xref: /openbmc/linux/drivers/nvmem/core.c (revision 643e83501461763032ae51e4d540176e6a887d31)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	nvmem_cell_post_process_t cell_post_process;
42 	struct gpio_desc	*wp_gpio;
43 	void *priv;
44 };
45 
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47 
48 #define FLAG_COMPAT		BIT(0)
49 struct nvmem_cell_entry {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 struct nvmem_cell {
61 	struct nvmem_cell_entry *entry;
62 	const char		*id;
63 	int			index;
64 };
65 
66 static DEFINE_MUTEX(nvmem_mutex);
67 static DEFINE_IDA(nvmem_ida);
68 
69 static DEFINE_MUTEX(nvmem_cell_mutex);
70 static LIST_HEAD(nvmem_cell_tables);
71 
72 static DEFINE_MUTEX(nvmem_lookup_mutex);
73 static LIST_HEAD(nvmem_lookup_list);
74 
75 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
76 
77 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
78 			    void *val, size_t bytes)
79 {
80 	if (nvmem->reg_read)
81 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
82 
83 	return -EINVAL;
84 }
85 
86 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
87 			     void *val, size_t bytes)
88 {
89 	int ret;
90 
91 	if (nvmem->reg_write) {
92 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
93 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
94 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
95 		return ret;
96 	}
97 
98 	return -EINVAL;
99 }
100 
101 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
102 				      unsigned int offset, void *val,
103 				      size_t bytes, int write)
104 {
105 
106 	unsigned int end = offset + bytes;
107 	unsigned int kend, ksize;
108 	const struct nvmem_keepout *keepout = nvmem->keepout;
109 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
110 	int rc;
111 
112 	/*
113 	 * Skip all keepouts before the range being accessed.
114 	 * Keepouts are sorted.
115 	 */
116 	while ((keepout < keepoutend) && (keepout->end <= offset))
117 		keepout++;
118 
119 	while ((offset < end) && (keepout < keepoutend)) {
120 		/* Access the valid portion before the keepout. */
121 		if (offset < keepout->start) {
122 			kend = min(end, keepout->start);
123 			ksize = kend - offset;
124 			if (write)
125 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
126 			else
127 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
128 
129 			if (rc)
130 				return rc;
131 
132 			offset += ksize;
133 			val += ksize;
134 		}
135 
136 		/*
137 		 * Now we're aligned to the start of this keepout zone. Go
138 		 * through it.
139 		 */
140 		kend = min(end, keepout->end);
141 		ksize = kend - offset;
142 		if (!write)
143 			memset(val, keepout->value, ksize);
144 
145 		val += ksize;
146 		offset += ksize;
147 		keepout++;
148 	}
149 
150 	/*
151 	 * If we ran out of keepouts but there's still stuff to do, send it
152 	 * down directly
153 	 */
154 	if (offset < end) {
155 		ksize = end - offset;
156 		if (write)
157 			return __nvmem_reg_write(nvmem, offset, val, ksize);
158 		else
159 			return __nvmem_reg_read(nvmem, offset, val, ksize);
160 	}
161 
162 	return 0;
163 }
164 
165 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
166 			  void *val, size_t bytes)
167 {
168 	if (!nvmem->nkeepout)
169 		return __nvmem_reg_read(nvmem, offset, val, bytes);
170 
171 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
172 }
173 
174 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
175 			   void *val, size_t bytes)
176 {
177 	if (!nvmem->nkeepout)
178 		return __nvmem_reg_write(nvmem, offset, val, bytes);
179 
180 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
181 }
182 
183 #ifdef CONFIG_NVMEM_SYSFS
184 static const char * const nvmem_type_str[] = {
185 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
186 	[NVMEM_TYPE_EEPROM] = "EEPROM",
187 	[NVMEM_TYPE_OTP] = "OTP",
188 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
189 	[NVMEM_TYPE_FRAM] = "FRAM",
190 };
191 
192 #ifdef CONFIG_DEBUG_LOCK_ALLOC
193 static struct lock_class_key eeprom_lock_key;
194 #endif
195 
196 static ssize_t type_show(struct device *dev,
197 			 struct device_attribute *attr, char *buf)
198 {
199 	struct nvmem_device *nvmem = to_nvmem_device(dev);
200 
201 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
202 }
203 
204 static DEVICE_ATTR_RO(type);
205 
206 static struct attribute *nvmem_attrs[] = {
207 	&dev_attr_type.attr,
208 	NULL,
209 };
210 
211 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
212 				   struct bin_attribute *attr, char *buf,
213 				   loff_t pos, size_t count)
214 {
215 	struct device *dev;
216 	struct nvmem_device *nvmem;
217 	int rc;
218 
219 	if (attr->private)
220 		dev = attr->private;
221 	else
222 		dev = kobj_to_dev(kobj);
223 	nvmem = to_nvmem_device(dev);
224 
225 	/* Stop the user from reading */
226 	if (pos >= nvmem->size)
227 		return 0;
228 
229 	if (!IS_ALIGNED(pos, nvmem->stride))
230 		return -EINVAL;
231 
232 	if (count < nvmem->word_size)
233 		return -EINVAL;
234 
235 	if (pos + count > nvmem->size)
236 		count = nvmem->size - pos;
237 
238 	count = round_down(count, nvmem->word_size);
239 
240 	if (!nvmem->reg_read)
241 		return -EPERM;
242 
243 	rc = nvmem_reg_read(nvmem, pos, buf, count);
244 
245 	if (rc)
246 		return rc;
247 
248 	return count;
249 }
250 
251 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
252 				    struct bin_attribute *attr, char *buf,
253 				    loff_t pos, size_t count)
254 {
255 	struct device *dev;
256 	struct nvmem_device *nvmem;
257 	int rc;
258 
259 	if (attr->private)
260 		dev = attr->private;
261 	else
262 		dev = kobj_to_dev(kobj);
263 	nvmem = to_nvmem_device(dev);
264 
265 	/* Stop the user from writing */
266 	if (pos >= nvmem->size)
267 		return -EFBIG;
268 
269 	if (!IS_ALIGNED(pos, nvmem->stride))
270 		return -EINVAL;
271 
272 	if (count < nvmem->word_size)
273 		return -EINVAL;
274 
275 	if (pos + count > nvmem->size)
276 		count = nvmem->size - pos;
277 
278 	count = round_down(count, nvmem->word_size);
279 
280 	if (!nvmem->reg_write)
281 		return -EPERM;
282 
283 	rc = nvmem_reg_write(nvmem, pos, buf, count);
284 
285 	if (rc)
286 		return rc;
287 
288 	return count;
289 }
290 
291 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
292 {
293 	umode_t mode = 0400;
294 
295 	if (!nvmem->root_only)
296 		mode |= 0044;
297 
298 	if (!nvmem->read_only)
299 		mode |= 0200;
300 
301 	if (!nvmem->reg_write)
302 		mode &= ~0200;
303 
304 	if (!nvmem->reg_read)
305 		mode &= ~0444;
306 
307 	return mode;
308 }
309 
310 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
311 					 struct bin_attribute *attr, int i)
312 {
313 	struct device *dev = kobj_to_dev(kobj);
314 	struct nvmem_device *nvmem = to_nvmem_device(dev);
315 
316 	attr->size = nvmem->size;
317 
318 	return nvmem_bin_attr_get_umode(nvmem);
319 }
320 
321 /* default read/write permissions */
322 static struct bin_attribute bin_attr_rw_nvmem = {
323 	.attr	= {
324 		.name	= "nvmem",
325 		.mode	= 0644,
326 	},
327 	.read	= bin_attr_nvmem_read,
328 	.write	= bin_attr_nvmem_write,
329 };
330 
331 static struct bin_attribute *nvmem_bin_attributes[] = {
332 	&bin_attr_rw_nvmem,
333 	NULL,
334 };
335 
336 static const struct attribute_group nvmem_bin_group = {
337 	.bin_attrs	= nvmem_bin_attributes,
338 	.attrs		= nvmem_attrs,
339 	.is_bin_visible = nvmem_bin_attr_is_visible,
340 };
341 
342 static const struct attribute_group *nvmem_dev_groups[] = {
343 	&nvmem_bin_group,
344 	NULL,
345 };
346 
347 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
348 	.attr	= {
349 		.name	= "eeprom",
350 	},
351 	.read	= bin_attr_nvmem_read,
352 	.write	= bin_attr_nvmem_write,
353 };
354 
355 /*
356  * nvmem_setup_compat() - Create an additional binary entry in
357  * drivers sys directory, to be backwards compatible with the older
358  * drivers/misc/eeprom drivers.
