1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 31 /* OPP tables with uninitialized required OPPs */ 32 LIST_HEAD(lazy_opp_tables); 33 34 /* Lock to allow exclusive modification to the device and opp lists */ 35 DEFINE_MUTEX(opp_table_lock); 36 /* Flag indicating that opp_tables list is being updated at the moment */ 37 static bool opp_tables_busy; 38 39 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 40 { 41 struct opp_device *opp_dev; 42 bool found = false; 43 44 mutex_lock(&opp_table->lock); 45 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 46 if (opp_dev->dev == dev) { 47 found = true; 48 break; 49 } 50 51 mutex_unlock(&opp_table->lock); 52 return found; 53 } 54 55 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 56 { 57 struct opp_table *opp_table; 58 59 list_for_each_entry(opp_table, &opp_tables, node) { 60 if (_find_opp_dev(dev, opp_table)) { 61 _get_opp_table_kref(opp_table); 62 return opp_table; 63 } 64 } 65 66 return ERR_PTR(-ENODEV); 67 } 68 69 /** 70 * _find_opp_table() - find opp_table struct using device pointer 71 * @dev: device pointer used to lookup OPP table 72 * 73 * Search OPP table for one containing matching device. 74 * 75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 76 * -EINVAL based on type of error. 77 * 78 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 79 */ 80 struct opp_table *_find_opp_table(struct device *dev) 81 { 82 struct opp_table *opp_table; 83 84 if (IS_ERR_OR_NULL(dev)) { 85 pr_err("%s: Invalid parameters\n", __func__); 86 return ERR_PTR(-EINVAL); 87 } 88 89 mutex_lock(&opp_table_lock); 90 opp_table = _find_opp_table_unlocked(dev); 91 mutex_unlock(&opp_table_lock); 92 93 return opp_table; 94 } 95 96 /** 97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 98 * @opp: opp for which voltage has to be returned for 99 * 100 * Return: voltage in micro volt corresponding to the opp, else 101 * return 0 102 * 103 * This is useful only for devices with single power supply. 104 */ 105 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 106 { 107 if (IS_ERR_OR_NULL(opp)) { 108 pr_err("%s: Invalid parameters\n", __func__); 109 return 0; 110 } 111 112 return opp->supplies[0].u_volt; 113 } 114 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 115 116 /** 117 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 118 * @opp: opp for which frequency has to be returned for 119 * 120 * Return: frequency in hertz corresponding to the opp, else 121 * return 0 122 */ 123 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 124 { 125 if (IS_ERR_OR_NULL(opp)) { 126 pr_err("%s: Invalid parameters\n", __func__); 127 return 0; 128 } 129 130 return opp->rate; 131 } 132 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 133 134 /** 135 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 136 * @opp: opp for which level value has to be returned for 137 * 138 * Return: level read from device tree corresponding to the opp, else 139 * return 0. 140 */ 141 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 142 { 143 if (IS_ERR_OR_NULL(opp) || !opp->available) { 144 pr_err("%s: Invalid parameters\n", __func__); 145 return 0; 146 } 147 148 return opp->level; 149 } 150 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 151 152 /** 153 * dev_pm_opp_get_required_pstate() - Gets the required performance state 154 * corresponding to an available opp 155 * @opp: opp for which performance state has to be returned for 156 * @index: index of the required opp 157 * 158 * Return: performance state read from device tree corresponding to the 159 * required opp, else return 0. 160 */ 161 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 162 unsigned int index) 163 { 164 if (IS_ERR_OR_NULL(opp) || !opp->available || 165 index >= opp->opp_table->required_opp_count) { 166 pr_err("%s: Invalid parameters\n", __func__); 167 return 0; 168 } 169 170 /* required-opps not fully initialized yet */ 171 if (lazy_linking_pending(opp->opp_table)) 172 return 0; 173 174 return opp->required_opps[index]->pstate; 175 } 176 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 177 178 /** 179 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 180 * @opp: opp for which turbo mode is being verified 181 * 182 * Turbo OPPs are not for normal use, and can be enabled (under certain 183 * conditions) for short duration of times to finish high throughput work 184 * quickly. Running on them for longer times may overheat the chip. 185 * 186 * Return: true if opp is turbo opp, else false. 187 */ 188 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 189 { 190 if (IS_ERR_OR_NULL(opp) || !opp->available) { 191 pr_err("%s: Invalid parameters\n", __func__); 192 return false; 193 } 194 195 return opp->turbo; 196 } 197 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 198 199 /** 200 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 201 * @dev: device for which we do this operation 202 * 203 * Return: This function returns the max clock latency in nanoseconds. 204 */ 205 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 206 { 207 struct opp_table *opp_table; 208 unsigned long clock_latency_ns; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 clock_latency_ns = opp_table->clock_latency_ns_max; 215 216 dev_pm_opp_put_opp_table(opp_table); 217 218 return clock_latency_ns; 219 } 220 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 221 222 /** 223 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 224 * @dev: device for which we do this operation 225 * 226 * Return: This function returns the max voltage latency in nanoseconds. 227 */ 228 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 229 { 230 struct opp_table *opp_table; 231 struct dev_pm_opp *opp; 232 struct regulator *reg; 233 unsigned long latency_ns = 0; 234 int ret, i, count; 235 struct { 236 unsigned long min; 237 unsigned long max; 238 } *uV; 239 240 opp_table = _find_opp_table(dev); 241 if (IS_ERR(opp_table)) 242 return 0; 243 244 /* Regulator may not be required for the device */ 245 if (!opp_table->regulators) 246 goto put_opp_table; 247 248 count = opp_table->regulator_count; 249 250 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 251 if (!uV) 252 goto put_opp_table; 253 254 mutex_lock(&opp_table->lock); 255 256 for (i = 0; i < count; i++) { 257 uV[i].min = ~0; 258 uV[i].max = 0; 259 260 list_for_each_entry(opp, &opp_table->opp_list, node) { 261 if (!opp->available) 262 continue; 263 264 if (opp->supplies[i].u_volt_min < uV[i].min) 265 uV[i].min = opp->supplies[i].u_volt_min; 266 if (opp->supplies[i].u_volt_max > uV[i].max) 267 uV[i].max = opp->supplies[i].u_volt_max; 268 } 269 } 270 271 mutex_unlock(&opp_table->lock); 272 273 /* 274 * The caller needs to ensure that opp_table (and hence the regulator) 275 * isn't freed, while we are executing this routine. 276 */ 277 for (i = 0; i < count; i++) { 278 reg = opp_table->regulators[i]; 279 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 280 if (ret > 0) 281 latency_ns += ret * 1000; 282 } 283 284 kfree(uV); 285 put_opp_table: 286 dev_pm_opp_put_opp_table(opp_table); 287 288 return latency_ns; 289 } 290 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 291 292 /** 293 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 294 * nanoseconds 295 * @dev: device for which we do this operation 296 * 297 * Return: This function returns the max transition latency, in nanoseconds, to 298 * switch from one OPP to other. 299 */ 300 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 301 { 302 return dev_pm_opp_get_max_volt_latency(dev) + 303 dev_pm_opp_get_max_clock_latency(dev); 304 } 305 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 306 307 /** 308 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 309 * @dev: device for which we do this operation 310 * 311 * Return: This function returns the frequency of the OPP marked as suspend_opp 312 * if one is available, else returns 0; 313 */ 314 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 315 { 316 struct opp_table *opp_table; 317 unsigned long freq = 0; 318 319 opp_table = _find_opp_table(dev); 320 if (IS_ERR(opp_table)) 321 return 0; 322 323 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 324 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 325 326 dev_pm_opp_put_opp_table(opp_table); 327 328 return freq; 329 } 330 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 331 332 int _get_opp_count(struct opp_table *opp_table) 333 { 334 struct dev_pm_opp *opp; 335 int count = 0; 336 337 mutex_lock(&opp_table->lock); 338 339 list_for_each_entry(opp, &opp_table->opp_list, node) { 340 if (opp->available) 341 count++; 342 } 343 344 mutex_unlock(&opp_table->lock); 345 346 return count; 347 } 348 349 /** 350 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 351 * @dev: device for which we do this operation 352 * 353 * Return: This function returns the number of available opps if there are any, 354 * else returns 0 if none or the corresponding error value. 355 */ 356 int dev_pm_opp_get_opp_count(struct device *dev) 357 { 358 struct opp_table *opp_table; 359 int count; 360 361 opp_table = _find_opp_table(dev); 362 if (IS_ERR(opp_table)) { 363 count = PTR_ERR(opp_table); 364 dev_dbg(dev, "%s: OPP table not found (%d)\n", 365 __func__, count); 366 return count; 367 } 368 369 count = _get_opp_count(opp_table); 370 dev_pm_opp_put_opp_table(opp_table); 371 372 return count; 373 } 374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 375 376 /** 377 * dev_pm_opp_find_freq_exact() - search for an exact frequency 378 * @dev: device for which we do this operation 379 * @freq: frequency to search for 380 * @available: true/false - match for available opp 381 * 382 * Return: Searches for exact match in the opp table and returns pointer to the 383 * matching opp if found, else returns ERR_PTR in case of error and should 384 * be handled using IS_ERR. Error return values can be: 385 * EINVAL: for bad pointer 386 * ERANGE: no match found for search 387 * ENODEV: if device not found in list of registered devices 388 * 389 * Note: available is a modifier for the search. if available=true, then the 390 * match is for exact matching frequency and is available in the stored OPP 391 * table. if false, the match is for exact frequency which is not available. 