xref: /openbmc/linux/drivers/nvmem/core.c (revision 266570f496b90dea8fda893c2cf7c28d63ae2bd9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	nvmem_cell_post_process_t cell_post_process;
42 	struct gpio_desc	*wp_gpio;
43 	struct nvmem_layout	*layout;
44 	void *priv;
45 };
46 
47 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
48 
49 #define FLAG_COMPAT		BIT(0)
50 struct nvmem_cell_entry {
51 	const char		*name;
52 	int			offset;
53 	int			bytes;
54 	int			bit_offset;
55 	int			nbits;
56 	struct device_node	*np;
57 	struct nvmem_device	*nvmem;
58 	struct list_head	node;
59 };
60 
61 struct nvmem_cell {
62 	struct nvmem_cell_entry *entry;
63 	const char		*id;
64 	int			index;
65 };
66 
67 static DEFINE_MUTEX(nvmem_mutex);
68 static DEFINE_IDA(nvmem_ida);
69 
70 static DEFINE_MUTEX(nvmem_cell_mutex);
71 static LIST_HEAD(nvmem_cell_tables);
72 
73 static DEFINE_MUTEX(nvmem_lookup_mutex);
74 static LIST_HEAD(nvmem_lookup_list);
75 
76 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
77 
78 static DEFINE_SPINLOCK(nvmem_layout_lock);
79 static LIST_HEAD(nvmem_layouts);
80 
81 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
82 			    void *val, size_t bytes)
83 {
84 	if (nvmem->reg_read)
85 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
86 
87 	return -EINVAL;
88 }
89 
90 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
91 			     void *val, size_t bytes)
92 {
93 	int ret;
94 
95 	if (nvmem->reg_write) {
96 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
97 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
98 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
99 		return ret;
100 	}
101 
102 	return -EINVAL;
103 }
104 
105 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
106 				      unsigned int offset, void *val,
107 				      size_t bytes, int write)
108 {
109 
110 	unsigned int end = offset + bytes;
111 	unsigned int kend, ksize;
112 	const struct nvmem_keepout *keepout = nvmem->keepout;
113 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
114 	int rc;
115 
116 	/*
117 	 * Skip all keepouts before the range being accessed.
118 	 * Keepouts are sorted.
119 	 */
120 	while ((keepout < keepoutend) && (keepout->end <= offset))
121 		keepout++;
122 
123 	while ((offset < end) && (keepout < keepoutend)) {
124 		/* Access the valid portion before the keepout. */
125 		if (offset < keepout->start) {
126 			kend = min(end, keepout->start);
127 			ksize = kend - offset;
128 			if (write)
129 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
130 			else
131 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
132 
133 			if (rc)
134 				return rc;
135 
136 			offset += ksize;
137 			val += ksize;
138 		}
139 
140 		/*
141 		 * Now we're aligned to the start of this keepout zone. Go
142 		 * through it.
