xref: /openbmc/linux/drivers/of/fdt.c (revision 17bc4815de586d001c82d0ddf75247283c3f002a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_reserved_mem.h>
19 #include <linux/sizes.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/libfdt.h>
24 #include <linux/debugfs.h>
25 #include <linux/serial_core.h>
26 #include <linux/sysfs.h>
27 
28 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
29 #include <asm/page.h>
30 
31 #include "of_private.h"
32 
33 /*
34  * of_fdt_limit_memory - limit the number of regions in the /memory node
35  * @limit: maximum entries
36  *
37  * Adjust the flattened device tree to have at most 'limit' number of
38  * memory entries in the /memory node. This function may be called
39  * any time after initial_boot_param is set.
40  */
41 void of_fdt_limit_memory(int limit)
42 {
43 	int memory;
44 	int len;
45 	const void *val;
46 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
47 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
48 	const __be32 *addr_prop;
49 	const __be32 *size_prop;
50 	int root_offset;
51 	int cell_size;
52 
53 	root_offset = fdt_path_offset(initial_boot_params, "/");
54 	if (root_offset < 0)
55 		return;
56 
57 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
58 				"#address-cells", NULL);
59 	if (addr_prop)
60 		nr_address_cells = fdt32_to_cpu(*addr_prop);
61 
62 	size_prop = fdt_getprop(initial_boot_params, root_offset,
63 				"#size-cells", NULL);
64 	if (size_prop)
65 		nr_size_cells = fdt32_to_cpu(*size_prop);
66 
67 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
68 
69 	memory = fdt_path_offset(initial_boot_params, "/memory");
70 	if (memory > 0) {
71 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
72 		if (len > limit*cell_size) {
73 			len = limit*cell_size;
74 			pr_debug("Limiting number of entries to %d\n", limit);
75 			fdt_setprop(initial_boot_params, memory, "reg", val,
76 					len);
77 		}
78 	}
79 }
80 
81 /**
82  * of_fdt_is_compatible - Return true if given node from the given blob has
83  * compat in its compatible list
84  * @blob: A device tree blob
85  * @node: node to test
86  * @compat: compatible string to compare with compatible list.
87  *
88  * On match, returns a non-zero value with smaller values returned for more
89  * specific compatible values.
90  */
91 static int of_fdt_is_compatible(const void *blob,
92 		      unsigned long node, const char *compat)
93 {
94 	const char *cp;
95 	int cplen;
96 	unsigned long l, score = 0;
97 
98 	cp = fdt_getprop(blob, node, "compatible", &cplen);
99 	if (cp == NULL)
100 		return 0;
101 	while (cplen > 0) {
102 		score++;
103 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
104 			return score;
105 		l = strlen(cp) + 1;
106 		cp += l;
107 		cplen -= l;
108 	}
109 
110 	return 0;
111 }
112 
113 /**
114  * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
115  * @blob: A device tree blob
116  * @node: node to test
117  *
118  * Returns true if the node has a "big-endian" property, or if the kernel
119  * was compiled for BE *and* the node has a "native-endian" property.
120  * Returns false otherwise.
121  */
122 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
123 {
124 	if (fdt_getprop(blob, node, "big-endian", NULL))
125 		return true;
126 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
127 	    fdt_getprop(blob, node, "native-endian", NULL))
128 		return true;
129 	return false;
130 }
131 
132 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
133 {
134 	const char *status = fdt_getprop(blob, node, "status", NULL);
135 
136 	if (!status)
137 		return true;
138 
139 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
140 		return true;
141 
142 	return false;
143 }
144 
145 /**
146  * of_fdt_match - Return true if node matches a list of compatible values
147  */
148 int of_fdt_match(const void *blob, unsigned long node,
149                  const char *const *compat)
150 {
151 	unsigned int tmp, score = 0;
152 
153 	if (!compat)
154 		return 0;
155 
156 	while (*compat) {
157 		tmp = of_fdt_is_compatible(blob, node, *compat);
158 		if (tmp && (score == 0 || (tmp < score)))
159 			score = tmp;
160 		compat++;
161 	}
162 
163 	return score;
164 }
165 
166 static void *unflatten_dt_alloc(void **mem, unsigned long size,
167 				       unsigned long align)
168 {
169 	void *res;
170 
171 	*mem = PTR_ALIGN(*mem, align);
172 	res = *mem;
173 	*mem += size;
174 
175 	return res;
176 }
177 
178 static void populate_properties(const void *blob,
179 				int offset,
180 				void **mem,
181 				struct device_node *np,
182 				const char *nodename,
183 				bool dryrun)
184 {
185 	struct property *pp, **pprev = NULL;
186 	int cur;
187 	bool has_name = false;
188 
189 	pprev = &np->properties;
190 	for (cur = fdt_first_property_offset(blob, offset);
191 	     cur >= 0;
192 	     cur = fdt_next_property_offset(blob, cur)) {
193 		const __be32 *val;
194 		const char *pname;
195 		u32 sz;
196 
197 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
198 		if (!val) {
199 			pr_warn("Cannot locate property at 0x%x\n", cur);
200 			continue;
201 		}
202 
203 		if (!pname) {
204 			pr_warn("Cannot find property name at 0x%x\n", cur);
205 			continue;
206 		}
207 
208 		if (!strcmp(pname, "name"))
209 			has_name = true;
210 
211 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
212 					__alignof__(struct property));
213 		if (dryrun)
214 			continue;
215 
216 		/* We accept flattened tree phandles either in
217 		 * ePAPR-style "phandle" properties, or the
218 		 * legacy "linux,phandle" properties.  If both
219 		 * appear and have different values, things
220 		 * will get weird. Don't do that.
