
2817 	int rc;
2818 	u16 cmd;
2819 
2820 	rc = pci_set_cacheline_size(dev);
2821 	if (rc)
2822 		return rc;
2823 
2824 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2825 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2826 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2827 		cmd |= PCI_COMMAND_INVALIDATE;
2828 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 /**
2835  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2836  * @dev: the PCI device for which MWI is enabled
2837  *
2838  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2839  * Callers are not required to check the return value.
2840  *
2841  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2842  */
2843 int pci_try_set_mwi(struct pci_dev *dev)
2844 {
2845 	int rc = pci_set_mwi(dev);
2846 	return rc;
2847 }
2848 
2849 /**
2850  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2851  * @dev: the PCI device to disable
2852  *
2853  * Disables PCI Memory-Write-Invalidate transaction on the device
2854  */
2855 void
2856 pci_clear_mwi(struct pci_dev *dev)
2857 {
2858 	u16 cmd;
2859 
2860 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2861 	if (cmd & PCI_COMMAND_INVALIDATE) {
2862 		cmd &= ~PCI_COMMAND_INVALIDATE;
2863 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2864 	}
2865 }
2866 #endif /* ! PCI_DISABLE_MWI */
2867 
2868 /**
2869  * pci_intx - enables/disables PCI INTx for device dev
2870  * @pdev: the PCI device to operate on
2871  * @enable: boolean: whether to enable or disable PCI INTx
2872  *
2873  * Enables/disables PCI INTx for device dev
2874  */
2875 void
2876 pci_intx(struct pci_dev *pdev, int enable)
2877 {
2878 	u16 pci_command, new;
2879 
2880 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2881 
2882 	if (enable) {
2883 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2884 	} else {
2885 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2886 	}
2887 
2888 	if (new != pci_command) {
2889 		struct pci_devres *dr;
2890 
2891 		pci_write_config_word(pdev, PCI_COMMAND, new);
2892 
2893 		dr = find_pci_dr(pdev);
2894 		if (dr && !dr->restore_intx) {
2895 			dr->restore_intx = 1;
2896 			dr->orig_intx = !enable;
2897 		}
2898 	}
2899 }
2900 
2901 /**
2902  * pci_intx_mask_supported - probe for INTx masking support
2903  * @dev: the PCI device to operate on
2904  *
2905  * Check if the device dev support INTx masking via the config space
2906  * command word.
2907  */
2908 bool pci_intx_mask_supported(struct pci_dev *dev)
2909 {
2910 	bool mask_supported = false;
2911 	u16 orig, new;
2912 
2913 	if (dev->broken_intx_masking)
2914 		return false;
2915 
2916 	pci_cfg_access_lock(dev);
2917 
2918 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2919 	pci_write_config_word(dev, PCI_COMMAND,
2920 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2921 	pci_read_config_word(dev, PCI_COMMAND, &new);
2922 
2923 	/*
2924 	 * There's no way to protect against hardware bugs or detect them
2925 	 * reliably, but as long as we know what the value should be, let's
2926 	 * go ahead and check it.
2927 	 */
2928 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2929 		dev_err(&dev->dev, "Command register changed from "
2930 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2931 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2932 		mask_supported = true;
2933 		pci_write_config_word(dev, PCI_COMMAND, orig);
2934 	}
2935 
2936 	pci_cfg_access_unlock(dev);
2937 	return mask_supported;
2938 }
2939 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2940 
2941 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2942 {
2943 	struct pci_bus *bus = dev->bus;
2944 	bool mask_updated = true;
2945 	u32 cmd_status_dword;
2946 	u16 origcmd, newcmd;
2947 	unsigned long flags;
2948 	bool irq_pending;
2949 
2950 	/*
2951 	 * We do a single dword read to retrieve both command and status.
2952 	 * Document assumptions that make this possible.
2953 	 */
2954 	BUILD_BUG_ON(PCI_COMMAND % 4);
2955 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2956 
2957 	raw_spin_lock_irqsave(&pci_lock, flags);
2958 
2959 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2960 
2961 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2962 
2963 	/*
2964 	 * Check interrupt status register to see whether our device
2965 	 * triggered the interrupt (when masking) or the next IRQ is
2966 	 * already pending (when unmasking).
2967 	 */
2968 	if (mask != irq_pending) {
2969 		mask_updated = false;
2970 		goto done;
2971 	}
2972 
2973 	origcmd = cmd_status_dword;
2974 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2975 	if (mask)
2976 		newcmd |= PCI_COMMAND_INTX_DISABLE;
2977 	if (newcmd != origcmd)
2978 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2979 
2980 done:
2981 	raw_spin_unlock_irqrestore(&pci_lock, flags);
2982 
2983 	return mask_updated;
2984 }
2985 
2986 /**
2987  * pci_check_and_mask_intx - mask INTx on pending interrupt
2988  * @dev: the PCI device to operate on
2989  *
2990  * Check if the device dev has its INTx line asserted, mask it and
2991  * return true in that case. False is returned if not interrupt was
2992  * pending.
2993  */
2994 bool pci_check_and_mask_intx(struct pci_dev *dev)
2995 {
2996 	return pci_check_and_set_intx_mask(dev, true);
2997 }
2998 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2999 
3000 /**
3001  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3002  * @dev: the PCI device to operate on
3003  *
3004  * Check if the device dev has its INTx line asserted, unmask it if not
3005  * and return true. False is returned and the mask remains active if
3006  * there was still an interrupt pending.
3007  */
3008 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3009 {
3010 	return pci_check_and_set_intx_mask(dev, false);
3011 }
3012 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3013 
3014 /**
3015  * pci_msi_off - disables any MSI or MSI-X capabilities
3016  * @dev: the PCI device to operate on
3017  *
3018  * If you want to use MSI, see pci_enable_msi() and friends.
3019  * This is a lower-level primitive that allows us to disable
3020  * MSI operation at the device level.
3021  */
3022 void pci_msi_off(struct pci_dev *dev)
3023 {
3024 	int pos;
3025 	u16 control;
3026 
3027 	/*
3028 	 * This looks like it could go in msi.c, but we need it even when
3029 	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3030 	 * dev->msi_cap or dev->msix_cap here.