392 * 393 * This provides a mechanism to enable an opp which is not available currently 394 * or the opposite as well. 395 * 396 * The callers are required to call dev_pm_opp_put() for the returned OPP after 397 * use. 398 */ 399 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 400 unsigned long freq, 401 bool available) 402 { 403 struct opp_table *opp_table; 404 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 405 406 opp_table = _find_opp_table(dev); 407 if (IS_ERR(opp_table)) { 408 int r = PTR_ERR(opp_table); 409 410 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 411 return ERR_PTR(r); 412 } 413 414 mutex_lock(&opp_table->lock); 415 416 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 417 if (temp_opp->available == available && 418 temp_opp->rate == freq) { 419 opp = temp_opp; 420 421 /* Increment the reference count of OPP */ 422 dev_pm_opp_get(opp); 423 break; 424 } 425 } 426 427 mutex_unlock(&opp_table->lock); 428 dev_pm_opp_put_opp_table(opp_table); 429 430 return opp; 431 } 432 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 433 434 /** 435 * dev_pm_opp_find_level_exact() - search for an exact level 436 * @dev: device for which we do this operation 437 * @level: level to search for 438 * 439 * Return: Searches for exact match in the opp table and returns pointer to the 440 * matching opp if found, else returns ERR_PTR in case of error and should 441 * be handled using IS_ERR. Error return values can be: 442 * EINVAL: for bad pointer 443 * ERANGE: no match found for search 444 * ENODEV: if device not found in list of registered devices 445 * 446 * The callers are required to call dev_pm_opp_put() for the returned OPP after 447 * use. 448 */ 449 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 450 unsigned int level) 451 { 452 struct opp_table *opp_table; 453 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 454 455 opp_table = _find_opp_table(dev); 456 if (IS_ERR(opp_table)) { 457 int r = PTR_ERR(opp_table); 458 459 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 460 return ERR_PTR(r); 461 } 462 463 mutex_lock(&opp_table->lock); 464 465 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 466 if (temp_opp->level == level) { 467 opp = temp_opp; 468 469 /* Increment the reference count of OPP */ 470 dev_pm_opp_get(opp); 471 break; 472 } 473 } 474 475 mutex_unlock(&opp_table->lock); 476 dev_pm_opp_put_opp_table(opp_table); 477 478 return opp; 479 } 480 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 481 482 /** 483 * dev_pm_opp_find_level_ceil() - search for an rounded up level 484 * @dev: device for which we do this operation 485 * @level: level to search for 486 * 487 * Return: Searches for rounded up match in the opp table and returns pointer 488 * to the matching opp if found, else returns ERR_PTR in case of error and 489 * should be handled using IS_ERR. Error return values can be: 490 * EINVAL: for bad pointer 491 * ERANGE: no match found for search 492 * ENODEV: if device not found in list of registered devices 493 * 494 * The callers are required to call dev_pm_opp_put() for the returned OPP after 495 * use. 496 */ 497 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 498 unsigned int *level) 499 { 500 struct opp_table *opp_table; 501 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 502 503 opp_table = _find_opp_table(dev); 504 if (IS_ERR(opp_table)) { 505 int r = PTR_ERR(opp_table); 506 507 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 508 return ERR_PTR(r); 509 } 510 511 mutex_lock(&opp_table->lock); 512 513 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 514 if (temp_opp->available && temp_opp->level >= *level) { 515 opp = temp_opp; 516 *level = opp->level; 517 518 /* Increment the reference count of OPP */ 519 dev_pm_opp_get(opp); 520 break; 521 } 522 } 523 524 mutex_unlock(&opp_table->lock); 525 dev_pm_opp_put_opp_table(opp_table); 526 527 return opp; 528 } 529 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 530 531 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 532 unsigned long *freq) 533 { 534 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 535 536 mutex_lock(&opp_table->lock); 537 538 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 539 if (temp_opp->available && temp_opp->rate >= *freq) { 540 opp = temp_opp; 541 *freq = opp->rate; 542 543 /* Increment the reference count of OPP */ 544 dev_pm_opp_get(opp); 545 break; 546 } 547 } 548 549 mutex_unlock(&opp_table->lock); 550 551 return opp; 552 } 553 554 /** 555 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 556 * @dev: device for which we do this operation 557 * @freq: Start frequency 558 * 559 * Search for the matching ceil *available* OPP from a starting freq 560 * for a device. 561 * 562 * Return: matching *opp and refreshes *freq accordingly, else returns 563 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 564 * values can be: 565 * EINVAL: for bad pointer 566 * ERANGE: no match found for search 567 * ENODEV: if device not found in list of registered devices 568 * 569 * The callers are required to call dev_pm_opp_put() for the returned OPP after 570 * use. 571 */ 572 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 573 unsigned long *freq) 574 { 575 struct opp_table *opp_table; 576 struct dev_pm_opp *opp; 577 578 if (!dev || !freq) { 579 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 580 return ERR_PTR(-EINVAL); 581 } 582 583 opp_table = _find_opp_table(dev); 584 if (IS_ERR(opp_table)) 585 return ERR_CAST(opp_table); 586 587 opp = _find_freq_ceil(opp_table, freq); 588 589 dev_pm_opp_put_opp_table(opp_table); 590 591 return opp; 592 } 593 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 594 595 /** 596 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 597 * @dev: device for which we do this operation 598 * @freq: Start frequency 599 * 600 * Search for the matching floor *available* OPP from a starting freq 601 * for a device. 602 * 603 * Return: matching *opp and refreshes *freq accordingly, else returns 604 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 605 * values can be: 606 * EINVAL: for bad pointer 607 * ERANGE: no match found for search 608 * ENODEV: if device not found in list of registered devices 609 * 610 * The callers are required to call dev_pm_opp_put() for the returned OPP after 611 * use. 612 */ 613 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 614 unsigned long *freq) 615 { 616 struct opp_table *opp_table; 617 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 618 619 if (!dev || !freq) { 620 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 621 return ERR_PTR(-EINVAL); 622 } 623 624 opp_table = _find_opp_table(dev); 625 if (IS_ERR(opp_table)) 626 return ERR_CAST(opp_table); 627 628 mutex_lock(&opp_table->lock); 629 630 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 631 if (temp_opp->available) { 632 /* go to the next node, before choosing prev */ 633 if (temp_opp->rate > *freq) 634 break; 635 else 636 opp = temp_opp; 637 } 638 } 639 640 /* Increment the reference count of OPP */ 641 if (!IS_ERR(opp)) 642 dev_pm_opp_get(opp); 643 mutex_unlock(&opp_table->lock); 644 dev_pm_opp_put_opp_table(opp_table); 645 646 if (!IS_ERR(opp)) 647 *freq = opp->rate; 648 649 return opp; 650 } 651 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 652 653 /** 654 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 655 * target voltage. 656 * @dev: Device for which we do this operation. 657 * @u_volt: Target voltage. 658 * 659 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 660 * 661 * Return: matching *opp, else returns ERR_PTR in case of error which should be 662 * handled using IS_ERR. 663 * 664 * Error return values can be: 665 * EINVAL: bad parameters 666 * 667 * The callers are required to call dev_pm_opp_put() for the returned OPP after 668 * use. 669 */ 670 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 671 unsigned long u_volt) 672 { 673 struct opp_table *opp_table; 674 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 675 676 if (!dev || !u_volt) { 677 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 678 u_volt); 679 return ERR_PTR(-EINVAL); 680 } 681 682 opp_table = _find_opp_table(dev); 683 if (IS_ERR(opp_table)) 684 return ERR_CAST(opp_table); 685 686 mutex_lock(&opp_table->lock); 687 688 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 689 if (temp_opp->available) { 690 if (temp_opp->supplies[0].u_volt > u_volt) 691 break; 692 opp = temp_opp; 693 } 694 } 695 696 /* Increment the reference count of OPP */ 697 if (!IS_ERR(opp)) 698 dev_pm_opp_get(opp); 699 700 mutex_unlock(&opp_table->lock); 701 dev_pm_opp_put_opp_table(opp_table); 702 703 return opp; 704 } 705 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 706 707 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 708 struct dev_pm_opp_supply *supply) 709 { 710 int ret; 711 712 /* Regulator not available for device */ 713 if (IS_ERR(reg)) { 714 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 715 PTR_ERR(reg)); 716 return 0; 717 } 718 719 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 720 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 721 722 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 723 supply->u_volt, supply->u_volt_max); 724 if (ret) 725 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 726 __func__, supply->u_volt_min, supply->u_volt, 727 supply->u_volt_max, ret); 728 729 return ret; 730 } 731 732 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 733 unsigned long freq) 734 { 735 int ret; 736 737 /* We may reach here for devices which don't change frequency */ 738 if (IS_ERR(clk)) 739 return 0; 740 741 ret = clk_set_rate(clk, freq); 742 if (ret) { 743 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 744 ret); 745 } 746 747 return ret; 748 } 749 750 static int _generic_set_opp_regulator(struct opp_table *opp_table, 751 struct device *dev, 752 struct dev_pm_opp *opp, 753 unsigned long freq, 754 int scaling_down) 755 { 756 struct regulator *reg = opp_table->regulators[0]; 757 struct dev_pm_opp *old_opp = opp_table->current_opp; 758 int ret; 759 760 /* This function only supports single regulator per device */ 761 if (WARN_ON(opp_table->regulator_count > 1)) { 762 dev_err(dev, "multiple regulators are not supported\n"); 763 return -EINVAL; 764 } 765 766 /* Scaling up? Scale voltage before frequency */ 767 if (!scaling_down) { 768 ret = _set_opp_voltage(dev, reg, opp->supplies); 769 if (ret) 770 goto restore_voltage; 771 } 772 773 /* Change frequency */ 774 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 775 if (ret) 776 goto restore_voltage; 777 778 /* Scaling down? Scale voltage after frequency */ 779 if (scaling_down) { 780 ret = _set_opp_voltage(dev, reg, opp->supplies); 781 if (ret) 782 goto restore_freq; 783 } 784 785 /* 786 * Enable the regulator after setting its voltages, otherwise it breaks 787 * some boot-enabled regulators. 