221 		 */
222 		if (!strcmp(pname, "phandle") ||
223 		    !strcmp(pname, "linux,phandle")) {
224 			if (!np->phandle)
225 				np->phandle = be32_to_cpup(val);
226 		}
227 
228 		/* And we process the "ibm,phandle" property
229 		 * used in pSeries dynamic device tree
230 		 * stuff
231 		 */
232 		if (!strcmp(pname, "ibm,phandle"))
233 			np->phandle = be32_to_cpup(val);
234 
235 		pp->name   = (char *)pname;
236 		pp->length = sz;
237 		pp->value  = (__be32 *)val;
238 		*pprev     = pp;
239 		pprev      = &pp->next;
240 	}
241 
242 	/* With version 0x10 we may not have the name property,
243 	 * recreate it here from the unit name if absent
244 	 */
245 	if (!has_name) {
246 		const char *p = nodename, *ps = p, *pa = NULL;
247 		int len;
248 
249 		while (*p) {
250 			if ((*p) == '@')
251 				pa = p;
252 			else if ((*p) == '/')
253 				ps = p + 1;
254 			p++;
255 		}
256 
257 		if (pa < ps)
258 			pa = p;
259 		len = (pa - ps) + 1;
260 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
261 					__alignof__(struct property));
262 		if (!dryrun) {
263 			pp->name   = "name";
264 			pp->length = len;
265 			pp->value  = pp + 1;
266 			*pprev     = pp;
267 			pprev      = &pp->next;
268 			memcpy(pp->value, ps, len - 1);
269 			((char *)pp->value)[len - 1] = 0;
270 			pr_debug("fixed up name for %s -> %s\n",
271 				 nodename, (char *)pp->value);
272 		}
273 	}
274 
275 	if (!dryrun)
276 		*pprev = NULL;
277 }
278 
279 static bool populate_node(const void *blob,
280 			  int offset,
281 			  void **mem,
282 			  struct device_node *dad,
283 			  struct device_node **pnp,
284 			  bool dryrun)
285 {
286 	struct device_node *np;
287 	const char *pathp;
288 	unsigned int l, allocl;
289 
290 	pathp = fdt_get_name(blob, offset, &l);
291 	if (!pathp) {
292 		*pnp = NULL;
293 		return false;
294 	}
295 
296 	allocl = ++l;
297 
298 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
299 				__alignof__(struct device_node));
300 	if (!dryrun) {
301 		char *fn;
302 		of_node_init(np);
303 		np->full_name = fn = ((char *)np) + sizeof(*np);
304 
305 		memcpy(fn, pathp, l);
306 
307 		if (dad != NULL) {
308 			np->parent = dad;
309 			np->sibling = dad->child;
310 			dad->child = np;
311 		}
312 	}
313 
314 	populate_properties(blob, offset, mem, np, pathp, dryrun);
315 	if (!dryrun) {
316 		np->name = of_get_property(np, "name", NULL);
317 		np->type = of_get_property(np, "device_type", NULL);
318 
319 		if (!np->name)
320 			np->name = "<NULL>";
321 		if (!np->type)
322 			np->type = "<NULL>";
323 	}
324 
325 	*pnp = np;
326 	return true;
327 }
328 
329 static void reverse_nodes(struct device_node *parent)
330 {
331 	struct device_node *child, *next;
332 
333 	/* In-depth first */
334 	child = parent->child;
335 	while (child) {
336 		reverse_nodes(child);
337 
338 		child = child->sibling;
339 	}
340 
341 	/* Reverse the nodes in the child list */
342 	child = parent->child;
343 	parent->child = NULL;
344 	while (child) {
345 		next = child->sibling;
