xref: /openbmc/linux/drivers/opp/core.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 
31 /* OPP tables with uninitialized required OPPs */
32 LIST_HEAD(lazy_opp_tables);
33 
34 /* Lock to allow exclusive modification to the device and opp lists */
35 DEFINE_MUTEX(opp_table_lock);
36 /* Flag indicating that opp_tables list is being updated at the moment */
37 static bool opp_tables_busy;
38 
39 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40 {
41 	struct opp_device *opp_dev;
42 	bool found = false;
43 
44 	mutex_lock(&opp_table->lock);
45 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 		if (opp_dev->dev == dev) {
47 			found = true;
48 			break;
49 		}
50 
51 	mutex_unlock(&opp_table->lock);
52 	return found;
53 }
54 
55 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56 {
57 	struct opp_table *opp_table;
58 
59 	list_for_each_entry(opp_table, &opp_tables, node) {
60 		if (_find_opp_dev(dev, opp_table)) {
61 			_get_opp_table_kref(opp_table);
62 			return opp_table;
63 		}
64 	}
65 
66 	return ERR_PTR(-ENODEV);
67 }
68 
69 /**
70  * _find_opp_table() - find opp_table struct using device pointer
71  * @dev:	device pointer used to lookup OPP table
72  *
73  * Search OPP table for one containing matching device.
74  *
75  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76  * -EINVAL based on type of error.
77  *
78  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79  */
80 struct opp_table *_find_opp_table(struct device *dev)
81 {
82 	struct opp_table *opp_table;
83 
84 	if (IS_ERR_OR_NULL(dev)) {
85 		pr_err("%s: Invalid parameters\n", __func__);
86 		return ERR_PTR(-EINVAL);
87 	}
88 
89 	mutex_lock(&opp_table_lock);
90 	opp_table = _find_opp_table_unlocked(dev);
91 	mutex_unlock(&opp_table_lock);
92 
93 	return opp_table;
94 }
95 
96 /**
97  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98  * @opp:	opp for which voltage has to be returned for
99  *
100  * Return: voltage in micro volt corresponding to the opp, else
101  * return 0
102  *
103  * This is useful only for devices with single power supply.
104  */
105 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106 {
107 	if (IS_ERR_OR_NULL(opp)) {
108 		pr_err("%s: Invalid parameters\n", __func__);
109 		return 0;
110 	}
111 
112 	return opp->supplies[0].u_volt;
113 }
114 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115 
116 /**
117  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
118  * @opp:	opp for which frequency has to be returned for
119  *
120  * Return: frequency in hertz corresponding to the opp, else
121  * return 0
122  */
123 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
124 {
125 	if (IS_ERR_OR_NULL(opp)) {
126 		pr_err("%s: Invalid parameters\n", __func__);
127 		return 0;
128 	}
129 
130 	return opp->rate;
131 }
132 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
133 
134 /**
135  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
136  * @opp:	opp for which level value has to be returned for
137  *
138  * Return: level read from device tree corresponding to the opp, else
139  * return 0.
140  */
141 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
142 {
143 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
144 		pr_err("%s: Invalid parameters\n", __func__);
145 		return 0;
146 	}
147 
148 	return opp->level;
149 }
150 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
151 
152 /**
153  * dev_pm_opp_get_required_pstate() - Gets the required performance state
154  *                                    corresponding to an available opp
155  * @opp:	opp for which performance state has to be returned for
156  * @index:	index of the required opp
157  *
158  * Return: performance state read from device tree corresponding to the
159  * required opp, else return 0.
160  */
161 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
162 					    unsigned int index)
163 {
164 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
165 	    index >= opp->opp_table->required_opp_count) {
166 		pr_err("%s: Invalid parameters\n", __func__);
167 		return 0;
168 	}
169 
170 	/* required-opps not fully initialized yet */
171 	if (lazy_linking_pending(opp->opp_table))
172 		return 0;
173 
174 	return opp->required_opps[index]->pstate;
175 }
176 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
177 
178 /**
179  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
180  * @opp: opp for which turbo mode is being verified
181  *
182  * Turbo OPPs are not for normal use, and can be enabled (under certain
183  * conditions) for short duration of times to finish high throughput work
184  * quickly. Running on them for longer times may overheat the chip.
185  *
186  * Return: true if opp is turbo opp, else false.
187  */
188 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
189 {
190 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
191 		pr_err("%s: Invalid parameters\n", __func__);
192 		return false;
193 	}
194 
195 	return opp->turbo;
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
198 
199 /**
200  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
201  * @dev:	device for which we do this operation
202  *
203  * Return: This function returns the max clock latency in nanoseconds.
204  */
205 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
206 {
207 	struct opp_table *opp_table;
208 	unsigned long clock_latency_ns;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	clock_latency_ns = opp_table->clock_latency_ns_max;
215 
216 	dev_pm_opp_put_opp_table(opp_table);
217 
218 	return clock_latency_ns;
219 }
220 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
221 
222 /**
223  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
224  * @dev: device for which we do this operation
225  *
226  * Return: This function returns the max voltage latency in nanoseconds.
227  */
228 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
229 {
230 	struct opp_table *opp_table;
231 	struct dev_pm_opp *opp;
232 	struct regulator *reg;
233 	unsigned long latency_ns = 0;
234 	int ret, i, count;
235 	struct {
236 		unsigned long min;
237 		unsigned long max;
238 	} *uV;
239 
240 	opp_table = _find_opp_table(dev);
241 	if (IS_ERR(opp_table))
242 		return 0;
243 
244 	/* Regulator may not be required for the device */
245 	if (!opp_table->regulators)
246 		goto put_opp_table;
247 
248 	count = opp_table->regulator_count;
249 
250 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
251 	if (!uV)
252 		goto put_opp_table;
253 
254 	mutex_lock(&opp_table->lock);
255 
256 	for (i = 0; i < count; i++) {
257 		uV[i].min = ~0;
258 		uV[i].max = 0;
259 
260 		list_for_each_entry(opp, &opp_table->opp_list, node) {
261 			if (!opp->available)
262 				continue;
263 
264 			if (opp->supplies[i].u_volt_min < uV[i].min)
265 				uV[i].min = opp->supplies[i].u_volt_min;
266 			if (opp->supplies[i].u_volt_max > uV[i].max)
267 				uV[i].max = opp->supplies[i].u_volt_max;
268 		}
269 	}
270 
271 	mutex_unlock(&opp_table->lock);
272 
273 	/*
274 	 * The caller needs to ensure that opp_table (and hence the regulator)
275 	 * isn't freed, while we are executing this routine.
276 	 */
277 	for (i = 0; i < count; i++) {
278 		reg = opp_table->regulators[i];
279 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
280 		if (ret > 0)
281 			latency_ns += ret * 1000;
282 	}
283 
284 	kfree(uV);
285 put_opp_table:
286 	dev_pm_opp_put_opp_table(opp_table);
287 
288 	return latency_ns;
289 }
290 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
291 
292 /**
293  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
294  *					     nanoseconds
295  * @dev: device for which we do this operation
296  *
297  * Return: This function returns the max transition latency, in nanoseconds, to
298  * switch from one OPP to other.
299  */
300 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
301 {
302 	return dev_pm_opp_get_max_volt_latency(dev) +
303 		dev_pm_opp_get_max_clock_latency(dev);
304 }
305 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
306 
307 /**
308  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
309  * @dev:	device for which we do this operation
310  *
311  * Return: This function returns the frequency of the OPP marked as suspend_opp
312  * if one is available, else returns 0;
313  */
314 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
315 {
316 	struct opp_table *opp_table;
317 	unsigned long freq = 0;
318 
319 	opp_table = _find_opp_table(dev);
320 	if (IS_ERR(opp_table))
321 		return 0;
322 
323 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
324 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
325 
326 	dev_pm_opp_put_opp_table(opp_table);
327 
328 	return freq;
329 }
330 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
331 
332 int _get_opp_count(struct opp_table *opp_table)
333 {
334 	struct dev_pm_opp *opp;
335 	int count = 0;
336 
337 	mutex_lock(&opp_table->lock);
338 
339 	list_for_each_entry(opp, &opp_table->opp_list, node) {
340 		if (opp->available)
341 			count++;
342 	}
343 
344 	mutex_unlock(&opp_table->lock);
345 
346 	return count;
347 }
348 
349 /**
350  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
351  * @dev:	device for which we do this operation
352  *
353  * Return: This function returns the number of available opps if there are any,
354  * else returns 0 if none or the corresponding error value.
355  */
356 int dev_pm_opp_get_opp_count(struct device *dev)
357 {
358 	struct opp_table *opp_table;
359 	int count;
360 
361 	opp_table = _find_opp_table(dev);
362 	if (IS_ERR(opp_table)) {
363 		count = PTR_ERR(opp_table);
364 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
365 			__func__, count);
366 		return count;
367 	}
368 
369 	count = _get_opp_count(opp_table);
370 	dev_pm_opp_put_opp_table(opp_table);
371 
372 	return count;
373 }
374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
375 
376 /**
377  * dev_pm_opp_find_freq_exact() - search for an exact frequency
378  * @dev:		device for which we do this operation
379  * @freq:		frequency to search for
380  * @available:		true/false - match for available opp
381  *
382  * Return: Searches for exact match in the opp table and returns pointer to the
383  * matching opp if found, else returns ERR_PTR in case of error and should
384  * be handled using IS_ERR. Error return values can be:
385  * EINVAL:	for bad pointer
386  * ERANGE:	no match found for search
387  * ENODEV:	if device not found in list of registered devices
388  *
389  * Note: available is a modifier for the search. if available=true, then the
390  * match is for exact matching frequency and is available in the stored OPP
391  * table. if false, the match is for exact frequency which is not available.
392  *
393  * This provides a mechanism to enable an opp which is not available currently
394  * or the opposite as well.
395  *
396  * The callers are required to call dev_pm_opp_put() for the returned OPP after
397  * use.