3031 	 */
3032 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3033 	if (pos) {
3034 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3035 		control &= ~PCI_MSI_FLAGS_ENABLE;
3036 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3037 	}
3038 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3039 	if (pos) {
3040 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3041 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3042 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3043 	}
3044 }
3045 EXPORT_SYMBOL_GPL(pci_msi_off);
3046 
3047 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3048 {
3049 	return dma_set_max_seg_size(&dev->dev, size);
3050 }
3051 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3052 
3053 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3054 {
3055 	return dma_set_seg_boundary(&dev->dev, mask);
3056 }
3057 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3058 
3059 /**
3060  * pci_wait_for_pending_transaction - waits for pending transaction
3061  * @dev: the PCI device to operate on
3062  *
3063  * Return 0 if transaction is pending 1 otherwise.
3064  */
3065 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3066 {
3067 	if (!pci_is_pcie(dev))
3068 		return 1;
3069 
3070 	return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND);
3071 }
3072 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3073 
3074 static int pcie_flr(struct pci_dev *dev, int probe)
3075 {
3076 	u32 cap;
3077 
3078 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3079 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3080 		return -ENOTTY;
3081 
3082 	if (probe)
3083 		return 0;
3084 
3085 	if (!pci_wait_for_pending_transaction(dev))
3086 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3087 
3088 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3089 
3090 	msleep(100);
3091 
3092 	return 0;
3093 }
3094 
3095 static int pci_af_flr(struct pci_dev *dev, int probe)
3096 {
3097 	int pos;
3098 	u8 cap;
3099 
3100 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3101 	if (!pos)
3102 		return -ENOTTY;
3103 
3104 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3105 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3106 		return -ENOTTY;
3107 
3108 	if (probe)
3109 		return 0;
3110 
3111 	/* Wait for Transaction Pending bit clean */
3112 	if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP))
3113 		goto clear;
3114 
3115 	dev_err(&dev->dev, "transaction is not cleared; "
3116 			"proceeding with reset anyway\n");
3117 
3118 clear:
3119 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3120 	msleep(100);
3121 
3122 	return 0;
3123 }
3124 
3125 /**
3126  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3127  * @dev: Device to reset.
3128  * @probe: If set, only check if the device can be reset this way.
3129  *
3130  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3131  * unset, it will be reinitialized internally when going from PCI_D3hot to
3132  * PCI_D0.  If that's the case and the device is not in a low-power state
3133  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3134  *
3135  * NOTE: This causes the caller to sleep for twice the device power transition
3136  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3137  * by default (i.e. unless the @dev's d3_delay field has a different value).
3138  * Moreover, only devices in D0 can be reset by this function.
3139  */
3140 static int pci_pm_reset(struct pci_dev *dev, int probe)
3141 {
3142 	u16 csr;
3143 
3144 	if (!dev->pm_cap)
3145 		return -ENOTTY;
3146 
3147 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3148 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3149 		return -ENOTTY;
3150 
3151 	if (probe)
3152 		return 0;
3153 
3154 	if (dev->current_state != PCI_D0)
3155 		return -EINVAL;
3156 
3157 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3158 	csr |= PCI_D3hot;
3159 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3160 	pci_dev_d3_sleep(dev);
3161 
3162 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3163 	csr |= PCI_D0;
3164 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3165 	pci_dev_d3_sleep(dev);
3166 
3167 	return 0;
3168 }
3169 
3170 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3171 {
3172 	u16 ctrl;
3173 
3174 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3175 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3176 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3177 	/*
3178 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3179 	 * this to 2ms to ensure that we meet the minimum requirement.
3180 	 */
3181 	msleep(2);
3182 
3183 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3184 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3185 
3186 	/*
3187 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3188 	 * Assuming a minimum 33MHz clock this results in a 1s
3189 	 * delay before we can consider subordinate devices to
3190 	 * be re-initialized.  PCIe has some ways to shorten this,
3191 	 * but we don't make use of them yet.
3192 	 */
3193 	ssleep(1);
3194 }
3195 
3196 /**
3197  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3198  * @dev: Bridge device
3199  *
3200  * Use the bridge control register to assert reset on the secondary bus.
3201  * Devices on the secondary bus are left in power-on state.
3202  */
3203 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3204 {
3205 	pcibios_reset_secondary_bus(dev);
3206 }
3207 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3208 
3209 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3210 {
3211 	struct pci_dev *pdev;
3212 
3213 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3214 		return -ENOTTY;
3215 
3216 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3217 		if (pdev != dev)
3218 			return -ENOTTY;
3219 
3220 	if (probe)
3221 		return 0;
3222 
3223 	pci_reset_bridge_secondary_bus(dev->bus->self);
3224 
3225 	return 0;
3226 }
3227 
3228 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3229 {
3230 	int rc = -ENOTTY;
3231 
3232 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3233 		return rc;
3234 
3235 	if (hotplug->ops->reset_slot)
3236 		rc = hotplug->ops->reset_slot(hotplug, probe);
3237 
3238 	module_put(hotplug->ops->owner);
3239 
3240 	return rc;
3241 }
3242 
3243 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3244 {
3245 	struct pci_dev *pdev;
3246 
3247 	if (dev->subordinate || !dev->slot)
3248 		return -ENOTTY;
3249 
3250 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3251 		if (pdev != dev && pdev->slot == dev->slot)
3252 			return -ENOTTY;
3253 
3254 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3255 }
3256 
3257 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3258 {
3259 	int rc;
3260 
3261 	might_sleep();
3262 
3263 	rc = pci_dev_specific_reset(dev, probe);
3264 	if (rc != -ENOTTY)
3265 		goto done;
3266 
3267 	rc = pcie_flr(dev, probe);
3268 	if (rc != -ENOTTY)
3269 		goto done;
3270 
3271 	rc = pci_af_flr(dev, probe);
3272 	if (rc != -ENOTTY)
3273 		goto done;
3274 
3275 	rc = pci_pm_reset(dev, probe);
3276 	if (rc != -ENOTTY)
3277 		goto done;
3278 
3279 	rc = pci_dev_reset_slot_function(dev, probe);
3280 	if (rc != -ENOTTY)
3281 		goto done;
3282 
3283 	rc = pci_parent_bus_reset(dev, probe);
3284 done:
3285 	return rc;
3286 }
3287 
3288 static void pci_dev_lock(struct pci_dev *dev)
3289 {
3290 	pci_cfg_access_lock(dev);
3291 	/* block PM suspend, driver probe, etc. */
3292 	device_lock(&dev->dev);
3293 }
3294 
3295 /* Return 1 on successful lock, 0 on contention */
3296 static int pci_dev_trylock(struct pci_dev *dev)
3297 {
3298 	if (pci_cfg_access_trylock(dev)) {
3299 		if (device_trylock(&dev->dev))
3300 			return 1;
3301 		pci_cfg_access_unlock(dev);
3302 	}
3303 
3304 	return 0;
3305 }
3306 
3307 static void pci_dev_unlock(struct pci_dev *dev)
3308 {
3309 	device_unlock(&dev->dev);
3310 	pci_cfg_access_unlock(dev);
3311 }
3312 
3313 static void pci_dev_save_and_disable(struct pci_dev *dev)
3314 {
3315 	/*
3316 	 * Wake-up device prior to save.  PM registers default to D0 after
3317 	 * reset and a simple register restore doesn't reliably return
3318 	 * to a non-D0 state anyway.