788 */ 789 if (unlikely(!opp_table->enabled)) { 790 ret = regulator_enable(reg); 791 if (ret < 0) 792 dev_warn(dev, "Failed to enable regulator: %d", ret); 793 } 794 795 return 0; 796 797 restore_freq: 798 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate)) 799 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 800 __func__, old_opp->rate); 801 restore_voltage: 802 /* This shouldn't harm even if the voltages weren't updated earlier */ 803 _set_opp_voltage(dev, reg, old_opp->supplies); 804 805 return ret; 806 } 807 808 static int _set_opp_bw(const struct opp_table *opp_table, 809 struct dev_pm_opp *opp, struct device *dev) 810 { 811 u32 avg, peak; 812 int i, ret; 813 814 if (!opp_table->paths) 815 return 0; 816 817 for (i = 0; i < opp_table->path_count; i++) { 818 if (!opp) { 819 avg = 0; 820 peak = 0; 821 } else { 822 avg = opp->bandwidth[i].avg; 823 peak = opp->bandwidth[i].peak; 824 } 825 ret = icc_set_bw(opp_table->paths[i], avg, peak); 826 if (ret) { 827 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 828 opp ? "set" : "remove", i, ret); 829 return ret; 830 } 831 } 832 833 return 0; 834 } 835 836 static int _set_opp_custom(const struct opp_table *opp_table, 837 struct device *dev, struct dev_pm_opp *opp, 838 unsigned long freq) 839 { 840 struct dev_pm_set_opp_data *data = opp_table->set_opp_data; 841 struct dev_pm_opp *old_opp = opp_table->current_opp; 842 int size; 843 844 /* 845 * We support this only if dev_pm_opp_set_regulators() was called 846 * earlier. 847 */ 848 if (opp_table->sod_supplies) { 849 size = sizeof(*old_opp->supplies) * opp_table->regulator_count; 850 memcpy(data->old_opp.supplies, old_opp->supplies, size); 851 memcpy(data->new_opp.supplies, opp->supplies, size); 852 data->regulator_count = opp_table->regulator_count; 853 } else { 854 data->regulator_count = 0; 855 } 856 857 data->regulators = opp_table->regulators; 858 data->clk = opp_table->clk; 859 data->dev = dev; 860 data->old_opp.rate = old_opp->rate; 861 data->new_opp.rate = freq; 862 863 return opp_table->set_opp(data); 864 } 865 866 static int _set_required_opp(struct device *dev, struct device *pd_dev, 867 struct dev_pm_opp *opp, int i) 868 { 869 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 870 int ret; 871 872 if (!pd_dev) 873 return 0; 874 875 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 876 if (ret) { 877 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 878 dev_name(pd_dev), pstate, ret); 879 } 880 881 return ret; 882 } 883 884 /* This is only called for PM domain for now */ 885 static int _set_required_opps(struct device *dev, 886 struct opp_table *opp_table, 887 struct dev_pm_opp *opp, bool up) 888 { 889 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 890 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 891 int i, ret = 0; 892 893 if (!required_opp_tables) 894 return 0; 895 896 /* required-opps not fully initialized yet */ 897 if (lazy_linking_pending(opp_table)) 898 return -EBUSY; 899 900 /* Single genpd case */ 901 if (!genpd_virt_devs) 902 return _set_required_opp(dev, dev, opp, 0); 903 904 /* Multiple genpd case */ 905 906 /* 907 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 908 * after it is freed from another thread. 909 */ 910 mutex_lock(&opp_table->genpd_virt_dev_lock); 911 912 /* Scaling up? Set required OPPs in normal order, else reverse */ 913 if (up) { 914 for (i = 0; i < opp_table->required_opp_count; i++) { 915 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 916 if (ret) 917 break; 918 } 919 } else { 920 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 921 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 922 if (ret) 923 break; 924 } 925 } 926 927 mutex_unlock(&opp_table->genpd_virt_dev_lock); 928 929 return ret; 930 } 931 932 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 933 { 934 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 935 unsigned long freq; 936 937 if (!IS_ERR(opp_table->clk)) { 938 freq = clk_get_rate(opp_table->clk); 939 opp = _find_freq_ceil(opp_table, &freq); 940 } 941 942 /* 943 * Unable to find the current OPP ? Pick the first from the list since 944 * it is in ascending order, otherwise rest of the code will need to 945 * make special checks to validate current_opp. 946 */ 947 if (IS_ERR(opp)) { 948 mutex_lock(&opp_table->lock); 949 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 950 dev_pm_opp_get(opp); 951 mutex_unlock(&opp_table->lock); 952 } 953 954 opp_table->current_opp = opp; 955 } 956 957 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 958 { 959 int ret; 960 961 if (!opp_table->enabled) 962 return 0; 963 964 /* 965 * Some drivers need to support cases where some platforms may 966 * have OPP table for the device, while others don't and 967 * opp_set_rate() just needs to behave like clk_set_rate(). 968 */ 969 if (!_get_opp_count(opp_table)) 970 return 0; 971 972 ret = _set_opp_bw(opp_table, NULL, dev); 973 if (ret) 974 return ret; 975 976 if (opp_table->regulators) 977 regulator_disable(opp_table->regulators[0]); 978 979 ret = _set_required_opps(dev, opp_table, NULL, false); 980 981 opp_table->enabled = false; 982 return ret; 983 } 984 985 static int _set_opp(struct device *dev, struct opp_table *opp_table, 986 struct dev_pm_opp *opp, unsigned long freq) 987 { 988 struct dev_pm_opp *old_opp; 989 int scaling_down, ret; 990 991 if (unlikely(!opp)) 992 return _disable_opp_table(dev, opp_table); 993 994 /* Find the currently set OPP if we don't know already */ 995 if (unlikely(!opp_table->current_opp)) 996 _find_current_opp(dev, opp_table); 997 998 old_opp = opp_table->current_opp; 999 1000 /* Return early if nothing to do */ 1001 if (opp_table->enabled && old_opp == opp) { 1002 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__); 1003 return 0; 1004 } 1005 1006 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1007 __func__, old_opp->rate, freq, old_opp->level, opp->level, 1008 old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1009 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1010 1011 scaling_down = _opp_compare_key(old_opp, opp); 1012 if (scaling_down == -1) 1013 scaling_down = 0; 1014 1015 /* Scaling up? Configure required OPPs before frequency */ 1016 if (!scaling_down) { 1017 ret = _set_required_opps(dev, opp_table, opp, true); 1018 if (ret) { 1019 dev_err(dev, "Failed to set required opps: %d\n", ret); 1020 return ret; 1021 } 1022 1023 ret = _set_opp_bw(opp_table, opp, dev); 1024 if (ret) { 1025 dev_err(dev, "Failed to set bw: %d\n", ret); 1026 return ret; 1027 } 1028 } 1029 1030 if (opp_table->set_opp) { 1031 ret = _set_opp_custom(opp_table, dev, opp, freq); 1032 } else if (opp_table->regulators) { 1033 ret = _generic_set_opp_regulator(opp_table, dev, opp, freq, 1034 scaling_down); 1035 } else { 1036 /* Only frequency scaling */ 1037 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 1038 } 1039 1040 if (ret) 1041 return ret; 1042 1043 /* Scaling down? Configure required OPPs after frequency */ 1044 if (scaling_down) { 1045 ret = _set_opp_bw(opp_table, opp, dev); 1046 if (ret) { 1047 dev_err(dev, "Failed to set bw: %d\n", ret); 1048 return ret; 1049 } 1050 1051 ret = _set_required_opps(dev, opp_table, opp, false); 1052 if (ret) { 1053 dev_err(dev, "Failed to set required opps: %d\n", ret); 1054 return ret; 1055 } 1056 } 1057 1058 opp_table->enabled = true; 1059 dev_pm_opp_put(old_opp); 1060 1061 /* Make sure current_opp doesn't get freed */ 1062 dev_pm_opp_get(opp); 1063 opp_table->current_opp = opp; 1064 1065 return ret; 1066 } 1067 1068 /** 1069 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1070 * @dev: device for which we do this operation 1071 * @target_freq: frequency to achieve 1072 * 1073 * This configures the power-supplies to the levels specified by the OPP 1074 * corresponding to the target_freq, and programs the clock to a value <= 1075 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1076 * provided by the opp, should have already rounded to the target OPP's 1077 * frequency. 1078 */ 1079 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1080 { 1081 struct opp_table *opp_table; 1082 unsigned long freq = 0, temp_freq; 1083 struct dev_pm_opp *opp = NULL; 1084 int ret; 1085 1086 opp_table = _find_opp_table(dev); 1087 if (IS_ERR(opp_table)) { 1088 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1089 return PTR_ERR(opp_table); 1090 } 1091 1092 if (target_freq) { 1093 /* 1094 * For IO devices which require an OPP on some platforms/SoCs 1095 * while just needing to scale the clock on some others 1096 * we look for empty OPP tables with just a clock handle and 1097 * scale only the clk. This makes dev_pm_opp_set_rate() 1098 * equivalent to a clk_set_rate() 1099 */ 1100 if (!_get_opp_count(opp_table)) { 1101 ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq); 1102 goto put_opp_table; 1103 } 1104 1105 freq = clk_round_rate(opp_table->clk, target_freq); 1106 if ((long)freq <= 0) 1107 freq = target_freq; 1108 1109 /* 1110 * The clock driver may support finer resolution of the 1111 * frequencies than the OPP table, don't update the frequency we 1112 * pass to clk_set_rate() here. 1113 */ 1114 temp_freq = freq; 1115 opp = _find_freq_ceil(opp_table, &temp_freq); 1116 if (IS_ERR(opp)) { 1117 ret = PTR_ERR(opp); 1118 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1119 __func__, freq, ret); 1120 goto put_opp_table; 1121 } 1122 } 1123 1124 ret = _set_opp(dev, opp_table, opp, freq); 1125 1126 if (target_freq) 1127 dev_pm_opp_put(opp); 1128 put_opp_table: 1129 dev_pm_opp_put_opp_table(opp_table); 1130 return ret; 1131 } 1132 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1133 1134 /** 1135 * dev_pm_opp_set_opp() - Configure device for OPP 1136 * @dev: device for which we do this operation 1137 * @opp: OPP to set to 1138 * 1139 * This configures the device based on the properties of the OPP passed to this 1140 * routine. 