398  */
399 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
400 					      unsigned long freq,
401 					      bool available)
402 {
403 	struct opp_table *opp_table;
404 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
405 
406 	opp_table = _find_opp_table(dev);
407 	if (IS_ERR(opp_table)) {
408 		int r = PTR_ERR(opp_table);
409 
410 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
411 		return ERR_PTR(r);
412 	}
413 
414 	mutex_lock(&opp_table->lock);
415 
416 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
417 		if (temp_opp->available == available &&
418 				temp_opp->rate == freq) {
419 			opp = temp_opp;
420 
421 			/* Increment the reference count of OPP */
422 			dev_pm_opp_get(opp);
423 			break;
424 		}
425 	}
426 
427 	mutex_unlock(&opp_table->lock);
428 	dev_pm_opp_put_opp_table(opp_table);
429 
430 	return opp;
431 }
432 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
433 
434 /**
435  * dev_pm_opp_find_level_exact() - search for an exact level
436  * @dev:		device for which we do this operation
437  * @level:		level to search for
438  *
439  * Return: Searches for exact match in the opp table and returns pointer to the
440  * matching opp if found, else returns ERR_PTR in case of error and should
441  * be handled using IS_ERR. Error return values can be:
442  * EINVAL:	for bad pointer
443  * ERANGE:	no match found for search
444  * ENODEV:	if device not found in list of registered devices
445  *
446  * The callers are required to call dev_pm_opp_put() for the returned OPP after
447  * use.
448  */
449 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
450 					       unsigned int level)
451 {
452 	struct opp_table *opp_table;
453 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
454 
455 	opp_table = _find_opp_table(dev);
456 	if (IS_ERR(opp_table)) {
457 		int r = PTR_ERR(opp_table);
458 
459 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
460 		return ERR_PTR(r);
461 	}
462 
463 	mutex_lock(&opp_table->lock);
464 
465 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
466 		if (temp_opp->level == level) {
467 			opp = temp_opp;
468 
469 			/* Increment the reference count of OPP */
470 			dev_pm_opp_get(opp);
471 			break;
472 		}
473 	}
474 
475 	mutex_unlock(&opp_table->lock);
476 	dev_pm_opp_put_opp_table(opp_table);
477 
478 	return opp;
479 }
480 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
481 
482 /**
483  * dev_pm_opp_find_level_ceil() - search for an rounded up level
484  * @dev:		device for which we do this operation
485  * @level:		level to search for
486  *
487  * Return: Searches for rounded up match in the opp table and returns pointer
488  * to the  matching opp if found, else returns ERR_PTR in case of error and
489  * should be handled using IS_ERR. Error return values can be:
490  * EINVAL:	for bad pointer
491  * ERANGE:	no match found for search
492  * ENODEV:	if device not found in list of registered devices
493  *
494  * The callers are required to call dev_pm_opp_put() for the returned OPP after
495  * use.
496  */
497 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
498 					      unsigned int *level)
499 {
500 	struct opp_table *opp_table;
501 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
502 
503 	opp_table = _find_opp_table(dev);
504 	if (IS_ERR(opp_table)) {
505 		int r = PTR_ERR(opp_table);
506 
507 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
508 		return ERR_PTR(r);
509 	}
510 
511 	mutex_lock(&opp_table->lock);
512 
513 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
514 		if (temp_opp->available && temp_opp->level >= *level) {
515 			opp = temp_opp;
516 			*level = opp->level;
517 
518 			/* Increment the reference count of OPP */
519 			dev_pm_opp_get(opp);
520 			break;
521 		}
522 	}
523 
524 	mutex_unlock(&opp_table->lock);
525 	dev_pm_opp_put_opp_table(opp_table);
526 
527 	return opp;
528 }
529 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
530 
531 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
532 						   unsigned long *freq)
533 {
534 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
535 
536 	mutex_lock(&opp_table->lock);
537 
538 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
539 		if (temp_opp->available && temp_opp->rate >= *freq) {
540 			opp = temp_opp;
541 			*freq = opp->rate;
542 
543 			/* Increment the reference count of OPP */
544 			dev_pm_opp_get(opp);
545 			break;
546 		}
547 	}
548 
549 	mutex_unlock(&opp_table->lock);
550 
551 	return opp;
552 }
553 
554 /**
555  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
556  * @dev:	device for which we do this operation
557  * @freq:	Start frequency
558  *
559  * Search for the matching ceil *available* OPP from a starting freq
560  * for a device.
561  *
562  * Return: matching *opp and refreshes *freq accordingly, else returns
563  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
564  * values can be:
565  * EINVAL:	for bad pointer
566  * ERANGE:	no match found for search
567  * ENODEV:	if device not found in list of registered devices
568  *
569  * The callers are required to call dev_pm_opp_put() for the returned OPP after
570  * use.
571  */
572 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
573 					     unsigned long *freq)
574 {
575 	struct opp_table *opp_table;
576 	struct dev_pm_opp *opp;
577 
578 	if (!dev || !freq) {
579 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
580 		return ERR_PTR(-EINVAL);
581 	}
582 
583 	opp_table = _find_opp_table(dev);
584 	if (IS_ERR(opp_table))
585 		return ERR_CAST(opp_table);
586 
587 	opp = _find_freq_ceil(opp_table, freq);
588 
589 	dev_pm_opp_put_opp_table(opp_table);
590 
591 	return opp;
592 }
593 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
594 
595 /**
596  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
597  * @dev:	device for which we do this operation
598  * @freq:	Start frequency
599  *
600  * Search for the matching floor *available* OPP from a starting freq
601  * for a device.
602  *
603  * Return: matching *opp and refreshes *freq accordingly, else returns
604  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
605  * values can be:
606  * EINVAL:	for bad pointer
607  * ERANGE:	no match found for search
608  * ENODEV:	if device not found in list of registered devices
609  *
610  * The callers are required to call dev_pm_opp_put() for the returned OPP after
611  * use.
612  */
613 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
614 					      unsigned long *freq)
615 {
616 	struct opp_table *opp_table;
617 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
618 
619 	if (!dev || !freq) {
620 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
621 		return ERR_PTR(-EINVAL);
622 	}
623 
624 	opp_table = _find_opp_table(dev);
625 	if (IS_ERR(opp_table))
626 		return ERR_CAST(opp_table);
627 
628 	mutex_lock(&opp_table->lock);
629 
630 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
631 		if (temp_opp->available) {
632 			/* go to the next node, before choosing prev */
633 			if (temp_opp->rate > *freq)
634 				break;
635 			else
636 				opp = temp_opp;
637 		}
638 	}
639 
640 	/* Increment the reference count of OPP */
641 	if (!IS_ERR(opp))
642 		dev_pm_opp_get(opp);
643 	mutex_unlock(&opp_table->lock);
644 	dev_pm_opp_put_opp_table(opp_table);
645 
646 	if (!IS_ERR(opp))
647 		*freq = opp->rate;
648 
649 	return opp;
650 }
651 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
652 
653 /**
654  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
655  *					 target voltage.
656  * @dev:	Device for which we do this operation.
657  * @u_volt:	Target voltage.
658  *
659  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
660  *
661  * Return: matching *opp, else returns ERR_PTR in case of error which should be
662  * handled using IS_ERR.
663  *
664  * Error return values can be:
665  * EINVAL:	bad parameters
666  *
667  * The callers are required to call dev_pm_opp_put() for the returned OPP after
668  * use.
669  */
670 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
671 						     unsigned long u_volt)
672 {
673 	struct opp_table *opp_table;
674 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
675 
676 	if (!dev || !u_volt) {
677 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
678 			u_volt);
679 		return ERR_PTR(-EINVAL);
680 	}
681 
682 	opp_table = _find_opp_table(dev);
683 	if (IS_ERR(opp_table))
684 		return ERR_CAST(opp_table);
685 
686 	mutex_lock(&opp_table->lock);
687 
688 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
689 		if (temp_opp->available) {
690 			if (temp_opp->supplies[0].u_volt > u_volt)
691 				break;
692 			opp = temp_opp;
693 		}
694 	}
695 
696 	/* Increment the reference count of OPP */
697 	if (!IS_ERR(opp))
698 		dev_pm_opp_get(opp);
699 
700 	mutex_unlock(&opp_table->lock);
701 	dev_pm_opp_put_opp_table(opp_table);
702 
703 	return opp;
704 }
705 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
706 
707 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
708 			    struct dev_pm_opp_supply *supply)
709 {
710 	int ret;
711 
712 	/* Regulator not available for device */
713 	if (IS_ERR(reg)) {
714 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
715 			PTR_ERR(reg));
716 		return 0;
717 	}
718 
719 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
720 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
721 
722 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
723 					    supply->u_volt, supply->u_volt_max);
724 	if (ret)
725 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
726 			__func__, supply->u_volt_min, supply->u_volt,
727 			supply->u_volt_max, ret);
728 
729 	return ret;
730 }
731 
732 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
733 					    unsigned long freq)
734 {
735 	int ret;
736 
737 	/* We may reach here for devices which don't change frequency */
738 	if (IS_ERR(clk))
739 		return 0;
740 
741 	ret = clk_set_rate(clk, freq);
742 	if (ret) {
743 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
744 			ret);
745 	}
746 
747 	return ret;
748 }
749 
750 static int _generic_set_opp_regulator(struct opp_table *opp_table,
751 				      struct device *dev,
752 				      struct dev_pm_opp *opp,
753 				      unsigned long freq,
754 				      int scaling_down)
755 {
756 	struct regulator *reg = opp_table->regulators[0];
757 	struct dev_pm_opp *old_opp = opp_table->current_opp;
758 	int ret;
759 
760 	/* This function only supports single regulator per device */
761 	if (WARN_ON(opp_table->regulator_count > 1)) {
762 		dev_err(dev, "multiple regulators are not supported\n");
763 		return -EINVAL;
764 	}
765 
766 	/* Scaling up? Scale voltage before frequency */
767 	if (!scaling_down) {
768 		ret = _set_opp_voltage(dev, reg, opp->supplies);
769 		if (ret)
770 			goto restore_voltage;
771 	}
772 
773 	/* Change frequency */
774 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
775 	if (ret)
776 		goto restore_voltage;
777 
778 	/* Scaling down? Scale voltage after frequency */
779 	if (scaling_down) {
780 		ret = _set_opp_voltage(dev, reg, opp->supplies);
781 		if (ret)
782 			goto restore_freq;
783 	}
784 
785 	/*
786 	 * Enable the regulator after setting its voltages, otherwise it breaks
787 	 * some boot-enabled regulators.