3319 	 */
3320 	pci_set_power_state(dev, PCI_D0);
3321 
3322 	pci_save_state(dev);
3323 	/*
3324 	 * Disable the device by clearing the Command register, except for
3325 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3326 	 * BARs, but also prevents the device from being Bus Master, preventing
3327 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3328 	 * compliant devices, INTx-disable prevents legacy interrupts.
3329 	 */
3330 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3331 }
3332 
3333 static void pci_dev_restore(struct pci_dev *dev)
3334 {
3335 	pci_restore_state(dev);
3336 }
3337 
3338 static int pci_dev_reset(struct pci_dev *dev, int probe)
3339 {
3340 	int rc;
3341 
3342 	if (!probe)
3343 		pci_dev_lock(dev);
3344 
3345 	rc = __pci_dev_reset(dev, probe);
3346 
3347 	if (!probe)
3348 		pci_dev_unlock(dev);
3349 
3350 	return rc;
3351 }
3352 /**
3353  * __pci_reset_function - reset a PCI device function
3354  * @dev: PCI device to reset
3355  *
3356  * Some devices allow an individual function to be reset without affecting
3357  * other functions in the same device.  The PCI device must be responsive
3358  * to PCI config space in order to use this function.
3359  *
3360  * The device function is presumed to be unused when this function is called.
3361  * Resetting the device will make the contents of PCI configuration space
3362  * random, so any caller of this must be prepared to reinitialise the
3363  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3364  * etc.
3365  *
3366  * Returns 0 if the device function was successfully reset or negative if the
3367  * device doesn't support resetting a single function.
3368  */
3369 int __pci_reset_function(struct pci_dev *dev)
3370 {
3371 	return pci_dev_reset(dev, 0);
3372 }
3373 EXPORT_SYMBOL_GPL(__pci_reset_function);
3374 
3375 /**
3376  * __pci_reset_function_locked - reset a PCI device function while holding
3377  * the @dev mutex lock.
3378  * @dev: PCI device to reset
3379  *
3380  * Some devices allow an individual function to be reset without affecting
3381  * other functions in the same device.  The PCI device must be responsive
3382  * to PCI config space in order to use this function.
3383  *
3384  * The device function is presumed to be unused and the caller is holding
3385  * the device mutex lock when this function is called.
3386  * Resetting the device will make the contents of PCI configuration space
3387  * random, so any caller of this must be prepared to reinitialise the
3388  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3389  * etc.
3390  *
3391  * Returns 0 if the device function was successfully reset or negative if the
3392  * device doesn't support resetting a single function.
3393  */
3394 int __pci_reset_function_locked(struct pci_dev *dev)
3395 {
3396 	return __pci_dev_reset(dev, 0);
3397 }
3398 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3399 
3400 /**
3401  * pci_probe_reset_function - check whether the device can be safely reset
3402  * @dev: PCI device to reset
3403  *
3404  * Some devices allow an individual function to be reset without affecting
3405  * other functions in the same device.  The PCI device must be responsive
3406  * to PCI config space in order to use this function.
3407  *
3408  * Returns 0 if the device function can be reset or negative if the
3409  * device doesn't support resetting a single function.
3410  */
3411 int pci_probe_reset_function(struct pci_dev *dev)
3412 {
3413 	return pci_dev_reset(dev, 1);
3414 }
3415 
3416 /**
3417  * pci_reset_function - quiesce and reset a PCI device function
3418  * @dev: PCI device to reset
3419  *
3420  * Some devices allow an individual function to be reset without affecting
3421  * other functions in the same device.  The PCI device must be responsive
3422  * to PCI config space in order to use this function.
3423  *
3424  * This function does not just reset the PCI portion of a device, but
3425  * clears all the state associated with the device.  This function differs
3426  * from __pci_reset_function in that it saves and restores device state
3427  * over the reset.
3428  *
3429  * Returns 0 if the device function was successfully reset or negative if the
3430  * device doesn't support resetting a single function.
3431  */
3432 int pci_reset_function(struct pci_dev *dev)
3433 {
3434 	int rc;
3435 
3436 	rc = pci_dev_reset(dev, 1);
3437 	if (rc)
3438 		return rc;
3439 
3440 	pci_dev_save_and_disable(dev);
3441 
3442 	rc = pci_dev_reset(dev, 0);
3443 
3444 	pci_dev_restore(dev);
3445 
3446 	return rc;
3447 }
3448 EXPORT_SYMBOL_GPL(pci_reset_function);
3449 
3450 /**
3451  * pci_try_reset_function - quiesce and reset a PCI device function
3452  * @dev: PCI device to reset
3453  *
3454  * Same as above, except return -EAGAIN if unable to lock device.