346 
347 		child->sibling = parent->child;
348 		parent->child = child;
349 		child = next;
350 	}
351 }
352 
353 /**
354  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
355  * @blob: The parent device tree blob
356  * @mem: Memory chunk to use for allocating device nodes and properties
357  * @dad: Parent struct device_node
358  * @nodepp: The device_node tree created by the call
359  *
360  * It returns the size of unflattened device tree or error code
361  */
362 static int unflatten_dt_nodes(const void *blob,
363 			      void *mem,
364 			      struct device_node *dad,
365 			      struct device_node **nodepp)
366 {
367 	struct device_node *root;
368 	int offset = 0, depth = 0, initial_depth = 0;
369 #define FDT_MAX_DEPTH	64
370 	struct device_node *nps[FDT_MAX_DEPTH];
371 	void *base = mem;
372 	bool dryrun = !base;
373 
374 	if (nodepp)
375 		*nodepp = NULL;
376 
377 	/*
378 	 * We're unflattening device sub-tree if @dad is valid. There are
379 	 * possibly multiple nodes in the first level of depth. We need
380 	 * set @depth to 1 to make fdt_next_node() happy as it bails
381 	 * immediately when negative @depth is found. Otherwise, the device
382 	 * nodes except the first one won't be unflattened successfully.
383 	 */
384 	if (dad)
385 		depth = initial_depth = 1;
386 
387 	root = dad;
388 	nps[depth] = dad;
389 
390 	for (offset = 0;
391 	     offset >= 0 && depth >= initial_depth;
392 	     offset = fdt_next_node(blob, offset, &depth)) {
393 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
394 			continue;
395 
396 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
397 		    !of_fdt_device_is_available(blob, offset))
398 			continue;
399 
400 		if (!populate_node(blob, offset, &mem, nps[depth],
401 				   &nps[depth+1], dryrun))
402 			return mem - base;
403 
404 		if (!dryrun && nodepp && !*nodepp)
405 			*nodepp = nps[depth+1];
406 		if (!dryrun && !root)
407 			root = nps[depth+1];
408 	}
409 
410 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
411 		pr_err("Error %d processing FDT\n", offset);
412 		return -EINVAL;
413 	}
414 
415 	/*
416 	 * Reverse the child list. Some drivers assumes node order matches .dts
417 	 * node order
418 	 */
419 	if (!dryrun)
420 		reverse_nodes(root);
421 
422 	return mem - base;
423 }
424 
425 /**
426  * __unflatten_device_tree - create tree of device_nodes from flat blob
427  *
428  * unflattens a device-tree, creating the
429  * tree of struct device_node. It also fills the "name" and "type"
430  * pointers of the nodes so the normal device-tree walking functions
431  * can be used.
432  * @blob: The blob to expand
433  * @dad: Parent device node
434  * @mynodes: The device_node tree created by the call
435  * @dt_alloc: An allocator that provides a virtual address to memory
436  * for the resulting tree
437  * @detached: if true set OF_DETACHED on @mynodes
438  *
439  * Returns NULL on failure or the memory chunk containing the unflattened
440  * device tree on success.