788 	 */
789 	if (unlikely(!opp_table->enabled)) {
790 		ret = regulator_enable(reg);
791 		if (ret < 0)
792 			dev_warn(dev, "Failed to enable regulator: %d", ret);
793 	}
794 
795 	return 0;
796 
797 restore_freq:
798 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
799 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
800 			__func__, old_opp->rate);
801 restore_voltage:
802 	/* This shouldn't harm even if the voltages weren't updated earlier */
803 	_set_opp_voltage(dev, reg, old_opp->supplies);
804 
805 	return ret;
806 }
807 
808 static int _set_opp_bw(const struct opp_table *opp_table,
809 		       struct dev_pm_opp *opp, struct device *dev)
810 {
811 	u32 avg, peak;
812 	int i, ret;
813 
814 	if (!opp_table->paths)
815 		return 0;
816 
817 	for (i = 0; i < opp_table->path_count; i++) {
818 		if (!opp) {
819 			avg = 0;
820 			peak = 0;
821 		} else {
822 			avg = opp->bandwidth[i].avg;
823 			peak = opp->bandwidth[i].peak;
824 		}
825 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
826 		if (ret) {
827 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
828 				opp ? "set" : "remove", i, ret);
829 			return ret;
830 		}
831 	}
832 
833 	return 0;
834 }
835 
836 static int _set_opp_custom(const struct opp_table *opp_table,
837 			   struct device *dev, struct dev_pm_opp *opp,
838 			   unsigned long freq)
839 {
840 	struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
841 	struct dev_pm_opp *old_opp = opp_table->current_opp;
842 	int size;
843 
844 	/*
845 	 * We support this only if dev_pm_opp_set_regulators() was called
846 	 * earlier.
847 	 */
848 	if (opp_table->sod_supplies) {
849 		size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
850 		memcpy(data->old_opp.supplies, old_opp->supplies, size);
851 		memcpy(data->new_opp.supplies, opp->supplies, size);
852 		data->regulator_count = opp_table->regulator_count;
853 	} else {
854 		data->regulator_count = 0;
855 	}
856 
857 	data->regulators = opp_table->regulators;
858 	data->clk = opp_table->clk;
859 	data->dev = dev;
860 	data->old_opp.rate = old_opp->rate;
861 	data->new_opp.rate = freq;
862 
863 	return opp_table->set_opp(data);
864 }
865 
866 static int _set_required_opp(struct device *dev, struct device *pd_dev,
867 			     struct dev_pm_opp *opp, int i)
868 {
869 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
870 	int ret;
871 
872 	if (!pd_dev)
873 		return 0;
874 
875 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
876 	if (ret) {
877 		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
878 			dev_name(pd_dev), pstate, ret);
879 	}
880 
881 	return ret;
882 }
883 
884 /* This is only called for PM domain for now */
885 static int _set_required_opps(struct device *dev,
886 			      struct opp_table *opp_table,
887 			      struct dev_pm_opp *opp, bool up)
888 {
889 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
890 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
891 	int i, ret = 0;
892 
893 	if (!required_opp_tables)
894 		return 0;
895 
896 	/* required-opps not fully initialized yet */
897 	if (lazy_linking_pending(opp_table))
898 		return -EBUSY;
899 
900 	/* Single genpd case */
901 	if (!genpd_virt_devs)
902 		return _set_required_opp(dev, dev, opp, 0);
903 
904 	/* Multiple genpd case */
905 
906 	/*
907 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
908 	 * after it is freed from another thread.
909 	 */
910 	mutex_lock(&opp_table->genpd_virt_dev_lock);
911 
912 	/* Scaling up? Set required OPPs in normal order, else reverse */
913 	if (up) {
914 		for (i = 0; i < opp_table->required_opp_count; i++) {
915 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
916 			if (ret)
917 				break;
918 		}
919 	} else {
920 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
921 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
922 			if (ret)
923 				break;
924 		}
925 	}
926 
927 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
928 
929 	return ret;
930 }
931 
932 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
933 {
934 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
935 	unsigned long freq;
936 
937 	if (!IS_ERR(opp_table->clk)) {
938 		freq = clk_get_rate(opp_table->clk);
939 		opp = _find_freq_ceil(opp_table, &freq);
940 	}
941 
942 	/*
943 	 * Unable to find the current OPP ? Pick the first from the list since
944 	 * it is in ascending order, otherwise rest of the code will need to
945 	 * make special checks to validate current_opp.
946 	 */
947 	if (IS_ERR(opp)) {
948 		mutex_lock(&opp_table->lock);
949 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
950 		dev_pm_opp_get(opp);
951 		mutex_unlock(&opp_table->lock);
952 	}
953 
954 	opp_table->current_opp = opp;
955 }
956 
957 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
958 {
959 	int ret;
960 
961 	if (!opp_table->enabled)
962 		return 0;
963 
964 	/*
965 	 * Some drivers need to support cases where some platforms may
966 	 * have OPP table for the device, while others don't and
967 	 * opp_set_rate() just needs to behave like clk_set_rate().
968 	 */
969 	if (!_get_opp_count(opp_table))
970 		return 0;
971 
972 	ret = _set_opp_bw(opp_table, NULL, dev);
973 	if (ret)
974 		return ret;
975 
976 	if (opp_table->regulators)
977 		regulator_disable(opp_table->regulators[0]);
978 
979 	ret = _set_required_opps(dev, opp_table, NULL, false);
980 
981 	opp_table->enabled = false;
982 	return ret;
983 }
984 
985 static int _set_opp(struct device *dev, struct opp_table *opp_table,
986 		    struct dev_pm_opp *opp, unsigned long freq)
987 {
988 	struct dev_pm_opp *old_opp;
989 	int scaling_down, ret;
990 
991 	if (unlikely(!opp))
992 		return _disable_opp_table(dev, opp_table);
993 
994 	/* Find the currently set OPP if we don't know already */
995 	if (unlikely(!opp_table->current_opp))
996 		_find_current_opp(dev, opp_table);
997 
998 	old_opp = opp_table->current_opp;
999 
1000 	/* Return early if nothing to do */
1001 	if (opp_table->enabled && old_opp == opp) {
1002 		dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1003 		return 0;
1004 	}
1005 
1006 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1007 		__func__, old_opp->rate, freq, old_opp->level, opp->level,
1008 		old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1009 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1010 
1011 	scaling_down = _opp_compare_key(old_opp, opp);
1012 	if (scaling_down == -1)
1013 		scaling_down = 0;
1014 
1015 	/* Scaling up? Configure required OPPs before frequency */
1016 	if (!scaling_down) {
1017 		ret = _set_required_opps(dev, opp_table, opp, true);
1018 		if (ret) {
1019 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1020 			return ret;
1021 		}
1022 
1023 		ret = _set_opp_bw(opp_table, opp, dev);
1024 		if (ret) {
1025 			dev_err(dev, "Failed to set bw: %d\n", ret);
1026 			return ret;
1027 		}
1028 	}
1029 
1030 	if (opp_table->set_opp) {
1031 		ret = _set_opp_custom(opp_table, dev, opp, freq);
1032 	} else if (opp_table->regulators) {
1033 		ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1034 						 scaling_down);
1035 	} else {
1036 		/* Only frequency scaling */
1037 		ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1038 	}
1039 
1040 	if (ret)
1041 		return ret;
1042 
1043 	/* Scaling down? Configure required OPPs after frequency */
1044 	if (scaling_down) {
1045 		ret = _set_opp_bw(opp_table, opp, dev);
1046 		if (ret) {
1047 			dev_err(dev, "Failed to set bw: %d\n", ret);
1048 			return ret;
1049 		}
1050 
1051 		ret = _set_required_opps(dev, opp_table, opp, false);
1052 		if (ret) {
1053 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1054 			return ret;
1055 		}
1056 	}
1057 
1058 	opp_table->enabled = true;
1059 	dev_pm_opp_put(old_opp);
1060 
1061 	/* Make sure current_opp doesn't get freed */
1062 	dev_pm_opp_get(opp);
1063 	opp_table->current_opp = opp;
1064 
1065 	return ret;
1066 }
1067 
1068 /**
1069  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1070  * @dev:	 device for which we do this operation
1071  * @target_freq: frequency to achieve
1072  *
1073  * This configures the power-supplies to the levels specified by the OPP
1074  * corresponding to the target_freq, and programs the clock to a value <=
1075  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1076  * provided by the opp, should have already rounded to the target OPP's
1077  * frequency.
1078  */
1079 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1080 {
1081 	struct opp_table *opp_table;
1082 	unsigned long freq = 0, temp_freq;
1083 	struct dev_pm_opp *opp = NULL;
1084 	int ret;
1085 
1086 	opp_table = _find_opp_table(dev);
1087 	if (IS_ERR(opp_table)) {
1088 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1089 		return PTR_ERR(opp_table);
1090 	}
1091 
1092 	if (target_freq) {
1093 		/*
1094 		 * For IO devices which require an OPP on some platforms/SoCs
1095 		 * while just needing to scale the clock on some others
1096 		 * we look for empty OPP tables with just a clock handle and
1097 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1098 		 * equivalent to a clk_set_rate()
1099 		 */
1100 		if (!_get_opp_count(opp_table)) {
1101 			ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1102 			goto put_opp_table;
1103 		}
1104 
1105 		freq = clk_round_rate(opp_table->clk, target_freq);
1106 		if ((long)freq <= 0)
1107 			freq = target_freq;
1108 
1109 		/*
1110 		 * The clock driver may support finer resolution of the
1111 		 * frequencies than the OPP table, don't update the frequency we
1112 		 * pass to clk_set_rate() here.
1113 		 */
1114 		temp_freq = freq;
1115 		opp = _find_freq_ceil(opp_table, &temp_freq);
1116 		if (IS_ERR(opp)) {
1117 			ret = PTR_ERR(opp);
1118 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1119 				__func__, freq, ret);
1120 			goto put_opp_table;
1121 		}
1122 	}
1123 
1124 	ret = _set_opp(dev, opp_table, opp, freq);
1125 
1126 	if (target_freq)
1127 		dev_pm_opp_put(opp);
1128 put_opp_table:
1129 	dev_pm_opp_put_opp_table(opp_table);
1130 	return ret;
1131 }
1132 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1133 
1134 /**
1135  * dev_pm_opp_set_opp() - Configure device for OPP
1136  * @dev: device for which we do this operation
1137  * @opp: OPP to set to
1138  *
1139  * This configures the device based on the properties of the OPP passed to this
1140  * routine.
1141  *
1142  * Return: 0 on success, a negative error number otherwise.
