1 /* 2 * Compaq Hot Plug Controller Driver 3 * 4 * Copyright (C) 1995,2001 Compaq Computer Corporation 5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 6 * Copyright (C) 2001 IBM Corp. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 18 * NON INFRINGEMENT. See the GNU General Public License for more 19 * details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Send feedback to <greg@kroah.com> 26 * 27 */ 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/slab.h> 33 #include <linux/workqueue.h> 34 #include <linux/interrupt.h> 35 #include <linux/delay.h> 36 #include <linux/wait.h> 37 #include <linux/smp_lock.h> 38 #include <linux/pci.h> 39 #include <linux/pci_hotplug.h> 40 #include <linux/kthread.h> 41 #include "cpqphp.h" 42 43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func, 44 u8 behind_bridge, struct resource_lists *resources); 45 static int configure_new_function(struct controller* ctrl, struct pci_func *func, 46 u8 behind_bridge, struct resource_lists *resources); 47 static void interrupt_event_handler(struct controller *ctrl); 48 49 50 static struct task_struct *cpqhp_event_thread; 51 static unsigned long pushbutton_pending; /* = 0 */ 52 53 /* delay is in jiffies to wait for */ 54 static void long_delay(int delay) 55 { 56 /* 57 * XXX(hch): if someone is bored please convert all callers 58 * to call msleep_interruptible directly. They really want 59 * to specify timeouts in natural units and spend a lot of 60 * effort converting them to jiffies.. 61 */ 62 msleep_interruptible(jiffies_to_msecs(delay)); 63 } 64 65 66 /* FIXME: The following line needs to be somewhere else... */ 67 #define WRONG_BUS_FREQUENCY 0x07 68 static u8 handle_switch_change(u8 change, struct controller * ctrl) 69 { 70 int hp_slot; 71 u8 rc = 0; 72 u16 temp_word; 73 struct pci_func *func; 74 struct event_info *taskInfo; 75 76 if (!change) 77 return 0; 78 79 /* Switch Change */ 80 dbg("cpqsbd: Switch interrupt received.\n"); 81 82 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 83 if (change & (0x1L << hp_slot)) { 84 /********************************** 85 * this one changed. 86 **********************************/ 87 func = cpqhp_slot_find(ctrl->bus, 88 (hp_slot + ctrl->slot_device_offset), 0); 89 90 /* this is the structure that tells the worker thread 91 *what to do */ 92 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 93 ctrl->next_event = (ctrl->next_event + 1) % 10; 94 taskInfo->hp_slot = hp_slot; 95 96 rc++; 97 98 temp_word = ctrl->ctrl_int_comp >> 16; 99 func->presence_save = (temp_word >> hp_slot) & 0x01; 100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 101 102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 103 /********************************** 104 * Switch opened 105 **********************************/ 106 107 func->switch_save = 0; 108 109 taskInfo->event_type = INT_SWITCH_OPEN; 110 } else { 111 /********************************** 112 * Switch closed 113 **********************************/ 114 115 func->switch_save = 0x10; 116 117 taskInfo->event_type = INT_SWITCH_CLOSE; 118 } 119 } 120 } 121 122 return rc; 123 } 124 125 /** 126 * cpqhp_find_slot: find the struct slot of given device 127 * @ctrl: scan lots of this controller 128 * @device: the device id to find 129 */ 130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 131 { 132 struct slot *slot = ctrl->slot; 133 134 while (slot && (slot->device != device)) { 135 slot = slot->next; 136 } 137 138 return slot; 139 } 140 141 142 static u8 handle_presence_change(u16 change, struct controller * ctrl) 143 { 144 int hp_slot; 145 u8 rc = 0; 146 u8 temp_byte; 147 u16 temp_word; 148 struct pci_func *func; 149 struct event_info *taskInfo; 150 struct slot *p_slot; 151 152 if (!change) 153 return 0; 154 155 /********************************** 156 * Presence Change 157 **********************************/ 158 dbg("cpqsbd: Presence/Notify input change.\n"); 159 dbg(" Changed bits are 0x%4.4x\n", change ); 160 161 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 162 if (change & (0x0101 << hp_slot)) { 163 /********************************** 164 * this one changed. 165 **********************************/ 166 func = cpqhp_slot_find(ctrl->bus, 167 (hp_slot + ctrl->slot_device_offset), 0); 168 169 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 170 ctrl->next_event = (ctrl->next_event + 1) % 10; 171 taskInfo->hp_slot = hp_slot; 172 173 rc++; 174 175 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 176 if (!p_slot) 177 return 0; 178 179 /* If the switch closed, must be a button 180 * If not in button mode, nevermind */ 181 if (func->switch_save && (ctrl->push_button == 1)) { 182 temp_word = ctrl->ctrl_int_comp >> 16; 183 temp_byte = (temp_word >> hp_slot) & 0x01; 184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 185 186 if (temp_byte != func->presence_save) { 187 /************************************** 188 * button Pressed (doesn't do anything) 189 **************************************/ 190 dbg("hp_slot %d button pressed\n", hp_slot); 191 taskInfo->event_type = INT_BUTTON_PRESS; 192 } else { 193 /********************************** 194 * button Released - TAKE ACTION!!!! 195 **********************************/ 196 dbg("hp_slot %d button released\n", hp_slot); 197 taskInfo->event_type = INT_BUTTON_RELEASE; 198 199 /* Cancel if we are still blinking */ 200 if ((p_slot->state == BLINKINGON_STATE) 201 || (p_slot->state == BLINKINGOFF_STATE)) { 202 taskInfo->event_type = INT_BUTTON_CANCEL; 203 dbg("hp_slot %d button cancel\n", hp_slot); 204 } else if ((p_slot->state == POWERON_STATE) 205 || (p_slot->state == POWEROFF_STATE)) { 206 /* info(msg_button_ignore, p_slot->number); */ 207 taskInfo->event_type = INT_BUTTON_IGNORE; 208 dbg("hp_slot %d button ignore\n", hp_slot); 209 } 210 } 211 } else { 212 /* Switch is open, assume a presence change 213 * Save the presence state */ 214 temp_word = ctrl->ctrl_int_comp >> 16; 215 func->presence_save = (temp_word >> hp_slot) & 0x01; 216 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 217 218 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 219 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 220 /* Present */ 221 taskInfo->event_type = INT_PRESENCE_ON; 222 } else { 223 /* Not Present */ 224 taskInfo->event_type = INT_PRESENCE_OFF; 225 } 226 } 227 } 228 } 229 230 return rc; 231 } 232 233 234 static u8 handle_power_fault(u8 change, struct controller * ctrl) 235 { 236 int hp_slot; 237 u8 rc = 0; 238 struct pci_func *func; 239 struct event_info *taskInfo; 240 241 if (!change) 242 return 0; 243 244 /********************************** 245 * power fault 246 **********************************/ 247 248 info("power fault interrupt\n"); 249 250 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 251 if (change & (0x01 << hp_slot)) { 252 /********************************** 253 * this one changed. 254 **********************************/ 255 func = cpqhp_slot_find(ctrl->bus, 256 (hp_slot + ctrl->slot_device_offset), 0); 257 258 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 259 ctrl->next_event = (ctrl->next_event + 1) % 10; 260 taskInfo->hp_slot = hp_slot; 261 262 rc++; 263 264 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 265 /********************************** 266 * power fault Cleared 267 **********************************/ 268 func->status = 0x00; 269 270 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 271 } else { 272 /********************************** 273 * power fault 274 **********************************/ 275 taskInfo->event_type = INT_POWER_FAULT; 276 277 if (ctrl->rev < 4) { 278 amber_LED_on (ctrl, hp_slot); 279 green_LED_off (ctrl, hp_slot); 280 set_SOGO (ctrl); 281 282 /* this is a fatal condition, we want 283 * to crash the machine to protect from 284 * data corruption. simulated_NMI 285 * shouldn't ever return */ 286 /* FIXME 287 simulated_NMI(hp_slot, ctrl); */ 288 289 /* The following code causes a software 290 * crash just in case simulated_NMI did 291 * return */ 292 /*FIXME 293 panic(msg_power_fault); */ 294 } else { 295 /* set power fault status for this board */ 296 func->status = 0xFF; 297 info("power fault bit %x set\n", hp_slot); 298 } 299 } 300 } 301 } 302 303 return rc; 304 } 305 306 307 /** 308 * sort_by_size: sort nodes on the list by their length, smallest first. 309 * @head: list to sort 310 * 311 */ 312 static int sort_by_size(struct pci_resource **head) 313 { 314 struct pci_resource *current_res; 315 struct pci_resource *next_res; 316 int out_of_order = 1; 317 318 if (!(*head)) 319 return 1; 320 321 if (!((*head)->next)) 322 return 0; 323 324 while (out_of_order) { 325 out_of_order = 0; 326 327 /* Special case for swapping list head */ 328 if (((*head)->next) && 329 ((*head)->length > (*head)->next->length)) { 330 out_of_order++; 331 current_res = *head; 332 *head = (*head)->next; 333 current_res->next = (*head)->next; 334 (*head)->next = current_res; 335 } 336 337 current_res = *head; 338 339 while (current_res->next && current_res->next->next) { 340 if (current_res->next->length > current_res->next->next->length) { 341 out_of_order++; 342 next_res = current_res->next; 343 current_res->next = current_res->next->next; 344 current_res = current_res->next; 345 next_res->next = current_res->next; 346 current_res->next = next_res; 347 } else 348 current_res = current_res->next; 349 } 350 } /* End of out_of_order loop */ 351 352 return 0; 353 } 354 355 356 /** 357 * sort_by_max_size: sort nodes on the list by their length, largest first. 358 * @head: list to sort 359 * 360 */ 361 static int sort_by_max_size(struct pci_resource **head) 362 { 363 struct pci_resource *current_res; 364 struct pci_resource *next_res; 365 int out_of_order = 1; 366 367 if (!(*head)) 368 return 1; 369 370 if (!((*head)->next)) 371 return 0; 372 373 while (out_of_order) { 374 out_of_order = 0; 375 376 /* Special case for swapping list head */ 377 if (((*head)->next) && 378 ((*head)->length < (*head)->next->length)) { 379 out_of_order++; 380 current_res = *head; 381 *head = (*head)->next; 382 current_res->next = (*head)->next; 383 (*head)->next = current_res; 384 } 385 386 current_res = *head; 387 388 while (current_res->next && current_res->next->next) { 389 if (current_res->next->length < current_res->next->next->length) { 390 out_of_order++; 391 next_res = current_res->next; 392 current_res->next = current_res->next->next; 393 current_res = current_res->next; 394 next_res->next = current_res->next; 395 current_res->next = next_res; 396 } else 397 current_res = current_res->next; 398 } 399 } /* End of out_of_order loop */ 400 401 return 0; 402 } 403 404 405 /** 406 * do_pre_bridge_resource_split: find node of resources that are unused 407 * 408 */ 409 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 410 struct pci_resource **orig_head, u32 alignment) 411 { 412 struct pci_resource *prevnode = NULL; 413 struct pci_resource *node; 414 struct pci_resource *split_node; 415 u32 rc; 416 u32 temp_dword; 417 dbg("do_pre_bridge_resource_split\n"); 418 419 if (!