441  */
442 void *__unflatten_device_tree(const void *blob,
443 			      struct device_node *dad,
444 			      struct device_node **mynodes,
445 			      void *(*dt_alloc)(u64 size, u64 align),
446 			      bool detached)
447 {
448 	int size;
449 	void *mem;
450 
451 	pr_debug(" -> unflatten_device_tree()\n");
452 
453 	if (!blob) {
454 		pr_debug("No device tree pointer\n");
455 		return NULL;
456 	}
457 
458 	pr_debug("Unflattening device tree:\n");
459 	pr_debug("magic: %08x\n", fdt_magic(blob));
460 	pr_debug("size: %08x\n", fdt_totalsize(blob));
461 	pr_debug("version: %08x\n", fdt_version(blob));
462 
463 	if (fdt_check_header(blob)) {
464 		pr_err("Invalid device tree blob header\n");
465 		return NULL;
466 	}
467 
468 	/* First pass, scan for size */
469 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
470 	if (size < 0)
471 		return NULL;
472 
473 	size = ALIGN(size, 4);
474 	pr_debug("  size is %d, allocating...\n", size);
475 
476 	/* Allocate memory for the expanded device tree */
477 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
478 	if (!mem)
479 		return NULL;
480 
481 	memset(mem, 0, size);
482 
483 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
484 
485 	pr_debug("  unflattening %p...\n", mem);
486 
487 	/* Second pass, do actual unflattening */
488 	unflatten_dt_nodes(blob, mem, dad, mynodes);
489 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
490 		pr_warning("End of tree marker overwritten: %08x\n",
491 			   be32_to_cpup(mem + size));
492 
493 	if (detached && mynodes) {
494 		of_node_set_flag(*mynodes, OF_DETACHED);
495 		pr_debug("unflattened tree is detached\n");
496 	}
497 
498 	pr_debug(" <- unflatten_device_tree()\n");
499 	return mem;
500 }
501 
502 static void *kernel_tree_alloc(u64 size, u64 align)
503 {
504 	return kzalloc(size, GFP_KERNEL);
505 }
506 
507 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
508 
509 /**
510  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
511  * @blob: Flat device tree blob
512  * @dad: Parent device node
513  * @mynodes: The device tree created by the call
514  *
515  * unflattens the device-tree passed by the firmware, creating the
516  * tree of struct device_node. It also fills the "name" and "type"
517  * pointers of the nodes so the normal device-tree walking functions
518  * can be used.
519  *
520  * Returns NULL on failure or the memory chunk containing the unflattened
521  * device tree on success.
522  */
523 void *of_fdt_unflatten_tree(const unsigned long *blob,
524 			    struct device_node *dad,
525 			    struct device_node **mynodes)
526 {
527 	void *mem;
528 
529 	mutex_lock(&of_fdt_unflatten_mutex);
530 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
531 				      true);
532 	mutex_unlock(&of_fdt_unflatten_mutex);
533 
534 	return mem;
535 }
536 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
537 
538 /* Everything below here references initial_boot_params directly. */
539 int __initdata dt_root_addr_cells;
540 int __initdata dt_root_size_cells;
541 
542 void *initial_boot_params;
543 
544 #ifdef CONFIG_OF_EARLY_FLATTREE
545 
546 static u32 of_fdt_crc32;
547 
548 /**
549  * res_mem_reserve_reg() - reserve all memory described in 'reg' property
550  */
551 static int __init __reserved_mem_reserve_reg(unsigned long node,
552 					     const char *uname)
553 {
554 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
555 	phys_addr_t base, size;
556 	int len;
557 	const __be32 *prop;
558 	int nomap, first = 1;
559 
560 	prop = of_get_flat_dt_prop(node, "reg", &len);
561 	if (!prop)
562 		return -ENOENT;
563 
564 	if (len && len % t_len != 0) {
565 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
566 		       uname);
567 		return -EINVAL;
568 	}
569 
570 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
571 
572 	while (len >= t_len) {
573 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
574 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
575 
576 		if (size &&
577 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
578 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
579 				uname, &base, (unsigned long)size / SZ_1M);
580 		else
581 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
582 				uname, &base, (unsigned long)size / SZ_1M);
583 
584 		len -= t_len;
585 		if (first) {
586 			fdt_reserved_mem_save_node(node, uname, base, size);
587 			first = 0;
588 		}
589 	}
590 	return 0;
591 }
592 
593 /**
594  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
595  * in /reserved-memory matches the values supported by the current implementation,
596  * also check if ranges property has been provided
597  */
598 static int __init __reserved_mem_check_root(unsigned long node)
599 {
600 	const __be32 *prop;
601 
602 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
603 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
604 		return -EINVAL;
605 
606 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
607 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
608 		return -EINVAL;
609 
610 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
611 	if (!prop)
612 		return -EINVAL;
613 	return 0;
614 }
615 
616 /**
617  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
618  */
619 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
620 					  int depth, void *data)
621 {
622 	static int found;
623 	int err;
624 
625 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
626 		if (__reserved_mem_check_root(node) != 0) {
627 			pr_err("Reserved memory: unsupported node format, ignoring\n");
628 			/* break scan */
629 			return 1;
630 		}
631 		found = 1;
632 		/* scan next node */
633 		return 0;
634 	} else if (!found) {
635 		/* scan next node */
636 		return 0;
637 	} else if (found && depth < 2) {
638 		/* scanning of /reserved-memory has been finished */
639 		return 1;
640 	}
641 
642 	if (!of_fdt_device_is_available(initial_boot_params, node))
643 		return 0;
644 
645 	err = __reserved_mem_reserve_reg(node, uname);
646 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
647 		fdt_reserved_mem_save_node(node, uname, 0, 0);
648 
649 	/* scan next node */
650 	return 0;
651 }
652 
653 /**
654  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
655  *
656  * This function grabs memory from early allocator for device exclusive use
657  * defined in device tree structures. It should be called by arch specific code
658  * once the early allocator (i.e. memblock) has been fully activated.