1141 * 1142 * Return: 0 on success, a negative error number otherwise. 1143 */ 1144 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1145 { 1146 struct opp_table *opp_table; 1147 int ret; 1148 1149 opp_table = _find_opp_table(dev); 1150 if (IS_ERR(opp_table)) { 1151 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1152 return PTR_ERR(opp_table); 1153 } 1154 1155 ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0); 1156 dev_pm_opp_put_opp_table(opp_table); 1157 1158 return ret; 1159 } 1160 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1161 1162 /* OPP-dev Helpers */ 1163 static void _remove_opp_dev(struct opp_device *opp_dev, 1164 struct opp_table *opp_table) 1165 { 1166 opp_debug_unregister(opp_dev, opp_table); 1167 list_del(&opp_dev->node); 1168 kfree(opp_dev); 1169 } 1170 1171 struct opp_device *_add_opp_dev(const struct device *dev, 1172 struct opp_table *opp_table) 1173 { 1174 struct opp_device *opp_dev; 1175 1176 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1177 if (!opp_dev) 1178 return NULL; 1179 1180 /* Initialize opp-dev */ 1181 opp_dev->dev = dev; 1182 1183 mutex_lock(&opp_table->lock); 1184 list_add(&opp_dev->node, &opp_table->dev_list); 1185 mutex_unlock(&opp_table->lock); 1186 1187 /* Create debugfs entries for the opp_table */ 1188 opp_debug_register(opp_dev, opp_table); 1189 1190 return opp_dev; 1191 } 1192 1193 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1194 { 1195 struct opp_table *opp_table; 1196 struct opp_device *opp_dev; 1197 int ret; 1198 1199 /* 1200 * Allocate a new OPP table. In the infrequent case where a new 1201 * device is needed to be added, we pay this penalty. 1202 */ 1203 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1204 if (!opp_table) 1205 return ERR_PTR(-ENOMEM); 1206 1207 mutex_init(&opp_table->lock); 1208 mutex_init(&opp_table->genpd_virt_dev_lock); 1209 INIT_LIST_HEAD(&opp_table->dev_list); 1210 INIT_LIST_HEAD(&opp_table->lazy); 1211 1212 /* Mark regulator count uninitialized */ 1213 opp_table->regulator_count = -1; 1214 1215 opp_dev = _add_opp_dev(dev, opp_table); 1216 if (!opp_dev) { 1217 ret = -ENOMEM; 1218 goto err; 1219 } 1220 1221 _of_init_opp_table(opp_table, dev, index); 1222 1223 /* Find interconnect path(s) for the device */ 1224 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1225 if (ret) { 1226 if (ret == -EPROBE_DEFER) 1227 goto remove_opp_dev; 1228 1229 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1230 __func__, ret); 1231 } 1232 1233 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1234 INIT_LIST_HEAD(&opp_table->opp_list); 1235 kref_init(&opp_table->kref); 1236 1237 return opp_table; 1238 1239 remove_opp_dev: 1240 _remove_opp_dev(opp_dev, opp_table); 1241 err: 1242 kfree(opp_table); 1243 return ERR_PTR(ret); 1244 } 1245 1246 void _get_opp_table_kref(struct opp_table *opp_table) 1247 { 1248 kref_get(&opp_table->kref); 1249 } 1250 1251 static struct opp_table *_update_opp_table_clk(struct device *dev, 1252 struct opp_table *opp_table, 1253 bool getclk) 1254 { 1255 int ret; 1256 1257 /* 1258 * Return early if we don't need to get clk or we have already tried it 1259 * earlier. 1260 */ 1261 if (!getclk || IS_ERR(opp_table) || opp_table->clk) 1262 return opp_table; 1263 1264 /* Find clk for the device */ 1265 opp_table->clk = clk_get(dev, NULL); 1266 1267 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1268 if (!ret) 1269 return opp_table; 1270 1271 if (ret == -ENOENT) { 1272 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1273 return opp_table; 1274 } 1275 1276 dev_pm_opp_put_opp_table(opp_table); 1277 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1278 1279 return ERR_PTR(ret); 1280 } 1281 1282 /* 1283 * We need to make sure that the OPP table for a device doesn't get added twice, 1284 * if this routine gets called in parallel with the same device pointer. 1285 * 1286 * The simplest way to enforce that is to perform everything (find existing 1287 * table and if not found, create a new one) under the opp_table_lock, so only 1288 * one creator gets access to the same. But that expands the critical section 1289 * under the lock and may end up causing circular dependencies with frameworks 1290 * like debugfs, interconnect or clock framework as they may be direct or 1291 * indirect users of OPP core. 1292 * 1293 * And for that reason we have to go for a bit tricky implementation here, which 1294 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1295 * of adding an OPP table and others should wait for it to finish. 1296 */ 1297 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1298 bool getclk) 1299 { 1300 struct opp_table *opp_table; 1301 1302 again: 1303 mutex_lock(&opp_table_lock); 1304 1305 opp_table = _find_opp_table_unlocked(dev); 1306 if (!IS_ERR(opp_table)) 1307 goto unlock; 1308 1309 /* 1310 * The opp_tables list or an OPP table's dev_list is getting updated by 1311 * another user, wait for it to finish. 1312 */ 1313 if (unlikely(opp_tables_busy)) { 1314 mutex_unlock(&opp_table_lock); 1315 cpu_relax(); 1316 goto again; 1317 } 1318 1319 opp_tables_busy = true; 1320 opp_table = _managed_opp(dev, index); 1321 1322 /* Drop the lock to reduce the size of critical section */ 1323 mutex_unlock(&opp_table_lock); 1324 1325 if (opp_table) { 1326 if (!_add_opp_dev(dev, opp_table)) { 1327 dev_pm_opp_put_opp_table(opp_table); 1328 opp_table = ERR_PTR(-ENOMEM); 1329 } 1330 1331 mutex_lock(&opp_table_lock); 1332 } else { 1333 opp_table = _allocate_opp_table(dev, index); 1334 1335 mutex_lock(&opp_table_lock); 1336 if (!IS_ERR(opp_table)) 1337 list_add(&opp_table->node, &opp_tables); 1338 } 1339 1340 opp_tables_busy = false; 1341 1342 unlock: 1343 mutex_unlock(&opp_table_lock); 1344 1345 return _update_opp_table_clk(dev, opp_table, getclk); 1346 } 1347 1348 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1349 { 1350 return _add_opp_table_indexed(dev, 0, getclk); 1351 } 1352 1353 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1354 { 1355 return _find_opp_table(dev); 1356 } 1357 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1358 1359 static void _opp_table_kref_release(struct kref *kref) 1360 { 1361 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1362 struct opp_device *opp_dev, *temp; 1363 int i; 1364 1365 /* Drop the lock as soon as we can */ 1366 list_del(&opp_table->node); 1367 mutex_unlock(&opp_table_lock); 1368 1369 if (opp_table->current_opp) 1370 dev_pm_opp_put(opp_table->current_opp); 1371 1372 _of_clear_opp_table(opp_table); 1373 1374 /* Release clk */ 1375 if (!IS_ERR(opp_table->clk)) 1376 clk_put(opp_table->clk); 1377 1378 if (opp_table->paths) { 1379 for (i = 0; i < opp_table->path_count; i++) 1380 icc_put(opp_table->paths[i]); 1381 kfree(opp_table->paths); 1382 } 1383 1384 WARN_ON(!list_empty(&opp_table->opp_list)); 1385 1386 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1387 /* 1388 * The OPP table is getting removed, drop the performance state 1389 * constraints. 1390 */ 1391 if (opp_table->genpd_performance_state) 1392 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1393 1394 _remove_opp_dev(opp_dev, opp_table); 1395 } 1396 1397 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1398 mutex_destroy(&opp_table->lock); 1399 kfree(opp_table); 1400 } 1401 1402 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1403 { 1404 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1405 &opp_table_lock); 1406 } 1407 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1408 1409 void _opp_free(struct dev_pm_opp *opp) 1410 { 1411 kfree(opp); 1412 } 1413 1414 static void _opp_kref_release(struct kref *kref) 1415 { 1416 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1417 struct opp_table *opp_table = opp->opp_table; 1418 1419 list_del(&opp->node); 1420 mutex_unlock(&opp_table->lock); 1421 1422 /* 1423 * Notify the changes in the availability of the operable 1424 * frequency/voltage list. 1425 */ 1426 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1427 _of_opp_free_required_opps(opp_table, opp); 1428 opp_debug_remove_one(opp); 1429 kfree(opp); 1430 } 1431 1432 void dev_pm_opp_get(struct dev_pm_opp *opp) 1433 { 1434 kref_get(&opp->kref); 1435 } 1436 1437 void dev_pm_opp_put(struct dev_pm_opp *opp) 1438 { 1439 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1440 } 1441 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1442 1443 /** 1444 * dev_pm_opp_remove() - Remove an OPP from OPP table 1445 * @dev: device for which we do this operation 1446 * @freq: OPP to remove with matching 'freq' 1447 * 1448 * This function removes an opp from the opp table. 1449 */ 1450 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1451 { 1452 struct dev_pm_opp *opp; 1453 struct opp_table *opp_table; 1454 bool found = false; 1455 1456 opp_table = _find_opp_table(dev); 1457 if (IS_ERR(opp_table)) 1458 return; 1459 1460 mutex_lock(&opp_table->lock); 1461 1462 list_for_each_entry(opp, &opp_table->opp_list, node) { 1463 if (opp->rate == freq) { 1464 found = true; 1465 break; 1466 } 1467 } 1468 1469 mutex_unlock(&opp_table->lock); 1470 1471 if (found) { 1472 dev_pm_opp_put(opp); 1473 1474 /* Drop the reference taken by dev_pm_opp_add() */ 1475 dev_pm_opp_put_opp_table(opp_table); 1476 } else { 1477 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1478 __func__, freq); 1479 } 1480 1481 /* Drop the reference taken by _find_opp_table() */ 1482 dev_pm_opp_put_opp_table(opp_table); 1483 } 1484 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1485 1486 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1487 bool dynamic) 1488 { 1489 struct dev_pm_opp *opp = NULL, *temp; 1490 1491 mutex_lock(&opp_table->lock); 1492 list_for_each_entry(temp, &opp_table->opp_list, node) { 1493 if (dynamic == temp->dynamic) { 1494 opp = temp; 1495 break; 1496 } 1497 } 1498 1499 mutex_unlock(&opp_table->lock); 1500 return opp; 1501 } 1502 1503 bool _opp_remove_all_static(struct opp_table *opp_table) 1504 { 1505 struct dev_pm_opp *opp; 1506 1507 mutex_lock(&opp_table->lock); 1508 1509 if (!opp_table->parsed_static_opps) { 1510 mutex_unlock(&opp_table->lock); 1511 return false; 1512 } 1513 1514 if (--opp_table->parsed_static_opps) { 1515 mutex_unlock(&opp_table->lock); 1516 return true; 1517 } 1518 1519 mutex_unlock(&opp_table->lock); 1520 1521 /* 1522 * Can't remove the OPP from under the lock, debugfs removal needs to 1523 * happen lock less to avoid circular dependency issues. 