(*head) || !(*orig_head)) 420 return NULL; 421 422 rc = cpqhp_resource_sort_and_combine(head); 423 424 if (rc) 425 return NULL; 426 427 if ((*head)->base != (*orig_head)->base) 428 return NULL; 429 430 if ((*head)->length == (*orig_head)->length) 431 return NULL; 432 433 434 /* If we got here, there the bridge requires some of the resource, but 435 * we may be able to split some off of the front */ 436 437 node = *head; 438 439 if (node->length & (alignment -1)) { 440 /* this one isn't an aligned length, so we'll make a new entry 441 * and split it up. */ 442 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 443 444 if (!split_node) 445 return NULL; 446 447 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 448 449 split_node->base = node->base; 450 split_node->length = temp_dword; 451 452 node->length -= temp_dword; 453 node->base += split_node->length; 454 455 /* Put it in the list */ 456 *head = split_node; 457 split_node->next = node; 458 } 459 460 if (node->length < alignment) 461 return NULL; 462 463 /* Now unlink it */ 464 if (*head == node) { 465 *head = node->next; 466 } else { 467 prevnode = *head; 468 while (prevnode->next != node) 469 prevnode = prevnode->next; 470 471 prevnode->next = node->next; 472 } 473 node->next = NULL; 474 475 return node; 476 } 477 478 479 /** 480 * do_bridge_resource_split: find one node of resources that aren't in use 481 * 482 */ 483 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 484 { 485 struct pci_resource *prevnode = NULL; 486 struct pci_resource *node; 487 u32 rc; 488 u32 temp_dword; 489 490 rc = cpqhp_resource_sort_and_combine(head); 491 492 if (rc) 493 return NULL; 494 495 node = *head; 496 497 while (node->next) { 498 prevnode = node; 499 node = node->next; 500 kfree(prevnode); 501 } 502 503 if (node->length < alignment) 504 goto error; 505 506 if (node->base & (alignment - 1)) { 507 /* Short circuit if adjusted size is too small */ 508 temp_dword = (node->base | (alignment-1)) + 1; 509 if ((node->length - (temp_dword - node->base)) < alignment) 510 goto error; 511 512 node->length -= (temp_dword - node->base); 513 node->base = temp_dword; 514 } 515 516 if (node->length & (alignment - 1)) 517 /* There's stuff in use after this node */ 518 goto error; 519 520 return node; 521 error: 522 kfree(node); 523 return NULL; 524 } 525 526 527 /** 528 * get_io_resource: find first node of given size not in ISA aliasing window. 529 * @head: list to search 530 * @size: size of node to find, must be a power of two. 531 * 532 * Description: this function sorts the resource list by size and then returns 533 * returns the first node of "size" length that is not in the ISA aliasing 534 * window. If it finds a node larger than "size" it will split it up. 535 * 536 */ 537 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 538 { 539 struct pci_resource *prevnode; 540 struct pci_resource *node; 541 struct pci_resource *split_node; 542 u32 temp_dword; 543 544 if (!(*head)) 545 return NULL; 546 547 if ( cpqhp_resource_sort_and_combine(head) ) 548 return NULL; 549 550 if ( sort_by_size(head) ) 551 return NULL; 552 553 for (node = *head; node; node = node->next) { 554 if (node->length < size) 555 continue; 556 557 if (node->base & (size - 1)) { 558 /* this one isn't base aligned properly 559 * so we'll make a new entry and split it up */ 560 temp_dword = (node->base | (size-1)) + 1; 561 562 /* Short circuit if adjusted size is too small */ 563 if ((node->length - (temp_dword - node->base)) < size) 564 continue; 565 566 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 567 568 if (!split_node) 569 return NULL; 570 571 split_node->base = node->base; 572 split_node->length = temp_dword - node->base; 573 node->base = temp_dword; 574 node->length -= split_node->length; 575 576 /* Put it in the list */ 577 split_node->next = node->next; 578 node->next = split_node; 579 } /* End of non-aligned base */ 580 581 /* Don't need to check if too small since we already did */ 582 if (node->length > size) { 583 /* this one is longer than we need 584 * so we'll make a new entry and split it up */ 585 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 586 587 if (!split_node) 588 return NULL; 589 590 split_node->base = node->base + size; 591 split_node->length = node->length - size; 592 node->length = size; 593 594 /* Put it in the list */ 595 split_node->next = node->next; 596 node->next = split_node; 597 } /* End of too big on top end */ 598 599 /* For IO make sure it's not in the ISA aliasing space */ 600 if (node->base & 0x300L) 601 continue; 602 603 /* If we got here, then it is the right size 604 * Now take it out of the list and break */ 605 if (*head == node) { 606 *head = node->next; 607 } else { 608 prevnode = *head; 609 while (prevnode->next != node) 610 prevnode = prevnode->next; 611 612 prevnode->next = node->next; 613 } 614 node->next = NULL; 615 break; 616 } 617 618 return node; 619 } 620 621 622 /** 623 * get_max_resource: get largest node which has at least the given size. 624 * @head: the list to search the node in 625 * @size: the minimum size of the node to find 626 * 627 * Description: Gets the largest node that is at least "size" big from the 628 * list pointed to by head. It aligns the node on top and bottom 629 * to "size" alignment before returning it. 630 */ 631 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 632 { 633 struct pci_resource *max; 634 struct pci_resource *temp; 635 struct pci_resource *split_node; 636 u32 temp_dword; 637 638 if (cpqhp_resource_sort_and_combine(head)) 639 return NULL; 640 641 if (sort_by_max_size(head)) 642 return NULL; 643 644 for (max = *head; max; max = max->next) { 645 /* If not big enough we could probably just bail, 646 * instead we'll continue to the next. */ 647 if (max->length < size) 648 continue; 649 650 if (max->base & (size - 1)) { 651 /* this one isn't base aligned properly 652 * so we'll make a new entry and split it up */ 653 temp_dword = (max->base | (size-1)) + 1; 654 655 /* Short circuit if adjusted size is too small */ 656 if ((max->length - (temp_dword - max->base)) < size) 657 continue; 658 659 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 660 661 if (!split_node) 662 return NULL; 663 664 split_node->base = max->base; 665 split_node->length = temp_dword - max->base; 666 max->base = temp_dword; 667 max->length -= split_node->length; 668 669 split_node->next = max->next; 670 max->next = split_node; 671 } 672 673 if ((max->base + max->length) & (size - 1)) { 674 /* this one isn't end aligned properly at the top 675 * so we'll make a new entry and split it up */ 676 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 677 678 if (!split_node) 679 return NULL; 680 temp_dword = ((max->base + max->length) & ~(size - 1)); 681 split_node->base = temp_dword; 682 split_node->length = max->length + max->base 683 - split_node->base; 684 max->length -= split_node->length; 685 686 split_node->next = max->next; 687 max->next = split_node; 688 } 689 690 /* Make sure it didn't shrink too much when we aligned it */ 691 if (max->length < size) 692 continue; 693 694 /* Now take it out of the list */ 695 temp = *head; 696 if (temp == max) { 697 *head = max->next; 698 } else { 699 while (temp && temp->next != max) { 700 temp = temp->next; 701 } 702 703 temp->next = max->next; 704 } 705 706 max->next = NULL; 707 break; 708 } 709 710 return max; 711 } 712 713 714 /** 715 * get_resource: find resource of given size and split up larger ones. 716 * @head: the list to search for resources 717 * @size: the size limit to use 718 * 719 * Description: This function sorts the resource list by size and then 720 * returns the first node of "size" length. If it finds a node 721 * larger than "size" it will split it up. 722 * 723 * size must be a power of two. 724 */ 725 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 726 { 727 struct pci_resource *prevnode; 728 struct pci_resource *node; 729 struct pci_resource *split_node; 730 u32 temp_dword; 731 732 if (cpqhp_resource_sort_and_combine(head)) 733 return NULL; 734 735 if (sort_by_size(head)) 736 return NULL; 737 738 for (node = *head; node; node = node->next) { 739 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 740 __FUNCTION__, size, node, node->base, node->length); 741 if (node->length < size) 742 continue; 743 744 if (node->base & (size - 1)) { 745 dbg("%s: not aligned\n", __FUNCTION__); 746 /* this one isn't base aligned properly 747 * so we'll make a new entry and split it up */ 748 temp_dword = (node->base | (size-1)) + 1; 749 750 /* Short circuit if adjusted size is too small */ 751 if ((node->length - (temp_dword - node->base)) < size) 752 continue; 753 754 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 755 756 if (!split_node) 757 return NULL; 758 759 split_node->base = node->base; 760 split_node->length = temp_dword - node->base; 761 node->base = temp_dword; 762 node->length -= split_node->length; 763 764 split_node->next = node->next; 765 node->next = split_node; 766 } /* End of non-aligned base */ 767 768 /* Don't need to check if too small since we already did */ 769 if (node->length > size) { 770 dbg("%s: too big\n", __FUNCTION__); 771 /* this one is longer than we need 772 * so we'll make a new entry and split it up */ 773 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 774 775 if (!split_node) 776 return NULL; 777 778 split_node->base = node->base + size; 779 split_node->length = node->length - size; 780 node->length = size; 781 782 /* Put it in the list */ 783 split_node->next = node->next; 784 node->next = split_node; 785 } /* End of too big on top end */ 786 787 dbg("%s: got one!!!