659  */
660 void __init early_init_fdt_scan_reserved_mem(void)
661 {
662 	int n;
663 	u64 base, size;
664 
665 	if (!initial_boot_params)
666 		return;
667 
668 	/* Process header /memreserve/ fields */
669 	for (n = 0; ; n++) {
670 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
671 		if (!size)
672 			break;
673 		early_init_dt_reserve_memory_arch(base, size, 0);
674 	}
675 
676 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
677 	fdt_init_reserved_mem();
678 }
679 
680 /**
681  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
682  */
683 void __init early_init_fdt_reserve_self(void)
684 {
685 	if (!initial_boot_params)
686 		return;
687 
688 	/* Reserve the dtb region */
689 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
690 					  fdt_totalsize(initial_boot_params),
691 					  0);
692 }
693 
694 /**
695  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
696  * @it: callback function
697  * @data: context data pointer
698  *
699  * This function is used to scan the flattened device-tree, it is
700  * used to extract the memory information at boot before we can
701  * unflatten the tree
702  */
703 int __init of_scan_flat_dt(int (*it)(unsigned long node,
704 				     const char *uname, int depth,
705 				     void *data),
706 			   void *data)
707 {
708 	const void *blob = initial_boot_params;
709 	const char *pathp;
710 	int offset, rc = 0, depth = -1;
711 
712 	if (!blob)
713 		return 0;
714 
715 	for (offset = fdt_next_node(blob, -1, &depth);
716 	     offset >= 0 && depth >= 0 && !rc;
717 	     offset = fdt_next_node(blob, offset, &depth)) {
718 
719 		pathp = fdt_get_name(blob, offset, NULL);
720 		if (*pathp == '/')
721 			pathp = kbasename(pathp);
722 		rc = it(offset, pathp, depth, data);
723 	}
724 	return rc;
725 }
726 
727 /**
728  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
729  * @it: callback function
730  * @data: context data pointer
731  *
732  * This function is used to scan sub-nodes of a node.
733  */
734 int __init of_scan_flat_dt_subnodes(unsigned long parent,
735 				    int (*it)(unsigned long node,
736 					      const char *uname,
737 					      void *data),
738 				    void *data)
739 {
740 	const void *blob = initial_boot_params;
741 	int node;
742 
743 	fdt_for_each_subnode(node, blob, parent) {
744 		const char *pathp;
745 		int rc;
746 
747 		pathp = fdt_get_name(blob, node, NULL);
748 		if (*pathp == '/')
749 			pathp = kbasename(pathp);
750 		rc = it(node, pathp, data);
751 		if (rc)
752 			return rc;
753 	}
754 	return 0;
755 }
756 
757 /**
758  * of_get_flat_dt_subnode_by_name - get the subnode by given name
759  *
760  * @node: the parent node
761  * @uname: the name of subnode
762  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
763  */
764 
765 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
766 {
767 	return fdt_subnode_offset(initial_boot_params, node, uname);
768 }
769 
770 /**
771  * of_get_flat_dt_root - find the root node in the flat blob
772  */
773 unsigned long __init of_get_flat_dt_root(void)
774 {
775 	return 0;
776 }
777 
778 /**
779  * of_get_flat_dt_size - Return the total size of the FDT
780  */
781 int __init of_get_flat_dt_size(void)
782 {
783 	return fdt_totalsize(initial_boot_params);
784 }
785 
786 /**
787  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
788  *
789  * This function can be used within scan_flattened_dt callback to get
790  * access to properties
791  */
792 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
793 				       int *size)
794 {
795 	return fdt_getprop(initial_boot_params, node, name, size);
796 }
797 
798 /**
799  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
800  * @node: node to test
801  * @compat: compatible string to compare with compatible list.