1143  */
1144 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1145 {
1146 	struct opp_table *opp_table;
1147 	int ret;
1148 
1149 	opp_table = _find_opp_table(dev);
1150 	if (IS_ERR(opp_table)) {
1151 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1152 		return PTR_ERR(opp_table);
1153 	}
1154 
1155 	ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1156 	dev_pm_opp_put_opp_table(opp_table);
1157 
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1161 
1162 /* OPP-dev Helpers */
1163 static void _remove_opp_dev(struct opp_device *opp_dev,
1164 			    struct opp_table *opp_table)
1165 {
1166 	opp_debug_unregister(opp_dev, opp_table);
1167 	list_del(&opp_dev->node);
1168 	kfree(opp_dev);
1169 }
1170 
1171 struct opp_device *_add_opp_dev(const struct device *dev,
1172 				struct opp_table *opp_table)
1173 {
1174 	struct opp_device *opp_dev;
1175 
1176 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1177 	if (!opp_dev)
1178 		return NULL;
1179 
1180 	/* Initialize opp-dev */
1181 	opp_dev->dev = dev;
1182 
1183 	mutex_lock(&opp_table->lock);
1184 	list_add(&opp_dev->node, &opp_table->dev_list);
1185 	mutex_unlock(&opp_table->lock);
1186 
1187 	/* Create debugfs entries for the opp_table */
1188 	opp_debug_register(opp_dev, opp_table);
1189 
1190 	return opp_dev;
1191 }
1192 
1193 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1194 {
1195 	struct opp_table *opp_table;
1196 	struct opp_device *opp_dev;
1197 	int ret;
1198 
1199 	/*
1200 	 * Allocate a new OPP table. In the infrequent case where a new
1201 	 * device is needed to be added, we pay this penalty.
1202 	 */
1203 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1204 	if (!opp_table)
1205 		return ERR_PTR(-ENOMEM);
1206 
1207 	mutex_init(&opp_table->lock);
1208 	mutex_init(&opp_table->genpd_virt_dev_lock);
1209 	INIT_LIST_HEAD(&opp_table->dev_list);
1210 	INIT_LIST_HEAD(&opp_table->lazy);
1211 
1212 	/* Mark regulator count uninitialized */
1213 	opp_table->regulator_count = -1;
1214 
1215 	opp_dev = _add_opp_dev(dev, opp_table);
1216 	if (!opp_dev) {
1217 		ret = -ENOMEM;
1218 		goto err;
1219 	}
1220 
1221 	_of_init_opp_table(opp_table, dev, index);
1222 
1223 	/* Find interconnect path(s) for the device */
1224 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1225 	if (ret) {
1226 		if (ret == -EPROBE_DEFER)
1227 			goto remove_opp_dev;
1228 
1229 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1230 			 __func__, ret);
1231 	}
1232 
1233 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1234 	INIT_LIST_HEAD(&opp_table->opp_list);
1235 	kref_init(&opp_table->kref);
1236 
1237 	return opp_table;
1238 
1239 remove_opp_dev:
1240 	_remove_opp_dev(opp_dev, opp_table);
1241 err:
1242 	kfree(opp_table);
1243 	return ERR_PTR(ret);
1244 }
1245 
1246 void _get_opp_table_kref(struct opp_table *opp_table)
1247 {
1248 	kref_get(&opp_table->kref);
1249 }
1250 
1251 static struct opp_table *_update_opp_table_clk(struct device *dev,
1252 					       struct opp_table *opp_table,
1253 					       bool getclk)
1254 {
1255 	int ret;
1256 
1257 	/*
1258 	 * Return early if we don't need to get clk or we have already tried it
1259 	 * earlier.
1260 	 */
1261 	if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1262 		return opp_table;
1263 
1264 	/* Find clk for the device */
1265 	opp_table->clk = clk_get(dev, NULL);
1266 
1267 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1268 	if (!ret)
1269 		return opp_table;
1270 
1271 	if (ret == -ENOENT) {
1272 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1273 		return opp_table;
1274 	}
1275 
1276 	dev_pm_opp_put_opp_table(opp_table);
1277 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1278 
1279 	return ERR_PTR(ret);
1280 }
1281 
1282 /*
1283  * We need to make sure that the OPP table for a device doesn't get added twice,
1284  * if this routine gets called in parallel with the same device pointer.
1285  *
1286  * The simplest way to enforce that is to perform everything (find existing
1287  * table and if not found, create a new one) under the opp_table_lock, so only
1288  * one creator gets access to the same. But that expands the critical section
1289  * under the lock and may end up causing circular dependencies with frameworks
1290  * like debugfs, interconnect or clock framework as they may be direct or
1291  * indirect users of OPP core.
1292  *
1293  * And for that reason we have to go for a bit tricky implementation here, which
1294  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1295  * of adding an OPP table and others should wait for it to finish.
1296  */
1297 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1298 					 bool getclk)
1299 {
1300 	struct opp_table *opp_table;
1301 
1302 again:
1303 	mutex_lock(&opp_table_lock);
1304 
1305 	opp_table = _find_opp_table_unlocked(dev);
1306 	if (!IS_ERR(opp_table))
1307 		goto unlock;
1308 
1309 	/*
1310 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1311 	 * another user, wait for it to finish.
1312 	 */
1313 	if (unlikely(opp_tables_busy)) {
1314 		mutex_unlock(&opp_table_lock);
1315 		cpu_relax();
1316 		goto again;
1317 	}
1318 
1319 	opp_tables_busy = true;
1320 	opp_table = _managed_opp(dev, index);
1321 
1322 	/* Drop the lock to reduce the size of critical section */
1323 	mutex_unlock(&opp_table_lock);
1324 
1325 	if (opp_table) {
1326 		if (!_add_opp_dev(dev, opp_table)) {
1327 			dev_pm_opp_put_opp_table(opp_table);
1328 			opp_table = ERR_PTR(-ENOMEM);
1329 		}
1330 
1331 		mutex_lock(&opp_table_lock);
1332 	} else {
1333 		opp_table = _allocate_opp_table(dev, index);
1334 
1335 		mutex_lock(&opp_table_lock);
1336 		if (!IS_ERR(opp_table))
1337 			list_add(&opp_table->node, &opp_tables);
1338 	}
1339 
1340 	opp_tables_busy = false;
1341 
1342 unlock:
1343 	mutex_unlock(&opp_table_lock);
1344 
1345 	return _update_opp_table_clk(dev, opp_table, getclk);
1346 }
1347 
1348 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1349 {
1350 	return _add_opp_table_indexed(dev, 0, getclk);
1351 }
1352 
1353 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1354 {
1355 	return _find_opp_table(dev);
1356 }
1357 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1358 
1359 static void _opp_table_kref_release(struct kref *kref)
1360 {
1361 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1362 	struct opp_device *opp_dev, *temp;
1363 	int i;
1364 
1365 	/* Drop the lock as soon as we can */
1366 	list_del(&opp_table->node);
1367 	mutex_unlock(&opp_table_lock);
1368 
1369 	if (opp_table->current_opp)
1370 		dev_pm_opp_put(opp_table->current_opp);
1371 
1372 	_of_clear_opp_table(opp_table);
1373 
1374 	/* Release clk */
1375 	if (!IS_ERR(opp_table->clk))
1376 		clk_put(opp_table->clk);
1377 
1378 	if (opp_table->paths) {
1379 		for (i = 0; i < opp_table->path_count; i++)
1380 			icc_put(opp_table->paths[i]);
1381 		kfree(opp_table->paths);
1382 	}
1383 
1384 	WARN_ON(!list_empty(&opp_table->opp_list));
1385 
1386 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1387 		/*
1388 		 * The OPP table is getting removed, drop the performance state
1389 		 * constraints.
1390 		 */
1391 		if (opp_table->genpd_performance_state)
1392 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1393 
1394 		_remove_opp_dev(opp_dev, opp_table);
1395 	}
1396 
1397 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1398 	mutex_destroy(&opp_table->lock);
1399 	kfree(opp_table);
1400 }
1401 
1402 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1403 {
1404 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1405 		       &opp_table_lock);
1406 }
1407 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1408 
1409 void _opp_free(struct dev_pm_opp *opp)
1410 {
1411 	kfree(opp);
1412 }
1413 
1414 static void _opp_kref_release(struct kref *kref)
1415 {
1416 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1417 	struct opp_table *opp_table = opp->opp_table;
1418 
1419 	list_del(&opp->node);
1420 	mutex_unlock(&opp_table->lock);
1421 
1422 	/*
1423 	 * Notify the changes in the availability of the operable
1424 	 * frequency/voltage list.
1425 	 */
1426 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1427 	_of_opp_free_required_opps(opp_table, opp);
1428 	opp_debug_remove_one(opp);
1429 	kfree(opp);
1430 }
1431 
1432 void dev_pm_opp_get(struct dev_pm_opp *opp)
1433 {
1434 	kref_get(&opp->kref);
1435 }
1436 
1437 void dev_pm_opp_put(struct dev_pm_opp *opp)
1438 {
1439 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1440 }
1441 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1442 
1443 /**
1444  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1445  * @dev:	device for which we do this operation
1446  * @freq:	OPP to remove with matching 'freq'
1447  *
1448  * This function removes an opp from the opp table.
1449  */
1450 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1451 {
1452 	struct dev_pm_opp *opp;
1453 	struct opp_table *opp_table;
1454 	bool found = false;
1455 
1456 	opp_table = _find_opp_table(dev);
1457 	if (IS_ERR(opp_table))
1458 		return;
1459 
1460 	mutex_lock(&opp_table->lock);
1461 
1462 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1463 		if (opp->rate == freq) {
1464 			found = true;
1465 			break;
1466 		}
1467 	}
1468 
1469 	mutex_unlock(&opp_table->lock);
1470 
1471 	if (found) {
1472 		dev_pm_opp_put(opp);
1473 
1474 		/* Drop the reference taken by dev_pm_opp_add() */
1475 		dev_pm_opp_put_opp_table(opp_table);
1476 	} else {
1477 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1478 			 __func__, freq);
1479 	}
1480 
1481 	/* Drop the reference taken by _find_opp_table() */
1482 	dev_pm_opp_put_opp_table(opp_table);
1483 }
1484 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1485 
1486 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1487 					bool dynamic)
1488 {
1489 	struct dev_pm_opp *opp = NULL, *temp;
1490 
1491 	mutex_lock(&opp_table->lock);
1492 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1493 		if (dynamic == temp->dynamic) {
1494 			opp = temp;
1495 			break;
1496 		}
1497 	}
1498 
1499 	mutex_unlock(&opp_table->lock);
1500 	return opp;
1501 }
1502 
1503 bool _opp_remove_all_static(struct opp_table *opp_table)
1504 {
1505 	struct dev_pm_opp *opp;
1506 
1507 	mutex_lock(&opp_table->lock);
1508 
1509 	if (!opp_table->parsed_static_opps) {
1510 		mutex_unlock(&opp_table->lock);
1511 		return false;
1512 	}
1513 
1514 	if (--opp_table->parsed_static_opps) {
1515 		mutex_unlock(&opp_table->lock);
1516 		return true;
1517 	}
1518 
1519 	mutex_unlock(&opp_table->lock);
1520 
1521 	/*
1522 	 * Can't remove the OPP from under the lock, debugfs removal needs to
1523 	 * happen lock less to avoid circular dependency issues.