359  */
360 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
361 				    const struct nvmem_config *config)
362 {
363 	int rval;
364 
365 	if (!config->compat)
366 		return 0;
367 
368 	if (!config->base_dev)
369 		return -EINVAL;
370 
371 	if (config->type == NVMEM_TYPE_FRAM)
372 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
373 
374 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
375 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
376 	nvmem->eeprom.size = nvmem->size;
377 #ifdef CONFIG_DEBUG_LOCK_ALLOC
378 	nvmem->eeprom.attr.key = &eeprom_lock_key;
379 #endif
380 	nvmem->eeprom.private = &nvmem->dev;
381 	nvmem->base_dev = config->base_dev;
382 
383 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
384 	if (rval) {
385 		dev_err(&nvmem->dev,
386 			"Failed to create eeprom binary file %d\n", rval);
387 		return rval;
388 	}
389 
390 	nvmem->flags |= FLAG_COMPAT;
391 
392 	return 0;
393 }
394 
395 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
396 			      const struct nvmem_config *config)
397 {
398 	if (config->compat)
399 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
400 }
401 
402 #else /* CONFIG_NVMEM_SYSFS */
403 
404 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
405 				    const struct nvmem_config *config)
406 {
407 	return -ENOSYS;
408 }
409 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
410 				      const struct nvmem_config *config)
411 {
412 }
413 
414 #endif /* CONFIG_NVMEM_SYSFS */
415 
416 static void nvmem_release(struct device *dev)
417 {
418 	struct nvmem_device *nvmem = to_nvmem_device(dev);
419 
420 	ida_free(&nvmem_ida, nvmem->id);
421 	gpiod_put(nvmem->wp_gpio);
422 	kfree(nvmem);
423 }
424 
425 static const struct device_type nvmem_provider_type = {
426 	.release	= nvmem_release,
427 };
428 
429 static struct bus_type nvmem_bus_type = {
430 	.name		= "nvmem",
431 };
432 
433 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
434 {
435 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
436 	mutex_lock(&nvmem_mutex);
437 	list_del(&cell->node);
438 	mutex_unlock(&nvmem_mutex);
439 	of_node_put(cell->np);
440 	kfree_const(cell->name);
441 	kfree(cell);
442 }
443 
444 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
445 {
446 	struct nvmem_cell_entry *cell, *p;
447 
448 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
449 		nvmem_cell_entry_drop(cell);
450 }
451 
452 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
453 {
454 	mutex_lock(&nvmem_mutex);
455 	list_add_tail(&cell->node, &cell->nvmem->cells);
456 	mutex_unlock(&nvmem_mutex);
457 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
458 }
459 
460 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
461 						     const struct nvmem_cell_info *info,
462 						     struct nvmem_cell_entry *cell)
463 {
464 	cell->nvmem = nvmem;
465 	cell->offset = info->offset;
466 	cell->bytes = info->bytes;
467 	cell->name = info->name;
468 
469 	cell->bit_offset = info->bit_offset;
470 	cell->nbits = info->nbits;
471 	cell->np = info->np;
472 
473 	if (cell->nbits)
474 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
475 					   BITS_PER_BYTE);
476 
477 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
478 		dev_err(&nvmem->dev,
479 			"cell %s unaligned to nvmem stride %d\n",
480 			cell->name ?: "<unknown>", nvmem->stride);
481 		return -EINVAL;
482 	}
483 
484 	return 0;
485 }
486 
487 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
488 					       const struct nvmem_cell_info *info,
489 					       struct nvmem_cell_entry *cell)
490 {
491 	int err;
492 
493 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
494 	if (err)
495 		return err;
496 
497 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
498 	if (!cell->name)
499 		return -ENOMEM;
500 
501 	return 0;
502 }
503 
504 /**
505  * nvmem_add_one_cell() - Add one cell information to an nvmem device
506  *
507  * @nvmem: nvmem device to add cells to.
508  * @info: nvmem cell info to add to the device
509  *
510  * Return: 0 or negative error code on failure.
511  */
512 int nvmem_add_one_cell(struct nvmem_device *nvmem,
513 		       const struct nvmem_cell_info *info)
514 {
515 	struct nvmem_cell_entry *cell;
516 	int rval;
517 
518 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
519 	if (!cell)
520 		return -ENOMEM;
521 
522 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
523 	if (rval) {
524 		kfree(cell);
525 		return rval;
526 	}
527 
528 	nvmem_cell_entry_add(cell);
529 
530 	return 0;
531 }
532 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
533 
534 /**
535  * nvmem_add_cells() - Add cell information to an nvmem device
536  *
537  * @nvmem: nvmem device to add cells to.
538  * @info: nvmem cell info to add to the device
539  * @ncells: number of cells in info
540  *
541  * Return: 0 or negative error code on failure.