3455  */
3456 int pci_try_reset_function(struct pci_dev *dev)
3457 {
3458 	int rc;
3459 
3460 	rc = pci_dev_reset(dev, 1);
3461 	if (rc)
3462 		return rc;
3463 
3464 	pci_dev_save_and_disable(dev);
3465 
3466 	if (pci_dev_trylock(dev)) {
3467 		rc = __pci_dev_reset(dev, 0);
3468 		pci_dev_unlock(dev);
3469 	} else
3470 		rc = -EAGAIN;
3471 
3472 	pci_dev_restore(dev);
3473 
3474 	return rc;
3475 }
3476 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3477 
3478 /* Lock devices from the top of the tree down */
3479 static void pci_bus_lock(struct pci_bus *bus)
3480 {
3481 	struct pci_dev *dev;
3482 
3483 	list_for_each_entry(dev, &bus->devices, bus_list) {
3484 		pci_dev_lock(dev);
3485 		if (dev->subordinate)
3486 			pci_bus_lock(dev->subordinate);
3487 	}
3488 }
3489 
3490 /* Unlock devices from the bottom of the tree up */
3491 static void pci_bus_unlock(struct pci_bus *bus)
3492 {
3493 	struct pci_dev *dev;
3494 
3495 	list_for_each_entry(dev, &bus->devices, bus_list) {
3496 		if (dev->subordinate)
3497 			pci_bus_unlock(dev->subordinate);
3498 		pci_dev_unlock(dev);
3499 	}
3500 }
3501 
3502 /* Return 1 on successful lock, 0 on contention */
3503 static int pci_bus_trylock(struct pci_bus *bus)
3504 {
3505 	struct pci_dev *dev;
3506 
3507 	list_for_each_entry(dev, &bus->devices, bus_list) {
3508 		if (!pci_dev_trylock(dev))
3509 			goto unlock;
3510 		if (dev->subordinate) {
3511 			if (!pci_bus_trylock(dev->subordinate)) {
3512 				pci_dev_unlock(dev);
3513 				goto unlock;
3514 			}
3515 		}
3516 	}
3517 	return 1;
3518 
3519 unlock:
3520 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3521 		if (dev->subordinate)
3522 			pci_bus_unlock(dev->subordinate);
3523 		pci_dev_unlock(dev);
3524 	}
3525 	return 0;
3526 }
3527 
3528 /* Lock devices from the top of the tree down */
3529 static void pci_slot_lock(struct pci_slot *slot)
3530 {
3531 	struct pci_dev *dev;
3532 
3533 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3534 		if (!dev->slot || dev->slot != slot)
3535 			continue;
3536 		pci_dev_lock(dev);
3537 		if (dev->subordinate)
3538 			pci_bus_lock(dev->subordinate);
3539 	}
3540 }
3541 
3542 /* Unlock devices from the bottom of the tree up */
3543 static void pci_slot_unlock(struct pci_slot *slot)
3544 {
3545 	struct pci_dev *dev;
3546 
3547 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3548 		if (!dev->slot || dev->slot != slot)
3549 			continue;
3550 		if (dev->subordinate)
3551 			pci_bus_unlock(dev->subordinate);
3552 		pci_dev_unlock(dev);
3553 	}
3554 }
3555 
3556 /* Return 1 on successful lock, 0 on contention */
3557 static int pci_slot_trylock(struct pci_slot *slot)
3558 {
3559 	struct pci_dev *dev;
3560 
3561 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3562 		if (!dev->slot || dev->slot != slot)
3563 			continue;
3564 		if (!pci_dev_trylock(dev))
3565 			goto unlock;
3566 		if (dev->subordinate) {
3567 			if (!pci_bus_trylock(dev->subordinate)) {
3568 				pci_dev_unlock(dev);
3569 				goto unlock;
3570 			}
3571 		}
3572 	}
3573 	return 1;
3574 
3575 unlock:
3576 	list_for_each_entry_continue_reverse(dev,
3577 					     &slot->bus->devices, bus_list) {
3578 		if (!dev->slot || dev->slot != slot)
3579 			continue;
3580 		if (dev->subordinate)
3581 			pci_bus_unlock(dev->subordinate);
3582 		pci_dev_unlock(dev);
3583 	}
3584 	return 0;
3585 }
3586 
3587 /* Save and disable devices from the top of the tree down */
3588 static void pci_bus_save_and_disable(struct pci_bus *bus)
3589 {
3590 	struct pci_dev *dev;
3591 
3592 	list_for_each_entry(dev, &bus->devices, bus_list) {
3593 		pci_dev_save_and_disable(dev);
3594 		if (dev->subordinate)
3595 			pci_bus_save_and_disable(dev->subordinate);
3596 	}
3597 }
3598 
3599 /*
3600  * Restore devices from top of the tree down - parent bridges need to be
3601  * restored before we can get to subordinate devices.
3602  */
3603 static void pci_bus_restore(struct pci_bus *bus)
3604 {
3605 	struct pci_dev *dev;
3606 
3607 	list_for_each_entry(dev, &bus->devices, bus_list) {
3608 		pci_dev_restore(dev);
3609 		if (dev->subordinate)
3610 			pci_bus_restore(dev->subordinate);
3611 	}
3612 }
3613 
3614 /* Save and disable devices from the top of the tree down */
3615 static void pci_slot_save_and_disable(struct pci_slot *slot)
3616 {
3617 	struct pci_dev *dev;
3618 
3619 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3620 		if (!dev->slot || dev->slot != slot)
3621 			continue;
3622 		pci_dev_save_and_disable(dev);
3623 		if (dev->subordinate)
3624 			pci_bus_save_and_disable(dev->subordinate);
3625 	}
3626 }
3627 
3628 /*
3629  * Restore devices from top of the tree down - parent bridges need to be
3630  * restored before we can get to subordinate devices.