1524 	 */
1525 	while ((opp = _opp_get_next(opp_table, false)))
1526 		dev_pm_opp_put(opp);
1527 
1528 	return true;
1529 }
1530 
1531 /**
1532  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1533  * @dev:	device for which we do this operation
1534  *
1535  * This function removes all dynamically created OPPs from the opp table.
1536  */
1537 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1538 {
1539 	struct opp_table *opp_table;
1540 	struct dev_pm_opp *opp;
1541 	int count = 0;
1542 
1543 	opp_table = _find_opp_table(dev);
1544 	if (IS_ERR(opp_table))
1545 		return;
1546 
1547 	/*
1548 	 * Can't remove the OPP from under the lock, debugfs removal needs to
1549 	 * happen lock less to avoid circular dependency issues.
1550 	 */
1551 	while ((opp = _opp_get_next(opp_table, true))) {
1552 		dev_pm_opp_put(opp);
1553 		count++;
1554 	}
1555 
1556 	/* Drop the references taken by dev_pm_opp_add() */
1557 	while (count--)
1558 		dev_pm_opp_put_opp_table(opp_table);
1559 
1560 	/* Drop the reference taken by _find_opp_table() */
1561 	dev_pm_opp_put_opp_table(opp_table);
1562 }
1563 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1564 
1565 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1566 {
1567 	struct dev_pm_opp *opp;
1568 	int supply_count, supply_size, icc_size;
1569 
1570 	/* Allocate space for at least one supply */
1571 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1572 	supply_size = sizeof(*opp->supplies) * supply_count;
1573 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1574 
1575 	/* allocate new OPP node and supplies structures */
1576 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1577 
1578 	if (!opp)
1579 		return NULL;
1580 
1581 	/* Put the supplies at the end of the OPP structure as an empty array */
1582 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1583 	if (icc_size)
1584 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1585 	INIT_LIST_HEAD(&opp->node);
1586 
1587 	return opp;
1588 }
1589 
1590 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1591 					 struct opp_table *opp_table)
1592 {
1593 	struct regulator *reg;
1594 	int i;
1595 
1596 	if (!opp_table->regulators)
1597 		return true;
1598 
1599 	for (i = 0; i < opp_table->regulator_count; i++) {
1600 		reg = opp_table->regulators[i];
1601 
1602 		if (!regulator_is_supported_voltage(reg,
1603 					opp->supplies[i].u_volt_min,
1604 					opp->supplies[i].u_volt_max)) {
1605 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1606 				__func__, opp->supplies[i].u_volt_min,
1607 				opp->supplies[i].u_volt_max);
1608 			return false;
1609 		}
1610 	}
1611 
1612 	return true;
1613 }
1614 
1615 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1616 {
1617 	if (opp1->rate != opp2->rate)
1618 		return opp1->rate < opp2->rate ? -1 : 1;
1619 	if (opp1->bandwidth && opp2->bandwidth &&
1620 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1621 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1622 	if (opp1->level != opp2->level)
1623 		return opp1->level < opp2->level ? -1 : 1;
1624 	return 0;
1625 }
1626 
1627 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1628 			     struct opp_table *opp_table,
1629 			     struct list_head **head)
1630 {
1631 	struct dev_pm_opp *opp;
1632 	int opp_cmp;
1633 
1634 	/*
1635 	 * Insert new OPP in order of increasing frequency and discard if
1636 	 * already present.
1637 	 *
1638 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1639 	 * loop, don't replace it with head otherwise it will become an infinite
1640 	 * loop.
1641 	 */
1642 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1643 		opp_cmp = _opp_compare_key(new_opp, opp);
1644 		if (opp_cmp > 0) {
1645 			*head = &opp->node;
1646 			continue;
1647 		}
1648 
1649 		if (opp_cmp < 0)
1650 			return 0;
1651 
1652 		/* Duplicate OPPs */
1653 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1654 			 __func__, opp->rate, opp->supplies[0].u_volt,
1655 			 opp->available, new_opp->rate,
1656 			 new_opp->supplies[0].u_volt, new_opp->available);
1657 
1658 		/* Should we compare voltages for all regulators here ? */
1659 		return opp->available &&
1660 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 void _required_opps_available(struct dev_pm_opp *opp, int count)
1667 {
1668 	int i;
1669 
1670 	for (i = 0; i < count; i++) {
1671 		if (opp->required_opps[i]->available)
1672 			continue;
1673 
1674 		opp->available = false;
1675 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1676 			 __func__, opp->required_opps[i]->np, opp->rate);
1677 		return;
1678 	}
1679 }
1680 
1681 /*
1682  * Returns:
1683  * 0: On success. And appropriate error message for duplicate OPPs.
1684  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1685  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1686  *  sure we don't print error messages unnecessarily if different parts of
1687  *  kernel try to initialize the OPP table.
1688  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1689  *  should be considered an error by the callers of _opp_add().
1690  */
1691 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1692 	     struct opp_table *opp_table, bool rate_not_available)
1693 {
1694 	struct list_head *head;
1695 	int ret;
1696 
1697 	mutex_lock(&opp_table->lock);
1698 	head = &opp_table->opp_list;
1699 
1700 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1701 	if (ret) {
1702 		mutex_unlock(&opp_table->lock);
1703 		return ret;
1704 	}
1705 
1706 	list_add(&new_opp->node, head);
1707 	mutex_unlock(&opp_table->lock);
1708 
1709 	new_opp->opp_table = opp_table;
1710 	kref_init(&new_opp->kref);
1711 
1712 	opp_debug_create_one(new_opp, opp_table);
1713 
1714 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1715 		new_opp->available = false;
1716 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1717 			 __func__, new_opp->rate);
1718 	}
1719 
1720 	/* required-opps not fully initialized yet */
1721 	if (lazy_linking_pending(opp_table))
1722 		return 0;
1723 
1724 	_required_opps_available(new_opp, opp_table->required_opp_count);
1725 
1726 	return 0;
1727 }
1728 
1729 /**
1730  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1731  * @opp_table:	OPP table
1732  * @dev:	device for which we do this operation
1733  * @freq:	Frequency in Hz for this OPP
1734  * @u_volt:	Voltage in uVolts for this OPP
1735  * @dynamic:	Dynamically added OPPs.
1736  *
1737  * This function adds an opp definition to the opp table and returns status.
1738  * The opp is made available by default and it can be controlled using
1739  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1740  *
1741  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1742  * and freed by dev_pm_opp_of_remove_table.
1743  *
1744  * Return:
1745  * 0		On success OR
1746  *		Duplicate OPPs (both freq and volt are same) and opp->available
1747  * -EEXIST	Freq are same and volt are different OR
1748  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1749  * -ENOMEM	Memory allocation failure
1750  */
1751 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1752 		unsigned long freq, long u_volt, bool dynamic)
1753 {
1754 	struct dev_pm_opp *new_opp;
1755 	unsigned long tol;
1756 	int ret;
1757 
1758 	new_opp = _opp_allocate(opp_table);
1759 	if (!new_opp)
1760 		return -ENOMEM;
1761 
1762 	/* populate the opp table */
1763 	new_opp->rate = freq;
1764 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1765 	new_opp->supplies[0].u_volt = u_volt;
1766 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1767 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1768 	new_opp->available = true;
1769 	new_opp->dynamic = dynamic;
1770 
1771 	ret = _opp_add(dev, new_opp, opp_table, false);
1772 	if (ret) {
1773 		/* Don't return error for duplicate OPPs */
1774 		if (ret == -EBUSY)
1775 			ret = 0;
1776 		goto free_opp;
1777 	}
1778 
1779 	/*
1780 	 * Notify the changes in the availability of the operable
1781 	 * frequency/voltage list.
1782 	 */
1783 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1784 	return 0;
1785 
1786 free_opp:
1787 	_opp_free(new_opp);
1788 
1789 	return ret;
1790 }
1791 
1792 /**
1793  * dev_pm_opp_set_supported_hw() - Set supported platforms
1794  * @dev: Device for which supported-hw has to be set.
1795  * @versions: Array of hierarchy of versions to match.
1796  * @count: Number of elements in the array.
1797  *
1798  * This is required only for the V2 bindings, and it enables a platform to
1799  * specify the hierarchy of versions it supports. OPP layer will then enable
1800  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1801  * property.
1802  */
1803 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1804 			const u32 *versions, unsigned int count)
1805 {
1806 	struct opp_table *opp_table;
1807 
1808 	opp_table = _add_opp_table(dev, false);
1809 	if (IS_ERR(opp_table))
1810 		return opp_table;
1811 
1812 	/* Make sure there are no concurrent readers while updating opp_table */
1813 	WARN_ON(!list_empty(&opp_table->opp_list));
1814 
1815 	/* Another CPU that shares the OPP table has set the property ? */
1816 	if (opp_table->supported_hw)
1817 		return opp_table;
1818 
1819 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1820 					GFP_KERNEL);
1821 	if (!opp_table->supported_hw) {
1822 		dev_pm_opp_put_opp_table(opp_table);
1823 		return ERR_PTR(-ENOMEM);
1824 	}
1825 
1826 	opp_table->supported_hw_count = count;
1827 
1828 	return opp_table;
1829 }
1830 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1831 
1832 /**
1833  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1834  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1835  *
1836  * This is required only for the V2 bindings, and is called for a matching
1837  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1838  * will not be freed.