1524 */ 1525 while ((opp = _opp_get_next(opp_table, false))) 1526 dev_pm_opp_put(opp); 1527 1528 return true; 1529 } 1530 1531 /** 1532 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1533 * @dev: device for which we do this operation 1534 * 1535 * This function removes all dynamically created OPPs from the opp table. 1536 */ 1537 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1538 { 1539 struct opp_table *opp_table; 1540 struct dev_pm_opp *opp; 1541 int count = 0; 1542 1543 opp_table = _find_opp_table(dev); 1544 if (IS_ERR(opp_table)) 1545 return; 1546 1547 /* 1548 * Can't remove the OPP from under the lock, debugfs removal needs to 1549 * happen lock less to avoid circular dependency issues. 1550 */ 1551 while ((opp = _opp_get_next(opp_table, true))) { 1552 dev_pm_opp_put(opp); 1553 count++; 1554 } 1555 1556 /* Drop the references taken by dev_pm_opp_add() */ 1557 while (count--) 1558 dev_pm_opp_put_opp_table(opp_table); 1559 1560 /* Drop the reference taken by _find_opp_table() */ 1561 dev_pm_opp_put_opp_table(opp_table); 1562 } 1563 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1564 1565 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1566 { 1567 struct dev_pm_opp *opp; 1568 int supply_count, supply_size, icc_size; 1569 1570 /* Allocate space for at least one supply */ 1571 supply_count = table->regulator_count > 0 ? table->regulator_count : 1; 1572 supply_size = sizeof(*opp->supplies) * supply_count; 1573 icc_size = sizeof(*opp->bandwidth) * table->path_count; 1574 1575 /* allocate new OPP node and supplies structures */ 1576 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL); 1577 1578 if (!opp) 1579 return NULL; 1580 1581 /* Put the supplies at the end of the OPP structure as an empty array */ 1582 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1583 if (icc_size) 1584 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count); 1585 INIT_LIST_HEAD(&opp->node); 1586 1587 return opp; 1588 } 1589 1590 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1591 struct opp_table *opp_table) 1592 { 1593 struct regulator *reg; 1594 int i; 1595 1596 if (!opp_table->regulators) 1597 return true; 1598 1599 for (i = 0; i < opp_table->regulator_count; i++) { 1600 reg = opp_table->regulators[i]; 1601 1602 if (!regulator_is_supported_voltage(reg, 1603 opp->supplies[i].u_volt_min, 1604 opp->supplies[i].u_volt_max)) { 1605 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1606 __func__, opp->supplies[i].u_volt_min, 1607 opp->supplies[i].u_volt_max); 1608 return false; 1609 } 1610 } 1611 1612 return true; 1613 } 1614 1615 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1616 { 1617 if (opp1->rate != opp2->rate) 1618 return opp1->rate < opp2->rate ? -1 : 1; 1619 if (opp1->bandwidth && opp2->bandwidth && 1620 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak) 1621 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1; 1622 if (opp1->level != opp2->level) 1623 return opp1->level < opp2->level ? -1 : 1; 1624 return 0; 1625 } 1626 1627 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1628 struct opp_table *opp_table, 1629 struct list_head **head) 1630 { 1631 struct dev_pm_opp *opp; 1632 int opp_cmp; 1633 1634 /* 1635 * Insert new OPP in order of increasing frequency and discard if 1636 * already present. 1637 * 1638 * Need to use &opp_table->opp_list in the condition part of the 'for' 1639 * loop, don't replace it with head otherwise it will become an infinite 1640 * loop. 1641 */ 1642 list_for_each_entry(opp, &opp_table->opp_list, node) { 1643 opp_cmp = _opp_compare_key(new_opp, opp); 1644 if (opp_cmp > 0) { 1645 *head = &opp->node; 1646 continue; 1647 } 1648 1649 if (opp_cmp < 0) 1650 return 0; 1651 1652 /* Duplicate OPPs */ 1653 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1654 __func__, opp->rate, opp->supplies[0].u_volt, 1655 opp->available, new_opp->rate, 1656 new_opp->supplies[0].u_volt, new_opp->available); 1657 1658 /* Should we compare voltages for all regulators here ? */ 1659 return opp->available && 1660 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1661 } 1662 1663 return 0; 1664 } 1665 1666 void _required_opps_available(struct dev_pm_opp *opp, int count) 1667 { 1668 int i; 1669 1670 for (i = 0; i < count; i++) { 1671 if (opp->required_opps[i]->available) 1672 continue; 1673 1674 opp->available = false; 1675 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1676 __func__, opp->required_opps[i]->np, opp->rate); 1677 return; 1678 } 1679 } 1680 1681 /* 1682 * Returns: 1683 * 0: On success. And appropriate error message for duplicate OPPs. 1684 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1685 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1686 * sure we don't print error messages unnecessarily if different parts of 1687 * kernel try to initialize the OPP table. 1688 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1689 * should be considered an error by the callers of _opp_add(). 1690 */ 1691 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1692 struct opp_table *opp_table, bool rate_not_available) 1693 { 1694 struct list_head *head; 1695 int ret; 1696 1697 mutex_lock(&opp_table->lock); 1698 head = &opp_table->opp_list; 1699 1700 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1701 if (ret) { 1702 mutex_unlock(&opp_table->lock); 1703 return ret; 1704 } 1705 1706 list_add(&new_opp->node, head); 1707 mutex_unlock(&opp_table->lock); 1708 1709 new_opp->opp_table = opp_table; 1710 kref_init(&new_opp->kref); 1711 1712 opp_debug_create_one(new_opp, opp_table); 1713 1714 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1715 new_opp->available = false; 1716 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1717 __func__, new_opp->rate); 1718 } 1719 1720 /* required-opps not fully initialized yet */ 1721 if (lazy_linking_pending(opp_table)) 1722 return 0; 1723 1724 _required_opps_available(new_opp, opp_table->required_opp_count); 1725 1726 return 0; 1727 } 1728 1729 /** 1730 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1731 * @opp_table: OPP table 1732 * @dev: device for which we do this operation 1733 * @freq: Frequency in Hz for this OPP 1734 * @u_volt: Voltage in uVolts for this OPP 1735 * @dynamic: Dynamically added OPPs. 1736 * 1737 * This function adds an opp definition to the opp table and returns status. 1738 * The opp is made available by default and it can be controlled using 1739 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1740 * 1741 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1742 * and freed by dev_pm_opp_of_remove_table. 1743 * 1744 * Return: 1745 * 0 On success OR 1746 * Duplicate OPPs (both freq and volt are same) and opp->available 1747 * -EEXIST Freq are same and volt are different OR 1748 * Duplicate OPPs (both freq and volt are same) and !opp->available 1749 * -ENOMEM Memory allocation failure 1750 */ 1751 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1752 unsigned long freq, long u_volt, bool dynamic) 1753 { 1754 struct dev_pm_opp *new_opp; 1755 unsigned long tol; 1756 int ret; 1757 1758 new_opp = _opp_allocate(opp_table); 1759 if (!new_opp) 1760 return -ENOMEM; 1761 1762 /* populate the opp table */ 1763 new_opp->rate = freq; 1764 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1765 new_opp->supplies[0].u_volt = u_volt; 1766 new_opp->supplies[0].u_volt_min = u_volt - tol; 1767 new_opp->supplies[0].u_volt_max = u_volt + tol; 1768 new_opp->available = true; 1769 new_opp->dynamic = dynamic; 1770 1771 ret = _opp_add(dev, new_opp, opp_table, false); 1772 if (ret) { 1773 /* Don't return error for duplicate OPPs */ 1774 if (ret == -EBUSY) 1775 ret = 0; 1776 goto free_opp; 1777 } 1778 1779 /* 1780 * Notify the changes in the availability of the operable 1781 * frequency/voltage list. 1782 */ 1783 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1784 return 0; 1785 1786 free_opp: 1787 _opp_free(new_opp); 1788 1789 return ret; 1790 } 1791 1792 /** 1793 * dev_pm_opp_set_supported_hw() - Set supported platforms 1794 * @dev: Device for which supported-hw has to be set. 1795 * @versions: Array of hierarchy of versions to match. 1796 * @count: Number of elements in the array. 1797 * 1798 * This is required only for the V2 bindings, and it enables a platform to 1799 * specify the hierarchy of versions it supports. OPP layer will then enable 1800 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1801 * property. 1802 */ 1803 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1804 const u32 *versions, unsigned int count) 1805 { 1806 struct opp_table *opp_table; 1807 1808 opp_table = _add_opp_table(dev, false); 1809 if (IS_ERR(opp_table)) 1810 return opp_table; 1811 1812 /* Make sure there are no concurrent readers while updating opp_table */ 1813 WARN_ON(!list_empty(&opp_table->opp_list)); 1814 1815 /* Another CPU that shares the OPP table has set the property ? */ 1816 if (opp_table->supported_hw) 1817 return opp_table; 1818 1819 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1820 GFP_KERNEL); 1821 if (!opp_table->supported_hw) { 1822 dev_pm_opp_put_opp_table(opp_table); 1823 return ERR_PTR(-ENOMEM); 1824 } 1825 1826 opp_table->supported_hw_count = count; 1827 1828 return opp_table; 1829 } 1830 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1831 1832 /** 1833 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1834 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1835 * 1836 * This is required only for the V2 bindings, and is called for a matching 1837 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1838 * will not be freed. 