3631  */
3632 static void pci_slot_restore(struct pci_slot *slot)
3633 {
3634 	struct pci_dev *dev;
3635 
3636 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3637 		if (!dev->slot || dev->slot != slot)
3638 			continue;
3639 		pci_dev_restore(dev);
3640 		if (dev->subordinate)
3641 			pci_bus_restore(dev->subordinate);
3642 	}
3643 }
3644 
3645 static int pci_slot_reset(struct pci_slot *slot, int probe)
3646 {
3647 	int rc;
3648 
3649 	if (!slot)
3650 		return -ENOTTY;
3651 
3652 	if (!probe)
3653 		pci_slot_lock(slot);
3654 
3655 	might_sleep();
3656 
3657 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3658 
3659 	if (!probe)
3660 		pci_slot_unlock(slot);
3661 
3662 	return rc;
3663 }
3664 
3665 /**
3666  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3667  * @slot: PCI slot to probe
3668  *
3669  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3670  */
3671 int pci_probe_reset_slot(struct pci_slot *slot)
3672 {
3673 	return pci_slot_reset(slot, 1);
3674 }
3675 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3676 
3677 /**
3678  * pci_reset_slot - reset a PCI slot
3679  * @slot: PCI slot to reset
3680  *
3681  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3682  * independent of other slots.  For instance, some slots may support slot power
3683  * control.  In the case of a 1:1 bus to slot architecture, this function may
3684  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3685  * Generally a slot reset should be attempted before a bus reset.  All of the
3686  * function of the slot and any subordinate buses behind the slot are reset
3687  * through this function.  PCI config space of all devices in the slot and
3688  * behind the slot is saved before and restored after reset.
3689  *
3690  * Return 0 on success, non-zero on error.
3691  */
3692 int pci_reset_slot(struct pci_slot *slot)
3693 {
3694 	int rc;
3695 
3696 	rc = pci_slot_reset(slot, 1);
3697 	if (rc)
3698 		return rc;
3699 
3700 	pci_slot_save_and_disable(slot);
3701 
3702 	rc = pci_slot_reset(slot, 0);
3703 
3704 	pci_slot_restore(slot);
3705 
3706 	return rc;
3707 }
3708 EXPORT_SYMBOL_GPL(pci_reset_slot);
3709 
3710 /**
3711  * pci_try_reset_slot - Try to reset a PCI slot
3712  * @slot: PCI slot to reset
3713  *
3714  * Same as above except return -EAGAIN if the slot cannot be locked
3715  */
3716 int pci_try_reset_slot(struct pci_slot *slot)
3717 {
3718 	int rc;
3719 
3720 	rc = pci_slot_reset(slot, 1);
3721 	if (rc)
3722 		return rc;
3723 
3724 	pci_slot_save_and_disable(slot);
3725 
3726 	if (pci_slot_trylock(slot)) {
3727 		might_sleep();
3728 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3729 		pci_slot_unlock(slot);
3730 	} else
3731 		rc = -EAGAIN;
3732 
3733 	pci_slot_restore(slot);
3734 
3735 	return rc;
3736 }
3737 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3738 
3739 static int pci_bus_reset(struct pci_bus *bus, int probe)
3740 {
3741 	if (!bus->self)
3742 		return -ENOTTY;
3743 
3744 	if (probe)
3745 		return 0;
3746 
3747 	pci_bus_lock(bus);
3748 
3749 	might_sleep();
3750 
3751 	pci_reset_bridge_secondary_bus(bus->self);
3752 
3753 	pci_bus_unlock(bus);
3754 
3755 	return 0;
3756 }
3757 
3758 /**
3759  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3760  * @bus: PCI bus to probe
3761  *
3762  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3763  */
3764 int pci_probe_reset_bus(struct pci_bus *bus)
3765 {
3766 	return pci_bus_reset(bus, 1);
3767 }
3768 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3769 
3770 /**
3771  * pci_reset_bus - reset a PCI bus
3772  * @bus: top level PCI bus to reset
3773  *
3774  * Do a bus reset on the given bus and any subordinate buses, saving
3775  * and restoring state of all devices.
3776  *
3777  * Return 0 on success, non-zero on error.
3778  */
3779 int pci_reset_bus(struct pci_bus *bus)
3780 {
3781 	int rc;
3782 
3783 	rc = pci_bus_reset(bus, 1);
3784 	if (rc)
3785 		return rc;
3786 
3787 	pci_bus_save_and_disable(bus);
3788 
3789 	rc = pci_bus_reset(bus, 0);
3790 
3791 	pci_bus_restore(bus);
3792 
3793 	return rc;
3794 }
3795 EXPORT_SYMBOL_GPL(pci_reset_bus);
3796 
3797 /**
3798  * pci_try_reset_bus - Try to reset a PCI bus
3799  * @bus: top level PCI bus to reset
3800  *
3801  * Same as above except return -EAGAIN if the bus cannot be locked
3802  */
3803 int pci_try_reset_bus(struct pci_bus *bus)
3804 {
3805 	int rc;
3806 
3807 	rc = pci_bus_reset(bus, 1);
3808 	if (rc)
3809 		return rc;
3810 
3811 	pci_bus_save_and_disable(bus);
3812 
3813 	if (pci_bus_trylock(bus)) {
3814 		might_sleep();
3815 		pci_reset_bridge_secondary_bus(bus->self);
3816 		pci_bus_unlock(bus);
3817 	} else
3818 		rc = -EAGAIN;
3819 
3820 	pci_bus_restore(bus);
3821 
3822 	return rc;
3823 }
3824 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3825 
3826 /**
3827  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3828  * @dev: PCI device to query
3829  *
3830  * Returns mmrbc: maximum designed memory read count in bytes
3831  *    or appropriate error value.
3832  */
3833 int pcix_get_max_mmrbc(struct pci_dev *dev)
3834 {
3835 	int cap;
3836 	u32 stat;
3837 
3838 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3839 	if (!cap)
3840 		return -EINVAL;
3841 
3842 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3843 		return -EINVAL;
3844 
3845 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3846 }
3847 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3848 
3849 /**
3850  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3851  * @dev: PCI device to query
3852  *
3853  * Returns mmrbc: maximum memory read count in bytes
3854  *    or appropriate error value.
3855  */
3856 int pcix_get_mmrbc(struct pci_dev *dev)
3857 {
3858 	int cap;
3859 	u16 cmd;
3860 
3861 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3862 	if (!cap)
3863 		return -EINVAL;
3864 
3865 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3866 		return -EINVAL;
3867 
3868 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3869 }
3870 EXPORT_SYMBOL(pcix_get_mmrbc);
3871 
3872 /**
3873  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3874  * @dev: PCI device to query
3875  * @mmrbc: maximum memory read count in bytes
3876  *    valid values are 512, 1024, 2048, 4096
3877  *
3878  * If possible sets maximum memory read byte count, some bridges have erratas
3879  * that prevent this.