1839  */
1840 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1841 {
1842 	if (unlikely(!opp_table))
1843 		return;
1844 
1845 	/* Make sure there are no concurrent readers while updating opp_table */
1846 	WARN_ON(!list_empty(&opp_table->opp_list));
1847 
1848 	kfree(opp_table->supported_hw);
1849 	opp_table->supported_hw = NULL;
1850 	opp_table->supported_hw_count = 0;
1851 
1852 	dev_pm_opp_put_opp_table(opp_table);
1853 }
1854 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1855 
1856 /**
1857  * dev_pm_opp_set_prop_name() - Set prop-extn name
1858  * @dev: Device for which the prop-name has to be set.
1859  * @name: name to postfix to properties.
1860  *
1861  * This is required only for the V2 bindings, and it enables a platform to
1862  * specify the extn to be used for certain property names. The properties to
1863  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1864  * should postfix the property name with -<name> while looking for them.
1865  */
1866 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1867 {
1868 	struct opp_table *opp_table;
1869 
1870 	opp_table = _add_opp_table(dev, false);
1871 	if (IS_ERR(opp_table))
1872 		return opp_table;
1873 
1874 	/* Make sure there are no concurrent readers while updating opp_table */
1875 	WARN_ON(!list_empty(&opp_table->opp_list));
1876 
1877 	/* Another CPU that shares the OPP table has set the property ? */
1878 	if (opp_table->prop_name)
1879 		return opp_table;
1880 
1881 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1882 	if (!opp_table->prop_name) {
1883 		dev_pm_opp_put_opp_table(opp_table);
1884 		return ERR_PTR(-ENOMEM);
1885 	}
1886 
1887 	return opp_table;
1888 }
1889 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1890 
1891 /**
1892  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1893  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1894  *
1895  * This is required only for the V2 bindings, and is called for a matching
1896  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1897  * will not be freed.
1898  */
1899 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1900 {
1901 	if (unlikely(!opp_table))
1902 		return;
1903 
1904 	/* Make sure there are no concurrent readers while updating opp_table */
1905 	WARN_ON(!list_empty(&opp_table->opp_list));
1906 
1907 	kfree(opp_table->prop_name);
1908 	opp_table->prop_name = NULL;
1909 
1910 	dev_pm_opp_put_opp_table(opp_table);
1911 }
1912 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1913 
1914 /**
1915  * dev_pm_opp_set_regulators() - Set regulator names for the device
1916  * @dev: Device for which regulator name is being set.
1917  * @names: Array of pointers to the names of the regulator.
1918  * @count: Number of regulators.
1919  *
1920  * In order to support OPP switching, OPP layer needs to know the name of the
1921  * device's regulators, as the core would be required to switch voltages as
1922  * well.
1923  *
1924  * This must be called before any OPPs are initialized for the device.
1925  */
1926 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1927 					    const char * const names[],
1928 					    unsigned int count)
1929 {
1930 	struct dev_pm_opp_supply *supplies;
1931 	struct opp_table *opp_table;
1932 	struct regulator *reg;
1933 	int ret, i;
1934 
1935 	opp_table = _add_opp_table(dev, false);
1936 	if (IS_ERR(opp_table))
1937 		return opp_table;
1938 
1939 	/* This should be called before OPPs are initialized */
1940 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1941 		ret = -EBUSY;
1942 		goto err;
1943 	}
1944 
1945 	/* Another CPU that shares the OPP table has set the regulators ? */
1946 	if (opp_table->regulators)
1947 		return opp_table;
1948 
1949 	opp_table->regulators = kmalloc_array(count,
1950 					      sizeof(*opp_table->regulators),
1951 					      GFP_KERNEL);
1952 	if (!opp_table->regulators) {
1953 		ret = -ENOMEM;
1954 		goto err;
1955 	}
1956 
1957 	for (i = 0; i < count; i++) {
1958 		reg = regulator_get_optional(dev, names[i]);
1959 		if (IS_ERR(reg)) {
1960 			ret = PTR_ERR(reg);
1961 			if (ret != -EPROBE_DEFER)
1962 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1963 					__func__, names[i], ret);
1964 			goto free_regulators;
1965 		}
1966 
1967 		opp_table->regulators[i] = reg;
1968 	}
1969 
1970 	opp_table->regulator_count = count;
1971 
1972 	supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
1973 	if (!supplies) {
1974 		ret = -ENOMEM;
1975 		goto free_regulators;
1976 	}
1977 
1978 	mutex_lock(&opp_table->lock);
1979 	opp_table->sod_supplies = supplies;
1980 	if (opp_table->set_opp_data) {
1981 		opp_table->set_opp_data->old_opp.supplies = supplies;
1982 		opp_table->set_opp_data->new_opp.supplies = supplies + count;
1983 	}
1984 	mutex_unlock(&opp_table->lock);
1985 
1986 	return opp_table;
1987 
1988 free_regulators:
1989 	while (i != 0)
1990 		regulator_put(opp_table->regulators[--i]);
1991 
1992 	kfree(opp_table->regulators);
1993 	opp_table->regulators = NULL;
1994 	opp_table->regulator_count = -1;
1995 err:
1996 	dev_pm_opp_put_opp_table(opp_table);
1997 
1998 	return ERR_PTR(ret);
1999 }
2000 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2001 
2002 /**
2003  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2004  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2005  */
2006 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2007 {
2008 	int i;
2009 
2010 	if (unlikely(!opp_table))
2011 		return;
2012 
2013 	if (!opp_table->regulators)
2014 		goto put_opp_table;
2015 
2016 	/* Make sure there are no concurrent readers while updating opp_table */
2017 	WARN_ON(!list_empty(&opp_table->opp_list));
2018 
2019 	if (opp_table->enabled) {
2020 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2021 			regulator_disable(opp_table->regulators[i]);
2022 	}
2023 
2024 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2025 		regulator_put(opp_table->regulators[i]);
2026 
2027 	mutex_lock(&opp_table->lock);
2028 	if (opp_table->set_opp_data) {
2029 		opp_table->set_opp_data->old_opp.supplies = NULL;
2030 		opp_table->set_opp_data->new_opp.supplies = NULL;
2031 	}
2032 
2033 	kfree(opp_table->sod_supplies);
2034 	opp_table->sod_supplies = NULL;
2035 	mutex_unlock(&opp_table->lock);
2036 
2037 	kfree(opp_table->regulators);
2038 	opp_table->regulators = NULL;
2039 	opp_table->regulator_count = -1;
2040 
2041 put_opp_table:
2042 	dev_pm_opp_put_opp_table(opp_table);
2043 }
2044 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2045 
2046 /**
2047  * dev_pm_opp_set_clkname() - Set clk name for the device
2048  * @dev: Device for which clk name is being set.
2049  * @name: Clk name.
2050  *
2051  * In order to support OPP switching, OPP layer needs to get pointer to the
2052  * clock for the device. Simple cases work fine without using this routine (i.e.
2053  * by passing connection-id as NULL), but for a device with multiple clocks
2054  * available, the OPP core needs to know the exact name of the clk to use.
2055  *
2056  * This must be called before any OPPs are initialized for the device.
2057  */
2058 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2059 {
2060 	struct opp_table *opp_table;
2061 	int ret;
2062 
2063 	opp_table = _add_opp_table(dev, false);
2064 	if (IS_ERR(opp_table))
2065 		return opp_table;
2066 
2067 	/* This should be called before OPPs are initialized */
2068 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2069 		ret = -EBUSY;
2070 		goto err;
2071 	}
2072 
2073 	/* clk shouldn't be initialized at this point */
2074 	if (WARN_ON(opp_table->clk)) {
2075 		ret = -EBUSY;
2076 		goto err;
2077 	}
2078 
2079 	/* Find clk for the device */
2080 	opp_table->clk = clk_get(dev, name);
2081 	if (IS_ERR(opp_table->clk)) {
2082 		ret = PTR_ERR(opp_table->clk);
2083 		if (ret != -EPROBE_DEFER) {
2084 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2085 				ret);
2086 		}
2087 		goto err;
2088 	}
2089 
2090 	return opp_table;
2091 
2092 err:
2093 	dev_pm_opp_put_opp_table(opp_table);
2094 
2095 	return ERR_PTR(ret);
2096 }
2097 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2098 
2099 /**
2100  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2101  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2102  */
2103 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2104 {
2105 	if (unlikely(!opp_table))
2106 		return;
2107 
2108 	/* Make sure there are no concurrent readers while updating opp_table */
2109 	WARN_ON(!list_empty(&opp_table->opp_list));
2110 
2111 	clk_put(opp_table->clk);
2112 	opp_table->clk = ERR_PTR(-EINVAL);
2113 
2114 	dev_pm_opp_put_opp_table(opp_table);
2115 }
2116 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2117 
2118 /**
2119  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2120  * @dev: Device for which the helper is getting registered.
2121  * @set_opp: Custom set OPP helper.
2122  *
2123  * This is useful to support complex platforms (like platforms with multiple
2124  * regulators per device), instead of the generic OPP set rate helper.
2125  *
2126  * This must be called before any OPPs are initialized for the device.
2127  */
2128 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2129 			int (*set_opp)(struct dev_pm_set_opp_data *data))
2130 {
2131 	struct dev_pm_set_opp_data *data;
2132 	struct opp_table *opp_table;
2133 
2134 	if (!set_opp)
2135 		return ERR_PTR(-EINVAL);
2136 
2137 	opp_table = _add_opp_table(dev, false);
2138 	if (IS_ERR(opp_table))
2139 		return opp_table;
2140 
2141 	/* This should be called before OPPs are initialized */
2142 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2143 		dev_pm_opp_put_opp_table(opp_table);
2144 		return ERR_PTR(-EBUSY);
2145 	}
2146 
2147 	/* Another CPU that shares the OPP table has set the helper ? */
2148 	if (opp_table->set_opp)
2149 		return opp_table;
2150 
2151 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2152 	if (!data)
2153 		return ERR_PTR(-ENOMEM);
2154 
2155 	mutex_lock(&opp_table->lock);
2156 	opp_table->set_opp_data = data;
2157 	if (opp_table->sod_supplies) {
2158 		data->old_opp.supplies = opp_table->sod_supplies;
2159 		data->new_opp.supplies = opp_table->sod_supplies +
2160 					 opp_table->regulator_count;
2161 	}
2162 	mutex_unlock(&opp_table->lock);
2163 
2164 	opp_table->set_opp = set_opp;
2165 
2166 	return opp_table;
2167 }
2168 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2169 
2170 /**
2171  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2172  *					   set_opp helper
2173  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2174  *
2175  * Release resources blocked for platform specific set_opp helper.