542  */
543 static int nvmem_add_cells(struct nvmem_device *nvmem,
544 		    const struct nvmem_cell_info *info,
545 		    int ncells)
546 {
547 	int i, rval;
548 
549 	for (i = 0; i < ncells; i++) {
550 		rval = nvmem_add_one_cell(nvmem, &info[i]);
551 		if (rval)
552 			return rval;
553 	}
554 
555 	return 0;
556 }
557 
558 /**
559  * nvmem_register_notifier() - Register a notifier block for nvmem events.
560  *
561  * @nb: notifier block to be called on nvmem events.
562  *
563  * Return: 0 on success, negative error number on failure.
564  */
565 int nvmem_register_notifier(struct notifier_block *nb)
566 {
567 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
568 }
569 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
570 
571 /**
572  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
573  *
574  * @nb: notifier block to be unregistered.
575  *
576  * Return: 0 on success, negative error number on failure.
577  */
578 int nvmem_unregister_notifier(struct notifier_block *nb)
579 {
580 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
581 }
582 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
583 
584 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
585 {
586 	const struct nvmem_cell_info *info;
587 	struct nvmem_cell_table *table;
588 	struct nvmem_cell_entry *cell;
589 	int rval = 0, i;
590 
591 	mutex_lock(&nvmem_cell_mutex);
592 	list_for_each_entry(table, &nvmem_cell_tables, node) {
593 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
594 			for (i = 0; i < table->ncells; i++) {
595 				info = &table->cells[i];
596 
597 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
598 				if (!cell) {
599 					rval = -ENOMEM;
600 					goto out;
601 				}
602 
603 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
604 				if (rval) {
605 					kfree(cell);
606 					goto out;
607 				}
608 
609 				nvmem_cell_entry_add(cell);
610 			}
611 		}
612 	}
613 
614 out:
615 	mutex_unlock(&nvmem_cell_mutex);
616 	return rval;
617 }
618 
619 static struct nvmem_cell_entry *
620 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
621 {
622 	struct nvmem_cell_entry *iter, *cell = NULL;
623 
624 	mutex_lock(&nvmem_mutex);
625 	list_for_each_entry(iter, &nvmem->cells, node) {
626 		if (strcmp(cell_id, iter->name) == 0) {
627 			cell = iter;
628 			break;
629 		}
630 	}
631 	mutex_unlock(&nvmem_mutex);
632 
633 	return cell;
634 }
635 
636 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
637 {
638 	unsigned int cur = 0;
639 	const struct nvmem_keepout *keepout = nvmem->keepout;
640 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
641 
642 	while (keepout < keepoutend) {
643 		/* Ensure keepouts are sorted and don't overlap. */
644 		if (keepout->start < cur) {
645 			dev_err(&nvmem->dev,
646 				"Keepout regions aren't sorted or overlap.\n");
647 
648 			return -ERANGE;
649 		}
650 
651 		if (keepout->end < keepout->start) {
652 			dev_err(&nvmem->dev,
653 				"Invalid keepout region.\n");
654 
655 			return -EINVAL;
656 		}
657 
658 		/*
659 		 * Validate keepouts (and holes between) don't violate
660 		 * word_size constraints.
661 		 */
662 		if ((keepout->end - keepout->start < nvmem->word_size) ||
663 		    ((keepout->start != cur) &&
664 		     (keepout->start - cur < nvmem->word_size))) {
665 
666 			dev_err(&nvmem->dev,
667 				"Keepout regions violate word_size constraints.\n");
668 
669 			return -ERANGE;
670 		}
671 
672 		/* Validate keepouts don't violate stride (alignment). */
673 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
674 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
675 
676 			dev_err(&nvmem->dev,
677 				"Keepout regions violate stride.\n");
678 
679 			return -EINVAL;
680 		}
681 
682 		cur = keepout->end;
683 		keepout++;
684 	}
685 
686 	return 0;
687 }
688 
689 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
690 {
691 	struct device *dev = &nvmem->dev;
692 	struct device_node *child;
693 	const __be32 *addr;
694 	int len, ret;
695 
696 	for_each_child_of_node(dev->of_node, child) {
697 		struct nvmem_cell_info info = {0};
698 
699 		addr = of_get_property(child, "reg", &len);
700 		if (!addr)
701 			continue;
702 		if (len < 2 * sizeof(u32)) {
703 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
704 			of_node_put(child);
705 			return -EINVAL;
706 		}
707 
708 		info.offset = be32_to_cpup(addr++);
709 		info.bytes = be32_to_cpup(addr);
710 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
711 
712 		addr = of_get_property(child, "bits", &len);
713 		if (addr && len == (2 * sizeof(u32))) {
714 			info.bit_offset = be32_to_cpup(addr++);
715 			info.nbits = be32_to_cpup(addr);
716 		}
717 
718 		info.np = of_node_get(child);
719 
720 		ret = nvmem_add_one_cell(nvmem, &info);
721 		kfree(info.name);
722 		if (ret) {
723 			of_node_put(child);
724 			return ret;
725 		}
726 	}
727 
728 	return 0;
729 }
730 
731 /**
732  * nvmem_register() - Register a nvmem device for given nvmem_config.
733  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
734  *
735  * @config: nvmem device configuration with which nvmem device is created.
736  *
737  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
738  * on success.