143 		 */
144 		kend = min(end, keepout->end);
145 		ksize = kend - offset;
146 		if (!write)
147 			memset(val, keepout->value, ksize);
148 
149 		val += ksize;
150 		offset += ksize;
151 		keepout++;
152 	}
153 
154 	/*
155 	 * If we ran out of keepouts but there's still stuff to do, send it
156 	 * down directly
157 	 */
158 	if (offset < end) {
159 		ksize = end - offset;
160 		if (write)
161 			return __nvmem_reg_write(nvmem, offset, val, ksize);
162 		else
163 			return __nvmem_reg_read(nvmem, offset, val, ksize);
164 	}
165 
166 	return 0;
167 }
168 
169 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
170 			  void *val, size_t bytes)
171 {
172 	if (!nvmem->nkeepout)
173 		return __nvmem_reg_read(nvmem, offset, val, bytes);
174 
175 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
176 }
177 
178 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
179 			   void *val, size_t bytes)
180 {
181 	if (!nvmem->nkeepout)
182 		return __nvmem_reg_write(nvmem, offset, val, bytes);
183 
184 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
185 }
186 
187 #ifdef CONFIG_NVMEM_SYSFS
188 static const char * const nvmem_type_str[] = {
189 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
190 	[NVMEM_TYPE_EEPROM] = "EEPROM",
191 	[NVMEM_TYPE_OTP] = "OTP",
192 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
193 	[NVMEM_TYPE_FRAM] = "FRAM",
194 };
195 
196 #ifdef CONFIG_DEBUG_LOCK_ALLOC
197 static struct lock_class_key eeprom_lock_key;
198 #endif
199 
200 static ssize_t type_show(struct device *dev,
201 			 struct device_attribute *attr, char *buf)
202 {
203 	struct nvmem_device *nvmem = to_nvmem_device(dev);
204 
205 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
206 }
207 
208 static DEVICE_ATTR_RO(type);
209 
210 static struct attribute *nvmem_attrs[] = {
211 	&dev_attr_type.attr,
212 	NULL,
213 };
214 
215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 				   struct bin_attribute *attr, char *buf,
217 				   loff_t pos, size_t count)
218 {
219 	struct device *dev;
220 	struct nvmem_device *nvmem;
221 	int rc;
222 
223 	if (attr->private)
224 		dev = attr->private;
225 	else
226 		dev = kobj_to_dev(kobj);
227 	nvmem = to_nvmem_device(dev);
228 
229 	/* Stop the user from reading */
230 	if (pos >= nvmem->size)
231 		return 0;
232 
233 	if (!IS_ALIGNED(pos, nvmem->stride))
234 		return -EINVAL;
235 
236 	if (count < nvmem->word_size)
237 		return -EINVAL;
238 
239 	if (pos + count > nvmem->size)
240 		count = nvmem->size - pos;
241 
242 	count = round_down(count, nvmem->word_size);
243 
244 	if (!nvmem->reg_read)
245 		return -EPERM;
246 
247 	rc = nvmem_reg_read(nvmem, pos, buf, count);
248 
249 	if (rc)
250 		return rc;
251 
252 	return count;
253 }
254 
255 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
256 				    struct bin_attribute *attr, char *buf,
257 				    loff_t pos, size_t count)
258 {
259 	struct device *dev;
260 	struct nvmem_device *nvmem;
261 	int rc;
262 
263 	if (attr->private)
264 		dev = attr->private;
265 	else
266 		dev = kobj_to_dev(kobj);
267 	nvmem = to_nvmem_device(dev);
268 
269 	/* Stop the user from writing */
270 	if (pos >= nvmem->size)
271 		return -EFBIG;
272 
273 	if (!IS_ALIGNED(pos, nvmem->stride))
274 		return -EINVAL;
275 
276 	if (count < nvmem->word_size)
277 		return -EINVAL;
278 
279 	if (pos + count > nvmem->size)
280 		count = nvmem->size - pos;
281 
282 	count = round_down(count, nvmem->word_size);
283 
284 	if (!nvmem->reg_write)
285 		return -EPERM;
286 
287 	rc = nvmem_reg_write(nvmem, pos, buf, count);
288 
289 	if (rc)
290 		return rc;
291 
292 	return count;
293 }
294 
295 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
296 {
297 	umode_t mode = 0400;
298 
299 	if (!nvmem->root_only)
300 		mode |= 0044;
301 
302 	if (!nvmem->read_only)
303 		mode |= 0200;
304 
305 	if (!nvmem->reg_write)
306 		mode &= ~0200;
307 
308 	if (!nvmem->reg_read)
309 		mode &= ~0444;
310 
311 	return mode;
312 }
313 
314 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
315 					 struct bin_attribute *attr, int i)
316 {
317 	struct device *dev = kobj_to_dev(kobj);
318 	struct nvmem_device *nvmem = to_nvmem_device(dev);
319 
320 	attr->size = nvmem->size;
321 
322 	return nvmem_bin_attr_get_umode(nvmem);
323 }
324 
325 /* default read/write permissions */
326 static struct bin_attribute bin_attr_rw_nvmem = {
327 	.attr	= {
328 		.name	= "nvmem",
329 		.mode	= 0644,
330 	},
331 	.read	= bin_attr_nvmem_read,
332 	.write	= bin_attr_nvmem_write,
333 };
334 
335 static struct bin_attribute *nvmem_bin_attributes[] = {
336 	&bin_attr_rw_nvmem,
337 	NULL,
338 };
339 
340 static const struct attribute_group nvmem_bin_group = {
341 	.bin_attrs	= nvmem_bin_attributes,
342 	.attrs		= nvmem_attrs,
343 	.is_bin_visible = nvmem_bin_attr_is_visible,
344 };
345 
346 static const struct attribute_group *nvmem_dev_groups[] = {
347 	&nvmem_bin_group,
348 	NULL,
349 };
350 
351 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
352 	.attr	= {
353 		.name	= "eeprom",
354 	},
355 	.read	= bin_attr_nvmem_read,
356 	.write	= bin_attr_nvmem_write,
357 };
358 
359 /*
360  * nvmem_setup_compat() - Create an additional binary entry in
361  * drivers sys directory, to be backwards compatible with the older
362  * drivers/misc/eeprom drivers.
