xref: /openbmc/linux/drivers/pci/endpoint/functions/pci-epf-mhi.c (revision b188c9e1d5d26ce1ca7223a2677f48f387543a22)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI EPF driver for MHI Endpoint devices
4  *
5  * Copyright (C) 2023 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/mhi_ep.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/pci-epc.h>
15 #include <linux/pci-epf.h>
16 
17 #define MHI_VERSION_1_0 0x01000000
18 
19 #define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
20 
21 /* Platform specific flags */
22 #define MHI_EPF_USE_DMA BIT(0)
23 
24 struct pci_epf_mhi_ep_info {
25 	const struct mhi_ep_cntrl_config *config;
26 	struct pci_epf_header *epf_header;
27 	enum pci_barno bar_num;
28 	u32 epf_flags;
29 	u32 msi_count;
30 	u32 mru;
31 	u32 flags;
32 };
33 
34 #define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction)	\
35 	{							\
36 		.num = ch_num,					\
37 		.name = ch_name,				\
38 		.dir = direction,				\
39 	}
40 
41 #define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name)		\
42 	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)
43 
44 #define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name)		\
45 	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)
46 
47 static const struct mhi_ep_channel_config mhi_v1_channels[] = {
48 	MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
49 	MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
50 	MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
51 	MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
52 	MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
53 	MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
54 	MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
55 	MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
56 	MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
57 	MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
58 	MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
59 	MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
60 	MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
61 	MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
62 	MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
63 	MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
64 	MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
65 	MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
66 	MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
67 	MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
68 	MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
69 	MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
70 	MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
71 	MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
72 	MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
73 	MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
74 };
75 
76 static const struct mhi_ep_cntrl_config mhi_v1_config = {
77 	.max_channels = 128,
78 	.num_channels = ARRAY_SIZE(mhi_v1_channels),
79 	.ch_cfg = mhi_v1_channels,
80 	.mhi_version = MHI_VERSION_1_0,
81 };
82 
83 static struct pci_epf_header sdx55_header = {
84 	.vendorid = PCI_VENDOR_ID_QCOM,
85 	.deviceid = 0x0306,
86 	.baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
87 	.subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
88 	.interrupt_pin	= PCI_INTERRUPT_INTA,
89 };
90 
91 static const struct pci_epf_mhi_ep_info sdx55_info = {
92 	.config = &mhi_v1_config,
93 	.epf_header = &sdx55_header,
94 	.bar_num = BAR_0,
95 	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
96 	.msi_count = 32,
97 	.mru = 0x8000,
98 };
99 
100 static struct pci_epf_header sm8450_header = {
101 	.vendorid = PCI_VENDOR_ID_QCOM,
102 	.deviceid = 0x0306,
103 	.baseclass_code = PCI_CLASS_OTHERS,
104 	.interrupt_pin = PCI_INTERRUPT_INTA,
105 };
106 
107 static const struct pci_epf_mhi_ep_info sm8450_info = {
108 	.config = &mhi_v1_config,
109 	.epf_header = &sm8450_header,
110 	.bar_num = BAR_0,
111 	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
112 	.msi_count = 32,
113 	.mru = 0x8000,
114 	.flags = MHI_EPF_USE_DMA,
115 };
116 
117 struct pci_epf_mhi {
118 	const struct pci_epc_features *epc_features;
119 	const struct pci_epf_mhi_ep_info *info;
120 	struct mhi_ep_cntrl mhi_cntrl;
121 	struct pci_epf *epf;
122 	struct mutex lock;
123 	void __iomem *mmio;
124 	resource_size_t mmio_phys;
125 	struct dma_chan *dma_chan_tx;
126 	struct dma_chan *dma_chan_rx;
127 	u32 mmio_size;
128 	int irq;
129 };
130 
131 static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr)