739  */
740 
741 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
742 {
743 	struct nvmem_device *nvmem;
744 	int rval;
745 
746 	if (!config->dev)
747 		return ERR_PTR(-EINVAL);
748 
749 	if (!config->reg_read && !config->reg_write)
750 		return ERR_PTR(-EINVAL);
751 
752 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
753 	if (!nvmem)
754 		return ERR_PTR(-ENOMEM);
755 
756 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
757 	if (rval < 0) {
758 		kfree(nvmem);
759 		return ERR_PTR(rval);
760 	}
761 
762 	nvmem->id = rval;
763 
764 	nvmem->dev.type = &nvmem_provider_type;
765 	nvmem->dev.bus = &nvmem_bus_type;
766 	nvmem->dev.parent = config->dev;
767 
768 	device_initialize(&nvmem->dev);
769 
770 	if (!config->ignore_wp)
771 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
772 						    GPIOD_OUT_HIGH);
773 	if (IS_ERR(nvmem->wp_gpio)) {
774 		rval = PTR_ERR(nvmem->wp_gpio);
775 		nvmem->wp_gpio = NULL;
776 		goto err_put_device;
777 	}
778 
779 	kref_init(&nvmem->refcnt);
780 	INIT_LIST_HEAD(&nvmem->cells);
781 
782 	nvmem->owner = config->owner;
783 	if (!nvmem->owner && config->dev->driver)
784 		nvmem->owner = config->dev->driver->owner;
785 	nvmem->stride = config->stride ?: 1;
786 	nvmem->word_size = config->word_size ?: 1;
787 	nvmem->size = config->size;
788 	nvmem->root_only = config->root_only;
789 	nvmem->priv = config->priv;
790 	nvmem->type = config->type;
791 	nvmem->reg_read = config->reg_read;
792 	nvmem->reg_write = config->reg_write;
793 	nvmem->cell_post_process = config->cell_post_process;
794 	nvmem->keepout = config->keepout;
795 	nvmem->nkeepout = config->nkeepout;
796 	if (config->of_node)
797 		nvmem->dev.of_node = config->of_node;
798 	else if (!config->no_of_node)
799 		nvmem->dev.of_node = config->dev->of_node;
800 
801 	switch (config->id) {
802 	case NVMEM_DEVID_NONE:
803 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
804 		break;
805 	case NVMEM_DEVID_AUTO:
806 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
807 		break;
808 	default:
809 		rval = dev_set_name(&nvmem->dev, "%s%d",
810 			     config->name ? : "nvmem",
811 			     config->name ? config->id : nvmem->id);
812 		break;
813 	}
814 
815 	if (rval)
816 		goto err_put_device;
817 
818 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
819 			   config->read_only || !nvmem->reg_write;
820 
821 #ifdef CONFIG_NVMEM_SYSFS
822 	nvmem->dev.groups = nvmem_dev_groups;
823 #endif
824 
825 	if (nvmem->nkeepout) {
826 		rval = nvmem_validate_keepouts(nvmem);
827 		if (rval)
828 			goto err_put_device;
829 	}
830 
831 	if (config->compat) {
832 		rval = nvmem_sysfs_setup_compat(nvmem, config);
833 		if (rval)
834 			goto err_put_device;
835 	}
836 
837 	if (config->cells) {
838 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
839 		if (rval)
840 			goto err_remove_cells;
841 	}
842 
843 	rval = nvmem_add_cells_from_table(nvmem);
844 	if (rval)
845 		goto err_remove_cells;
846 
847 	rval = nvmem_add_cells_from_of(nvmem);
848 	if (rval)
849 		goto err_remove_cells;
850 
851 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
852 
853 	rval = device_add(&nvmem->dev);
854 	if (rval)
855 		goto err_remove_cells;
856 
857 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
858 
859 	return nvmem;
860 
861 err_remove_cells:
862 	nvmem_device_remove_all_cells(nvmem);
863 	if (config->compat)
864 		nvmem_sysfs_remove_compat(nvmem, config);
865 err_put_device:
866 	put_device(&nvmem->dev);
867 
868 	return ERR_PTR(rval);
869 }
870 EXPORT_SYMBOL_GPL(nvmem_register);
871 
872 static void nvmem_device_release(struct kref *kref)
873 {
874 	struct nvmem_device *nvmem;
875 
876 	nvmem = container_of(kref, struct nvmem_device, refcnt);
877 
878 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
879 
880 	if (nvmem->flags & FLAG_COMPAT)
881 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
882 
883 	nvmem_device_remove_all_cells(nvmem);
884 	device_unregister(&nvmem->dev);
885 }
886 
887 /**
888  * nvmem_unregister() - Unregister previously registered nvmem device
889  *
890  * @nvmem: Pointer to previously registered nvmem device.
891  */
892 void nvmem_unregister(struct nvmem_device *nvmem)
893 {
894 	if (nvmem)
895 		kref_put(&nvmem->refcnt, nvmem_device_release);
896 }
897 EXPORT_SYMBOL_GPL(nvmem_unregister);
898 
899 static void devm_nvmem_unregister(void *nvmem)
900 {
901 	nvmem_unregister(nvmem);
902 }
903 
904 /**
905  * devm_nvmem_register() - Register a managed nvmem device for given
906  * nvmem_config.
907  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
908  *
909  * @dev: Device that uses the nvmem device.
910  * @config: nvmem device configuration with which nvmem device is created.
911  *
912  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
913  * on success.
914  */
915 struct nvmem_device *devm_nvmem_register(struct device *dev,
916 					 const struct nvmem_config *config)
917 {
918 	struct nvmem_device *nvmem;
919 	int ret;
920 
921 	nvmem = nvmem_register(config);
922 	if (IS_ERR(nvmem))
923 		return nvmem;
924 
925 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
926 	if (ret)
927 		return ERR_PTR(ret);
928 
929 	return nvmem;
930 }
931 EXPORT_SYMBOL_GPL(devm_nvmem_register);
932 
933 static struct nvmem_device *__nvmem_device_get(void *data,
934 			int (*match)(struct device *dev, const void *data))
935 {
936 	struct nvmem_device *nvmem = NULL;
937 	struct device *dev;
938 
939 	mutex_lock(&nvmem_mutex);
940 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
941 	if (dev)
942 		nvmem = to_nvmem_device(dev);
943 	mutex_unlock(&nvmem_mutex);
944 	if (!nvmem)
945 		return ERR_PTR(-EPROBE_DEFER);
946 
947 	if (!try_module_get(nvmem->owner)) {
948 		dev_err(&nvmem->dev,
949 			"could not increase module refcount for cell %s\n",
950 			nvmem_dev_name(nvmem));
951 
952 		put_device(&nvmem->dev);
953 		return ERR_PTR(-EINVAL);
954 	}
955 
956 	kref_get(&nvmem->refcnt);
957 
958 	return nvmem;
959 }
960 
961 static void __nvmem_device_put(struct nvmem_device *nvmem)
962 {
963 	put_device(&nvmem->dev);
964 	module_put(nvmem->owner);
965 	kref_put(&nvmem->refcnt, nvmem_device_release);
966 }
967 
968 #if IS_ENABLED(CONFIG_OF)
969 /**
970  * of_nvmem_device_get() - Get nvmem device from a given id
971  *
972  * @np: Device tree node that uses the nvmem device.
973  * @id: nvmem name from nvmem-names property.
974  *
975  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
976  * on success.
977  */
978 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
979 {
980 
981 	struct device_node *nvmem_np;
982 	struct nvmem_device *nvmem;
983 	int index = 0;
984 
985 	if (id)
986 		index = of_property_match_string(np, "nvmem-names", id);
987 
988 	nvmem_np = of_parse_phandle(np, "nvmem", index);
989 	if (!nvmem_np)
990 		return ERR_PTR(-ENOENT);
991 
992 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
993 	of_node_put(nvmem_np);
994 	return nvmem;
995 }
996 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
997 #endif
998 
999 /**
1000  * nvmem_device_get() - Get nvmem device from a given id
1001  *
1002  * @dev: Device that uses the nvmem device.
1003  * @dev_name: name of the requested nvmem device.
1004  *
1005  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1006  * on success.