363  */
364 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
365 				    const struct nvmem_config *config)
366 {
367 	int rval;
368 
369 	if (!config->compat)
370 		return 0;
371 
372 	if (!config->base_dev)
373 		return -EINVAL;
374 
375 	if (config->type == NVMEM_TYPE_FRAM)
376 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
377 
378 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
379 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
380 	nvmem->eeprom.size = nvmem->size;
381 #ifdef CONFIG_DEBUG_LOCK_ALLOC
382 	nvmem->eeprom.attr.key = &eeprom_lock_key;
383 #endif
384 	nvmem->eeprom.private = &nvmem->dev;
385 	nvmem->base_dev = config->base_dev;
386 
387 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
388 	if (rval) {
389 		dev_err(&nvmem->dev,
390 			"Failed to create eeprom binary file %d\n", rval);
391 		return rval;
392 	}
393 
394 	nvmem->flags |= FLAG_COMPAT;
395 
396 	return 0;
397 }
398 
399 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
400 			      const struct nvmem_config *config)
401 {
402 	if (config->compat)
403 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
404 }
405 
406 #else /* CONFIG_NVMEM_SYSFS */
407 
408 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
409 				    const struct nvmem_config *config)
410 {
411 	return -ENOSYS;
412 }
413 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
414 				      const struct nvmem_config *config)
415 {
416 }
417 
418 #endif /* CONFIG_NVMEM_SYSFS */
419 
420 static void nvmem_release(struct device *dev)
421 {
422 	struct nvmem_device *nvmem = to_nvmem_device(dev);
423 
424 	ida_free(&nvmem_ida, nvmem->id);
425 	gpiod_put(nvmem->wp_gpio);
426 	kfree(nvmem);
427 }
428 
429 static const struct device_type nvmem_provider_type = {
430 	.release	= nvmem_release,
431 };
432 
433 static struct bus_type nvmem_bus_type = {
434 	.name		= "nvmem",
435 };
436 
437 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
438 {
439 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
440 	mutex_lock(&nvmem_mutex);
441 	list_del(&cell->node);
442 	mutex_unlock(&nvmem_mutex);
443 	of_node_put(cell->np);
444 	kfree_const(cell->name);
445 	kfree(cell);
446 }
447 
448 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
449 {
450 	struct nvmem_cell_entry *cell, *p;
451 
452 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
453 		nvmem_cell_entry_drop(cell);
454 }
455 
456 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
457 {
458 	mutex_lock(&nvmem_mutex);
459 	list_add_tail(&cell->node, &cell->nvmem->cells);
460 	mutex_unlock(&nvmem_mutex);
461 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
462 }
463 
464 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
465 						     const struct nvmem_cell_info *info,
466 						     struct nvmem_cell_entry *cell)
467 {
468 	cell->nvmem = nvmem;
469 	cell->offset = info->offset;
470 	cell->bytes = info->bytes;
471 	cell->name = info->name;
472 
473 	cell->bit_offset = info->bit_offset;
474 	cell->nbits = info->nbits;
475 	cell->np = info->np;
476 
477 	if (cell->nbits)
478 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
479 					   BITS_PER_BYTE);
480 
481 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
482 		dev_err(&nvmem->dev,
483 			"cell %s unaligned to nvmem stride %d\n",
484 			cell->name ?: "<unknown>", nvmem->stride);
485 		return -EINVAL;
486 	}
487 
488 	return 0;
489 }
490 
491 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
492 					       const struct nvmem_cell_info *info,
493 					       struct nvmem_cell_entry *cell)
494 {
495 	int err;
496 
497 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
498 	if (err)
499 		return err;
500 
501 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
502 	if (!cell->name)
503 		return -ENOMEM;
504 
505 	return 0;
506 }
507 
508 /**
509  * nvmem_add_one_cell() - Add one cell information to an nvmem device
510  *
511  * @nvmem: nvmem device to add cells to.