132 {
133 	return addr & (epf_mhi->epc_features->align -1);
134 }
135 
136 static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
137 				 phys_addr_t *paddr, void __iomem **vaddr,
138 				 size_t offset, size_t size)
139 {
140 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
141 	struct pci_epf *epf = epf_mhi->epf;
142 	struct pci_epc *epc = epf->epc;
143 	int ret;
144 
145 	*vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
146 	if (!*vaddr)
147 		return -ENOMEM;
148 
149 	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
150 			       pci_addr - offset, size + offset);
151 	if (ret) {
152 		pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
153 		return ret;
154 	}
155 
156 	*paddr = *paddr + offset;
157 	*vaddr = *vaddr + offset;
158 
159 	return 0;
160 }
161 
162 static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
163 				 phys_addr_t *paddr, void __iomem **vaddr,
164 				 size_t size)
165 {
166 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
167 	size_t offset = get_align_offset(epf_mhi, pci_addr);
168 
169 	return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
170 				      offset, size);
171 }
172 
173 static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
174 				     u64 pci_addr, phys_addr_t paddr,
175 				     void __iomem *vaddr, size_t offset,
176 				     size_t size)
177 {
178 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
179 	struct pci_epf *epf = epf_mhi->epf;
180 	struct pci_epc *epc = epf->epc;
181 
182 	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
183 	pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
184 			      size + offset);
185 }
186 
187 static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
188 				   phys_addr_t paddr, void __iomem *vaddr,
189 				   size_t size)
190 {
191 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
192 	size_t offset = get_align_offset(epf_mhi, pci_addr);
193 
194 	__pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
195 				 size);
196 }
197 
198 static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
199 {
200 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
201 	struct pci_epf *epf = epf_mhi->epf;
202 	struct pci_epc *epc = epf->epc;
203 
204 	/*
205 	 * MHI supplies 0 based MSI vectors but the API expects the vector
206 	 * number to start from 1, so we need to increment the vector by 1.
207 	 */
208 	pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_EPC_IRQ_MSI,
209 			  vector + 1);
210 }
211 
212 static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl,
213 				 struct mhi_ep_buf_info *buf_info)
214 {
215 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
216 	size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
217 	void __iomem *tre_buf;
218 	phys_addr_t tre_phys;
219 	int ret;
220 
221 	mutex_lock(&epf_mhi->lock);
222 
223 	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
224 				      &tre_buf, offset, buf_info->size);
225 	if (ret) {
226 		mutex_unlock(&epf_mhi->lock);
227 		return ret;
228 	}
229 
230 	memcpy_fromio(buf_info->dev_addr, tre_buf, buf_info->size);
231 
232 	__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
233 				 tre_buf, offset, buf_info->size);
234 
235 	mutex_unlock(&epf_mhi->lock);
236 
237 	return 0;
238 }
239 
240 static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
241 				  struct mhi_ep_buf_info *buf_info)
242 {
243 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
244 	size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
245 	void __iomem *tre_buf;
246 	phys_addr_t tre_phys;
247 	int ret;
248 
249 	mutex_lock(&epf_mhi->lock);
250 
251 	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
252 				      &tre_buf, offset, buf_info->size);
253 	if (ret) {
254 		mutex_unlock(&epf_mhi->lock);
255 		return ret;
256 	}
257 
258 	memcpy_toio(tre_buf, buf_info->dev_addr, buf_info->size);
259 
260 	__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
261 				 tre_buf, offset, buf_info->size);
262 
263 	mutex_unlock(&epf_mhi->lock);
264 
265 	return 0;
266 }
267 
268 static void pci_epf_mhi_dma_callback(void *param)
269 {
270 	complete(param);
271 }
272 
273 static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl,
274 				 struct mhi_ep_buf_info *buf_info)
275 {
276 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
277 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
278 	struct dma_chan *chan = epf_mhi->dma_chan_rx;
279 	struct device *dev = &epf_mhi->epf->dev;
280 	DECLARE_COMPLETION_ONSTACK(complete);