1007  */
1008 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1009 {
1010 	if (dev->of_node) { /* try dt first */
1011 		struct nvmem_device *nvmem;
1012 
1013 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1014 
1015 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1016 			return nvmem;
1017 
1018 	}
1019 
1020 	return __nvmem_device_get((void *)dev_name, device_match_name);
1021 }
1022 EXPORT_SYMBOL_GPL(nvmem_device_get);
1023 
1024 /**
1025  * nvmem_device_find() - Find nvmem device with matching function
1026  *
1027  * @data: Data to pass to match function
1028  * @match: Callback function to check device
1029  *
1030  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1031  * on success.
1032  */
1033 struct nvmem_device *nvmem_device_find(void *data,
1034 			int (*match)(struct device *dev, const void *data))
1035 {
1036 	return __nvmem_device_get(data, match);
1037 }
1038 EXPORT_SYMBOL_GPL(nvmem_device_find);
1039 
1040 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1041 {
1042 	struct nvmem_device **nvmem = res;
1043 
1044 	if (WARN_ON(!nvmem || !*nvmem))
1045 		return 0;
1046 
1047 	return *nvmem == data;
1048 }
1049 
1050 static void devm_nvmem_device_release(struct device *dev, void *res)
1051 {
1052 	nvmem_device_put(*(struct nvmem_device **)res);
1053 }
1054 
1055 /**
1056  * devm_nvmem_device_put() - put alredy got nvmem device
1057  *
1058  * @dev: Device that uses the nvmem device.
1059  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1060  * that needs to be released.
1061  */
1062 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1063 {
1064 	int ret;
1065 
1066 	ret = devres_release(dev, devm_nvmem_device_release,
1067 			     devm_nvmem_device_match, nvmem);
1068 
1069 	WARN_ON(ret);
1070 }
1071 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1072 
1073 /**
1074  * nvmem_device_put() - put alredy got nvmem device
1075  *
1076  * @nvmem: pointer to nvmem device that needs to be released.
1077  */
1078 void nvmem_device_put(struct nvmem_device *nvmem)
1079 {
1080 	__nvmem_device_put(nvmem);
1081 }
1082 EXPORT_SYMBOL_GPL(nvmem_device_put);
1083 
1084 /**
1085  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1086  *
1087  * @dev: Device that requests the nvmem device.
1088  * @id: name id for the requested nvmem device.
1089  *
1090  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1091  * on success.  The nvmem_cell will be freed by the automatically once the
1092  * device is freed.
1093  */
1094 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1095 {
1096 	struct nvmem_device **ptr, *nvmem;
1097 
1098 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1099 	if (!ptr)
1100 		return ERR_PTR(-ENOMEM);
1101 
1102 	nvmem = nvmem_device_get(dev, id);
1103 	if (!IS_ERR(nvmem)) {
1104 		*ptr = nvmem;
1105 		devres_add(dev, ptr);
1106 	} else {
1107 		devres_free(ptr);
1108 	}
1109 
1110 	return nvmem;
1111 }
1112 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1113 
1114 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1115 					    const char *id, int index)
1116 {
1117 	struct nvmem_cell *cell;
1118 	const char *name = NULL;
1119 
1120 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1121 	if (!cell)
1122 		return ERR_PTR(-ENOMEM);
1123 
1124 	if (id) {
1125 		name = kstrdup_const(id, GFP_KERNEL);
1126 		if (!name) {
1127 			kfree(cell);
1128 			return ERR_PTR(-ENOMEM);
1129 		}
1130 	}
1131 
1132 	cell->id = name;
1133 	cell->entry = entry;
1134 	cell->index = index;
1135 
1136 	return cell;
1137 }
1138 
1139 static struct nvmem_cell *
1140 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1141 {
1142 	struct nvmem_cell_entry *cell_entry;
1143 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1144 	struct nvmem_cell_lookup *lookup;
1145 	struct nvmem_device *nvmem;
1146 	const char *dev_id;
1147 
1148 	if (!dev)
1149 		return ERR_PTR(-EINVAL);
1150 
1151 	dev_id = dev_name(dev);
1152 
1153 	mutex_lock(&nvmem_lookup_mutex);
1154 
1155 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1156 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1157 		    (strcmp(lookup->con_id, con_id) == 0)) {
1158 			/* This is the right entry. */
1159 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1160 						   device_match_name);
1161 			if (IS_ERR(nvmem)) {
1162 				/* Provider may not be registered yet. */
1163 				cell = ERR_CAST(nvmem);
1164 				break;
1165 			}
1166 
1167 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1168 								   lookup->cell_name);
1169 			if (!cell_entry) {
1170 				__nvmem_device_put(nvmem);
1171 				cell = ERR_PTR(-ENOENT);
1172 			} else {
1173 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1174 				if (IS_ERR(cell))
1175 					__nvmem_device_put(nvmem);
1176 			}
1177 			break;
1178 		}
1179 	}
1180 
1181 	mutex_unlock(&nvmem_lookup_mutex);
1182 	return cell;
1183 }
1184 
1185 #if IS_ENABLED(CONFIG_OF)
1186 static struct nvmem_cell_entry *
1187 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1188 {
1189 	struct nvmem_cell_entry *iter, *cell = NULL;
1190 
1191 	mutex_lock(&nvmem_mutex);
1192 	list_for_each_entry(iter, &nvmem->cells, node) {
1193 		if (np == iter->np) {
1194 			cell = iter;
1195 			break;
1196 		}
1197 	}
1198 	mutex_unlock(&nvmem_mutex);
1199 
1200 	return cell;
1201 }
1202 
1203 /**
1204  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1205  *
1206  * @np: Device tree node that uses the nvmem cell.
1207  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1208  *      for the cell at index 0 (the lone cell with no accompanying
1209  *      nvmem-cell-names property).
1210  *
1211  * Return: Will be an ERR_PTR() on error or a valid pointer
1212  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1213  * nvmem_cell_put().