\n", __FUNCTION__); 788 /* If we got here, then it is the right size 789 * Now take it out of the list */ 790 if (*head == node) { 791 *head = node->next; 792 } else { 793 prevnode = *head; 794 while (prevnode->next != node) 795 prevnode = prevnode->next; 796 797 prevnode->next = node->next; 798 } 799 node->next = NULL; 800 break; 801 } 802 return node; 803 } 804 805 806 /** 807 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up. 808 * @head: the list to sort and clean up 809 * 810 * Description: Sorts all of the nodes in the list in ascending order by 811 * their base addresses. Also does garbage collection by 812 * combining adjacent nodes. 813 * 814 * returns 0 if success 815 */ 816 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 817 { 818 struct pci_resource *node1; 819 struct pci_resource *node2; 820 int out_of_order = 1; 821 822 dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head); 823 824 if (!(*head)) 825 return 1; 826 827 dbg("*head->next = %p\n",(*head)->next); 828 829 if (!(*head)->next) 830 return 0; /* only one item on the list, already sorted! */ 831 832 dbg("*head->base = 0x%x\n",(*head)->base); 833 dbg("*head->next->base = 0x%x\n",(*head)->next->base); 834 while (out_of_order) { 835 out_of_order = 0; 836 837 /* Special case for swapping list head */ 838 if (((*head)->next) && 839 ((*head)->base > (*head)->next->base)) { 840 node1 = *head; 841 (*head) = (*head)->next; 842 node1->next = (*head)->next; 843 (*head)->next = node1; 844 out_of_order++; 845 } 846 847 node1 = (*head); 848 849 while (node1->next && node1->next->next) { 850 if (node1->next->base > node1->next->next->base) { 851 out_of_order++; 852 node2 = node1->next; 853 node1->next = node1->next->next; 854 node1 = node1->next; 855 node2->next = node1->next; 856 node1->next = node2; 857 } else 858 node1 = node1->next; 859 } 860 } /* End of out_of_order loop */ 861 862 node1 = *head; 863 864 while (node1 && node1->next) { 865 if ((node1->base + node1->length) == node1->next->base) { 866 /* Combine */ 867 dbg("8..\n"); 868 node1->length += node1->next->length; 869 node2 = node1->next; 870 node1->next = node1->next->next; 871 kfree(node2); 872 } else 873 node1 = node1->next; 874 } 875 876 return 0; 877 } 878 879 880 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 881 { 882 struct controller *ctrl = data; 883 u8 schedule_flag = 0; 884 u8 reset; 885 u16 misc; 886 u32 Diff; 887 u32 temp_dword; 888 889 890 misc = readw(ctrl->hpc_reg + MISC); 891 /*************************************** 892 * Check to see if it was our interrupt 893 ***************************************/ 894 if (!(misc & 0x000C)) { 895 return IRQ_NONE; 896 } 897 898 if (misc & 0x0004) { 899 /********************************** 900 * Serial Output interrupt Pending 901 **********************************/ 902 903 /* Clear the interrupt */ 904 misc |= 0x0004; 905 writew(misc, ctrl->hpc_reg + MISC); 906 907 /* Read to clear posted writes */ 908 misc = readw(ctrl->hpc_reg + MISC); 909 910 dbg ("%s - waking up\n", __FUNCTION__); 911 wake_up_interruptible(&ctrl->queue); 912 } 913 914 if (misc & 0x0008) { 915 /* General-interrupt-input interrupt Pending */ 916 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 917 918 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 919 920 /* Clear the interrupt */ 921 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 922 923 /* Read it back to clear any posted writes */ 924 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 925 926 if (!Diff) 927 /* Clear all interrupts */ 928 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 929 930 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 931 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 932 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 933 } 934 935 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 936 if (reset & 0x40) { 937 /* Bus reset has completed */ 938 reset &= 0xCF; 939 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 940 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 941 wake_up_interruptible(&ctrl->queue); 942 } 943 944 if (schedule_flag) { 945 wake_up_process(cpqhp_event_thread); 946 dbg("Waking even thread"); 947 } 948 return IRQ_HANDLED; 949 } 950 951 952 /** 953 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 954 * @busnumber - bus where new node is to be located 955 * 956 * Returns pointer to the new node or NULL if unsuccessful 957 */ 958 struct pci_func *cpqhp_slot_create(u8 busnumber) 959 { 960 struct pci_func *new_slot; 961 struct pci_func *next; 962 963 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 964 if (new_slot == NULL) { 965 /* I'm not dead yet! 966 * You will be. */ 967 return new_slot; 968 } 969 970 new_slot->next = NULL; 971 new_slot->configured = 1; 972 973 if (cpqhp_slot_list[busnumber] == NULL) { 974 cpqhp_slot_list[busnumber] = new_slot; 975 } else { 976 next = cpqhp_slot_list[busnumber]; 977 while (next->next != NULL) 978 next = next->next; 979 next->next = new_slot; 980 } 981 return new_slot; 982 } 983 984 985 /** 986 * slot_remove - Removes a node from the linked list of slots. 987 * @old_slot: slot to remove 988 * 989 * Returns 0 if successful, !0 otherwise. 990 */ 991 static int slot_remove(struct pci_func * old_slot) 992 { 993 struct pci_func *next; 994 995 if (old_slot == NULL) 996 return 1; 997 998 next = cpqhp_slot_list[old_slot->bus]; 999 1000 if (next == NULL) { 1001 return 1; 1002 } 1003 1004 if (next == old_slot) { 1005 cpqhp_slot_list[old_slot->bus] = old_slot->next; 1006 cpqhp_destroy_board_resources(old_slot); 1007 kfree(old_slot); 1008 return 0; 1009 } 1010 1011 while ((next->next != old_slot) && (next->next != NULL)) { 1012 next = next->next; 1013 } 1014 1015 if (next->next == old_slot) { 1016 next->next = old_slot->next; 1017 cpqhp_destroy_board_resources(old_slot); 1018 kfree(old_slot); 1019 return 0; 1020 } else 1021 return 2; 1022 } 1023 1024 1025 /** 1026 * bridge_slot_remove - Removes a node from the linked list of slots. 1027 * @bridge: bridge to remove 1028 * 1029 * Returns 0 if successful, !0 otherwise. 1030 */ 1031 static int bridge_slot_remove(struct pci_func *bridge) 1032 { 1033 u8 subordinateBus, secondaryBus; 1034 u8 tempBus; 1035 struct pci_func *next; 1036 1037 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1038 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1039 1040 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1041 next = cpqhp_slot_list[tempBus]; 1042 1043 while (!slot_remove(next)) { 1044 next = cpqhp_slot_list[tempBus]; 1045 } 1046 } 1047 1048 next = cpqhp_slot_list[bridge->bus]; 1049 1050 if (next == NULL) 1051 return 1; 1052 1053 if (next == bridge) { 1054 cpqhp_slot_list[bridge->bus] = bridge->next; 1055 goto out; 1056 } 1057 1058 while ((next->next != bridge) && (next->next != NULL)) 1059 next = next->next; 1060 1061 if (next->next != bridge) 1062 return 2; 1063 next->next = bridge->next; 1064 out: 1065 kfree(bridge); 1066 return 0; 1067 } 1068 1069 1070 /** 1071 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1072 * @bus: bus to find 1073 * @device: device to find 1074 * @index: is 0 for first function found, 1 for the second... 1075 * 1076 * Returns pointer to the node if successful, %NULL otherwise. 1077 */ 1078 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1079 { 1080 int found = -1; 1081 struct pci_func *func; 1082 1083 func = cpqhp_slot_list[bus]; 1084 1085 if ((func == NULL) || ((func->device == device) && (index == 0))) 1086 return func; 1087 1088 if (func->device == device) 1089 found++; 1090 1091 while (func->next != NULL) { 1092 func = func->next; 1093 1094 if (func->device == device) 1095 found++; 1096 1097 if (found == index) 1098 return func; 1099 } 1100 1101 return NULL; 1102 } 1103 1104 1105 /* DJZ: I don't think is_bridge will work as is. 1106 * FIXME */ 1107 static int is_bridge(struct pci_func * func) 1108 { 1109 /* Check the header type */ 1110 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1111 return 1; 1112 else 1113 return 0; 1114 } 1115 1116 1117 /** 1118 * set_controller_speed - set the frequency and/or mode of a specific 1119 * controller segment. 1120 * 1121 * @ctrl: controller to change frequency/mode for. 1122 * @adapter_speed: the speed of the adapter we want to match. 1123 * @hp_slot: the slot number where the adapter is installed. 1124 * 1125 * Returns 0 if we successfully change frequency and/or mode to match the 1126 * adapter speed. 1127 * 1128 */ 1129 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1130 { 1131 struct slot *slot; 1132 u8 reg; 1133 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1134 u16 reg16; 1135 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1136 1137 if (ctrl->speed == adapter_speed) 1138 return 0; 1139 1140 /* We don't allow freq/mode changes if we find another adapter running 1141 * in another slot on this controller */ 1142 for(slot = ctrl->slot; slot; slot = slot->next) { 1143 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1144 continue; 1145 if (!slot->hotplug_slot && !slot->hotplug_slot->info) 1146 continue; 1147 if (slot->hotplug_slot->info->adapter_status == 0) 1148 continue; 1149 /* If another adapter is running on the same segment but at a 1150 * lower speed/mode, we allow the new adapter to function at 1151 * this rate if supported */ 1152 if (ctrl->speed < adapter_speed) 1153 return 0; 1154 1155 return 1; 1156 } 1157 1158 /* If the controller doesn't support freq/mode changes and the 1159 * controller is running at a higher mode, we bail */ 1160 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1161 return 1; 1162 1163 /* But we allow the adapter to run at a lower rate if possible */ 1164 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1165 return 0; 1166 1167 /* We try to set the max speed supported by both the adapter and 1168 * controller */ 1169 if (ctrl->speed_capability < adapter_speed) { 1170 if (ctrl->speed == ctrl->speed_capability) 1171 return 0; 1172 adapter_speed = ctrl->speed_capability; 1173 } 1174 1175 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1176 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1177 1178 set_SOGO(ctrl); 1179 wait_for_ctrl_irq(ctrl); 1180 1181 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1182 reg = 0xF5; 1183 else 1184 reg = 0xF4; 1185 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1186 1187 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1188 reg16 &= ~0x000F; 1189 switch(adapter_speed) { 1190 case(PCI_SPEED_133MHz_PCIX): 1191 reg = 0x75; 1192 reg16 |= 0xB; 1193 break; 1194 case(PCI_SPEED_100MHz_PCIX): 1195 reg = 0x74; 1196 reg16 |= 0xA; 1197 break; 1198 case(PCI_SPEED_66MHz_PCIX): 1199 reg = 0x73; 1200 reg16 |= 0x9; 1201 break; 1202 case(PCI_SPEED_66MHz): 1203 reg = 0x73; 1204 reg16 |= 0x1; 1205 break; 1206 default: /* 33MHz PCI 2.2 */ 1207 reg = 0x71; 1208 break; 1209 1210 } 1211 reg16 |= 0xB << 12; 1212 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1213 1214 mdelay(5); 1215 1216 /* Reenable interrupts */ 1217 writel(0, ctrl->hpc_reg + INT_MASK); 1218 1219 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1220 1221 /* Restart state machine */ 1222 reg = ~0xF; 1223 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1224 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1225 1226 /* Only if mode change...