512  * @info: nvmem cell info to add to the device
513  *
514  * Return: 0 or negative error code on failure.
515  */
516 int nvmem_add_one_cell(struct nvmem_device *nvmem,
517 		       const struct nvmem_cell_info *info)
518 {
519 	struct nvmem_cell_entry *cell;
520 	int rval;
521 
522 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
523 	if (!cell)
524 		return -ENOMEM;
525 
526 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
527 	if (rval) {
528 		kfree(cell);
529 		return rval;
530 	}
531 
532 	nvmem_cell_entry_add(cell);
533 
534 	return 0;
535 }
536 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
537 
538 /**
539  * nvmem_add_cells() - Add cell information to an nvmem device
540  *
541  * @nvmem: nvmem device to add cells to.
542  * @info: nvmem cell info to add to the device
543  * @ncells: number of cells in info
544  *
545  * Return: 0 or negative error code on failure.
546  */
547 static int nvmem_add_cells(struct nvmem_device *nvmem,
548 		    const struct nvmem_cell_info *info,
549 		    int ncells)
550 {
551 	int i, rval;
552 
553 	for (i = 0; i < ncells; i++) {
554 		rval = nvmem_add_one_cell(nvmem, &info[i]);
555 		if (rval)
556 			return rval;
557 	}
558 
559 	return 0;
560 }
561 
562 /**
563  * nvmem_register_notifier() - Register a notifier block for nvmem events.
564  *
565  * @nb: notifier block to be called on nvmem events.
566  *
567  * Return: 0 on success, negative error number on failure.
568  */
569 int nvmem_register_notifier(struct notifier_block *nb)
570 {
571 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
572 }
573 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
574 
575 /**
576  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
577  *
578  * @nb: notifier block to be unregistered.
579  *
580  * Return: 0 on success, negative error number on failure.
581  */
582 int nvmem_unregister_notifier(struct notifier_block *nb)
583 {
584 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
585 }
586 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
587 
588 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
589 {
590 	const struct nvmem_cell_info *info;
591 	struct nvmem_cell_table *table;
592 	struct nvmem_cell_entry *cell;
593 	int rval = 0, i;
594 
595 	mutex_lock(&nvmem_cell_mutex);
596 	list_for_each_entry(table, &nvmem_cell_tables, node) {
597 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
598 			for (i = 0; i < table->ncells; i++) {
599 				info = &table->cells[i];
600 
601 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
602 				if (!cell) {
603 					rval = -ENOMEM;
604 					goto out;
605 				}
606 
607 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
608 				if (rval) {
609 					kfree(cell);
610 					goto out;
611 				}
612 
613 				nvmem_cell_entry_add(cell);
614 			}
615 		}
616 	}
617 
618 out:
619 	mutex_unlock(&nvmem_cell_mutex);
620 	return rval;
621 }
622 
623 static struct nvmem_cell_entry *
624 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
625 {
626 	struct nvmem_cell_entry *iter, *cell = NULL;
627 
628 	mutex_lock(&nvmem_mutex);
629 	list_for_each_entry(iter, &nvmem->cells, node) {
630 		if (strcmp(cell_id, iter->name) == 0) {
631 			cell = iter;
632 			break;
633 		}
634 	}
635 	mutex_unlock(&nvmem_mutex);
636 
637 	return cell;
638 }
639 
640 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
641 {
642 	unsigned int cur = 0;
643 	const struct nvmem_keepout *keepout = nvmem->keepout;
644 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
645 
646 	while (keepout < keepoutend) {
647 		/* Ensure keepouts are sorted and don't overlap. */
648 		if (keepout->start < cur) {
649 			dev_err(&nvmem->dev,
650 				"Keepout regions aren't sorted or overlap.\n");
651 
652 			return -ERANGE;
653 		}
654 
655 		if (keepout->end < keepout->start) {
656 			dev_err(&nvmem->dev,
657 				"Invalid keepout region.\n");
658 
659 			return -EINVAL;
660 		}
661 
662 		/*
663 		 * Validate keepouts (and holes between) don't violate
664 		 * word_size constraints.