1214  */
1215 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1216 {
1217 	struct device_node *cell_np, *nvmem_np;
1218 	struct nvmem_device *nvmem;
1219 	struct nvmem_cell_entry *cell_entry;
1220 	struct nvmem_cell *cell;
1221 	struct of_phandle_args cell_spec;
1222 	int index = 0;
1223 	int cell_index = 0;
1224 	int ret;
1225 
1226 	/* if cell name exists, find index to the name */
1227 	if (id)
1228 		index = of_property_match_string(np, "nvmem-cell-names", id);
1229 
1230 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1231 						  "#nvmem-cell-cells",
1232 						  index, &cell_spec);
1233 	if (ret)
1234 		return ERR_PTR(ret);
1235 
1236 	if (cell_spec.args_count > 1)
1237 		return ERR_PTR(-EINVAL);
1238 
1239 	cell_np = cell_spec.np;
1240 	if (cell_spec.args_count)
1241 		cell_index = cell_spec.args[0];
1242 
1243 	nvmem_np = of_get_parent(cell_np);
1244 	if (!nvmem_np) {
1245 		of_node_put(cell_np);
1246 		return ERR_PTR(-EINVAL);
1247 	}
1248 
1249 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1250 	of_node_put(nvmem_np);
1251 	if (IS_ERR(nvmem)) {
1252 		of_node_put(cell_np);
1253 		return ERR_CAST(nvmem);
1254 	}
1255 
1256 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1257 	of_node_put(cell_np);
1258 	if (!cell_entry) {
1259 		__nvmem_device_put(nvmem);
1260 		return ERR_PTR(-ENOENT);
1261 	}
1262 
1263 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1264 	if (IS_ERR(cell))
1265 		__nvmem_device_put(nvmem);
1266 
1267 	return cell;
1268 }
1269 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1270 #endif
1271 
1272 /**
1273  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1274  *
1275  * @dev: Device that requests the nvmem cell.
1276  * @id: nvmem cell name to get (this corresponds with the name from the
1277  *      nvmem-cell-names property for DT systems and with the con_id from
1278  *      the lookup entry for non-DT systems).
1279  *
1280  * Return: Will be an ERR_PTR() on error or a valid pointer
1281  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1282  * nvmem_cell_put().
1283  */
1284 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1285 {
1286 	struct nvmem_cell *cell;
1287 
1288 	if (dev->of_node) { /* try dt first */
1289 		cell = of_nvmem_cell_get(dev->of_node, id);
1290 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1291 			return cell;
1292 	}
1293 
1294 	/* NULL cell id only allowed for device tree; invalid otherwise */
1295 	if (!id)
1296 		return ERR_PTR(-EINVAL);
1297 
1298 	return nvmem_cell_get_from_lookup(dev, id);
1299 }
1300 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1301 
1302 static void devm_nvmem_cell_release(struct device *dev, void *res)
1303 {
1304 	nvmem_cell_put(*(struct nvmem_cell **)res);
1305 }
1306 
1307 /**
1308  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1309  *
1310  * @dev: Device that requests the nvmem cell.
1311  * @id: nvmem cell name id to get.
1312  *
1313  * Return: Will be an ERR_PTR() on error or a valid pointer
1314  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1315  * automatically once the device is freed.
1316  */
1317 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1318 {
1319 	struct nvmem_cell **ptr, *cell;
1320 
1321 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1322 	if (!ptr)
1323 		return ERR_PTR(-ENOMEM);
1324 
1325 	cell = nvmem_cell_get(dev, id);
1326 	if (!IS_ERR(cell)) {
1327 		*ptr = cell;
1328 		devres_add(dev, ptr);
1329 	} else {
1330 		devres_free(ptr);
1331 	}
1332 
1333 	return cell;
1334 }
1335 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1336 
1337 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1338 {
1339 	struct nvmem_cell **c = res;
1340 
1341 	if (WARN_ON(!c || !*c))
1342 		return 0;
1343 
1344 	return *c == data;
1345 }
1346 
1347 /**
1348  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1349  * from devm_nvmem_cell_get.
1350  *
1351  * @dev: Device that requests the nvmem cell.
1352  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1353  */
1354 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1355 {
1356 	int ret;
1357 
1358 	ret = devres_release(dev, devm_nvmem_cell_release,
1359 				devm_nvmem_cell_match, cell);
1360 
1361 	WARN_ON(ret);
1362 }
1363 EXPORT_SYMBOL(devm_nvmem_cell_put);
1364 
1365 /**
1366  * nvmem_cell_put() - Release previously allocated nvmem cell.
1367  *
1368  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1369  */
1370 void nvmem_cell_put(struct nvmem_cell *cell)
1371 {
1372 	struct nvmem_device *nvmem = cell->entry->nvmem;
1373 
1374 	if (cell->id)
1375 		kfree_const(cell->id);
1376 
1377 	kfree(cell);
1378 	__nvmem_device_put(nvmem);
1379 }
1380 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1381 
1382 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1383 {
1384 	u8 *p, *b;
1385 	int i, extra, bit_offset = cell->bit_offset;
1386 
1387 	p = b = buf;
1388 	if (bit_offset) {
1389 		/* First shift */
1390 		*b++ >>= bit_offset;
1391 
1392 		/* setup rest of the bytes if any */
1393 		for (i = 1; i < cell->bytes; i++) {
1394 			/* Get bits from next byte and shift them towards msb */
1395 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1396 
1397 			p = b;
1398 			*b++ >>= bit_offset;
1399 		}
1400 	} else {
1401 		/* point to the msb */
1402 		p += cell->bytes - 1;
1403 	}
1404 
1405 	/* result fits in less bytes */
1406 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1407 	while (--extra >= 0)
1408 		*p-- = 0;
1409 
1410 	/* clear msb bits if any leftover in the last byte */
1411 	if (cell->nbits % BITS_PER_BYTE)
1412 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1413 }
1414 
1415 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1416 			     struct nvmem_cell_entry *cell,
1417 			     void *buf, size_t *len, const char *id, int index)
1418 {
1419 	int rc;
1420 
1421 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1422 
1423 	if (rc)
1424 		return rc;
1425 
1426 	/* shift bits in-place */
1427 	if (cell->bit_offset || cell->nbits)
1428 		nvmem_shift_read_buffer_in_place(cell, buf);
1429 
1430 	if (nvmem->cell_post_process) {
1431 		rc = nvmem->cell_post_process(nvmem->priv, id, index,
1432 					      cell->offset, buf, cell->bytes);
1433 		if (rc)
1434 			return rc;
1435 	}
1436 
1437 	if (len)
1438 		*len = cell->bytes;
1439 
1440 	return 0;
1441 }
1442 
1443 /**
1444  * nvmem_cell_read() - Read a given nvmem cell
1445  *
1446  * @cell: nvmem cell to be read.
1447  * @len: pointer to length of cell which will be populated on successful read;
1448  *	 can be NULL.
1449  *
1450  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1451  * buffer should be freed by the consumer with a kfree().