*/ 1227 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1228 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1229 set_SOGO(ctrl); 1230 1231 wait_for_ctrl_irq(ctrl); 1232 mdelay(1100); 1233 1234 /* Restore LED/Slot state */ 1235 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1236 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1237 1238 set_SOGO(ctrl); 1239 wait_for_ctrl_irq(ctrl); 1240 1241 ctrl->speed = adapter_speed; 1242 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1243 1244 info("Successfully changed frequency/mode for adapter in slot %d\n", 1245 slot->number); 1246 return 0; 1247 } 1248 1249 /* the following routines constitute the bulk of the 1250 hotplug controller logic 1251 */ 1252 1253 1254 /** 1255 * board_replaced - Called after a board has been replaced in the system. 1256 * 1257 * This is only used if we don't have resources for hot add 1258 * Turns power on for the board 1259 * Checks to see if board is the same 1260 * If board is same, reconfigures it 1261 * If board isn't same, turns it back off. 1262 * 1263 */ 1264 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1265 { 1266 u8 hp_slot; 1267 u8 temp_byte; 1268 u8 adapter_speed; 1269 u32 rc = 0; 1270 1271 hp_slot = func->device - ctrl->slot_device_offset; 1272 1273 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) { 1274 /********************************** 1275 * The switch is open. 1276 **********************************/ 1277 rc = INTERLOCK_OPEN; 1278 } else if (is_slot_enabled (ctrl, hp_slot)) { 1279 /********************************** 1280 * The board is already on 1281 **********************************/ 1282 rc = CARD_FUNCTIONING; 1283 } else { 1284 mutex_lock(&ctrl->crit_sect); 1285 1286 /* turn on board without attaching to the bus */ 1287 enable_slot_power (ctrl, hp_slot); 1288 1289 set_SOGO(ctrl); 1290 1291 /* Wait for SOBS to be unset */ 1292 wait_for_ctrl_irq (ctrl); 1293 1294 /* Change bits in slot power register to force another shift out 1295 * NOTE: this is to work around the timer bug */ 1296 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1297 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1298 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1299 1300 set_SOGO(ctrl); 1301 1302 /* Wait for SOBS to be unset */ 1303 wait_for_ctrl_irq (ctrl); 1304 1305 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1306 if (ctrl->speed != adapter_speed) 1307 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1308 rc = WRONG_BUS_FREQUENCY; 1309 1310 /* turn off board without attaching to the bus */ 1311 disable_slot_power (ctrl, hp_slot); 1312 1313 set_SOGO(ctrl); 1314 1315 /* Wait for SOBS to be unset */ 1316 wait_for_ctrl_irq (ctrl); 1317 1318 mutex_unlock(&ctrl->crit_sect); 1319 1320 if (rc) 1321 return rc; 1322 1323 mutex_lock(&ctrl->crit_sect); 1324 1325 slot_enable (ctrl, hp_slot); 1326 green_LED_blink (ctrl, hp_slot); 1327 1328 amber_LED_off (ctrl, hp_slot); 1329 1330 set_SOGO(ctrl); 1331 1332 /* Wait for SOBS to be unset */ 1333 wait_for_ctrl_irq (ctrl); 1334 1335 mutex_unlock(&ctrl->crit_sect); 1336 1337 /* Wait for ~1 second because of hot plug spec */ 1338 long_delay(1*HZ); 1339 1340 /* Check for a power fault */ 1341 if (func->status == 0xFF) { 1342 /* power fault occurred, but it was benign */ 1343 rc = POWER_FAILURE; 1344 func->status = 0; 1345 } else 1346 rc = cpqhp_valid_replace(ctrl, func); 1347 1348 if (!rc) { 1349 /* It must be the same board */ 1350 1351 rc = cpqhp_configure_board(ctrl, func); 1352 1353 /* If configuration fails, turn it off 1354 * Get slot won't work for devices behind 1355 * bridges, but in this case it will always be 1356 * called for the "base" bus/dev/func of an 1357 * adapter. */ 1358 1359 mutex_lock(&ctrl->crit_sect); 1360 1361 amber_LED_on (ctrl, hp_slot); 1362 green_LED_off (ctrl, hp_slot); 1363 slot_disable (ctrl, hp_slot); 1364 1365 set_SOGO(ctrl); 1366 1367 /* Wait for SOBS to be unset */ 1368 wait_for_ctrl_irq (ctrl); 1369 1370 mutex_unlock(&ctrl->crit_sect); 1371 1372 if (rc) 1373 return rc; 1374 else 1375 return 1; 1376 1377 } else { 1378 /* Something is wrong 1379 1380 * Get slot won't work for devices behind bridges, but 1381 * in this case it will always be called for the "base" 1382 * bus/dev/func of an adapter. */ 1383 1384 mutex_lock(&ctrl->crit_sect); 1385 1386 amber_LED_on (ctrl, hp_slot); 1387 green_LED_off (ctrl, hp_slot); 1388 slot_disable (ctrl, hp_slot); 1389 1390 set_SOGO(ctrl); 1391 1392 /* Wait for SOBS to be unset */ 1393 wait_for_ctrl_irq (ctrl); 1394 1395 mutex_unlock(&ctrl->crit_sect); 1396 } 1397 1398 } 1399 return rc; 1400 1401 } 1402 1403 1404 /** 1405 * board_added - Called after a board has been added to the system. 1406 * 1407 * Turns power on for the board 1408 * Configures board 1409 * 1410 */ 1411 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1412 { 1413 u8 hp_slot; 1414 u8 temp_byte; 1415 u8 adapter_speed; 1416 int index; 1417 u32 temp_register = 0xFFFFFFFF; 1418 u32 rc = 0; 1419 struct pci_func *new_slot = NULL; 1420 struct slot *p_slot; 1421 struct resource_lists res_lists; 1422 1423 hp_slot = func->device - ctrl->slot_device_offset; 1424 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1425 __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot); 1426 1427 mutex_lock(&ctrl->crit_sect); 1428 1429 /* turn on board without attaching to the bus */ 1430 enable_slot_power(ctrl, hp_slot); 1431 1432 set_SOGO(ctrl); 1433 1434 /* Wait for SOBS to be unset */ 1435 wait_for_ctrl_irq (ctrl); 1436 1437 /* Change bits in slot power register to force another shift out 1438 * NOTE: this is to work around the timer bug */ 1439 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1440 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1441 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1442 1443 set_SOGO(ctrl); 1444 1445 /* Wait for SOBS to be unset */ 1446 wait_for_ctrl_irq (ctrl); 1447 1448 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1449 if (ctrl->speed != adapter_speed) 1450 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1451 rc = WRONG_BUS_FREQUENCY; 1452 1453 /* turn off board without attaching to the bus */ 1454 disable_slot_power (ctrl, hp_slot); 1455 1456 set_SOGO(ctrl); 1457 1458 /* Wait for SOBS to be unset */ 1459 wait_for_ctrl_irq(ctrl); 1460 1461 mutex_unlock(&ctrl->crit_sect); 1462 1463 if (rc) 1464 return rc; 1465 1466 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1467 1468 /* turn on board and blink green LED */ 1469 1470 dbg("%s: before down\n", __FUNCTION__); 1471 mutex_lock(&ctrl->crit_sect); 1472 dbg("%s: after down\n", __FUNCTION__); 1473 1474 dbg("%s: before slot_enable\n", __FUNCTION__); 1475 slot_enable (ctrl, hp_slot); 1476 1477 dbg("%s: before green_LED_blink\n", __FUNCTION__); 1478 green_LED_blink (ctrl, hp_slot); 1479 1480 dbg("%s: before amber_LED_blink\n", __FUNCTION__); 1481 amber_LED_off (ctrl, hp_slot); 1482 1483 dbg("%s: before set_SOGO\n", __FUNCTION__); 1484 set_SOGO(ctrl); 1485 1486 /* Wait for SOBS to be unset */ 1487 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__); 1488 wait_for_ctrl_irq (ctrl); 1489 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__); 1490 1491 dbg("%s: before up\n", __FUNCTION__); 1492 mutex_unlock(&ctrl->crit_sect); 1493 dbg("%s: after up\n", __FUNCTION__); 1494 1495 /* Wait for ~1 second because of hot plug spec */ 1496 dbg("%s: before long_delay\n", __FUNCTION__); 1497 long_delay(1*HZ); 1498 dbg("%s: after long_delay\n", __FUNCTION__); 1499 1500 dbg("%s: func status = %x\n", __FUNCTION__, func->status); 1501 /* Check for a power fault */ 1502 if (func->status == 0xFF) { 1503 /* power fault occurred, but it was benign */ 1504 temp_register = 0xFFFFFFFF; 1505 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register); 1506 rc = POWER_FAILURE; 1507 func->status = 0; 1508 } else { 1509 /* Get vendor/device ID u32 */ 1510 ctrl->pci_bus->number = func->bus; 1511 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1512 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc); 1513 dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register); 1514 1515 if (rc != 0) { 1516 /* Something's wrong here */ 1517 temp_register = 0xFFFFFFFF; 1518 dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register); 1519 } 1520 /* Preset return code. It will be changed later if things go okay. */ 1521 rc = NO_ADAPTER_PRESENT; 1522 } 1523 1524 /* All F's is an empty slot or an invalid board */ 1525 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */ 1526 res_lists.io_head = ctrl->io_head; 1527 res_lists.mem_head = ctrl->mem_head; 1528 res_lists.p_mem_head = ctrl->p_mem_head; 1529 res_lists.bus_head = ctrl->bus_head; 1530 res_lists.irqs = NULL; 1531 1532 rc = configure_new_device(ctrl, func, 0, &res_lists); 1533 1534 dbg("%s: back from configure_new_device\n", __FUNCTION__); 1535 ctrl->io_head = res_lists.io_head; 1536 ctrl->mem_head = res_lists.mem_head; 1537 ctrl->p_mem_head = res_lists.p_mem_head; 1538 ctrl->bus_head = res_lists.bus_head; 1539 1540 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1541 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1542 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1543 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1544 1545 if (rc) { 1546 mutex_lock(&ctrl->crit_sect); 1547 1548 amber_LED_on (ctrl, hp_slot); 1549 green_LED_off (ctrl, hp_slot); 1550 slot_disable (ctrl, hp_slot); 1551 1552 set_SOGO(ctrl); 1553 1554 /* Wait for SOBS to be unset */ 1555 wait_for_ctrl_irq (ctrl); 1556 1557 mutex_unlock(&ctrl->crit_sect); 1558 return rc; 1559 } else { 1560 cpqhp_save_slot_config(ctrl, func); 1561 } 1562 1563 1564 func->status = 0; 1565 func->switch_save = 0x10; 1566 func->is_a_board = 0x01; 1567 1568 /* next, we will instantiate the linux pci_dev structures (with 1569 * appropriate driver notification, if already present) */ 1570 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__); 1571 index = 0; 1572 do { 1573 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1574 if (new_slot && !new_slot->pci_dev) { 1575 cpqhp_configure_device(ctrl, new_slot); 1576 } 1577 } while (new_slot); 1578 1579 mutex_lock(&ctrl->crit_sect); 1580 1581 green_LED_on (ctrl, hp_slot); 1582 1583 set_SOGO(ctrl); 1584 1585 /* Wait for SOBS to be unset */ 1586 wait_for_ctrl_irq (ctrl); 1587 1588 mutex_unlock(&ctrl->crit_sect); 1589 } else { 1590 mutex_lock(&ctrl->crit_sect); 1591 1592 amber_LED_on (ctrl, hp_slot); 1593 green_LED_off (ctrl, hp_slot); 1594 slot_disable (ctrl, hp_slot); 1595 1596 set_SOGO(ctrl); 1597 1598 /* Wait for SOBS to be unset */ 1599 wait_for_ctrl_irq (ctrl); 1600 1601 mutex_unlock(&ctrl->crit_sect); 1602 1603 return rc; 1604 } 1605 return 0; 1606 } 1607 1608 1609 /** 1610 * remove_board - Turns off slot and LED's 1611 * 1612 */ 1613 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl) 1614 { 1615 int index; 1616 u8 skip = 0; 1617 u8 device; 1618 u8 hp_slot; 1619 u8 temp_byte; 1620 u32 rc; 1621 struct resource_lists res_lists; 1622 struct pci_func *temp_func; 1623 1624 if (cpqhp_unconfigure_device(func)) 1625 return 1; 1626 1627 device = func->device; 1628 1629 hp_slot = func->device - ctrl->slot_device_offset; 1630 dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot); 1631 1632 /* When we get here, it is safe to change base address registers. 