1839 */ 1840 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1841 { 1842 if (unlikely(!opp_table)) 1843 return; 1844 1845 /* Make sure there are no concurrent readers while updating opp_table */ 1846 WARN_ON(!list_empty(&opp_table->opp_list)); 1847 1848 kfree(opp_table->supported_hw); 1849 opp_table->supported_hw = NULL; 1850 opp_table->supported_hw_count = 0; 1851 1852 dev_pm_opp_put_opp_table(opp_table); 1853 } 1854 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1855 1856 /** 1857 * dev_pm_opp_set_prop_name() - Set prop-extn name 1858 * @dev: Device for which the prop-name has to be set. 1859 * @name: name to postfix to properties. 1860 * 1861 * This is required only for the V2 bindings, and it enables a platform to 1862 * specify the extn to be used for certain property names. The properties to 1863 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1864 * should postfix the property name with -<name> while looking for them. 1865 */ 1866 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1867 { 1868 struct opp_table *opp_table; 1869 1870 opp_table = _add_opp_table(dev, false); 1871 if (IS_ERR(opp_table)) 1872 return opp_table; 1873 1874 /* Make sure there are no concurrent readers while updating opp_table */ 1875 WARN_ON(!list_empty(&opp_table->opp_list)); 1876 1877 /* Another CPU that shares the OPP table has set the property ? */ 1878 if (opp_table->prop_name) 1879 return opp_table; 1880 1881 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1882 if (!opp_table->prop_name) { 1883 dev_pm_opp_put_opp_table(opp_table); 1884 return ERR_PTR(-ENOMEM); 1885 } 1886 1887 return opp_table; 1888 } 1889 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1890 1891 /** 1892 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1893 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1894 * 1895 * This is required only for the V2 bindings, and is called for a matching 1896 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1897 * will not be freed. 1898 */ 1899 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1900 { 1901 if (unlikely(!opp_table)) 1902 return; 1903 1904 /* Make sure there are no concurrent readers while updating opp_table */ 1905 WARN_ON(!list_empty(&opp_table->opp_list)); 1906 1907 kfree(opp_table->prop_name); 1908 opp_table->prop_name = NULL; 1909 1910 dev_pm_opp_put_opp_table(opp_table); 1911 } 1912 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1913 1914 /** 1915 * dev_pm_opp_set_regulators() - Set regulator names for the device 1916 * @dev: Device for which regulator name is being set. 1917 * @names: Array of pointers to the names of the regulator. 1918 * @count: Number of regulators. 1919 * 1920 * In order to support OPP switching, OPP layer needs to know the name of the 1921 * device's regulators, as the core would be required to switch voltages as 1922 * well. 1923 * 1924 * This must be called before any OPPs are initialized for the device. 1925 */ 1926 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1927 const char * const names[], 1928 unsigned int count) 1929 { 1930 struct dev_pm_opp_supply *supplies; 1931 struct opp_table *opp_table; 1932 struct regulator *reg; 1933 int ret, i; 1934 1935 opp_table = _add_opp_table(dev, false); 1936 if (IS_ERR(opp_table)) 1937 return opp_table; 1938 1939 /* This should be called before OPPs are initialized */ 1940 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1941 ret = -EBUSY; 1942 goto err; 1943 } 1944 1945 /* Another CPU that shares the OPP table has set the regulators ? */ 1946 if (opp_table->regulators) 1947 return opp_table; 1948 1949 opp_table->regulators = kmalloc_array(count, 1950 sizeof(*opp_table->regulators), 1951 GFP_KERNEL); 1952 if (!opp_table->regulators) { 1953 ret = -ENOMEM; 1954 goto err; 1955 } 1956 1957 for (i = 0; i < count; i++) { 1958 reg = regulator_get_optional(dev, names[i]); 1959 if (IS_ERR(reg)) { 1960 ret = PTR_ERR(reg); 1961 if (ret != -EPROBE_DEFER) 1962 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1963 __func__, names[i], ret); 1964 goto free_regulators; 1965 } 1966 1967 opp_table->regulators[i] = reg; 1968 } 1969 1970 opp_table->regulator_count = count; 1971 1972 supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL); 1973 if (!supplies) { 1974 ret = -ENOMEM; 1975 goto free_regulators; 1976 } 1977 1978 mutex_lock(&opp_table->lock); 1979 opp_table->sod_supplies = supplies; 1980 if (opp_table->set_opp_data) { 1981 opp_table->set_opp_data->old_opp.supplies = supplies; 1982 opp_table->set_opp_data->new_opp.supplies = supplies + count; 1983 } 1984 mutex_unlock(&opp_table->lock); 1985 1986 return opp_table; 1987 1988 free_regulators: 1989 while (i != 0) 1990 regulator_put(opp_table->regulators[--i]); 1991 1992 kfree(opp_table->regulators); 1993 opp_table->regulators = NULL; 1994 opp_table->regulator_count = -1; 1995 err: 1996 dev_pm_opp_put_opp_table(opp_table); 1997 1998 return ERR_PTR(ret); 1999 } 2000 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 2001 2002 /** 2003 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 2004 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 2005 */ 2006 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 2007 { 2008 int i; 2009 2010 if (unlikely(!opp_table)) 2011 return; 2012 2013 if (!opp_table->regulators) 2014 goto put_opp_table; 2015 2016 /* Make sure there are no concurrent readers while updating opp_table */ 2017 WARN_ON(!list_empty(&opp_table->opp_list)); 2018 2019 if (opp_table->enabled) { 2020 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2021 regulator_disable(opp_table->regulators[i]); 2022 } 2023 2024 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2025 regulator_put(opp_table->regulators[i]); 2026 2027 mutex_lock(&opp_table->lock); 2028 if (opp_table->set_opp_data) { 2029 opp_table->set_opp_data->old_opp.supplies = NULL; 2030 opp_table->set_opp_data->new_opp.supplies = NULL; 2031 } 2032 2033 kfree(opp_table->sod_supplies); 2034 opp_table->sod_supplies = NULL; 2035 mutex_unlock(&opp_table->lock); 2036 2037 kfree(opp_table->regulators); 2038 opp_table->regulators = NULL; 2039 opp_table->regulator_count = -1; 2040 2041 put_opp_table: 2042 dev_pm_opp_put_opp_table(opp_table); 2043 } 2044 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 2045 2046 /** 2047 * dev_pm_opp_set_clkname() - Set clk name for the device 2048 * @dev: Device for which clk name is being set. 2049 * @name: Clk name. 2050 * 2051 * In order to support OPP switching, OPP layer needs to get pointer to the 2052 * clock for the device. Simple cases work fine without using this routine (i.e. 2053 * by passing connection-id as NULL), but for a device with multiple clocks 2054 * available, the OPP core needs to know the exact name of the clk to use. 2055 * 2056 * This must be called before any OPPs are initialized for the device. 2057 */ 2058 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 2059 { 2060 struct opp_table *opp_table; 2061 int ret; 2062 2063 opp_table = _add_opp_table(dev, false); 2064 if (IS_ERR(opp_table)) 2065 return opp_table; 2066 2067 /* This should be called before OPPs are initialized */ 2068 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2069 ret = -EBUSY; 2070 goto err; 2071 } 2072 2073 /* clk shouldn't be initialized at this point */ 2074 if (WARN_ON(opp_table->clk)) { 2075 ret = -EBUSY; 2076 goto err; 2077 } 2078 2079 /* Find clk for the device */ 2080 opp_table->clk = clk_get(dev, name); 2081 if (IS_ERR(opp_table->clk)) { 2082 ret = PTR_ERR(opp_table->clk); 2083 if (ret != -EPROBE_DEFER) { 2084 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 2085 ret); 2086 } 2087 goto err; 2088 } 2089 2090 return opp_table; 2091 2092 err: 2093 dev_pm_opp_put_opp_table(opp_table); 2094 2095 return ERR_PTR(ret); 2096 } 2097 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 2098 2099 /** 2100 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 2101 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 2102 */ 2103 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 2104 { 2105 if (unlikely(!opp_table)) 2106 return; 2107 2108 /* Make sure there are no concurrent readers while updating opp_table */ 2109 WARN_ON(!list_empty(&opp_table->opp_list)); 2110 2111 clk_put(opp_table->clk); 2112 opp_table->clk = ERR_PTR(-EINVAL); 2113 2114 dev_pm_opp_put_opp_table(opp_table); 2115 } 2116 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 2117 2118 /** 2119 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 2120 * @dev: Device for which the helper is getting registered. 2121 * @set_opp: Custom set OPP helper. 2122 * 2123 * This is useful to support complex platforms (like platforms with multiple 2124 * regulators per device), instead of the generic OPP set rate helper. 2125 * 2126 * This must be called before any OPPs are initialized for the device. 2127 */ 2128 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 2129 int (*set_opp)(struct dev_pm_set_opp_data *data)) 2130 { 2131 struct dev_pm_set_opp_data *data; 2132 struct opp_table *opp_table; 2133 2134 if (!set_opp) 2135 return ERR_PTR(-EINVAL); 2136 2137 opp_table = _add_opp_table(dev, false); 2138 if (IS_ERR(opp_table)) 2139 return opp_table; 2140 2141 /* This should be called before OPPs are initialized */ 2142 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2143 dev_pm_opp_put_opp_table(opp_table); 2144 return ERR_PTR(-EBUSY); 2145 } 2146 2147 /* Another CPU that shares the OPP table has set the helper ? */ 2148 if (opp_table->set_opp) 2149 return opp_table; 2150 2151 data = kzalloc(sizeof(*data), GFP_KERNEL); 2152 if (!data) 2153 return ERR_PTR(-ENOMEM); 2154 2155 mutex_lock(&opp_table->lock); 2156 opp_table->set_opp_data = data; 2157 if (opp_table->sod_supplies) { 2158 data->old_opp.supplies = opp_table->sod_supplies; 2159 data->new_opp.supplies = opp_table->sod_supplies + 2160 opp_table->regulator_count; 2161 } 2162 mutex_unlock(&opp_table->lock); 2163 2164 opp_table->set_opp = set_opp; 2165 2166 return opp_table; 2167 } 2168 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 2169 2170 /** 2171 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 2172 * set_opp helper 2173 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 2174 * 2175 * Release resources blocked for platform specific set_opp helper. 