281 	struct dma_async_tx_descriptor *desc;
282 	struct dma_slave_config config = {};
283 	dma_cookie_t cookie;
284 	dma_addr_t dst_addr;
285 	int ret;
286 
287 	if (buf_info->size < SZ_4K)
288 		return pci_epf_mhi_iatu_read(mhi_cntrl, buf_info);
289 
290 	mutex_lock(&epf_mhi->lock);
291 
292 	config.direction = DMA_DEV_TO_MEM;
293 	config.src_addr = buf_info->host_addr;
294 
295 	ret = dmaengine_slave_config(chan, &config);
296 	if (ret) {
297 		dev_err(dev, "Failed to configure DMA channel\n");
298 		goto err_unlock;
299 	}
300 
301 	dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
302 				  DMA_FROM_DEVICE);
303 	ret = dma_mapping_error(dma_dev, dst_addr);
304 	if (ret) {
305 		dev_err(dev, "Failed to map remote memory\n");
306 		goto err_unlock;
307 	}
308 
309 	desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
310 					   DMA_DEV_TO_MEM,
311 					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
312 	if (!desc) {
313 		dev_err(dev, "Failed to prepare DMA\n");
314 		ret = -EIO;
315 		goto err_unmap;
316 	}
317 
318 	desc->callback = pci_epf_mhi_dma_callback;
319 	desc->callback_param = &complete;
320 
321 	cookie = dmaengine_submit(desc);
322 	ret = dma_submit_error(cookie);
323 	if (ret) {
324 		dev_err(dev, "Failed to do DMA submit\n");
325 		goto err_unmap;
326 	}
327 
328 	dma_async_issue_pending(chan);
329 	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
330 	if (!ret) {
331 		dev_err(dev, "DMA transfer timeout\n");
332 		dmaengine_terminate_sync(chan);
333 		ret = -ETIMEDOUT;
334 	}
335 
336 err_unmap:
337 	dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
338 err_unlock:
339 	mutex_unlock(&epf_mhi->lock);
340 
341 	return ret;
342 }
343 
344 static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl,
345 				  struct mhi_ep_buf_info *buf_info)
346 {
347 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
348 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
349 	struct dma_chan *chan = epf_mhi->dma_chan_tx;
350 	struct device *dev = &epf_mhi->epf->dev;
351 	DECLARE_COMPLETION_ONSTACK(complete);
352 	struct dma_async_tx_descriptor *desc;
353 	struct dma_slave_config config = {};
354 	dma_cookie_t cookie;
355 	dma_addr_t src_addr;
356 	int ret;
357 
358 	if (buf_info->size < SZ_4K)
359 		return pci_epf_mhi_iatu_write(mhi_cntrl, buf_info);
360 
361 	mutex_lock(&epf_mhi->lock);
362 
363 	config.direction = DMA_MEM_TO_DEV;
364 	config.dst_addr = buf_info->host_addr;
365 
366 	ret = dmaengine_slave_config(chan, &config);
367 	if (ret) {
368 		dev_err(dev, "Failed to configure DMA channel\n");
369 		goto err_unlock;
370 	}
371 
372 	src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
373 				  DMA_TO_DEVICE);
374 	ret = dma_mapping_error(dma_dev, src_addr);
375 	if (ret) {
376 		dev_err(dev, "Failed to map remote memory\n");
377 		goto err_unlock;
378 	}
379 
380 	desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
381 					   DMA_MEM_TO_DEV,
382 					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
383 	if (!desc) {
384 		dev_err(dev, "Failed to prepare DMA\n");
385 		ret = -EIO;
386 		goto err_unmap;
387 	}
388 
389 	desc->callback = pci_epf_mhi_dma_callback;
390 	desc->callback_param = &complete;
391 
392 	cookie = dmaengine_submit(desc);
393 	ret = dma_submit_error(cookie);
394 	if (ret) {
395 		dev_err(dev, "Failed to do DMA submit\n");
396 		goto err_unmap;
397 	}
398 
399 	dma_async_issue_pending(chan);
400 	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
401 	if (!ret) {
402 		dev_err(dev, "DMA transfer timeout\n");
403 		dmaengine_terminate_sync(chan);
404 		ret = -ETIMEDOUT;
405 	}
406 
407 err_unmap:
408 	dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
409 err_unlock:
410 	mutex_unlock(&epf_mhi->lock);
411 
412 	return ret;
413 }
414 
415 struct epf_dma_filter {
416 	struct device *dev;
417 	u32 dma_mask;
418 };
419 
420 static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
421 {
422 	struct epf_dma_filter *filter = node;
423 	struct dma_slave_caps caps;
424 
425 	memset(&caps, 0, sizeof(caps));
426 	dma_get_slave_caps(chan, &caps);
427 
428 	return chan->device->dev == filter->dev && filter->dma_mask &
429 					caps.directions;
430 }
431 
432 static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
433 {
434 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
435 	struct device *dev = &epf_mhi->epf->dev;
436 	struct epf_dma_filter filter;
437 	dma_cap_mask_t mask;
438 
439 	dma_cap_zero(mask);
440 	dma_cap_set(DMA_SLAVE, mask);
441 
442 	filter.dev = dma_dev;