1633 * We will attempt to save the base address register lengths */ 1634 if (replace_flag || !ctrl->add_support) 1635 rc = cpqhp_save_base_addr_length(ctrl, func); 1636 else if (!func->bus_head && !func->mem_head && 1637 !func->p_mem_head && !func->io_head) { 1638 /* Here we check to see if we've saved any of the board's 1639 * resources already. If so, we'll skip the attempt to 1640 * determine what's being used. */ 1641 index = 0; 1642 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1643 while (temp_func) { 1644 if (temp_func->bus_head || temp_func->mem_head 1645 || temp_func->p_mem_head || temp_func->io_head) { 1646 skip = 1; 1647 break; 1648 } 1649 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1650 } 1651 1652 if (!skip) 1653 rc = cpqhp_save_used_resources(ctrl, func); 1654 } 1655 /* Change status to shutdown */ 1656 if (func->is_a_board) 1657 func->status = 0x01; 1658 func->configured = 0; 1659 1660 mutex_lock(&ctrl->crit_sect); 1661 1662 green_LED_off (ctrl, hp_slot); 1663 slot_disable (ctrl, hp_slot); 1664 1665 set_SOGO(ctrl); 1666 1667 /* turn off SERR for slot */ 1668 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1669 temp_byte &= ~(0x01 << hp_slot); 1670 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1671 1672 /* Wait for SOBS to be unset */ 1673 wait_for_ctrl_irq (ctrl); 1674 1675 mutex_unlock(&ctrl->crit_sect); 1676 1677 if (!replace_flag && ctrl->add_support) { 1678 while (func) { 1679 res_lists.io_head = ctrl->io_head; 1680 res_lists.mem_head = ctrl->mem_head; 1681 res_lists.p_mem_head = ctrl->p_mem_head; 1682 res_lists.bus_head = ctrl->bus_head; 1683 1684 cpqhp_return_board_resources(func, &res_lists); 1685 1686 ctrl->io_head = res_lists.io_head; 1687 ctrl->mem_head = res_lists.mem_head; 1688 ctrl->p_mem_head = res_lists.p_mem_head; 1689 ctrl->bus_head = res_lists.bus_head; 1690 1691 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1692 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1693 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1694 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1695 1696 if (is_bridge(func)) { 1697 bridge_slot_remove(func); 1698 } else 1699 slot_remove(func); 1700 1701 func = cpqhp_slot_find(ctrl->bus, device, 0); 1702 } 1703 1704 /* Setup slot structure with entry for empty slot */ 1705 func = cpqhp_slot_create(ctrl->bus); 1706 1707 if (func == NULL) 1708 return 1; 1709 1710 func->bus = ctrl->bus; 1711 func->device = device; 1712 func->function = 0; 1713 func->configured = 0; 1714 func->switch_save = 0x10; 1715 func->is_a_board = 0; 1716 func->p_task_event = NULL; 1717 } 1718 1719 return 0; 1720 } 1721 1722 static void pushbutton_helper_thread(unsigned long data) 1723 { 1724 pushbutton_pending = data; 1725 wake_up_process(cpqhp_event_thread); 1726 } 1727 1728 1729 /* this is the main worker thread */ 1730 static int event_thread(void* data) 1731 { 1732 struct controller *ctrl; 1733 1734 while (1) { 1735 dbg("!!!!event_thread sleeping\n"); 1736 set_current_state(TASK_INTERRUPTIBLE); 1737 schedule(); 1738 1739 if (kthread_should_stop()) 1740 break; 1741 /* Do stuff here */ 1742 if (pushbutton_pending) 1743 cpqhp_pushbutton_thread(pushbutton_pending); 1744 else 1745 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) 1746 interrupt_event_handler(ctrl); 1747 } 1748 dbg("event_thread signals exit\n"); 1749 return 0; 1750 } 1751 1752 int cpqhp_event_start_thread(void) 1753 { 1754 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1755 if (IS_ERR(cpqhp_event_thread)) { 1756 err ("Can't start up our event thread\n"); 1757 return PTR_ERR(cpqhp_event_thread); 1758 } 1759 1760 return 0; 1761 } 1762 1763 1764 void cpqhp_event_stop_thread(void) 1765 { 1766 kthread_stop(cpqhp_event_thread); 1767 } 1768 1769 1770 static int update_slot_info(struct controller *ctrl, struct slot *slot) 1771 { 1772 struct hotplug_slot_info *info; 1773 int result; 1774 1775 info = kmalloc(sizeof(*info), GFP_KERNEL); 1776 if (!info) 1777 return -ENOMEM; 1778 1779 info->power_status = get_slot_enabled(ctrl, slot); 1780 info->attention_status = cpq_get_attention_status(ctrl, slot); 1781 info->latch_status = cpq_get_latch_status(ctrl, slot); 1782 info->adapter_status = get_presence_status(ctrl, slot); 1783 result = pci_hp_change_slot_info(slot->hotplug_slot, info); 1784 kfree (info); 1785 return result; 1786 } 1787 1788 static void interrupt_event_handler(struct controller *ctrl) 1789 { 1790 int loop = 0; 1791 int change = 1; 1792 struct pci_func *func; 1793 u8 hp_slot; 1794 struct slot *p_slot; 1795 1796 while (change) { 1797 change = 0; 1798 1799 for (loop = 0; loop < 10; loop++) { 1800 /* dbg("loop %d\n", loop); */ 1801 if (ctrl->event_queue[loop].event_type != 0) { 1802 hp_slot = ctrl->event_queue[loop].hp_slot; 1803 1804 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1805 if (!func) 1806 return; 1807 1808 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1809 if (!p_slot) 1810 return; 1811 1812 dbg("hp_slot %d, func %p, p_slot %p\n", 1813 hp_slot, func, p_slot); 1814 1815 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1816 dbg("button pressed\n"); 1817 } else if (ctrl->event_queue[loop].event_type == 1818 INT_BUTTON_CANCEL) { 1819 dbg("button cancel\n"); 1820 del_timer(&p_slot->task_event); 1821 1822 mutex_lock(&ctrl->crit_sect); 1823 1824 if (p_slot->state == BLINKINGOFF_STATE) { 1825 /* slot is on */ 1826 dbg("turn on green LED\n"); 1827 green_LED_on (ctrl, hp_slot); 1828 } else if (p_slot->state == BLINKINGON_STATE) { 1829 /* slot is off */ 1830 dbg("turn off green LED\n"); 1831 green_LED_off (ctrl, hp_slot); 1832 } 1833 1834 info(msg_button_cancel, p_slot->number); 1835 1836 p_slot->state = STATIC_STATE; 1837 1838 amber_LED_off (ctrl, hp_slot); 1839 1840 set_SOGO(ctrl); 1841 1842 /* Wait for SOBS to be unset */ 1843 wait_for_ctrl_irq (ctrl); 1844 1845 mutex_unlock(&ctrl->crit_sect); 1846 } 1847 /*** button Released (No action on press...) */ 1848 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1849 dbg("button release\n"); 1850 1851 if (is_slot_enabled (ctrl, hp_slot)) { 1852 dbg("slot is on\n"); 1853 p_slot->state = BLINKINGOFF_STATE; 1854 info(msg_button_off, p_slot->number); 1855 } else { 1856 dbg("slot is off\n"); 1857 p_slot->state = BLINKINGON_STATE; 1858 info(msg_button_on, p_slot->number); 1859 } 1860 mutex_lock(&ctrl->crit_sect); 1861 1862 dbg("blink green LED and turn off amber\n"); 1863 1864 amber_LED_off (ctrl, hp_slot); 1865 green_LED_blink (ctrl, hp_slot); 1866 1867 set_SOGO(ctrl); 1868 1869 /* Wait for SOBS to be unset */ 1870 wait_for_ctrl_irq (ctrl); 1871 1872 mutex_unlock(&ctrl->crit_sect); 1873 init_timer(&p_slot->task_event); 1874 p_slot->hp_slot = hp_slot; 1875 p_slot->ctrl = ctrl; 1876 /* p_slot->physical_slot = physical_slot; */ 1877 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1878 p_slot->task_event.function = pushbutton_helper_thread; 1879 p_slot->task_event.data = (u32) p_slot; 1880 1881 dbg("add_timer p_slot = %p\n", p_slot); 1882 add_timer(&p_slot->task_event); 1883 } 1884 /***********POWER FAULT */ 1885 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1886 dbg("power fault\n"); 1887 } else { 1888 /* refresh notification */ 1889 if (p_slot) 1890 update_slot_info(ctrl, p_slot); 1891 } 1892 1893 ctrl->event_queue[loop].event_type = 0; 1894 1895 change = 1; 1896 } 1897 } /* End of FOR loop */ 1898 } 1899 1900 return; 1901 } 1902 1903 1904 /** 1905 * cpqhp_pushbutton_thread 1906 * 1907 * Scheduled procedure to handle blocking stuff for the pushbuttons 1908 * Handles all pending events and exits. 