2176 */ 2177 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 2178 { 2179 if (unlikely(!opp_table)) 2180 return; 2181 2182 /* Make sure there are no concurrent readers while updating opp_table */ 2183 WARN_ON(!list_empty(&opp_table->opp_list)); 2184 2185 opp_table->set_opp = NULL; 2186 2187 mutex_lock(&opp_table->lock); 2188 kfree(opp_table->set_opp_data); 2189 opp_table->set_opp_data = NULL; 2190 mutex_unlock(&opp_table->lock); 2191 2192 dev_pm_opp_put_opp_table(opp_table); 2193 } 2194 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 2195 2196 static void devm_pm_opp_unregister_set_opp_helper(void *data) 2197 { 2198 dev_pm_opp_unregister_set_opp_helper(data); 2199 } 2200 2201 /** 2202 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper 2203 * @dev: Device for which the helper is getting registered. 2204 * @set_opp: Custom set OPP helper. 2205 * 2206 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper(). 2207 * 2208 * Return: pointer to 'struct opp_table' on success and errorno otherwise. 2209 */ 2210 struct opp_table * 2211 devm_pm_opp_register_set_opp_helper(struct device *dev, 2212 int (*set_opp)(struct dev_pm_set_opp_data *data)) 2213 { 2214 struct opp_table *opp_table; 2215 int err; 2216 2217 opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp); 2218 if (IS_ERR(opp_table)) 2219 return opp_table; 2220 2221 err = devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper, 2222 opp_table); 2223 if (err) 2224 return ERR_PTR(err); 2225 2226 return opp_table; 2227 } 2228 EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper); 2229 2230 static void _opp_detach_genpd(struct opp_table *opp_table) 2231 { 2232 int index; 2233 2234 if (!opp_table->genpd_virt_devs) 2235 return; 2236 2237 for (index = 0; index < opp_table->required_opp_count; index++) { 2238 if (!opp_table->genpd_virt_devs[index]) 2239 continue; 2240 2241 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 2242 opp_table->genpd_virt_devs[index] = NULL; 2243 } 2244 2245 kfree(opp_table->genpd_virt_devs); 2246 opp_table->genpd_virt_devs = NULL; 2247 } 2248 2249 /** 2250 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 2251 * @dev: Consumer device for which the genpd is getting attached. 2252 * @names: Null terminated array of pointers containing names of genpd to attach. 2253 * @virt_devs: Pointer to return the array of virtual devices. 2254 * 2255 * Multiple generic power domains for a device are supported with the help of 2256 * virtual genpd devices, which are created for each consumer device - genpd 2257 * pair. These are the device structures which are attached to the power domain 2258 * and are required by the OPP core to set the performance state of the genpd. 2259 * The same API also works for the case where single genpd is available and so 2260 * we don't need to support that separately. 2261 * 2262 * This helper will normally be called by the consumer driver of the device 2263 * "dev", as only that has details of the genpd names. 2264 * 2265 * This helper needs to be called once with a list of all genpd to attach. 2266 * Otherwise the original device structure will be used instead by the OPP core. 2267 * 2268 * The order of entries in the names array must match the order in which 2269 * "required-opps" are added in DT. 2270 */ 2271 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 2272 const char **names, struct device ***virt_devs) 2273 { 2274 struct opp_table *opp_table; 2275 struct device *virt_dev; 2276 int index = 0, ret = -EINVAL; 2277 const char **name = names; 2278 2279 opp_table = _add_opp_table(dev, false); 2280 if (IS_ERR(opp_table)) 2281 return opp_table; 2282 2283 if (opp_table->genpd_virt_devs) 2284 return opp_table; 2285 2286 /* 2287 * If the genpd's OPP table isn't already initialized, parsing of the 2288 * required-opps fail for dev. We should retry this after genpd's OPP 2289 * table is added. 2290 */ 2291 if (!opp_table->required_opp_count) { 2292 ret = -EPROBE_DEFER; 2293 goto put_table; 2294 } 2295 2296 mutex_lock(&opp_table->genpd_virt_dev_lock); 2297 2298 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2299 sizeof(*opp_table->genpd_virt_devs), 2300 GFP_KERNEL); 2301 if (!opp_table->genpd_virt_devs) 2302 goto unlock; 2303 2304 while (*name) { 2305 if (index >= opp_table->required_opp_count) { 2306 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2307 *name, opp_table->required_opp_count, index); 2308 goto err; 2309 } 2310 2311 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2312 if (IS_ERR(virt_dev)) { 2313 ret = PTR_ERR(virt_dev); 2314 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2315 goto err; 2316 } 2317 2318 opp_table->genpd_virt_devs[index] = virt_dev; 2319 index++; 2320 name++; 2321 } 2322 2323 if (virt_devs) 2324 *virt_devs = opp_table->genpd_virt_devs; 2325 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2326 2327 return opp_table; 2328 2329 err: 2330 _opp_detach_genpd(opp_table); 2331 unlock: 2332 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2333 2334 put_table: 2335 dev_pm_opp_put_opp_table(opp_table); 2336 2337 return ERR_PTR(ret); 2338 } 2339 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 2340 2341 /** 2342 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 2343 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 2344 * 2345 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2346 * OPP table. 2347 */ 2348 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 2349 { 2350 if (unlikely(!opp_table)) 2351 return; 2352 2353 /* 2354 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2355 * used in parallel. 2356 */ 2357 mutex_lock(&opp_table->genpd_virt_dev_lock); 2358 _opp_detach_genpd(opp_table); 2359 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2360 2361 dev_pm_opp_put_opp_table(opp_table); 2362 } 2363 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 2364 2365 static void devm_pm_opp_detach_genpd(void *data) 2366 { 2367 dev_pm_opp_detach_genpd(data); 2368 } 2369 2370 /** 2371 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual 2372 * device pointer 2373 * @dev: Consumer device for which the genpd is getting attached. 2374 * @names: Null terminated array of pointers containing names of genpd to attach. 2375 * @virt_devs: Pointer to return the array of virtual devices. 2376 * 2377 * This is a resource-managed version of dev_pm_opp_attach_genpd(). 2378 * 2379 * Return: pointer to 'struct opp_table' on success and errorno otherwise. 2380 */ 2381 struct opp_table * 2382 devm_pm_opp_attach_genpd(struct device *dev, const char **names, 2383 struct device ***virt_devs) 2384 { 2385 struct opp_table *opp_table; 2386 int err; 2387 2388 opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs); 2389 if (IS_ERR(opp_table)) 2390 return opp_table; 2391 2392 err = devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd, 2393 opp_table); 2394 if (err) 2395 return ERR_PTR(err); 2396 2397 return opp_table; 2398 } 2399 EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd); 2400 2401 /** 2402 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2403 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2404 * @dst_table: Required OPP table of the @src_table. 2405 * @src_opp: OPP from the @src_table. 2406 * 2407 * This function returns the OPP (present in @dst_table) pointed out by the 2408 * "required-opps" property of the @src_opp (present in @src_table). 2409 * 2410 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2411 * use. 2412 * 2413 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2414 */ 2415 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2416 struct opp_table *dst_table, 2417 struct dev_pm_opp *src_opp) 2418 { 2419 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2420 int i; 2421 2422 if (!src_table || !dst_table || !src_opp || 2423 !src_table->required_opp_tables) 2424 return ERR_PTR(-EINVAL); 2425 2426 /* required-opps not fully initialized yet */ 2427 if (lazy_linking_pending(src_table)) 2428 return ERR_PTR(-EBUSY); 2429 2430 for (i = 0; i < src_table->required_opp_count; i++) { 2431 if (src_table->required_opp_tables[i] == dst_table) { 2432 mutex_lock(&src_table->lock); 2433 2434 list_for_each_entry(opp, &src_table->opp_list, node) { 2435 if (opp == src_opp) { 2436 dest_opp = opp->required_opps[i]; 2437 dev_pm_opp_get(dest_opp); 2438 break; 2439 } 2440 } 2441 2442 mutex_unlock(&src_table->lock); 2443 break; 2444 } 2445 } 2446 2447 if (IS_ERR(dest_opp)) { 2448 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2449 src_table, dst_table); 2450 } 2451 2452 return dest_opp; 2453 } 2454 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2455 2456 /** 2457 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2458 * @src_table: OPP table which has dst_table as one of its required OPP table. 2459 * @dst_table: Required OPP table of the src_table. 2460 * @pstate: Current performance state of the src_table. 2461 * 2462 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2463 * "required-opps" property of the OPP (present in @src_table) which has 2464 * performance state set to @pstate. 2465 * 2466 * Return: Zero or positive performance state on success, otherwise negative 2467 * value on errors. 2468 */ 2469 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2470 struct opp_table *dst_table, 2471 unsigned int pstate) 2472 { 2473 struct dev_pm_opp *opp; 2474 int dest_pstate = -EINVAL; 2475 int i; 2476 2477 /* 2478 * Normally the src_table will have the "required_opps" property set to 2479 * point to one of the OPPs in the dst_table, but in some cases the 2480 * genpd and its master have one to one mapping of performance states 2481 * and so none of them have the "required-opps" property set. Return the 2482 * pstate of the src_table as it is in such cases. 2483 */ 2484 if (!src_table || !src_table->required_opp_count) 2485 return pstate; 2486 2487 /* required-opps not fully initialized yet */ 2488 if (lazy_linking_pending(src_table)) 2489 return -EBUSY; 2490 2491 for (i = 0; i < src_table->required_opp_count; i++) { 2492 if (src_table->required_opp_tables[i]->np == dst_table->np) 2493 break; 2494 } 2495 2496 if (unlikely(i == src_table->required_opp_count)) { 2497 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2498 __func__, src_table, dst_table); 2499 return -EINVAL; 2500 } 2501 2502 mutex_lock(&src_table->lock); 2503 2504 list_for_each_entry(opp, &src_table->opp_list, node) { 2505 if (opp->pstate == pstate) { 2506 dest_pstate = opp->required_opps[i]->pstate; 2507 goto unlock; 2508 } 2509 } 2510 2511 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2512 dst_table); 2513 2514 unlock: 2515 mutex_unlock(&src_table->lock); 2516 2517 return dest_pstate; 2518 } 2519 2520 /** 2521 * dev_pm_opp_add() - Add an OPP table from a table definitions 2522 * @dev: device for which we do this operation 2523 * @freq: Frequency in Hz for this OPP 2524 * @u_volt: Voltage in uVolts for this OPP 2525 * 2526 * This function adds an opp definition to the opp table and returns status. 