802  */
803 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
804 {
805 	return of_fdt_is_compatible(initial_boot_params, node, compat);
806 }
807 
808 /**
809  * of_flat_dt_match - Return true if node matches a list of compatible values
810  */
811 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
812 {
813 	return of_fdt_match(initial_boot_params, node, compat);
814 }
815 
816 /**
817  * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
818  */
819 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
820 {
821 	return fdt_get_phandle(initial_boot_params, node);
822 }
823 
824 struct fdt_scan_status {
825 	const char *name;
826 	int namelen;
827 	int depth;
828 	int found;
829 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
830 	void *data;
831 };
832 
833 const char * __init of_flat_dt_get_machine_name(void)
834 {
835 	const char *name;
836 	unsigned long dt_root = of_get_flat_dt_root();
837 
838 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
839 	if (!name)
840 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
841 	return name;
842 }
843 
844 /**
845  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
846  *
847  * @default_match: A machine specific ptr to return in case of no match.
848  * @get_next_compat: callback function to return next compatible match table.
849  *
850  * Iterate through machine match tables to find the best match for the machine
851  * compatible string in the FDT.
852  */
853 const void * __init of_flat_dt_match_machine(const void *default_match,
854 		const void * (*get_next_compat)(const char * const**))
855 {
856 	const void *data = NULL;
857 	const void *best_data = default_match;
858 	const char *const *compat;
859 	unsigned long dt_root;
860 	unsigned int best_score = ~1, score = 0;
861 
862 	dt_root = of_get_flat_dt_root();
863 	while ((data = get_next_compat(&compat))) {
864 		score = of_flat_dt_match(dt_root, compat);
865 		if (score > 0 && score < best_score) {
866 			best_data = data;
867 			best_score = score;
868 		}
869 	}
870 	if (!best_data) {
871 		const char *prop;
872 		int size;
873 
874 		pr_err("\n unrecognized device tree list:\n[ ");
875 
876 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
877 		if (prop) {
878 			while (size > 0) {
879 				printk("'%s' ", prop);
880 				size -= strlen(prop) + 1;
881 				prop += strlen(prop) + 1;
882 			}
883 		}
884 		printk("]\n\n");
885 		return NULL;
886 	}
887 
888 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
889 
890 	return best_data;
891 }
892 
893 #ifdef CONFIG_BLK_DEV_INITRD
894 static void __early_init_dt_declare_initrd(unsigned long start,
895 					   unsigned long end)
896 {
897 	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
898 	 * enabled since __va() is called too early. ARM64 does make use
899 	 * of phys_initrd_start/phys_initrd_size so we can skip this
900 	 * conversion.
901 	 */
902 	if (!IS_ENABLED(CONFIG_ARM64)) {
903 		initrd_start = (unsigned long)__va(start);
904 		initrd_end = (unsigned long)__va(end);
905 		initrd_below_start_ok = 1;
906 	}
907 }
908 
909 /**
910  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
911  * @node: reference to node containing initrd location ('chosen')
912  */
913 static void __init early_init_dt_check_for_initrd(unsigned long node)
914 {
915 	u64 start, end;
916 	int len;
917 	const __be32 *prop;
918 
919 	pr_debug("Looking for initrd properties... ");
920 
921 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
922 	if (!prop)
923 		return;
924 	start = of_read_number(prop, len/4);
925 
926 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
927 	if (!prop)
928 		return;
929 	end = of_read_number(prop, len/4);
930 
931 	__early_init_dt_declare_initrd(start, end);
932 	phys_initrd_start = start;
933 	phys_initrd_size = end - start;
934 
935 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
936 		 (unsigned long long)start, (unsigned long long)end);
937 }
938 #else
939 static inline void early_init_dt_check_for_initrd(unsigned long node)
940 {
941 }
942 #endif /* CONFIG_BLK_DEV_INITRD */
943 
944 #ifdef CONFIG_SERIAL_EARLYCON
945 
946 int __init early_init_dt_scan_chosen_stdout(void)
947 {
948 	int offset;
949 	const char *p, *q, *options = NULL;
950 	int l;
951 	const struct earlycon_id **p_match;
952 	const void *fdt = initial_boot_params;
953 
954 	offset = fdt_path_offset(fdt, "/chosen");
955 	if (offset < 0)
956 		offset = fdt_path_offset(fdt, "/chosen@0");
957 	if (offset < 0)
958 		return -ENOENT;
959 
960 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
961 	if (!p)
962 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
963 	if (!p || !l)
964 		return -ENOENT;
965 
966 	q = strchrnul(p, ':');
967 	if (*q != '\0')
968 		options = q + 1;
969 	l = q - p;
970 
971 	/* Get the node specified by stdout-path */
972 	offset = fdt_path_offset_namelen(fdt, p, l);
973 	if (offset < 0) {
974 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
975 		return 0;
976 	}
977 