443 	filter.dma_mask = BIT(DMA_MEM_TO_DEV);
444 	epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
445 						   &filter);
446 	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
447 		dev_err(dev, "Failed to request tx channel\n");
448 		return -ENODEV;
449 	}
450 
451 	filter.dma_mask = BIT(DMA_DEV_TO_MEM);
452 	epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
453 						   &filter);
454 	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
455 		dev_err(dev, "Failed to request rx channel\n");
456 		dma_release_channel(epf_mhi->dma_chan_tx);
457 		epf_mhi->dma_chan_tx = NULL;
458 		return -ENODEV;
459 	}
460 
461 	return 0;
462 }
463 
464 static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
465 {
466 	dma_release_channel(epf_mhi->dma_chan_tx);
467 	dma_release_channel(epf_mhi->dma_chan_rx);
468 	epf_mhi->dma_chan_tx = NULL;
469 	epf_mhi->dma_chan_rx = NULL;
470 }
471 
472 static int pci_epf_mhi_core_init(struct pci_epf *epf)
473 {
474 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
475 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
476 	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
477 	struct pci_epc *epc = epf->epc;
478 	struct device *dev = &epf->dev;
479 	int ret;
480 
481 	epf_bar->phys_addr = epf_mhi->mmio_phys;
482 	epf_bar->size = epf_mhi->mmio_size;
483 	epf_bar->barno = info->bar_num;
484 	epf_bar->flags = info->epf_flags;
485 	ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
486 	if (ret) {
487 		dev_err(dev, "Failed to set BAR: %d\n", ret);
488 		return ret;
489 	}
490 
491 	ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
492 			      order_base_2(info->msi_count));
493 	if (ret) {
494 		dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
495 		return ret;
496 	}
497 
498 	ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
499 				   epf->header);
500 	if (ret) {
501 		dev_err(dev, "Failed to set Configuration header: %d\n", ret);
502 		return ret;
503 	}
504 
505 	epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
506 	if (!epf_mhi->epc_features)
507 		return -ENODATA;
508 
509 	return 0;
510 }
511 
512 static int pci_epf_mhi_link_up(struct pci_epf *epf)
513 {
514 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
515 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
516 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
517 	struct pci_epc *epc = epf->epc;
518 	struct device *dev = &epf->dev;
519 	int ret;
520 
521 	if (info->flags & MHI_EPF_USE_DMA) {
522 		ret = pci_epf_mhi_dma_init(epf_mhi);
523 		if (ret) {
524 			dev_err(dev, "Failed to initialize DMA: %d\n", ret);
525 			return ret;
526 		}
527 	}
528 
529 	mhi_cntrl->mmio = epf_mhi->mmio;
530 	mhi_cntrl->irq = epf_mhi->irq;
531 	mhi_cntrl->mru = info->mru;
532 
533 	/* Assign the struct dev of PCI EP as MHI controller device */
534 	mhi_cntrl->cntrl_dev = epc->dev.parent;
535 	mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
536 	mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
537 	mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
538 	if (info->flags & MHI_EPF_USE_DMA) {
539 		mhi_cntrl->read_from_host = pci_epf_mhi_edma_read;
540 		mhi_cntrl->write_to_host = pci_epf_mhi_edma_write;
541 	} else {
542 		mhi_cntrl->read_from_host = pci_epf_mhi_iatu_read;
543 		mhi_cntrl->write_to_host = pci_epf_mhi_iatu_write;
544 	}
545 
546 	/* Register the MHI EP controller */
547 	ret = mhi_ep_register_controller(mhi_cntrl, info->config);
548 	if (ret) {
549 		dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
550 		if (info->flags & MHI_EPF_USE_DMA)
551 			pci_epf_mhi_dma_deinit(epf_mhi);
552 		return ret;
553 	}
554 
555 	return 0;
556 }
557 
558 static int pci_epf_mhi_link_down(struct pci_epf *epf)
559 {
560 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
561 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
562 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
563 
564 	if (mhi_cntrl->mhi_dev) {
565 		mhi_ep_power_down(mhi_cntrl);
566 		if (info->flags & MHI_EPF_USE_DMA)
567 			pci_epf_mhi_dma_deinit(epf_mhi);
568 		mhi_ep_unregister_controller(mhi_cntrl);
569 	}
570 
571 	return 0;
572 }
573 
574 static int pci_epf_mhi_bme(struct pci_epf *epf)
575 {
576 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
577 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
578 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
579 	struct device *dev = &epf->dev;
580 	int ret;
581 
582 	/*
583 	 * Power up the MHI EP stack if link is up and stack is in power down
584 	 * state.