665 		 */
666 		if ((keepout->end - keepout->start < nvmem->word_size) ||
667 		    ((keepout->start != cur) &&
668 		     (keepout->start - cur < nvmem->word_size))) {
669 
670 			dev_err(&nvmem->dev,
671 				"Keepout regions violate word_size constraints.\n");
672 
673 			return -ERANGE;
674 		}
675 
676 		/* Validate keepouts don't violate stride (alignment). */
677 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
678 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
679 
680 			dev_err(&nvmem->dev,
681 				"Keepout regions violate stride.\n");
682 
683 			return -EINVAL;
684 		}
685 
686 		cur = keepout->end;
687 		keepout++;
688 	}
689 
690 	return 0;
691 }
692 
693 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
694 {
695 	struct device *dev = &nvmem->dev;
696 	struct device_node *child;
697 	const __be32 *addr;
698 	int len, ret;
699 
700 	for_each_child_of_node(dev->of_node, child) {
701 		struct nvmem_cell_info info = {0};
702 
703 		addr = of_get_property(child, "reg", &len);
704 		if (!addr)
705 			continue;
706 		if (len < 2 * sizeof(u32)) {
707 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
708 			of_node_put(child);
709 			return -EINVAL;
710 		}
711 
712 		info.offset = be32_to_cpup(addr++);
713 		info.bytes = be32_to_cpup(addr);
714 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
715 
716 		addr = of_get_property(child, "bits", &len);
717 		if (addr && len == (2 * sizeof(u32))) {
718 			info.bit_offset = be32_to_cpup(addr++);
719 			info.nbits = be32_to_cpup(addr);
720 		}
721 
722 		info.np = of_node_get(child);
723 
724 		ret = nvmem_add_one_cell(nvmem, &info);
725 		kfree(info.name);
726 		if (ret) {
727 			of_node_put(child);
728 			return ret;
729 		}
730 	}
731 
732 	return 0;
733 }
734 
735 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
736 {
737 	layout->owner = owner;
738 
739 	spin_lock(&nvmem_layout_lock);
740 	list_add(&layout->node, &nvmem_layouts);
741 	spin_unlock(&nvmem_layout_lock);
742 
743 	return 0;
744 }
745 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
746 
747 void nvmem_layout_unregister(struct nvmem_layout *layout)
748 {
749 	spin_lock(&nvmem_layout_lock);
750 	list_del(&layout->node);
751 	spin_unlock(&nvmem_layout_lock);
752 }
753 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
754 
755 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
756 {
757 	struct device_node *layout_np, *np = nvmem->dev.of_node;
758 	struct nvmem_layout *l, *layout = NULL;
759 
760 	layout_np = of_get_child_by_name(np, "nvmem-layout");
761 	if (!layout_np)
762 		return NULL;
763 
764 	spin_lock(&nvmem_layout_lock);
765 
766 	list_for_each_entry(l, &nvmem_layouts, node) {
767 		if (of_match_node(l->of_match_table, layout_np)) {
768 			if (try_module_get(l->owner))
769 				layout = l;
770 
771 			break;
772 		}
773 	}
774 
775 	spin_unlock(&nvmem_layout_lock);
776 	of_node_put(layout_np);
777 
778 	return layout;
779 }
780 
781 static void nvmem_layout_put(struct nvmem_layout *layout)
782 {
783 	if (layout)
784 		module_put(layout->owner);
785 }
786 
787 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
788 {
789 	struct nvmem_layout *layout = nvmem->layout;
790 	int ret;
791 
792 	if (layout && layout->add_cells) {
793 		ret = layout->add_cells(&nvmem->dev, nvmem, layout);
794 		if (ret)
795 			return ret;
796 	}
797 
798 	return 0;
799 }
800 
801 #if IS_ENABLED(CONFIG_OF)
802 /**
803  * of_nvmem_layout_get_container() - Get OF node to layout container.