3880  */
3881 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3882 {
3883 	int cap;
3884 	u32 stat, v, o;
3885 	u16 cmd;
3886 
3887 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3888 		return -EINVAL;
3889 
3890 	v = ffs(mmrbc) - 10;
3891 
3892 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3893 	if (!cap)
3894 		return -EINVAL;
3895 
3896 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3897 		return -EINVAL;
3898 
3899 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3900 		return -E2BIG;
3901 
3902 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3903 		return -EINVAL;
3904 
3905 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3906 	if (o != v) {
3907 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3908 			return -EIO;
3909 
3910 		cmd &= ~PCI_X_CMD_MAX_READ;
3911 		cmd |= v << 2;
3912 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3913 			return -EIO;
3914 	}
3915 	return 0;
3916 }
3917 EXPORT_SYMBOL(pcix_set_mmrbc);
3918 
3919 /**
3920  * pcie_get_readrq - get PCI Express read request size
3921  * @dev: PCI device to query
3922  *
3923  * Returns maximum memory read request in bytes
3924  *    or appropriate error value.
3925  */
3926 int pcie_get_readrq(struct pci_dev *dev)
3927 {
3928 	u16 ctl;
3929 
3930 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3931 
3932 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3933 }
3934 EXPORT_SYMBOL(pcie_get_readrq);
3935 
3936 /**
3937  * pcie_set_readrq - set PCI Express maximum memory read request
3938  * @dev: PCI device to query
3939  * @rq: maximum memory read count in bytes
3940  *    valid values are 128, 256, 512, 1024, 2048, 4096
3941  *
3942  * If possible sets maximum memory read request in bytes
3943  */
3944 int pcie_set_readrq(struct pci_dev *dev, int rq)
3945 {
3946 	u16 v;
3947 
3948 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3949 		return -EINVAL;
3950 
3951 	/*
3952 	 * If using the "performance" PCIe config, we clamp the
3953 	 * read rq size to the max packet size to prevent the
3954 	 * host bridge generating requests larger than we can
3955 	 * cope with
3956 	 */
3957 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3958 		int mps = pcie_get_mps(dev);
3959 
3960 		if (mps < rq)
3961 			rq = mps;
3962 	}
3963 
3964 	v = (ffs(rq) - 8) << 12;
3965 
3966 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3967 						  PCI_EXP_DEVCTL_READRQ, v);
3968 }
3969 EXPORT_SYMBOL(pcie_set_readrq);
3970 
3971 /**
3972  * pcie_get_mps - get PCI Express maximum payload size
3973  * @dev: PCI device to query
3974  *
3975  * Returns maximum payload size in bytes
3976  */
3977 int pcie_get_mps(struct pci_dev *dev)
3978 {
3979 	u16 ctl;
3980 
3981 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3982 
3983 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3984 }
3985 EXPORT_SYMBOL(pcie_get_mps);
3986 
3987 /**
3988  * pcie_set_mps - set PCI Express maximum payload size
3989  * @dev: PCI device to query
3990  * @mps: maximum payload size in bytes
3991  *    valid values are 128, 256, 512, 1024, 2048, 4096
3992  *
3993  * If possible sets maximum payload size
3994  */
3995 int pcie_set_mps(struct pci_dev *dev, int mps)
3996 {
3997 	u16 v;
3998 
3999 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4000 		return -EINVAL;
4001 
4002 	v = ffs(mps) - 8;
4003 	if (v > dev->pcie_mpss)
4004 		return -EINVAL;
4005 	v <<= 5;
4006 
4007 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4008 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4009 }
4010 EXPORT_SYMBOL(pcie_set_mps);
4011 
4012 /**
4013  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4014  * @dev: PCI device to query
4015  * @speed: storage for minimum speed
4016  * @width: storage for minimum width
4017  *
4018  * This function will walk up the PCI device chain and determine the minimum
4019  * link width and speed of the device.
4020  */
4021 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4022 			  enum pcie_link_width *width)
4023 {
4024 	int ret;
4025 
4026 	*speed = PCI_SPEED_UNKNOWN;
4027 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4028 
4029 	while (dev) {
4030 		u16 lnksta;
4031 		enum pci_bus_speed next_speed;
4032 		enum pcie_link_width next_width;
4033 
4034 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4035 		if (ret)
4036 			return ret;
4037 
4038 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4039 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4040 			PCI_EXP_LNKSTA_NLW_SHIFT;
4041 
4042 		if (next_speed < *speed)
4043 			*speed = next_speed;
4044 
4045 		if (next_width < *width)
4046 			*width = next_width;
4047 
4048 		dev = dev->bus->self;
4049 	}
4050 
4051 	return 0;
4052 }
4053 EXPORT_SYMBOL(pcie_get_minimum_link);
4054 
4055 /**
4056  * pci_select_bars - Make BAR mask from the type of resource
4057  * @dev: the PCI device for which BAR mask is made
4058  * @flags: resource type mask to be selected
4059  *
4060  * This helper routine makes bar mask from the type of resource.
4061  */
4062 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4063 {
4064 	int i, bars = 0;
4065 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4066 		if (pci_resource_flags(dev, i) & flags)
4067 			bars |= (1 << i);
4068 	return bars;
4069 }
4070 
4071 /**
4072  * pci_resource_bar - get position of the BAR associated with a resource
4073  * @dev: the PCI device
4074  * @resno: the resource number
4075  * @type: the BAR type to be filled in
4076  *
4077  * Returns BAR position in config space, or 0 if the BAR is invalid.