1909 * 1910 */ 1911 void cpqhp_pushbutton_thread(unsigned long slot) 1912 { 1913 u8 hp_slot; 1914 u8 device; 1915 struct pci_func *func; 1916 struct slot *p_slot = (struct slot *) slot; 1917 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1918 1919 pushbutton_pending = 0; 1920 hp_slot = p_slot->hp_slot; 1921 1922 device = p_slot->device; 1923 1924 if (is_slot_enabled(ctrl, hp_slot)) { 1925 p_slot->state = POWEROFF_STATE; 1926 /* power Down board */ 1927 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1928 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1929 if (!func) { 1930 dbg("Error! func NULL in %s\n", __FUNCTION__); 1931 return ; 1932 } 1933 1934 if (func != NULL && ctrl != NULL) { 1935 if (cpqhp_process_SS(ctrl, func) != 0) { 1936 amber_LED_on (ctrl, hp_slot); 1937 green_LED_on (ctrl, hp_slot); 1938 1939 set_SOGO(ctrl); 1940 1941 /* Wait for SOBS to be unset */ 1942 wait_for_ctrl_irq (ctrl); 1943 } 1944 } 1945 1946 p_slot->state = STATIC_STATE; 1947 } else { 1948 p_slot->state = POWERON_STATE; 1949 /* slot is off */ 1950 1951 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1952 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1953 if (!func) { 1954 dbg("Error! func NULL in %s\n", __FUNCTION__); 1955 return ; 1956 } 1957 1958 if (func != NULL && ctrl != NULL) { 1959 if (cpqhp_process_SI(ctrl, func) != 0) { 1960 amber_LED_on(ctrl, hp_slot); 1961 green_LED_off(ctrl, hp_slot); 1962 1963 set_SOGO(ctrl); 1964 1965 /* Wait for SOBS to be unset */ 1966 wait_for_ctrl_irq (ctrl); 1967 } 1968 } 1969 1970 p_slot->state = STATIC_STATE; 1971 } 1972 1973 return; 1974 } 1975 1976 1977 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1978 { 1979 u8 device, hp_slot; 1980 u16 temp_word; 1981 u32 tempdword; 1982 int rc; 1983 struct slot* p_slot; 1984 int physical_slot = 0; 1985 1986 tempdword = 0; 1987 1988 device = func->device; 1989 hp_slot = device - ctrl->slot_device_offset; 1990 p_slot = cpqhp_find_slot(ctrl, device); 1991 if (p_slot) 1992 physical_slot = p_slot->number; 1993 1994 /* Check to see if the interlock is closed */ 1995 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 1996 1997 if (tempdword & (0x01 << hp_slot)) { 1998 return 1; 1999 } 2000 2001 if (func->is_a_board) { 2002 rc = board_replaced(func, ctrl); 2003 } else { 2004 /* add board */ 2005 slot_remove(func); 2006 2007 func = cpqhp_slot_create(ctrl->bus); 2008 if (func == NULL) 2009 return 1; 2010 2011 func->bus = ctrl->bus; 2012 func->device = device; 2013 func->function = 0; 2014 func->configured = 0; 2015 func->is_a_board = 1; 2016 2017 /* We have to save the presence info for these slots */ 2018 temp_word = ctrl->ctrl_int_comp >> 16; 2019 func->presence_save = (temp_word >> hp_slot) & 0x01; 2020 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 2021 2022 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2023 func->switch_save = 0; 2024 } else { 2025 func->switch_save = 0x10; 2026 } 2027 2028 rc = board_added(func, ctrl); 2029 if (rc) { 2030 if (is_bridge(func)) { 2031 bridge_slot_remove(func); 2032 } else 2033 slot_remove(func); 2034 2035 /* Setup slot structure with entry for empty slot */ 2036 func = cpqhp_slot_create(ctrl->bus); 2037 2038 if (func == NULL) 2039 return 1; 2040 2041 func->bus = ctrl->bus; 2042 func->device = device; 2043 func->function = 0; 2044 func->configured = 0; 2045 func->is_a_board = 0; 2046 2047 /* We have to save the presence info for these slots */ 2048 temp_word = ctrl->ctrl_int_comp >> 16; 2049 func->presence_save = (temp_word >> hp_slot) & 0x01; 2050 func->presence_save |= 2051 (temp_word >> (hp_slot + 7)) & 0x02; 2052 2053 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2054 func->switch_save = 0; 2055 } else { 2056 func->switch_save = 0x10; 2057 } 2058 } 2059 } 2060 2061 if (rc) { 2062 dbg("%s: rc = %d\n", __FUNCTION__, rc); 2063 } 2064 2065 if (p_slot) 2066 update_slot_info(ctrl, p_slot); 2067 2068 return rc; 2069 } 2070 2071 2072 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2073 { 2074 u8 device, class_code, header_type, BCR; 2075 u8 index = 0; 2076 u8 replace_flag; 2077 u32 rc = 0; 2078 unsigned int devfn; 2079 struct slot* p_slot; 2080 struct pci_bus *pci_bus = ctrl->pci_bus; 2081 int physical_slot=0; 2082 2083 device = func->device; 2084 func = cpqhp_slot_find(ctrl->bus, device, index++); 2085 p_slot = cpqhp_find_slot(ctrl, device); 2086 if (p_slot) { 2087 physical_slot = p_slot->number; 2088 } 2089 2090 /* Make sure there are no video controllers here */ 2091 while (func && !rc) { 2092 pci_bus->number = func->bus; 2093 devfn = PCI_DEVFN(func->device, func->function); 2094 2095 /* Check the Class Code */ 2096 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2097 if (rc) 2098 return rc; 2099 2100 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2101 /* Display/Video adapter (not supported) */ 2102 rc = REMOVE_NOT_SUPPORTED; 2103 } else { 2104 /* See if it's a bridge */ 2105 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2106 if (rc) 2107 return rc; 2108 2109 /* If it's a bridge, check the VGA Enable bit */ 2110 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2111 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2112 if (rc) 2113 return rc; 2114 2115 /* If the VGA Enable bit is set, remove isn't 2116 * supported */ 2117 if (BCR & PCI_BRIDGE_CTL_VGA) { 2118 rc = REMOVE_NOT_SUPPORTED; 2119 } 2120 } 2121 } 2122 2123 func = cpqhp_slot_find(ctrl->bus, device, index++); 2124 } 2125 2126 func = cpqhp_slot_find(ctrl->bus, device, 0); 2127 if ((func != NULL) && !rc) { 2128 /* FIXME: Replace flag should be passed into process_SS */ 2129 replace_flag = !(ctrl->add_support); 2130 rc = remove_board(func, replace_flag, ctrl); 2131 } else if (!rc) { 2132 rc = 1; 2133 } 2134 2135 if (p_slot) 2136 update_slot_info(ctrl, p_slot); 2137 2138 return rc; 2139 } 2140 2141 /** 2142 * switch_leds: switch the leds, go from one site to the other. 2143 * @ctrl: controller to use 2144 * @num_of_slots: number of slots to use 2145 * @direction: 1 to start from the left side, 0 to start right. 2146 */ 2147 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2148 u32 *work_LED, const int direction) 2149 { 2150 int loop; 2151 2152 for (loop = 0; loop < num_of_slots; loop++) { 2153 if (direction) 2154 *work_LED = *work_LED >> 1; 2155 else 2156 *work_LED = *work_LED << 1; 2157 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2158 2159 set_SOGO(ctrl); 2160 2161 /* Wait for SOGO interrupt */ 2162 wait_for_ctrl_irq(ctrl); 2163 2164 /* Get ready for next iteration */ 2165 long_delay((2*HZ)/10); 2166 } 2167 } 2168 2169 /** 2170 * hardware_test - runs hardware tests 2171 * 2172 * For hot plug ctrl folks to play with. 2173 * test_num is the number written to the "test" file in sysfs 2174 * 2175 */ 2176 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2177 { 2178 u32 save_LED; 2179 u32 work_LED; 2180 int loop; 2181 int num_of_slots; 2182 2183 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2184 2185 switch (test_num) { 2186 case 1: 2187 /* Do stuff here! */ 2188 2189 /* Do that funky LED thing */ 2190 /* so we can restore them later */ 2191 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2192 work_LED = 0x01010101; 2193 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2194 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2195 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2196 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2197 2198 work_LED = 0x01010000; 2199 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2200 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2201 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2202 work_LED = 0x00000101; 2203 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2204 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2205 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2206 2207 work_LED = 0x01010000; 2208 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2209 for (loop = 0; loop < num_of_slots; loop++) { 2210 set_SOGO(ctrl); 2211 2212 /* Wait for SOGO interrupt */ 2213 wait_for_ctrl_irq (ctrl); 2214 2215 /* Get ready for next iteration */ 2216 long_delay((3*HZ)/10); 2217 work_LED = work_LED >> 16; 2218 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2219 2220 set_SOGO(ctrl); 2221 2222 /* Wait for SOGO interrupt */ 2223 wait_for_ctrl_irq (ctrl); 2224 2225 /* Get ready for next iteration */ 2226 long_delay((3*HZ)/10); 2227 work_LED = work_LED << 16; 2228 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2229 work_LED = work_LED << 1; 2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2231 } 2232 2233 /* put it back the way it was */ 2234 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2235 2236 set_SOGO(ctrl); 2237 2238 /* Wait for SOBS to be unset */ 2239 wait_for_ctrl_irq (ctrl); 2240 break; 2241 case 2: 2242 /* Do other stuff here! */ 2243 break; 2244 case 3: 2245 /* and more... */ 2246 break; 2247 } 2248 return 0; 2249 } 2250 2251 2252 /** 2253 * configure_new_device - Configures the PCI header information of one board. 2254 * 2255 * @ctrl: pointer to controller structure 2256 * @func: pointer to function structure 2257 * @behind_bridge: 1 if this is a recursive call, 0 if not 2258 * @resources: pointer to set of resource lists 2259 * 2260 * Returns 0 if success 2261 * 2262 */ 2263 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, 2264 u8 behind_bridge, struct resource_lists * resources) 2265 { 2266 u8 temp_byte, function, max_functions, stop_it; 2267 int rc; 2268 u32 ID; 2269 struct pci_func *new_slot; 2270 int index; 2271 2272 new_slot = func; 2273 2274 dbg("%s\n", __FUNCTION__); 2275 /* Check for Multi-function device */ 2276 ctrl->pci_bus->number = func->bus; 2277 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2278 if (rc) { 2279 dbg("%s: rc = %d\n", __FUNCTION__, rc); 2280 return rc; 2281 } 2282 2283 if (temp_byte & 0x80) /* Multi-function device */ 2284 max_functions = 8; 2285 else 2286 max_functions = 1; 2287 2288 function = 0; 2289 2290 do { 2291 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2292 2293 if (rc) { 2294 dbg("configure_new_function failed %d\n",rc); 2295 index = 0; 2296 2297 while (new_slot) { 2298 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2299 2300 if (new_slot) 2301 cpqhp_return_board_resources(new_slot, resources); 2302 } 2303 2304 return rc; 2305 } 2306 2307 function++; 2308 2309 stop_it = 0; 2310 2311 /* The following loop skips to the next present function 2312 * and creates a board structure */ 2313 2314 while ((function < max_functions) && (!stop_it)) { 2315 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2316 2317 if (ID == 0xFFFFFFFF) { /* There's nothing there. */ 2318 function++; 2319 } else { /* There's something there */ 2320 /* Setup slot structure. */ 2321 new_slot = cpqhp_slot_create(func->bus); 2322 2323 if (new_slot == NULL) 2324 return 1; 2325 2326 new_slot->bus = func->bus; 2327 new_slot->device = func->device; 2328 new_slot->function = function; 2329 new_slot->is_a_board = 1; 2330 new_slot->status = 0; 2331 2332 stop_it++; 2333 } 2334 } 2335 2336 } while (function < max_functions); 2337 dbg("returning from configure_new_device\n"); 2338 2339 return 0; 2340 } 2341 2342 2343 /* 2344 Configuration logic that involves the hotplug data structures and 2345 their bookkeeping 2346 */ 2347 2348 2349 /** 2350 * configure_new_function - Configures the PCI header information of one device 2351 * 2352 * @ctrl: pointer to controller structure 2353 * @func: pointer to function structure 2354 * @behind_bridge: 1 if this is a recursive call, 0 if not 2355 * @resources: pointer to set of resource lists 2356 * 2357 * Calls itself recursively for bridged devices. 