2527 * The opp is made available by default and it can be controlled using 2528 * dev_pm_opp_enable/disable functions. 2529 * 2530 * Return: 2531 * 0 On success OR 2532 * Duplicate OPPs (both freq and volt are same) and opp->available 2533 * -EEXIST Freq are same and volt are different OR 2534 * Duplicate OPPs (both freq and volt are same) and !opp->available 2535 * -ENOMEM Memory allocation failure 2536 */ 2537 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2538 { 2539 struct opp_table *opp_table; 2540 int ret; 2541 2542 opp_table = _add_opp_table(dev, true); 2543 if (IS_ERR(opp_table)) 2544 return PTR_ERR(opp_table); 2545 2546 /* Fix regulator count for dynamic OPPs */ 2547 opp_table->regulator_count = 1; 2548 2549 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2550 if (ret) 2551 dev_pm_opp_put_opp_table(opp_table); 2552 2553 return ret; 2554 } 2555 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2556 2557 /** 2558 * _opp_set_availability() - helper to set the availability of an opp 2559 * @dev: device for which we do this operation 2560 * @freq: OPP frequency to modify availability 2561 * @availability_req: availability status requested for this opp 2562 * 2563 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2564 * which is isolated here. 2565 * 2566 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2567 * copy operation, returns 0 if no modification was done OR modification was 2568 * successful. 2569 */ 2570 static int _opp_set_availability(struct device *dev, unsigned long freq, 2571 bool availability_req) 2572 { 2573 struct opp_table *opp_table; 2574 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2575 int r = 0; 2576 2577 /* Find the opp_table */ 2578 opp_table = _find_opp_table(dev); 2579 if (IS_ERR(opp_table)) { 2580 r = PTR_ERR(opp_table); 2581 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2582 return r; 2583 } 2584 2585 mutex_lock(&opp_table->lock); 2586 2587 /* Do we have the frequency? */ 2588 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2589 if (tmp_opp->rate == freq) { 2590 opp = tmp_opp; 2591 break; 2592 } 2593 } 2594 2595 if (IS_ERR(opp)) { 2596 r = PTR_ERR(opp); 2597 goto unlock; 2598 } 2599 2600 /* Is update really needed? */ 2601 if (opp->available == availability_req) 2602 goto unlock; 2603 2604 opp->available = availability_req; 2605 2606 dev_pm_opp_get(opp); 2607 mutex_unlock(&opp_table->lock); 2608 2609 /* Notify the change of the OPP availability */ 2610 if (availability_req) 2611 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2612 opp); 2613 else 2614 blocking_notifier_call_chain(&opp_table->head, 2615 OPP_EVENT_DISABLE, opp); 2616 2617 dev_pm_opp_put(opp); 2618 goto put_table; 2619 2620 unlock: 2621 mutex_unlock(&opp_table->lock); 2622 put_table: 2623 dev_pm_opp_put_opp_table(opp_table); 2624 return r; 2625 } 2626 2627 /** 2628 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2629 * @dev: device for which we do this operation 2630 * @freq: OPP frequency to adjust voltage of 2631 * @u_volt: new OPP target voltage 2632 * @u_volt_min: new OPP min voltage 2633 * @u_volt_max: new OPP max voltage 2634 * 2635 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2636 * copy operation, returns 0 if no modifcation was done OR modification was 2637 * successful. 2638 */ 2639 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2640 unsigned long u_volt, unsigned long u_volt_min, 2641 unsigned long u_volt_max) 2642 2643 { 2644 struct opp_table *opp_table; 2645 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2646 int r = 0; 2647 2648 /* Find the opp_table */ 2649 opp_table = _find_opp_table(dev); 2650 if (IS_ERR(opp_table)) { 2651 r = PTR_ERR(opp_table); 2652 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2653 return r; 2654 } 2655 2656 mutex_lock(&opp_table->lock); 2657 2658 /* Do we have the frequency? */ 2659 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2660 if (tmp_opp->rate == freq) { 2661 opp = tmp_opp; 2662 break; 2663 } 2664 } 2665 2666 if (IS_ERR(opp)) { 2667 r = PTR_ERR(opp); 2668 goto adjust_unlock; 2669 } 2670 2671 /* Is update really needed? */ 2672 if (opp->supplies->u_volt == u_volt) 2673 goto adjust_unlock; 2674 2675 opp->supplies->u_volt = u_volt; 2676 opp->supplies->u_volt_min = u_volt_min; 2677 opp->supplies->u_volt_max = u_volt_max; 2678 2679 dev_pm_opp_get(opp); 2680 mutex_unlock(&opp_table->lock); 2681 2682 /* Notify the voltage change of the OPP */ 2683 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2684 opp); 2685 2686 dev_pm_opp_put(opp); 2687 goto adjust_put_table; 2688 2689 adjust_unlock: 2690 mutex_unlock(&opp_table->lock); 2691 adjust_put_table: 2692 dev_pm_opp_put_opp_table(opp_table); 2693 return r; 2694 } 2695 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2696 2697 /** 2698 * dev_pm_opp_enable() - Enable a specific OPP 2699 * @dev: device for which we do this operation 2700 * @freq: OPP frequency to enable 2701 * 2702 * Enables a provided opp. If the operation is valid, this returns 0, else the 2703 * corresponding error value. It is meant to be used for users an OPP available 2704 * after being temporarily made unavailable with dev_pm_opp_disable. 2705 * 2706 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2707 * copy operation, returns 0 if no modification was done OR modification was 2708 * successful. 2709 */ 2710 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2711 { 2712 return _opp_set_availability(dev, freq, true); 2713 } 2714 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2715 2716 /** 2717 * dev_pm_opp_disable() - Disable a specific OPP 2718 * @dev: device for which we do this operation 2719 * @freq: OPP frequency to disable 2720 * 2721 * Disables a provided opp. If the operation is valid, this returns 2722 * 0, else the corresponding error value. It is meant to be a temporary 2723 * control by users to make this OPP not available until the circumstances are 2724 * right to make it available again (with a call to dev_pm_opp_enable). 2725 * 2726 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2727 * copy operation, returns 0 if no modification was done OR modification was 2728 * successful. 2729 */ 2730 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2731 { 2732 return _opp_set_availability(dev, freq, false); 2733 } 2734 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2735 2736 /** 2737 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2738 * @dev: Device for which notifier needs to be registered 2739 * @nb: Notifier block to be registered 2740 * 2741 * Return: 0 on success or a negative error value. 2742 */ 2743 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2744 { 2745 struct opp_table *opp_table; 2746 int ret; 2747 2748 opp_table = _find_opp_table(dev); 2749 if (IS_ERR(opp_table)) 2750 return PTR_ERR(opp_table); 2751 2752 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2753 2754 dev_pm_opp_put_opp_table(opp_table); 2755 2756 return ret; 2757 } 2758 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2759 2760 /** 2761 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2762 * @dev: Device for which notifier needs to be unregistered 2763 * @nb: Notifier block to be unregistered 2764 * 2765 * Return: 0 on success or a negative error value. 2766 */ 2767 int dev_pm_opp_unregister_notifier(struct device *dev, 2768 struct notifier_block *nb) 2769 { 2770 struct opp_table *opp_table; 2771 int ret; 2772 2773 opp_table = _find_opp_table(dev); 2774 if (IS_ERR(opp_table)) 2775 return PTR_ERR(opp_table); 2776 2777 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2778 2779 dev_pm_opp_put_opp_table(opp_table); 2780 2781 return ret; 2782 } 2783 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2784 2785 /** 2786 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2787 * @dev: device pointer used to lookup OPP table. 2788 * 2789 * Free both OPPs created using static entries present in DT and the 2790 * dynamically added entries. 2791 */ 2792 void dev_pm_opp_remove_table(struct device *dev) 2793 { 2794 struct opp_table *opp_table; 2795 2796 /* Check for existing table for 'dev' */ 2797 opp_table = _find_opp_table(dev); 2798 if (IS_ERR(opp_table)) { 2799 int error = PTR_ERR(opp_table); 2800 2801 if (error != -ENODEV) 2802 WARN(1, "%s: opp_table: %d\n", 2803 IS_ERR_OR_NULL(dev) ? 2804 "Invalid device" : dev_name(dev), 2805 error); 2806 return; 2807 } 2808 2809 /* 2810 * Drop the extra reference only if the OPP table was successfully added 2811 * with dev_pm_opp_of_add_table() earlier. 2812 **/ 2813 if (_opp_remove_all_static(opp_table)) 2814 dev_pm_opp_put_opp_table(opp_table); 2815 2816 /* Drop reference taken by _find_opp_table() */ 2817 dev_pm_opp_put_opp_table(opp_table); 2818 } 2819 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2820 2821 /** 2822 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 2823 * @dev: device for which we do this operation 2824 * 2825 * Sync voltage state of the OPP table regulators. 2826 * 2827 * Return: 0 on success or a negative error value. 2828 */ 2829 int dev_pm_opp_sync_regulators(struct device *dev) 2830 { 2831 struct opp_table *opp_table; 2832 struct regulator *reg; 2833 int i, ret = 0; 2834 2835 /* Device may not have OPP table */ 2836 opp_table = _find_opp_table(dev); 2837 if (IS_ERR(opp_table)) 2838 return 0; 2839 2840 /* Regulator may not be required for the device */ 2841 if (unlikely(!opp_table->regulators)) 2842 goto put_table; 2843 2844 /* Nothing to sync if voltage wasn't changed */ 2845 if (!opp_table->enabled) 2846 goto put_table; 2847 2848 for (i = 0; i < opp_table->regulator_count; i++) { 2849 reg = opp_table->regulators[i]; 2850 ret = regulator_sync_voltage(reg); 2851 if (ret) 2852 break; 2853 } 2854 put_table: 2855 /* Drop reference taken by _find_opp_table() */ 2856 dev_pm_opp_put_opp_table(opp_table); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 2861