2176  */
2177 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2178 {
2179 	if (unlikely(!opp_table))
2180 		return;
2181 
2182 	/* Make sure there are no concurrent readers while updating opp_table */
2183 	WARN_ON(!list_empty(&opp_table->opp_list));
2184 
2185 	opp_table->set_opp = NULL;
2186 
2187 	mutex_lock(&opp_table->lock);
2188 	kfree(opp_table->set_opp_data);
2189 	opp_table->set_opp_data = NULL;
2190 	mutex_unlock(&opp_table->lock);
2191 
2192 	dev_pm_opp_put_opp_table(opp_table);
2193 }
2194 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2195 
2196 static void devm_pm_opp_unregister_set_opp_helper(void *data)
2197 {
2198 	dev_pm_opp_unregister_set_opp_helper(data);
2199 }
2200 
2201 /**
2202  * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2203  * @dev: Device for which the helper is getting registered.
2204  * @set_opp: Custom set OPP helper.
2205  *
2206  * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2207  *
2208  * Return: pointer to 'struct opp_table' on success and errorno otherwise.
2209  */
2210 struct opp_table *
2211 devm_pm_opp_register_set_opp_helper(struct device *dev,
2212 				    int (*set_opp)(struct dev_pm_set_opp_data *data))
2213 {
2214 	struct opp_table *opp_table;
2215 	int err;
2216 
2217 	opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2218 	if (IS_ERR(opp_table))
2219 		return opp_table;
2220 
2221 	err = devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2222 				       opp_table);
2223 	if (err)
2224 		return ERR_PTR(err);
2225 
2226 	return opp_table;
2227 }
2228 EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2229 
2230 static void _opp_detach_genpd(struct opp_table *opp_table)
2231 {
2232 	int index;
2233 
2234 	if (!opp_table->genpd_virt_devs)
2235 		return;
2236 
2237 	for (index = 0; index < opp_table->required_opp_count; index++) {
2238 		if (!opp_table->genpd_virt_devs[index])
2239 			continue;
2240 
2241 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2242 		opp_table->genpd_virt_devs[index] = NULL;
2243 	}
2244 
2245 	kfree(opp_table->genpd_virt_devs);
2246 	opp_table->genpd_virt_devs = NULL;
2247 }
2248 
2249 /**
2250  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2251  * @dev: Consumer device for which the genpd is getting attached.
2252  * @names: Null terminated array of pointers containing names of genpd to attach.
2253  * @virt_devs: Pointer to return the array of virtual devices.
2254  *
2255  * Multiple generic power domains for a device are supported with the help of
2256  * virtual genpd devices, which are created for each consumer device - genpd
2257  * pair. These are the device structures which are attached to the power domain
2258  * and are required by the OPP core to set the performance state of the genpd.
2259  * The same API also works for the case where single genpd is available and so
2260  * we don't need to support that separately.
2261  *
2262  * This helper will normally be called by the consumer driver of the device
2263  * "dev", as only that has details of the genpd names.
2264  *
2265  * This helper needs to be called once with a list of all genpd to attach.
2266  * Otherwise the original device structure will be used instead by the OPP core.
2267  *
2268  * The order of entries in the names array must match the order in which
2269  * "required-opps" are added in DT.
2270  */
2271 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2272 		const char **names, struct device ***virt_devs)
2273 {
2274 	struct opp_table *opp_table;
2275 	struct device *virt_dev;
2276 	int index = 0, ret = -EINVAL;
2277 	const char **name = names;
2278 
2279 	opp_table = _add_opp_table(dev, false);
2280 	if (IS_ERR(opp_table))
2281 		return opp_table;
2282 
2283 	if (opp_table->genpd_virt_devs)
2284 		return opp_table;
2285 
2286 	/*
2287 	 * If the genpd's OPP table isn't already initialized, parsing of the
2288 	 * required-opps fail for dev. We should retry this after genpd's OPP
2289 	 * table is added.
2290 	 */
2291 	if (!opp_table->required_opp_count) {
2292 		ret = -EPROBE_DEFER;
2293 		goto put_table;
2294 	}
2295 
2296 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2297 
2298 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2299 					     sizeof(*opp_table->genpd_virt_devs),
2300 					     GFP_KERNEL);
2301 	if (!opp_table->genpd_virt_devs)
2302 		goto unlock;
2303 
2304 	while (*name) {
2305 		if (index >= opp_table->required_opp_count) {
2306 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2307 				*name, opp_table->required_opp_count, index);
2308 			goto err;
2309 		}
2310 
2311 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2312 		if (IS_ERR(virt_dev)) {
2313 			ret = PTR_ERR(virt_dev);
2314 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2315 			goto err;
2316 		}
2317 
2318 		opp_table->genpd_virt_devs[index] = virt_dev;
2319 		index++;
2320 		name++;
2321 	}
2322 
2323 	if (virt_devs)
2324 		*virt_devs = opp_table->genpd_virt_devs;
2325 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2326 
2327 	return opp_table;
2328 
2329 err:
2330 	_opp_detach_genpd(opp_table);
2331 unlock:
2332 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2333 
2334 put_table:
2335 	dev_pm_opp_put_opp_table(opp_table);
2336 
2337 	return ERR_PTR(ret);
2338 }
2339 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2340 
2341 /**
2342  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2343  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2344  *
2345  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2346  * OPP table.
2347  */
2348 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2349 {
2350 	if (unlikely(!opp_table))
2351 		return;
2352 
2353 	/*
2354 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2355 	 * used in parallel.
2356 	 */
2357 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2358 	_opp_detach_genpd(opp_table);
2359 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2360 
2361 	dev_pm_opp_put_opp_table(opp_table);
2362 }
2363 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2364 
2365 static void devm_pm_opp_detach_genpd(void *data)
2366 {
2367 	dev_pm_opp_detach_genpd(data);
2368 }
2369 
2370 /**
2371  * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2372  *			      device pointer
2373  * @dev: Consumer device for which the genpd is getting attached.
2374  * @names: Null terminated array of pointers containing names of genpd to attach.
2375  * @virt_devs: Pointer to return the array of virtual devices.
2376  *
2377  * This is a resource-managed version of dev_pm_opp_attach_genpd().
2378  *
2379  * Return: pointer to 'struct opp_table' on success and errorno otherwise.
2380  */
2381 struct opp_table *
2382 devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2383 			 struct device ***virt_devs)
2384 {
2385 	struct opp_table *opp_table;
2386 	int err;
2387 
2388 	opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2389 	if (IS_ERR(opp_table))
2390 		return opp_table;
2391 
2392 	err = devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2393 				       opp_table);
2394 	if (err)
2395 		return ERR_PTR(err);
2396 
2397 	return opp_table;
2398 }
2399 EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2400 
2401 /**
2402  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2403  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2404  * @dst_table: Required OPP table of the @src_table.
2405  * @src_opp: OPP from the @src_table.
2406  *
2407  * This function returns the OPP (present in @dst_table) pointed out by the
2408  * "required-opps" property of the @src_opp (present in @src_table).
2409  *
2410  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2411  * use.
2412  *
2413  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2414  */
2415 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2416 						 struct opp_table *dst_table,
2417 						 struct dev_pm_opp *src_opp)
2418 {
2419 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2420 	int i;
2421 
2422 	if (!src_table || !dst_table || !src_opp ||
2423 	    !src_table->required_opp_tables)
2424 		return ERR_PTR(-EINVAL);
2425 
2426 	/* required-opps not fully initialized yet */
2427 	if (lazy_linking_pending(src_table))
2428 		return ERR_PTR(-EBUSY);
2429 
2430 	for (i = 0; i < src_table->required_opp_count; i++) {
2431 		if (src_table->required_opp_tables[i] == dst_table) {
2432 			mutex_lock(&src_table->lock);
2433 
2434 			list_for_each_entry(opp, &src_table->opp_list, node) {
2435 				if (opp == src_opp) {
2436 					dest_opp = opp->required_opps[i];
2437 					dev_pm_opp_get(dest_opp);
2438 					break;
2439 				}
2440 			}
2441 
2442 			mutex_unlock(&src_table->lock);
2443 			break;
2444 		}
2445 	}
2446 
2447 	if (IS_ERR(dest_opp)) {
2448 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2449 		       src_table, dst_table);
2450 	}
2451 
2452 	return dest_opp;
2453 }
2454 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2455 
2456 /**
2457  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2458  * @src_table: OPP table which has dst_table as one of its required OPP table.
2459  * @dst_table: Required OPP table of the src_table.
2460  * @pstate: Current performance state of the src_table.
2461  *
2462  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2463  * "required-opps" property of the OPP (present in @src_table) which has
2464  * performance state set to @pstate.
2465  *
2466  * Return: Zero or positive performance state on success, otherwise negative
2467  * value on errors.
2468  */
2469 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2470 				       struct opp_table *dst_table,
2471 				       unsigned int pstate)
2472 {
2473 	struct dev_pm_opp *opp;
2474 	int dest_pstate = -EINVAL;
2475 	int i;
2476 
2477 	/*
2478 	 * Normally the src_table will have the "required_opps" property set to
2479 	 * point to one of the OPPs in the dst_table, but in some cases the
2480 	 * genpd and its master have one to one mapping of performance states
2481 	 * and so none of them have the "required-opps" property set. Return the
2482 	 * pstate of the src_table as it is in such cases.
2483 	 */
2484 	if (!src_table || !src_table->required_opp_count)
2485 		return pstate;
2486 
2487 	/* required-opps not fully initialized yet */
2488 	if (lazy_linking_pending(src_table))
2489 		return -EBUSY;
2490 
2491 	for (i = 0; i < src_table->required_opp_count; i++) {
2492 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2493 			break;
2494 	}
2495 
2496 	if (unlikely(i == src_table->required_opp_count)) {
2497 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2498 		       __func__, src_table, dst_table);
2499 		return -EINVAL;
2500 	}
2501 
2502 	mutex_lock(&src_table->lock);
2503 
2504 	list_for_each_entry(opp, &src_table->opp_list, node) {
2505 		if (opp->pstate == pstate) {
2506 			dest_pstate = opp->required_opps[i]->pstate;
2507 			goto unlock;
2508 		}
2509 	}
2510 
2511 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2512 	       dst_table);
2513 
2514 unlock:
2515 	mutex_unlock(&src_table->lock);
2516 
2517 	return dest_pstate;
2518 }
2519 
2520 /**
2521  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2522  * @dev:	device for which we do this operation
2523  * @freq:	Frequency in Hz for this OPP
2524  * @u_volt:	Voltage in uVolts for this OPP
2525  *
2526  * This function adds an opp definition to the opp table and returns status.