4078  */
4079 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4080 {
4081 	int reg;
4082 
4083 	if (resno < PCI_ROM_RESOURCE) {
4084 		*type = pci_bar_unknown;
4085 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4086 	} else if (resno == PCI_ROM_RESOURCE) {
4087 		*type = pci_bar_mem32;
4088 		return dev->rom_base_reg;
4089 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4090 		/* device specific resource */
4091 		reg = pci_iov_resource_bar(dev, resno, type);
4092 		if (reg)
4093 			return reg;
4094 	}
4095 
4096 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4097 	return 0;
4098 }
4099 
4100 /* Some architectures require additional programming to enable VGA */
4101 static arch_set_vga_state_t arch_set_vga_state;
4102 
4103 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4104 {
4105 	arch_set_vga_state = func;	/* NULL disables */
4106 }
4107 
4108 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4109 		      unsigned int command_bits, u32 flags)
4110 {
4111 	if (arch_set_vga_state)
4112 		return arch_set_vga_state(dev, decode, command_bits,
4113 						flags);
4114 	return 0;
4115 }
4116 
4117 /**
4118  * pci_set_vga_state - set VGA decode state on device and parents if requested
4119  * @dev: the PCI device
4120  * @decode: true = enable decoding, false = disable decoding
4121  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4122  * @flags: traverse ancestors and change bridges
4123  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4124  */
4125 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4126 		      unsigned int command_bits, u32 flags)
4127 {
4128 	struct pci_bus *bus;
4129 	struct pci_dev *bridge;
4130 	u16 cmd;
4131 	int rc;
4132 
4133 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4134 
4135 	/* ARCH specific VGA enables */
4136 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4137 	if (rc)
4138 		return rc;
4139 
4140 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4141 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4142 		if (decode == true)
4143 			cmd |= command_bits;
4144 		else
4145 			cmd &= ~command_bits;
4146 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4147 	}
4148 
4149 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4150 		return 0;
4151 
4152 	bus = dev->bus;
4153 	while (bus) {
4154 		bridge = bus->self;
4155 		if (bridge) {
4156 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4157 					     &cmd);
4158 			if (decode == true)
4159 				cmd |= PCI_BRIDGE_CTL_VGA;
4160 			else
4161 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4162 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4163 					      cmd);
4164 		}
4165 		bus = bus->parent;
4166 	}
4167 	return 0;
4168 }
4169 
4170 bool pci_device_is_present(struct pci_dev *pdev)
4171 {
4172 	u32 v;
4173 
4174 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4175 }
4176 EXPORT_SYMBOL_GPL(pci_device_is_present);
4177 
4178 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4179 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4180 static DEFINE_SPINLOCK(resource_alignment_lock);
4181 
4182 /**
4183  * pci_specified_resource_alignment - get resource alignment specified by user.
4184  * @dev: the PCI device to get
4185  *
4186  * RETURNS: Resource alignment if it is specified.
4187  *          Zero if it is not specified.
4188  */
4189 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4190 {
4191 	int seg, bus, slot, func, align_order, count;
4192 	resource_size_t align = 0;
4193 	char *p;
4194 
4195 	spin_lock(&resource_alignment_lock);
4196 	p = resource_alignment_param;
4197 	while (*p) {
4198 		count = 0;
4199 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4200 							p[count] == '@') {
4201 			p += count + 1;
4202 		} else {
4203 			align_order = -1;
4204 		}
4205 		if (sscanf(p, "%x:%x:%x.%x%n",
4206 			&seg, &bus, &slot, &func, &count) != 4) {
4207 			seg = 0;
4208 			if (sscanf(p, "%x:%x.%x%n",
4209 					&bus, &slot, &func, &count) != 3) {
4210 				/* Invalid format */
4211 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4212 					p);
4213 				break;
4214 			}
4215 		}
4216 		p += count;
4217 		if (seg == pci_domain_nr(dev->bus) &&
4218 			bus == dev->bus->number &&
4219 			slot == PCI_SLOT(dev->devfn) &&
4220 			func == PCI_FUNC(dev->devfn)) {
4221 			if (align_order == -1) {
4222 				align = PAGE_SIZE;
4223 			} else {
4224 				align = 1 << align_order;
4225 			}
4226 			/* Found */
4227 			break;
4228 		}
4229 		if (*p != ';' && *p != ',') {
4230 			/* End of param or invalid format */
4231 			break;
4232 		}
4233 		p++;
4234 	}
4235 	spin_unlock(&resource_alignment_lock);
4236 	return align;
4237 }
4238 
4239 /*
4240  * This function disables memory decoding and releases memory resources
4241  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4242  * It also rounds up size to specified alignment.
4243  * Later on, the kernel will assign page-aligned memory resource back
4244  * to the device.
4245  */
4246 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4247 {
4248 	int i;
4249 	struct resource *r;
4250 	resource_size_t align, size;
4251 	u16 command;
4252 
4253 	/* check if specified PCI is target device to reassign */
4254 	align = pci_specified_resource_alignment(dev);
4255 	if (!align)
4256 		return;
4257 
4258 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4259 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4260 		dev_warn(&dev->dev,
4261 			"Can't reassign resources to host bridge.\n");
4262 		return;
4263 	}
4264 
4265 	dev_info(&dev->dev,
4266 		"Disabling memory decoding and releasing memory resources.\n");
4267 	pci_read_config_word(dev, PCI_COMMAND, &command);
4268 	command &= ~PCI_COMMAND_MEMORY;
4269 	pci_write_config_word(dev, PCI_COMMAND, command);
4270 
4271 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4272 		r = &dev->resource[i];
4273 		if (!(r->flags & IORESOURCE_MEM))
4274 			continue;
4275 		size = resource_size(r);
4276 		if (size < align) {
4277 			size = align;
4278 			dev_info(&dev->dev,
4279 				"Rounding up size of resource #%d to %#llx.\n",
4280 				i, (unsigned long long)size);
4281 		}
4282 		r->flags |= IORESOURCE_UNSET;
4283 		r->end = size - 1;
4284 		r->start = 0;
4285 	}
4286 	/* Need to disable bridge's resource window,
4287 	 * to enable the kernel to reassign new resource
4288 	 * window later on.