1452  */
1453 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1454 {
1455 	struct nvmem_device *nvmem = cell->entry->nvmem;
1456 	u8 *buf;
1457 	int rc;
1458 
1459 	if (!nvmem)
1460 		return ERR_PTR(-EINVAL);
1461 
1462 	buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1463 	if (!buf)
1464 		return ERR_PTR(-ENOMEM);
1465 
1466 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1467 	if (rc) {
1468 		kfree(buf);
1469 		return ERR_PTR(rc);
1470 	}
1471 
1472 	return buf;
1473 }
1474 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1475 
1476 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1477 					     u8 *_buf, int len)
1478 {
1479 	struct nvmem_device *nvmem = cell->nvmem;
1480 	int i, rc, nbits, bit_offset = cell->bit_offset;
1481 	u8 v, *p, *buf, *b, pbyte, pbits;
1482 
1483 	nbits = cell->nbits;
1484 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1485 	if (!buf)
1486 		return ERR_PTR(-ENOMEM);
1487 
1488 	memcpy(buf, _buf, len);
1489 	p = b = buf;
1490 
1491 	if (bit_offset) {
1492 		pbyte = *b;
1493 		*b <<= bit_offset;
1494 
1495 		/* setup the first byte with lsb bits from nvmem */
1496 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1497 		if (rc)
1498 			goto err;
1499 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1500 
1501 		/* setup rest of the byte if any */
1502 		for (i = 1; i < cell->bytes; i++) {
1503 			/* Get last byte bits and shift them towards lsb */
1504 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1505 			pbyte = *b;
1506 			p = b;
1507 			*b <<= bit_offset;
1508 			*b++ |= pbits;
1509 		}
1510 	}
1511 
1512 	/* if it's not end on byte boundary */
1513 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1514 		/* setup the last byte with msb bits from nvmem */
1515 		rc = nvmem_reg_read(nvmem,
1516 				    cell->offset + cell->bytes - 1, &v, 1);
1517 		if (rc)
1518 			goto err;
1519 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1520 
1521 	}
1522 
1523 	return buf;
1524 err:
1525 	kfree(buf);
1526 	return ERR_PTR(rc);
1527 }
1528 
1529 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1530 {
1531 	struct nvmem_device *nvmem = cell->nvmem;
1532 	int rc;
1533 
1534 	if (!nvmem || nvmem->read_only ||
1535 	    (cell->bit_offset == 0 && len != cell->bytes))
1536 		return -EINVAL;
1537 
1538 	if (cell->bit_offset || cell->nbits) {
1539 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1540 		if (IS_ERR(buf))
1541 			return PTR_ERR(buf);
1542 	}
1543 
1544 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1545 
1546 	/* free the tmp buffer */
1547 	if (cell->bit_offset || cell->nbits)
1548 		kfree(buf);
1549 
1550 	if (rc)
1551 		return rc;
1552 
1553 	return len;
1554 }
1555 
1556 /**
1557  * nvmem_cell_write() - Write to a given nvmem cell
1558  *
1559  * @cell: nvmem cell to be written.
1560  * @buf: Buffer to be written.
1561  * @len: length of buffer to be written to nvmem cell.
1562  *
1563  * Return: length of bytes written or negative on failure.
1564  */
1565 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1566 {
1567 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1568 }
1569 
1570 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1571 
1572 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1573 				  void *val, size_t count)
1574 {
1575 	struct nvmem_cell *cell;
1576 	void *buf;
1577 	size_t len;
1578 
1579 	cell = nvmem_cell_get(dev, cell_id);
1580 	if (IS_ERR(cell))
1581 		return PTR_ERR(cell);
1582 
1583 	buf = nvmem_cell_read(cell, &len);
1584 	if (IS_ERR(buf)) {
1585 		nvmem_cell_put(cell);
1586 		return PTR_ERR(buf);
1587 	}
1588 	if (len != count) {
1589 		kfree(buf);
1590 		nvmem_cell_put(cell);
1591 		return -EINVAL;
1592 	}
1593 	memcpy(val, buf, count);
1594 	kfree(buf);
1595 	nvmem_cell_put(cell);
1596 
1597 	return 0;
1598 }
1599 
1600 /**
1601  * nvmem_cell_read_u8() - Read a cell value as a u8
1602  *
1603  * @dev: Device that requests the nvmem cell.
1604  * @cell_id: Name of nvmem cell to read.
1605  * @val: pointer to output value.
1606  *
1607  * Return: 0 on success or negative errno.
1608  */
1609 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1610 {
1611 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1612 }
1613 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1614 
1615 /**
1616  * nvmem_cell_read_u16() - Read a cell value as a u16
1617  *
1618  * @dev: Device that requests the nvmem cell.
1619  * @cell_id: Name of nvmem cell to read.
1620  * @val: pointer to output value.
1621  *
1622  * Return: 0 on success or negative errno.
1623  */
1624 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1625 {
1626 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1627 }
1628 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1629 
1630 /**
1631  * nvmem_cell_read_u32() - Read a cell value as a u32
1632  *
1633  * @dev: Device that requests the nvmem cell.
1634  * @cell_id: Name of nvmem cell to read.
1635  * @val: pointer to output value.
1636  *
1637  * Return: 0 on success or negative errno.
1638  */
1639 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1640 {
1641 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1642 }
1643 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1644 
1645 /**
1646  * nvmem_cell_read_u64() - Read a cell value as a u64
1647  *
1648  * @dev: Device that requests the nvmem cell.
1649  * @cell_id: Name of nvmem cell to read.
1650  * @val: pointer to output value.
1651  *
1652  * Return: 0 on success or negative errno.
1653  */
1654 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1655 {
1656 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1657 }
1658 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1659 
1660 static const void *nvmem_cell_read_variable_common(struct device *dev,
1661 						   const char *cell_id,
1662 						   size_t max_len, size_t *len)
1663 {
1664 	struct nvmem_cell *cell;
1665 	int nbits;
1666 	void *buf;
1667 
1668 	cell = nvmem_cell_get(dev, cell_id);
1669 	if (IS_ERR(cell))
1670 		return cell;
1671 
1672 	nbits = cell->entry->nbits;
1673 	buf = nvmem_cell_read(cell, len);
1674 	nvmem_cell_put(cell);
1675 	if (IS_ERR(buf))
1676 		return buf;
1677 
1678 	/*
1679 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1680 	 * the length of the real data. Throw away the extra junk.
1681 	 */
1682 	if (nbits)
1683 		*len = DIV_ROUND_UP(nbits, 8);
1684 
1685 	if (*len > max_len) {
1686 		kfree(buf);
1687 		return ERR_PTR(-ERANGE);
1688 	}
1689 
1690 	return buf;
1691 }
1692 
1693 /**
1694  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1695  *
1696  * @dev: Device that requests the nvmem cell.
1697  * @cell_id: Name of nvmem cell to read.
1698  * @val: pointer to output value.
1699  *
1700  * Return: 0 on success or negative errno.
1701  */
1702 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1703 				    u32 *val)
1704 {
1705 	size_t len;
1706 	const u8 *buf;
1707 	int i;
1708 
1709 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1710 	if (IS_ERR(buf))
1711 		return PTR_ERR(buf);
1712 
1713 	/* Copy w/ implicit endian conversion */
1714 	*val = 0;
1715 	for (i = 0; i < len; i++)
1716 		*val |= buf[i] << (8 * i);
1717 
1718 	kfree(buf);
1719 
1720 	return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1723 
1724 /**
1725  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1726  *
1727  * @dev: Device that requests the nvmem cell.