2527  * The opp is made available by default and it can be controlled using
2528  * dev_pm_opp_enable/disable functions.
2529  *
2530  * Return:
2531  * 0		On success OR
2532  *		Duplicate OPPs (both freq and volt are same) and opp->available
2533  * -EEXIST	Freq are same and volt are different OR
2534  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2535  * -ENOMEM	Memory allocation failure
2536  */
2537 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2538 {
2539 	struct opp_table *opp_table;
2540 	int ret;
2541 
2542 	opp_table = _add_opp_table(dev, true);
2543 	if (IS_ERR(opp_table))
2544 		return PTR_ERR(opp_table);
2545 
2546 	/* Fix regulator count for dynamic OPPs */
2547 	opp_table->regulator_count = 1;
2548 
2549 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2550 	if (ret)
2551 		dev_pm_opp_put_opp_table(opp_table);
2552 
2553 	return ret;
2554 }
2555 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2556 
2557 /**
2558  * _opp_set_availability() - helper to set the availability of an opp
2559  * @dev:		device for which we do this operation
2560  * @freq:		OPP frequency to modify availability
2561  * @availability_req:	availability status requested for this opp
2562  *
2563  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2564  * which is isolated here.
2565  *
2566  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2567  * copy operation, returns 0 if no modification was done OR modification was
2568  * successful.
2569  */
2570 static int _opp_set_availability(struct device *dev, unsigned long freq,
2571 				 bool availability_req)
2572 {
2573 	struct opp_table *opp_table;
2574 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2575 	int r = 0;
2576 
2577 	/* Find the opp_table */
2578 	opp_table = _find_opp_table(dev);
2579 	if (IS_ERR(opp_table)) {
2580 		r = PTR_ERR(opp_table);
2581 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2582 		return r;
2583 	}
2584 
2585 	mutex_lock(&opp_table->lock);
2586 
2587 	/* Do we have the frequency? */
2588 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2589 		if (tmp_opp->rate == freq) {
2590 			opp = tmp_opp;
2591 			break;
2592 		}
2593 	}
2594 
2595 	if (IS_ERR(opp)) {
2596 		r = PTR_ERR(opp);
2597 		goto unlock;
2598 	}
2599 
2600 	/* Is update really needed? */
2601 	if (opp->available == availability_req)
2602 		goto unlock;
2603 
2604 	opp->available = availability_req;
2605 
2606 	dev_pm_opp_get(opp);
2607 	mutex_unlock(&opp_table->lock);
2608 
2609 	/* Notify the change of the OPP availability */
2610 	if (availability_req)
2611 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2612 					     opp);
2613 	else
2614 		blocking_notifier_call_chain(&opp_table->head,
2615 					     OPP_EVENT_DISABLE, opp);
2616 
2617 	dev_pm_opp_put(opp);
2618 	goto put_table;
2619 
2620 unlock:
2621 	mutex_unlock(&opp_table->lock);
2622 put_table:
2623 	dev_pm_opp_put_opp_table(opp_table);
2624 	return r;
2625 }
2626 
2627 /**
2628  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2629  * @dev:		device for which we do this operation
2630  * @freq:		OPP frequency to adjust voltage of
2631  * @u_volt:		new OPP target voltage
2632  * @u_volt_min:		new OPP min voltage
2633  * @u_volt_max:		new OPP max voltage
2634  *
2635  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2636  * copy operation, returns 0 if no modifcation was done OR modification was
2637  * successful.
2638  */
2639 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2640 			      unsigned long u_volt, unsigned long u_volt_min,
2641 			      unsigned long u_volt_max)
2642 
2643 {
2644 	struct opp_table *opp_table;
2645 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2646 	int r = 0;
2647 
2648 	/* Find the opp_table */
2649 	opp_table = _find_opp_table(dev);
2650 	if (IS_ERR(opp_table)) {
2651 		r = PTR_ERR(opp_table);
2652 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2653 		return r;
2654 	}
2655 
2656 	mutex_lock(&opp_table->lock);
2657 
2658 	/* Do we have the frequency? */
2659 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2660 		if (tmp_opp->rate == freq) {
2661 			opp = tmp_opp;
2662 			break;
2663 		}
2664 	}
2665 
2666 	if (IS_ERR(opp)) {
2667 		r = PTR_ERR(opp);
2668 		goto adjust_unlock;
2669 	}
2670 
2671 	/* Is update really needed? */
2672 	if (opp->supplies->u_volt == u_volt)
2673 		goto adjust_unlock;
2674 
2675 	opp->supplies->u_volt = u_volt;
2676 	opp->supplies->u_volt_min = u_volt_min;
2677 	opp->supplies->u_volt_max = u_volt_max;
2678 
2679 	dev_pm_opp_get(opp);
2680 	mutex_unlock(&opp_table->lock);
2681 
2682 	/* Notify the voltage change of the OPP */
2683 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2684 				     opp);
2685 
2686 	dev_pm_opp_put(opp);
2687 	goto adjust_put_table;
2688 
2689 adjust_unlock:
2690 	mutex_unlock(&opp_table->lock);
2691 adjust_put_table:
2692 	dev_pm_opp_put_opp_table(opp_table);
2693 	return r;
2694 }
2695 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2696 
2697 /**
2698  * dev_pm_opp_enable() - Enable a specific OPP
2699  * @dev:	device for which we do this operation
2700  * @freq:	OPP frequency to enable
2701  *
2702  * Enables a provided opp. If the operation is valid, this returns 0, else the
2703  * corresponding error value. It is meant to be used for users an OPP available
2704  * after being temporarily made unavailable with dev_pm_opp_disable.
2705  *
2706  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2707  * copy operation, returns 0 if no modification was done OR modification was
2708  * successful.
2709  */
2710 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2711 {
2712 	return _opp_set_availability(dev, freq, true);
2713 }
2714 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2715 
2716 /**
2717  * dev_pm_opp_disable() - Disable a specific OPP
2718  * @dev:	device for which we do this operation
2719  * @freq:	OPP frequency to disable
2720  *
2721  * Disables a provided opp. If the operation is valid, this returns
2722  * 0, else the corresponding error value. It is meant to be a temporary
2723  * control by users to make this OPP not available until the circumstances are
2724  * right to make it available again (with a call to dev_pm_opp_enable).
2725  *
2726  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2727  * copy operation, returns 0 if no modification was done OR modification was
2728  * successful.
2729  */
2730 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2731 {
2732 	return _opp_set_availability(dev, freq, false);
2733 }
2734 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2735 
2736 /**
2737  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2738  * @dev:	Device for which notifier needs to be registered
2739  * @nb:		Notifier block to be registered
2740  *
2741  * Return: 0 on success or a negative error value.
2742  */
2743 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2744 {
2745 	struct opp_table *opp_table;
2746 	int ret;
2747 
2748 	opp_table = _find_opp_table(dev);
2749 	if (IS_ERR(opp_table))
2750 		return PTR_ERR(opp_table);
2751 
2752 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2753 
2754 	dev_pm_opp_put_opp_table(opp_table);
2755 
2756 	return ret;
2757 }
2758 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2759 
2760 /**
2761  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2762  * @dev:	Device for which notifier needs to be unregistered
2763  * @nb:		Notifier block to be unregistered
2764  *
2765  * Return: 0 on success or a negative error value.
2766  */
2767 int dev_pm_opp_unregister_notifier(struct device *dev,
2768 				   struct notifier_block *nb)
2769 {
2770 	struct opp_table *opp_table;
2771 	int ret;
2772 
2773 	opp_table = _find_opp_table(dev);
2774 	if (IS_ERR(opp_table))
2775 		return PTR_ERR(opp_table);
2776 
2777 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2778 
2779 	dev_pm_opp_put_opp_table(opp_table);
2780 
2781 	return ret;
2782 }
2783 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2784 
2785 /**
2786  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2787  * @dev:	device pointer used to lookup OPP table.
2788  *
2789  * Free both OPPs created using static entries present in DT and the
2790  * dynamically added entries.
2791  */
2792 void dev_pm_opp_remove_table(struct device *dev)
2793 {
2794 	struct opp_table *opp_table;
2795 
2796 	/* Check for existing table for 'dev' */
2797 	opp_table = _find_opp_table(dev);
2798 	if (IS_ERR(opp_table)) {
2799 		int error = PTR_ERR(opp_table);
2800 
2801 		if (error != -ENODEV)
2802 			WARN(1, "%s: opp_table: %d\n",
2803 			     IS_ERR_OR_NULL(dev) ?
2804 					"Invalid device" : dev_name(dev),
2805 			     error);
2806 		return;
2807 	}
2808 
2809 	/*
2810 	 * Drop the extra reference only if the OPP table was successfully added
2811 	 * with dev_pm_opp_of_add_table() earlier.
2812 	 **/
2813 	if (_opp_remove_all_static(opp_table))
2814 		dev_pm_opp_put_opp_table(opp_table);
2815 
2816 	/* Drop reference taken by _find_opp_table() */
2817 	dev_pm_opp_put_opp_table(opp_table);
2818 }
2819 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2820 
2821 /**
2822  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2823  * @dev:	device for which we do this operation
2824  *
2825  * Sync voltage state of the OPP table regulators.
2826  *
2827  * Return: 0 on success or a negative error value.
2828  */
2829 int dev_pm_opp_sync_regulators(struct device *dev)
2830 {
2831 	struct opp_table *opp_table;
2832 	struct regulator *reg;
2833 	int i, ret = 0;
2834 
2835 	/* Device may not have OPP table */
2836 	opp_table = _find_opp_table(dev);
2837 	if (IS_ERR(opp_table))
2838 		return 0;
2839 
2840 	/* Regulator may not be required for the device */
2841 	if (unlikely(!opp_table->regulators))
2842 		goto put_table;
2843 
2844 	/* Nothing to sync if voltage wasn't changed */
2845 	if (!opp_table->enabled)
2846 		goto put_table;
2847 
2848 	for (i = 0; i < opp_table->regulator_count; i++) {
2849 		reg = opp_table->regulators[i];
2850 		ret = regulator_sync_voltage(reg);
2851 		if (ret)
2852 			break;
2853 	}
2854 put_table:
2855 	/* Drop reference taken by _find_opp_table() */
2856 	dev_pm_opp_put_opp_table(opp_table);
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2861