2358 * Returns 0 if success 2359 * 2360 */ 2361 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2362 u8 behind_bridge, 2363 struct resource_lists *resources) 2364 { 2365 int cloop; 2366 u8 IRQ = 0; 2367 u8 temp_byte; 2368 u8 device; 2369 u8 class_code; 2370 u16 command; 2371 u16 temp_word; 2372 u32 temp_dword; 2373 u32 rc; 2374 u32 temp_register; 2375 u32 base; 2376 u32 ID; 2377 unsigned int devfn; 2378 struct pci_resource *mem_node; 2379 struct pci_resource *p_mem_node; 2380 struct pci_resource *io_node; 2381 struct pci_resource *bus_node; 2382 struct pci_resource *hold_mem_node; 2383 struct pci_resource *hold_p_mem_node; 2384 struct pci_resource *hold_IO_node; 2385 struct pci_resource *hold_bus_node; 2386 struct irq_mapping irqs; 2387 struct pci_func *new_slot; 2388 struct pci_bus *pci_bus; 2389 struct resource_lists temp_resources; 2390 2391 pci_bus = ctrl->pci_bus; 2392 pci_bus->number = func->bus; 2393 devfn = PCI_DEVFN(func->device, func->function); 2394 2395 /* Check for Bridge */ 2396 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2397 if (rc) 2398 return rc; 2399 2400 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ 2401 /* set Primary bus */ 2402 dbg("set Primary bus = %d\n", func->bus); 2403 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2404 if (rc) 2405 return rc; 2406 2407 /* find range of busses to use */ 2408 dbg("find ranges of buses to use\n"); 2409 bus_node = get_max_resource(&(resources->bus_head), 1); 2410 2411 /* If we don't have any busses to allocate, we can't continue */ 2412 if (!bus_node) 2413 return -ENOMEM; 2414 2415 /* set Secondary bus */ 2416 temp_byte = bus_node->base; 2417 dbg("set Secondary bus = %d\n", bus_node->base); 2418 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2419 if (rc) 2420 return rc; 2421 2422 /* set subordinate bus */ 2423 temp_byte = bus_node->base + bus_node->length - 1; 2424 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2425 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2426 if (rc) 2427 return rc; 2428 2429 /* set subordinate Latency Timer and base Latency Timer */ 2430 temp_byte = 0x40; 2431 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2432 if (rc) 2433 return rc; 2434 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2435 if (rc) 2436 return rc; 2437 2438 /* set Cache Line size */ 2439 temp_byte = 0x08; 2440 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2441 if (rc) 2442 return rc; 2443 2444 /* Setup the IO, memory, and prefetchable windows */ 2445 io_node = get_max_resource(&(resources->io_head), 0x1000); 2446 if (!io_node) 2447 return -ENOMEM; 2448 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2449 if (!mem_node) 2450 return -ENOMEM; 2451 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2452 if (!p_mem_node) 2453 return -ENOMEM; 2454 dbg("Setup the IO, memory, and prefetchable windows\n"); 2455 dbg("io_node\n"); 2456 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2457 io_node->length, io_node->next); 2458 dbg("mem_node\n"); 2459 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2460 mem_node->length, mem_node->next); 2461 dbg("p_mem_node\n"); 2462 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2463 p_mem_node->length, p_mem_node->next); 2464 2465 /* set up the IRQ info */ 2466 if (!resources->irqs) { 2467 irqs.barber_pole = 0; 2468 irqs.interrupt[0] = 0; 2469 irqs.interrupt[1] = 0; 2470 irqs.interrupt[2] = 0; 2471 irqs.interrupt[3] = 0; 2472 irqs.valid_INT = 0; 2473 } else { 2474 irqs.barber_pole = resources->irqs->barber_pole; 2475 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2476 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2477 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2478 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2479 irqs.valid_INT = resources->irqs->valid_INT; 2480 } 2481 2482 /* set up resource lists that are now aligned on top and bottom 2483 * for anything behind the bridge. */ 2484 temp_resources.bus_head = bus_node; 2485 temp_resources.io_head = io_node; 2486 temp_resources.mem_head = mem_node; 2487 temp_resources.p_mem_head = p_mem_node; 2488 temp_resources.irqs = &irqs; 2489 2490 /* Make copies of the nodes we are going to pass down so that 2491 * if there is a problem,we can just use these to free resources */ 2492 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2493 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2494 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2495 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2496 2497 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2498 kfree(hold_bus_node); 2499 kfree(hold_IO_node); 2500 kfree(hold_mem_node); 2501 kfree(hold_p_mem_node); 2502 2503 return 1; 2504 } 2505 2506 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2507 2508 bus_node->base += 1; 2509 bus_node->length -= 1; 2510 bus_node->next = NULL; 2511 2512 /* If we have IO resources copy them and fill in the bridge's 2513 * IO range registers */ 2514 if (io_node) { 2515 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2516 io_node->next = NULL; 2517 2518 /* set IO base and Limit registers */ 2519 temp_byte = io_node->base >> 8; 2520 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2521 2522 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2523 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2524 } else { 2525 kfree(hold_IO_node); 2526 hold_IO_node = NULL; 2527 } 2528 2529 /* If we have memory resources copy them and fill in the 2530 * bridge's memory range registers. Otherwise, fill in the 2531 * range registers with values that disable them. */ 2532 if (mem_node) { 2533 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2534 mem_node->next = NULL; 2535 2536 /* set Mem base and Limit registers */ 2537 temp_word = mem_node->base >> 16; 2538 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2539 2540 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2541 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2542 } else { 2543 temp_word = 0xFFFF; 2544 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2545 2546 temp_word = 0x0000; 2547 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2548 2549 kfree(hold_mem_node); 2550 hold_mem_node = NULL; 2551 } 2552 2553 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2554 p_mem_node->next = NULL; 2555 2556 /* set Pre Mem base and Limit registers */ 2557 temp_word = p_mem_node->base >> 16; 2558 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2559 2560 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2561 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2562 2563 /* Adjust this to compensate for extra adjustment in first loop */ 2564 irqs.barber_pole--; 2565 2566 rc = 0; 2567 2568 /* Here we actually find the devices and configure them */ 2569 for (device = 0; (device <= 0x1F) && !rc; device++) { 2570 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2571 2572 ID = 0xFFFFFFFF; 2573 pci_bus->number = hold_bus_node->base; 2574 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2575 pci_bus->number = func->bus; 2576 2577 if (ID != 0xFFFFFFFF) { /* device present */ 2578 /* Setup slot structure. */ 2579 new_slot = cpqhp_slot_create(hold_bus_node->base); 2580 2581 if (new_slot == NULL) { 2582 rc = -ENOMEM; 2583 continue; 2584 } 2585 2586 new_slot->bus = hold_bus_node->base; 2587 new_slot->device = device; 2588 new_slot->function = 0; 2589 new_slot->is_a_board = 1; 2590 new_slot->status = 0; 2591 2592 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2593 dbg("configure_new_device rc=0x%x\n",rc); 2594 } /* End of IF (device in slot?) */ 2595 } /* End of FOR loop */ 2596 2597 if (rc) 2598 goto free_and_out; 2599 /* save the interrupt routing information */ 2600 if (resources->irqs) { 2601 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2602 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2603 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2604 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2605 resources->irqs->valid_INT = irqs.valid_INT; 2606 } else if (!behind_bridge) { 2607 /* We need to hook up the interrupts here */ 2608 for (cloop = 0; cloop < 4; cloop++) { 2609 if (irqs.valid_INT & (0x01 << cloop)) { 2610 rc = cpqhp_set_irq(func->bus, func->device, 2611 0x0A + cloop, irqs.interrupt[cloop]); 2612 if (rc) 2613 goto free_and_out; 2614 } 2615 } /* end of for loop */ 2616 } 2617 /* Return unused bus resources 2618 * First use the temporary node to store information for 2619 * the board */ 2620 if (hold_bus_node && bus_node && temp_resources.bus_head) { 2621 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2622 2623 hold_bus_node->next = func->bus_head; 2624 func->bus_head = hold_bus_node; 2625 2626 temp_byte = temp_resources.bus_head->base - 1; 2627 2628 /* set subordinate bus */ 2629 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2630 2631 if (temp_resources.bus_head->length == 0) { 2632 kfree(temp_resources.bus_head); 2633 temp_resources.bus_head = NULL; 2634 } else { 2635 return_resource(&(resources->bus_head), temp_resources.bus_head); 2636 } 2637 } 2638 2639 /* If we have IO space available and there is some left, 2640 * return the unused portion */ 2641 if (hold_IO_node && temp_resources.io_head) { 2642 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2643 &hold_IO_node, 0x1000); 2644 2645 /* Check if we were able to split something off */ 2646 if (io_node) { 2647 hold_IO_node->base = io_node->base + io_node->length; 2648 2649 temp_byte = (hold_IO_node->base) >> 8; 2650 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte); 2651 2652 return_resource(&(resources->io_head), io_node); 2653 } 2654 2655 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2656 2657 /* Check if we were able to split something off */ 2658 if (io_node) { 2659 /* First use the temporary node to store 2660 * information for the board */ 2661 hold_IO_node->length = io_node->base - hold_IO_node->base; 2662 2663 /* If we used any, add it to the board's list */ 2664 if (hold_IO_node->length) { 2665 hold_IO_node->next = func->io_head; 2666 func->io_head = hold_IO_node; 2667 2668 temp_byte = (io_node->base - 1) >> 8; 2669 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2670 2671 return_resource(&(resources->io_head), io_node); 2672 } else { 2673 /* it doesn't need any IO */ 2674 temp_word = 0x0000; 2675 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2676 2677 return_resource(&(resources->io_head), io_node); 2678 kfree(hold_IO_node); 2679 } 2680 } else { 2681 /* it used most of the range */ 2682 hold_IO_node->next = func->io_head; 