1728  * @cell_id: Name of nvmem cell to read.
1729  * @val: pointer to output value.
1730  *
1731  * Return: 0 on success or negative errno.
1732  */
1733 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1734 				    u64 *val)
1735 {
1736 	size_t len;
1737 	const u8 *buf;
1738 	int i;
1739 
1740 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1741 	if (IS_ERR(buf))
1742 		return PTR_ERR(buf);
1743 
1744 	/* Copy w/ implicit endian conversion */
1745 	*val = 0;
1746 	for (i = 0; i < len; i++)
1747 		*val |= (uint64_t)buf[i] << (8 * i);
1748 
1749 	kfree(buf);
1750 
1751 	return 0;
1752 }
1753 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1754 
1755 /**
1756  * nvmem_device_cell_read() - Read a given nvmem device and cell
1757  *
1758  * @nvmem: nvmem device to read from.
1759  * @info: nvmem cell info to be read.
1760  * @buf: buffer pointer which will be populated on successful read.
1761  *
1762  * Return: length of successful bytes read on success and negative
1763  * error code on error.
1764  */
1765 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1766 			   struct nvmem_cell_info *info, void *buf)
1767 {
1768 	struct nvmem_cell_entry cell;
1769 	int rc;
1770 	ssize_t len;
1771 
1772 	if (!nvmem)
1773 		return -EINVAL;
1774 
1775 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1776 	if (rc)
1777 		return rc;
1778 
1779 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1780 	if (rc)
1781 		return rc;
1782 
1783 	return len;
1784 }
1785 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1786 
1787 /**
1788  * nvmem_device_cell_write() - Write cell to a given nvmem device
1789  *
1790  * @nvmem: nvmem device to be written to.
1791  * @info: nvmem cell info to be written.
1792  * @buf: buffer to be written to cell.
1793  *
1794  * Return: length of bytes written or negative error code on failure.
1795  */
1796 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1797 			    struct nvmem_cell_info *info, void *buf)
1798 {
1799 	struct nvmem_cell_entry cell;
1800 	int rc;
1801 
1802 	if (!nvmem)
1803 		return -EINVAL;
1804 
1805 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1806 	if (rc)
1807 		return rc;
1808 
1809 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1810 }
1811 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1812 
1813 /**
1814  * nvmem_device_read() - Read from a given nvmem device
1815  *
1816  * @nvmem: nvmem device to read from.
1817  * @offset: offset in nvmem device.
1818  * @bytes: number of bytes to read.
1819  * @buf: buffer pointer which will be populated on successful read.
1820  *
1821  * Return: length of successful bytes read on success and negative
1822  * error code on error.
1823  */
1824 int nvmem_device_read(struct nvmem_device *nvmem,
1825 		      unsigned int offset,
1826 		      size_t bytes, void *buf)
1827 {
1828 	int rc;
1829 
1830 	if (!nvmem)
1831 		return -EINVAL;
1832 
1833 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1834 
1835 	if (rc)
1836 		return rc;
1837 
1838 	return bytes;
1839 }
1840 EXPORT_SYMBOL_GPL(nvmem_device_read);
1841 
1842 /**
1843  * nvmem_device_write() - Write cell to a given nvmem device
1844  *
1845  * @nvmem: nvmem device to be written to.
1846  * @offset: offset in nvmem device.
1847  * @bytes: number of bytes to write.
1848  * @buf: buffer to be written.
1849  *
1850  * Return: length of bytes written or negative error code on failure.
1851  */
1852 int nvmem_device_write(struct nvmem_device *nvmem,
1853 		       unsigned int offset,
1854 		       size_t bytes, void *buf)
1855 {
1856 	int rc;
1857 
1858 	if (!nvmem)
1859 		return -EINVAL;
1860 
1861 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1862 
1863 	if (rc)
1864 		return rc;
1865 
1866 
1867 	return bytes;
1868 }
1869 EXPORT_SYMBOL_GPL(nvmem_device_write);
1870 
1871 /**
1872  * nvmem_add_cell_table() - register a table of cell info entries
1873  *
1874  * @table: table of cell info entries
1875  */
1876 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1877 {
1878 	mutex_lock(&nvmem_cell_mutex);
1879 	list_add_tail(&table->node, &nvmem_cell_tables);
1880 	mutex_unlock(&nvmem_cell_mutex);
1881 }
1882 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1883 
1884 /**
1885  * nvmem_del_cell_table() - remove a previously registered cell info table
1886  *
1887  * @table: table of cell info entries
1888  */
1889 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1890 {
1891 	mutex_lock(&nvmem_cell_mutex);
1892 	list_del(&table->node);
1893 	mutex_unlock(&nvmem_cell_mutex);
1894 }
1895 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1896 
1897 /**
1898  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1899  *
1900  * @entries: array of cell lookup entries
1901  * @nentries: number of cell lookup entries in the array
1902  */
1903 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1904 {
1905 	int i;
1906 
1907 	mutex_lock(&nvmem_lookup_mutex);
1908 	for (i = 0; i < nentries; i++)
1909 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1910 	mutex_unlock(&nvmem_lookup_mutex);
1911 }
1912 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1913 
1914 /**
1915  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1916  *                            entries
1917  *
1918  * @entries: array of cell lookup entries
1919  * @nentries: number of cell lookup entries in the array
1920  */
1921 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1922 {
1923 	int i;
1924 
1925 	mutex_lock(&nvmem_lookup_mutex);
1926 	for (i = 0; i < nentries; i++)
1927 		list_del(&entries[i].node);
1928 	mutex_unlock(&nvmem_lookup_mutex);
1929 }
1930 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1931 
1932 /**
1933  * nvmem_dev_name() - Get the name of a given nvmem device.
1934  *
1935  * @nvmem: nvmem device.
1936  *
1937  * Return: name of the nvmem device.
1938  */
1939 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1940 {
1941 	return dev_name(&nvmem->dev);
1942 }
1943 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1944 
1945 static int __init nvmem_init(void)
1946 {
1947 	return bus_register(&nvmem_bus_type);
1948 }
1949 
1950 static void __exit nvmem_exit(void)
1951 {
1952 	bus_unregister(&nvmem_bus_type);
1953 }
1954 
1955 subsys_initcall(nvmem_init);
1956 module_exit(nvmem_exit);
1957 
1958 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1959 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1960 MODULE_DESCRIPTION("nvmem Driver Core");
1961 MODULE_LICENSE("GPL v2");
1962