585 	 */
586 	if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
587 		ret = mhi_ep_power_up(mhi_cntrl);
588 		if (ret) {
589 			dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
590 			if (info->flags & MHI_EPF_USE_DMA)
591 				pci_epf_mhi_dma_deinit(epf_mhi);
592 			mhi_ep_unregister_controller(mhi_cntrl);
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 static int pci_epf_mhi_bind(struct pci_epf *epf)
600 {
601 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
602 	struct pci_epc *epc = epf->epc;
603 	struct platform_device *pdev = to_platform_device(epc->dev.parent);
604 	struct resource *res;
605 	int ret;
606 
607 	/* Get MMIO base address from Endpoint controller */
608 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
609 	epf_mhi->mmio_phys = res->start;
610 	epf_mhi->mmio_size = resource_size(res);
611 
612 	epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
613 	if (!epf_mhi->mmio)
614 		return -ENOMEM;
615 
616 	ret = platform_get_irq_byname(pdev, "doorbell");
617 	if (ret < 0) {
618 		iounmap(epf_mhi->mmio);
619 		return ret;
620 	}
621 
622 	epf_mhi->irq = ret;
623 
624 	return 0;
625 }
626 
627 static void pci_epf_mhi_unbind(struct pci_epf *epf)
628 {
629 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
630 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
631 	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
632 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
633 	struct pci_epc *epc = epf->epc;
634 
635 	/*
636 	 * Forcefully power down the MHI EP stack. Only way to bring the MHI EP
637 	 * stack back to working state after successive bind is by getting BME
638 	 * from host.
639 	 */
640 	if (mhi_cntrl->mhi_dev) {
641 		mhi_ep_power_down(mhi_cntrl);
642 		if (info->flags & MHI_EPF_USE_DMA)
643 			pci_epf_mhi_dma_deinit(epf_mhi);
644 		mhi_ep_unregister_controller(mhi_cntrl);
645 	}
646 
647 	iounmap(epf_mhi->mmio);
648 	pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
649 }
650 
651 static struct pci_epc_event_ops pci_epf_mhi_event_ops = {
652 	.core_init = pci_epf_mhi_core_init,
653 	.link_up = pci_epf_mhi_link_up,
654 	.link_down = pci_epf_mhi_link_down,
655 	.bme = pci_epf_mhi_bme,
656 };
657 
658 static int pci_epf_mhi_probe(struct pci_epf *epf,
659 			     const struct pci_epf_device_id *id)
660 {
661 	struct pci_epf_mhi_ep_info *info =
662 			(struct pci_epf_mhi_ep_info *)id->driver_data;
663 	struct pci_epf_mhi *epf_mhi;
664 	struct device *dev = &epf->dev;
665 
666 	epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
667 	if (!epf_mhi)
668 		return -ENOMEM;
669 
670 	epf->header = info->epf_header;
671 	epf_mhi->info = info;
672 	epf_mhi->epf = epf;
673 
674 	epf->event_ops = &pci_epf_mhi_event_ops;
675 
676 	mutex_init(&epf_mhi->lock);
677 
678 	epf_set_drvdata(epf, epf_mhi);
679 
680 	return 0;
681 }
682 
683 static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
684 	{ .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info },
685 	{ .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info },
686 	{},
687 };
688 
689 static struct pci_epf_ops pci_epf_mhi_ops = {
690 	.unbind	= pci_epf_mhi_unbind,
691 	.bind	= pci_epf_mhi_bind,
692 };
693 
694 static struct pci_epf_driver pci_epf_mhi_driver = {
695 	.driver.name	= "pci_epf_mhi",
696 	.probe		= pci_epf_mhi_probe,
697 	.id_table	= pci_epf_mhi_ids,
698 	.ops		= &pci_epf_mhi_ops,
699 	.owner		= THIS_MODULE,
700 };
701 
702 static int __init pci_epf_mhi_init(void)
703 {
704 	return pci_epf_register_driver(&pci_epf_mhi_driver);
705 }
706 module_init(pci_epf_mhi_init);
707 
708 static void __exit pci_epf_mhi_exit(void)
709 {
710 	pci_epf_unregister_driver(&pci_epf_mhi_driver);
711 }
712 module_exit(pci_epf_mhi_exit);
713 
714 MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
715 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
716 MODULE_LICENSE("GPL");
717