4289 	 */
4290 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4291 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4292 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4293 			r = &dev->resource[i];
4294 			if (!(r->flags & IORESOURCE_MEM))
4295 				continue;
4296 			r->flags |= IORESOURCE_UNSET;
4297 			r->end = resource_size(r) - 1;
4298 			r->start = 0;
4299 		}
4300 		pci_disable_bridge_window(dev);
4301 	}
4302 }
4303 
4304 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4305 {
4306 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4307 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4308 	spin_lock(&resource_alignment_lock);
4309 	strncpy(resource_alignment_param, buf, count);
4310 	resource_alignment_param[count] = '\0';
4311 	spin_unlock(&resource_alignment_lock);
4312 	return count;
4313 }
4314 
4315 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4316 {
4317 	size_t count;
4318 	spin_lock(&resource_alignment_lock);
4319 	count = snprintf(buf, size, "%s", resource_alignment_param);
4320 	spin_unlock(&resource_alignment_lock);
4321 	return count;
4322 }
4323 
4324 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4325 {
4326 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4327 }
4328 
4329 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4330 					const char *buf, size_t count)
4331 {
4332 	return pci_set_resource_alignment_param(buf, count);
4333 }
4334 
4335 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4336 					pci_resource_alignment_store);
4337 
4338 static int __init pci_resource_alignment_sysfs_init(void)
4339 {
4340 	return bus_create_file(&pci_bus_type,
4341 					&bus_attr_resource_alignment);
4342 }
4343 
4344 late_initcall(pci_resource_alignment_sysfs_init);
4345 
4346 static void pci_no_domains(void)
4347 {
4348 #ifdef CONFIG_PCI_DOMAINS
4349 	pci_domains_supported = 0;
4350 #endif
4351 }
4352 
4353 /**
4354  * pci_ext_cfg_avail - can we access extended PCI config space?
4355  *
4356  * Returns 1 if we can access PCI extended config space (offsets
4357  * greater than 0xff). This is the default implementation. Architecture
4358  * implementations can override this.
4359  */
4360 int __weak pci_ext_cfg_avail(void)
4361 {
4362 	return 1;
4363 }
4364 
4365 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4366 {
4367 }
4368 EXPORT_SYMBOL(pci_fixup_cardbus);
4369 
4370 static int __init pci_setup(char *str)
4371 {
4372 	while (str) {
4373 		char *k = strchr(str, ',');
4374 		if (k)
4375 			*k++ = 0;
4376 		if (*str && (str = pcibios_setup(str)) && *str) {
4377 			if (!strcmp(str, "nomsi")) {
4378 				pci_no_msi();
4379 			} else if (!strcmp(str, "noaer")) {
4380 				pci_no_aer();
4381 			} else if (!strncmp(str, "realloc=", 8)) {
4382 				pci_realloc_get_opt(str + 8);
4383 			} else if (!strncmp(str, "realloc", 7)) {
4384 				pci_realloc_get_opt("on");
4385 			} else if (!strcmp(str, "nodomains")) {
4386 				pci_no_domains();
4387 			} else if (!strncmp(str, "noari", 5)) {
4388 				pcie_ari_disabled = true;
4389 			} else if (!strncmp(str, "cbiosize=", 9)) {
4390 				pci_cardbus_io_size = memparse(str + 9, &str);
4391 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4392 				pci_cardbus_mem_size = memparse(str + 10, &str);
4393 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4394 				pci_set_resource_alignment_param(str + 19,
4395 							strlen(str + 19));
4396 			} else if (!strncmp(str, "ecrc=", 5)) {
4397 				pcie_ecrc_get_policy(str + 5);
4398 			} else if (!strncmp(str, "hpiosize=", 9)) {
4399 				pci_hotplug_io_size = memparse(str + 9, &str);
4400 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4401 				pci_hotplug_mem_size = memparse(str + 10, &str);
4402 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4403 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4404 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4405 				pcie_bus_config = PCIE_BUS_SAFE;
4406 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4407 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4408 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4409 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4410 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4411 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4412 			} else {
4413 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4414 						str);
4415 			}
4416 		}
4417 		str = k;
4418 	}
4419 	return 0;
4420 }
4421 early_param("pci", pci_setup);
4422 
4423 EXPORT_SYMBOL(pci_reenable_device);
4424 EXPORT_SYMBOL(pci_enable_device_io);
4425 EXPORT_SYMBOL(pci_enable_device_mem);
4426 EXPORT_SYMBOL(pci_enable_device);
4427 EXPORT_SYMBOL(pcim_enable_device);
4428 EXPORT_SYMBOL(pcim_pin_device);
4429 EXPORT_SYMBOL(pci_disable_device);
4430 EXPORT_SYMBOL(pci_find_capability);
4431 EXPORT_SYMBOL(pci_bus_find_capability);
4432 EXPORT_SYMBOL(pci_release_regions);
4433 EXPORT_SYMBOL(pci_request_regions);
4434 EXPORT_SYMBOL(pci_request_regions_exclusive);
4435 EXPORT_SYMBOL(pci_release_region);
4436 EXPORT_SYMBOL(pci_request_region);
4437 EXPORT_SYMBOL(pci_request_region_exclusive);
4438 EXPORT_SYMBOL(pci_release_selected_regions);
4439 EXPORT_SYMBOL(pci_request_selected_regions);
4440 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4441 EXPORT_SYMBOL(pci_set_master);
4442 EXPORT_SYMBOL(pci_clear_master);
4443 EXPORT_SYMBOL(pci_set_mwi);
4444 EXPORT_SYMBOL(pci_try_set_mwi);
4445 EXPORT_SYMBOL(pci_clear_mwi);
4446 EXPORT_SYMBOL_GPL(pci_intx);
4447 EXPORT_SYMBOL(pci_assign_resource);
4448 EXPORT_SYMBOL(pci_find_parent_resource);
4449 EXPORT_SYMBOL(pci_select_bars);
4450 
4451 EXPORT_SYMBOL(pci_set_power_state);
4452 EXPORT_SYMBOL(pci_save_state);
4453 EXPORT_SYMBOL(pci_restore_state);
4454 EXPORT_SYMBOL(pci_pme_capable);
4455 EXPORT_SYMBOL(pci_pme_active);
4456 EXPORT_SYMBOL(pci_wake_from_d3);
4457 EXPORT_SYMBOL(pci_prepare_to_sleep);
4458 EXPORT_SYMBOL(pci_back_from_sleep);
4459 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
4460