978 	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
979 	     p_match++) {
980 		const struct earlycon_id *match = *p_match;
981 
982 		if (!match->compatible[0])
983 			continue;
984 
985 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
986 			continue;
987 
988 		of_setup_earlycon(match, offset, options);
989 		return 0;
990 	}
991 	return -ENODEV;
992 }
993 #endif
994 
995 /**
996  * early_init_dt_scan_root - fetch the top level address and size cells
997  */
998 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
999 				   int depth, void *data)
1000 {
1001 	const __be32 *prop;
1002 
1003 	if (depth != 0)
1004 		return 0;
1005 
1006 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1007 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1008 
1009 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1010 	if (prop)
1011 		dt_root_size_cells = be32_to_cpup(prop);
1012 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1013 
1014 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1015 	if (prop)
1016 		dt_root_addr_cells = be32_to_cpup(prop);
1017 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1018 
1019 	/* break now */
1020 	return 1;
1021 }
1022 
1023 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1024 {
1025 	const __be32 *p = *cellp;
1026 
1027 	*cellp = p + s;
1028 	return of_read_number(p, s);
1029 }
1030 
1031 /**
1032  * early_init_dt_scan_memory - Look for and parse memory nodes
1033  */
1034 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1035 				     int depth, void *data)
1036 {
1037 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1038 	const __be32 *reg, *endp;
1039 	int l;
1040 	bool hotpluggable;
1041 
1042 	/* We are scanning "memory" nodes only */
1043 	if (type == NULL || strcmp(type, "memory") != 0)
1044 		return 0;
1045 
1046 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1047 	if (reg == NULL)
1048 		reg = of_get_flat_dt_prop(node, "reg", &l);
1049 	if (reg == NULL)
1050 		return 0;
1051 
1052 	endp = reg + (l / sizeof(__be32));
1053 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1054 
1055 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1056 
1057 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1058 		u64 base, size;
1059 
1060 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1061 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1062 
1063 		if (size == 0)
1064 			continue;
1065 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1066 		    (unsigned long long)size);
1067 
1068 		early_init_dt_add_memory_arch(base, size);
1069 
1070 		if (!hotpluggable)
1071 			continue;
1072 
1073 		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1074 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1075 				base, base + size);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1082 				     int depth, void *data)
1083 {
1084 	int l;
1085 	const char *p;
1086 
1087 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1088 
1089 	if (depth != 1 || !data ||
1090 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1091 		return 0;
1092 
1093 	early_init_dt_check_for_initrd(node);
1094 
1095 	/* Retrieve command line */
1096 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1097 	if (p != NULL && l > 0)
1098 		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1099 
1100 	/*
1101 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1102 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1103 	 * is set in which case we override whatever was found earlier.
1104 	 */
1105 #ifdef CONFIG_CMDLINE
1106 #if defined(CONFIG_CMDLINE_EXTEND)
1107 	strlcat(data, " ", COMMAND_LINE_SIZE);
1108 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1109 #elif defined(CONFIG_CMDLINE_FORCE)
1110 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1111 #else
1112 	/* No arguments from boot loader, use kernel's  cmdl*/
1113 	if (!((char *)data)[0])
1114 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1115 #endif
1116 #endif /* CONFIG_CMDLINE */
1117 
1118 	pr_debug("Command line is: %s\n", (char*)data);
1119 
1120 	/* break now */
1121 	return 1;
1122 }
1123 
1124 #ifndef MIN_MEMBLOCK_ADDR
1125 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1126 #endif
1127 #ifndef MAX_MEMBLOCK_ADDR
1128 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1129 #endif
1130 
1131 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1132 {
1133 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1134 
1135 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1136 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1137 			base, base + size);
1138 		return;
1139 	}
1140 
1141 	if (!PAGE_ALIGNED(base)) {
1142 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1143 		base = PAGE_ALIGN(base);
1144 	}
1145 	size &= PAGE_MASK;
1146 
1147 	if (base > MAX_MEMBLOCK_ADDR) {
1148 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1149 				base, base + size);
1150 		return;
1151 	}
1152 