2683 func->io_head = hold_IO_node; 2684 } 2685 } else if (hold_IO_node) { 2686 /* it used the whole range */ 2687 hold_IO_node->next = func->io_head; 2688 func->io_head = hold_IO_node; 2689 } 2690 /* If we have memory space available and there is some left, 2691 * return the unused portion */ 2692 if (hold_mem_node && temp_resources.mem_head) { 2693 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2694 &hold_mem_node, 0x100000); 2695 2696 /* Check if we were able to split something off */ 2697 if (mem_node) { 2698 hold_mem_node->base = mem_node->base + mem_node->length; 2699 2700 temp_word = (hold_mem_node->base) >> 16; 2701 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2702 2703 return_resource(&(resources->mem_head), mem_node); 2704 } 2705 2706 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2707 2708 /* Check if we were able to split something off */ 2709 if (mem_node) { 2710 /* First use the temporary node to store 2711 * information for the board */ 2712 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2713 2714 if (hold_mem_node->length) { 2715 hold_mem_node->next = func->mem_head; 2716 func->mem_head = hold_mem_node; 2717 2718 /* configure end address */ 2719 temp_word = (mem_node->base - 1) >> 16; 2720 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2721 2722 /* Return unused resources to the pool */ 2723 return_resource(&(resources->mem_head), mem_node); 2724 } else { 2725 /* it doesn't need any Mem */ 2726 temp_word = 0x0000; 2727 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2728 2729 return_resource(&(resources->mem_head), mem_node); 2730 kfree(hold_mem_node); 2731 } 2732 } else { 2733 /* it used most of the range */ 2734 hold_mem_node->next = func->mem_head; 2735 func->mem_head = hold_mem_node; 2736 } 2737 } else if (hold_mem_node) { 2738 /* it used the whole range */ 2739 hold_mem_node->next = func->mem_head; 2740 func->mem_head = hold_mem_node; 2741 } 2742 /* If we have prefetchable memory space available and there 2743 * is some left at the end, return the unused portion */ 2744 if (hold_p_mem_node && temp_resources.p_mem_head) { 2745 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2746 &hold_p_mem_node, 0x100000); 2747 2748 /* Check if we were able to split something off */ 2749 if (p_mem_node) { 2750 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2751 2752 temp_word = (hold_p_mem_node->base) >> 16; 2753 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2754 2755 return_resource(&(resources->p_mem_head), p_mem_node); 2756 } 2757 2758 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2759 2760 /* Check if we were able to split something off */ 2761 if (p_mem_node) { 2762 /* First use the temporary node to store 2763 * information for the board */ 2764 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2765 2766 /* If we used any, add it to the board's list */ 2767 if (hold_p_mem_node->length) { 2768 hold_p_mem_node->next = func->p_mem_head; 2769 func->p_mem_head = hold_p_mem_node; 2770 2771 temp_word = (p_mem_node->base - 1) >> 16; 2772 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2773 2774 return_resource(&(resources->p_mem_head), p_mem_node); 2775 } else { 2776 /* it doesn't need any PMem */ 2777 temp_word = 0x0000; 2778 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2779 2780 return_resource(&(resources->p_mem_head), p_mem_node); 2781 kfree(hold_p_mem_node); 2782 } 2783 } else { 2784 /* it used the most of the range */ 2785 hold_p_mem_node->next = func->p_mem_head; 2786 func->p_mem_head = hold_p_mem_node; 2787 } 2788 } else if (hold_p_mem_node) { 2789 /* it used the whole range */ 2790 hold_p_mem_node->next = func->p_mem_head; 2791 func->p_mem_head = hold_p_mem_node; 2792 } 2793 /* We should be configuring an IRQ and the bridge's base address 2794 * registers if it needs them. Although we have never seen such 2795 * a device */ 2796 2797 /* enable card */ 2798 command = 0x0157; /* = PCI_COMMAND_IO | 2799 * PCI_COMMAND_MEMORY | 2800 * PCI_COMMAND_MASTER | 2801 * PCI_COMMAND_INVALIDATE | 2802 * PCI_COMMAND_PARITY | 2803 * PCI_COMMAND_SERR */ 2804 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command); 2805 2806 /* set Bridge Control Register */ 2807 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2808 * PCI_BRIDGE_CTL_SERR | 2809 * PCI_BRIDGE_CTL_NO_ISA */ 2810 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2811 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2812 /* Standard device */ 2813 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2814 2815 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2816 /* Display (video) adapter (not supported) */ 2817 return DEVICE_TYPE_NOT_SUPPORTED; 2818 } 2819 /* Figure out IO and memory needs */ 2820 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2821 temp_register = 0xFFFFFFFF; 2822 2823 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2824 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); 2825 2826 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); 2827 dbg("CND: base = 0x%x\n", temp_register); 2828 2829 if (temp_register) { /* If this register is implemented */ 2830 if ((temp_register & 0x03L) == 0x01) { 2831 /* Map IO */ 2832 2833 /* set base = amount of IO space */ 2834 base = temp_register & 0xFFFFFFFC; 2835 base = ~base + 1; 2836 2837 dbg("CND: length = 0x%x\n", base); 2838 io_node = get_io_resource(&(resources->io_head), base); 2839 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2840 io_node->base, io_node->length, io_node->next); 2841 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2842 2843 /* allocate the resource to the board */ 2844 if (io_node) { 2845 base = io_node->base; 2846 2847 io_node->next = func->io_head; 2848 func->io_head = io_node; 2849 } else 2850 return -ENOMEM; 2851 } else if ((temp_register & 0x0BL) == 0x08) { 2852 /* Map prefetchable memory */ 2853 base = temp_register & 0xFFFFFFF0; 2854 base = ~base + 1; 2855 2856 dbg("CND: length = 0x%x\n", base); 2857 p_mem_node = get_resource(&(resources->p_mem_head), base); 2858 2859 /* allocate the resource to the board */ 2860 if (p_mem_node) { 2861 base = p_mem_node->base; 2862 2863 p_mem_node->next = func->p_mem_head; 2864 func->p_mem_head = p_mem_node; 2865 } else 2866 return -ENOMEM; 2867 } else if ((temp_register & 0x0BL) == 0x00) { 2868 /* Map memory */ 2869 base = temp_register & 0xFFFFFFF0; 2870 base = ~base + 1; 2871 2872 dbg("CND: length = 0x%x\n", base); 2873 mem_node = get_resource(&(resources->mem_head), base); 2874 2875 /* allocate the resource to the board */ 2876 if (mem_node) { 2877 base = mem_node->base; 2878 2879 mem_node->next = func->mem_head; 2880 func->mem_head = mem_node; 2881 } else 2882 return -ENOMEM; 2883 } else if ((temp_register & 0x0BL) == 0x04) { 2884 /* Map memory */ 2885 base = temp_register & 0xFFFFFFF0; 2886 base = ~base + 1; 2887 2888 dbg("CND: length = 0x%x\n", base); 2889 mem_node = get_resource(&(resources->mem_head), base); 2890 2891 /* allocate the resource to the board */ 2892 if (mem_node) { 2893 base = mem_node->base; 2894 2895 mem_node->next = func->mem_head; 2896 func->mem_head = mem_node; 2897 } else 2898 return -ENOMEM; 2899 } else if ((temp_register & 0x0BL) == 0x06) { 2900 /* Those bits are reserved, we can't handle this */ 2901 return 1; 2902 } else { 2903 /* Requesting space below 1M */ 2904 return NOT_ENOUGH_RESOURCES; 2905 } 2906 2907 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2908 2909 /* Check for 64-bit base */ 2910 if ((temp_register & 0x07L) == 0x04) { 2911 cloop += 4; 2912 2913 /* Upper 32 bits of address always zero 2914 * on today's systems */ 2915 /* FIXME this is probably not true on 2916 * Alpha and ia64??? */ 2917 base = 0; 2918 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2919 } 2920 } 2921 } /* End of base register loop */ 2922 if (cpqhp_legacy_mode) { 2923 /* Figure out which interrupt pin this function uses */ 2924 rc = pci_bus_read_config_byte (pci_bus, devfn, 2925 PCI_INTERRUPT_PIN, &temp_byte); 2926 2927 /* If this function needs an interrupt and we are behind 2928 * a bridge and the pin is tied to something that's 2929 * alread mapped, set this one the same */ 2930 if (temp_byte && resources->irqs && 2931 (resources->irqs->valid_INT & 2932 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2933 /* We have to share with something already set up */ 2934 IRQ = resources->irqs->interrupt[(temp_byte + 2935 resources->irqs->barber_pole - 1) & 0x03]; 2936 } else { 2937 /* Program IRQ based on card type */ 2938 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2939 2940 if (class_code == PCI_BASE_CLASS_STORAGE) { 2941 IRQ = cpqhp_disk_irq; 2942 } else { 2943 IRQ = cpqhp_nic_irq; 2944 } 2945 } 2946 2947 /* IRQ Line */ 2948 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2949 } 2950 2951 if (!behind_bridge) { 2952 rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ); 2953 if (rc) 2954 return 1; 2955 } else { 2956 /* TBD - this code may also belong in the other clause 2957 * of this If statement */ 2958 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2959 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2960 } 2961 2962 /* Latency Timer */ 2963 temp_byte = 0x40; 2964 rc = pci_bus_write_config_byte(pci_bus, devfn, 2965 PCI_LATENCY_TIMER, temp_byte); 2966 2967 /* Cache Line size */ 2968 temp_byte = 0x08; 2969 rc = pci_bus_write_config_byte(pci_bus, devfn, 2970 PCI_CACHE_LINE_SIZE, temp_byte); 2971 2972 /* disable ROM base Address */ 2973 temp_dword = 0x00L; 2974 rc = pci_bus_write_config_word(pci_bus, devfn, 2975 PCI_ROM_ADDRESS, temp_dword); 2976 2977 /* enable card */ 2978 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2979 * PCI_COMMAND_MEMORY | 2980 * PCI_COMMAND_MASTER | 2981 * PCI_COMMAND_INVALIDATE | 2982 * PCI_COMMAND_PARITY | 2983 * PCI_COMMAND_SERR */ 2984 rc = pci_bus_write_config_word (pci_bus, devfn, 2985 PCI_COMMAND, temp_word); 2986 } else { /* End of Not-A-Bridge else */ 2987 /* It's some strange type of PCI adapter (Cardbus?) */ 2988 return DEVICE_TYPE_NOT_SUPPORTED; 2989 } 2990 2991 func->configured = 1; 2992 2993 return 0; 2994 free_and_out: 2995 cpqhp_destroy_resource_list (&temp_resources); 2996 2997 return_resource(&(resources-> bus_head), hold_bus_node); 2998 return_resource(&(resources-> io_head), hold_IO_node); 2999 return_resource(&(resources-> mem_head), hold_mem_node); 3000 return_resource(&(resources-> p_mem_head), hold_p_mem_node); 3001 return rc; 3002 } 3003