1153 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1154 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1155 				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1156 		size = MAX_MEMBLOCK_ADDR - base + 1;
1157 	}
1158 
1159 	if (base + size < phys_offset) {
1160 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1161 			   base, base + size);
1162 		return;
1163 	}
1164 	if (base < phys_offset) {
1165 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1166 			   base, phys_offset);
1167 		size -= phys_offset - base;
1168 		base = phys_offset;
1169 	}
1170 	memblock_add(base, size);
1171 }
1172 
1173 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1174 {
1175 	return memblock_mark_hotplug(base, size);
1176 }
1177 
1178 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1179 					phys_addr_t size, bool nomap)
1180 {
1181 	if (nomap)
1182 		return memblock_remove(base, size);
1183 	return memblock_reserve(base, size);
1184 }
1185 
1186 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1187 {
1188 	return memblock_alloc(size, align);
1189 }
1190 
1191 bool __init early_init_dt_verify(void *params)
1192 {
1193 	if (!params)
1194 		return false;
1195 
1196 	/* check device tree validity */
1197 	if (fdt_check_header(params))
1198 		return false;
1199 
1200 	/* Setup flat device-tree pointer */
1201 	initial_boot_params = params;
1202 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1203 				fdt_totalsize(initial_boot_params));
1204 	return true;
1205 }
1206 
1207 
1208 void __init early_init_dt_scan_nodes(void)
1209 {
1210 	int rc = 0;
1211 
1212 	/* Retrieve various information from the /chosen node */
1213 	rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1214 	if (!rc)
1215 		pr_warn("No chosen node found, continuing without\n");
1216 
1217 	/* Initialize {size,address}-cells info */
1218 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1219 
1220 	/* Setup memory, calling early_init_dt_add_memory_arch */
1221 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1222 }
1223 
1224 bool __init early_init_dt_scan(void *params)
1225 {
1226 	bool status;
1227 
1228 	status = early_init_dt_verify(params);
1229 	if (!status)
1230 		return false;
1231 
1232 	early_init_dt_scan_nodes();
1233 	return true;
1234 }
1235 
1236 /**
1237  * unflatten_device_tree - create tree of device_nodes from flat blob
1238  *
1239  * unflattens the device-tree passed by the firmware, creating the
1240  * tree of struct device_node. It also fills the "name" and "type"
1241  * pointers of the nodes so the normal device-tree walking functions
1242  * can be used.
1243  */
1244 void __init unflatten_device_tree(void)
1245 {
1246 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1247 				early_init_dt_alloc_memory_arch, false);
1248 
1249 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1250 	of_alias_scan(early_init_dt_alloc_memory_arch);
1251 
1252 	unittest_unflatten_overlay_base();
1253 }
1254 
1255 /**
1256  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1257  *
1258  * Copies and unflattens the device-tree passed by the firmware, creating the
1259  * tree of struct device_node. It also fills the "name" and "type"
1260  * pointers of the nodes so the normal device-tree walking functions
1261  * can be used. This should only be used when the FDT memory has not been
1262  * reserved such is the case when the FDT is built-in to the kernel init
1263  * section. If the FDT memory is reserved already then unflatten_device_tree
1264  * should be used instead.
1265  */
1266 void __init unflatten_and_copy_device_tree(void)
1267 {
1268 	int size;
1269 	void *dt;
1270 
1271 	if (!initial_boot_params) {
1272 		pr_warn("No valid device tree found, continuing without\n");
1273 		return;
1274 	}
1275 
1276 	size = fdt_totalsize(initial_boot_params);
1277 	dt = early_init_dt_alloc_memory_arch(size,
1278 					     roundup_pow_of_two(FDT_V17_SIZE));
1279 
1280 	if (dt) {
1281 		memcpy(dt, initial_boot_params, size);
1282 		initial_boot_params = dt;
1283 	}
1284 	unflatten_device_tree();
1285 }
1286 
1287 #ifdef CONFIG_SYSFS
1288 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1289 			       struct bin_attribute *bin_attr,
1290 			       char *buf, loff_t off, size_t count)
1291 {
1292 	memcpy(buf, initial_boot_params + off, count);
1293 	return count;
1294 }
1295 
1296 static int __init of_fdt_raw_init(void)
1297 {
1298 	static struct bin_attribute of_fdt_raw_attr =
1299 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1300 
1301 	if (!initial_boot_params)
1302 		return 0;
1303 
1304 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1305 				     fdt_totalsize(initial_boot_params))) {
1306 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1307 		return 0;
1308 	}
1309 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1310 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1311 }
1312 late_initcall(of_fdt_raw_init);
1313 #endif
1314 
1315 #endif /* CONFIG_OF_EARLY_FLATTREE */
1316