804  *
805  * @nvmem: nvmem device.
806  *
807  * Return: a node pointer with refcount incremented or NULL if no
808  * container exists. Use of_node_put() on it when done.
809  */
810 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
811 {
812 	return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
813 }
814 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
815 #endif
816 
817 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
818 					struct nvmem_layout *layout)
819 {
820 	struct device_node __maybe_unused *layout_np;
821 	const struct of_device_id *match;
822 
823 	layout_np = of_nvmem_layout_get_container(nvmem);
824 	match = of_match_node(layout->of_match_table, layout_np);
825 
826 	return match ? match->data : NULL;
827 }
828 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
829 
830 /**
831  * nvmem_register() - Register a nvmem device for given nvmem_config.
832  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
833  *
834  * @config: nvmem device configuration with which nvmem device is created.
835  *
836  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
837  * on success.
838  */
839 
840 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
841 {
842 	struct nvmem_device *nvmem;
843 	int rval;
844 
845 	if (!config->dev)
846 		return ERR_PTR(-EINVAL);
847 
848 	if (!config->reg_read && !config->reg_write)
849 		return ERR_PTR(-EINVAL);
850 
851 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
852 	if (!nvmem)
853 		return ERR_PTR(-ENOMEM);
854 
855 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
856 	if (rval < 0) {
857 		kfree(nvmem);
858 		return ERR_PTR(rval);
859 	}
860 
861 	nvmem->id = rval;
862 
863 	nvmem->dev.type = &nvmem_provider_type;
864 	nvmem->dev.bus = &nvmem_bus_type;
865 	nvmem->dev.parent = config->dev;
866 
867 	device_initialize(&nvmem->dev);
868 
869 	if (!config->ignore_wp)
870 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
871 						    GPIOD_OUT_HIGH);
872 	if (IS_ERR(nvmem->wp_gpio)) {
873 		rval = PTR_ERR(nvmem->wp_gpio);
874 		nvmem->wp_gpio = NULL;
875 		goto err_put_device;
876 	}
877 
878 	kref_init(&nvmem->refcnt);
879 	INIT_LIST_HEAD(&nvmem->cells);
880 
881 	nvmem->owner = config->owner;
882 	if (!nvmem->owner && config->dev->driver)
883 		nvmem->owner = config->dev->driver->owner;
884 	nvmem->stride = config->stride ?: 1;
885 	nvmem->word_size = config->word_size ?: 1;
886 	nvmem->size = config->size;
887 	nvmem->root_only = config->root_only;
888 	nvmem->priv = config->priv;
889 	nvmem->type = config->type;
890 	nvmem->reg_read = config->reg_read;
891 	nvmem->reg_write = config->reg_write;
892 	nvmem->cell_post_process = config->cell_post_process;
893 	nvmem->keepout = config->keepout;
894 	nvmem->nkeepout = config->nkeepout;
895 	if (config->of_node)
896 		nvmem->dev.of_node = config->of_node;
897 	else if (!config->no_of_node)
898 		nvmem->dev.of_node = config->dev->of_node;
899 
900 	switch (config->id) {
901 	case NVMEM_DEVID_NONE:
902 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
903 		break;
904 	case NVMEM_DEVID_AUTO:
905 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
906 		break;
907 	default:
908 		rval = dev_set_name(&nvmem->dev, "%s%d",
909 			     config->name ? : "nvmem",
910 			     config->name ? config->id : nvmem->id);
911 		break;
912 	}
913 
914 	if (rval)
915 		goto err_put_device;
916 
917 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
918 			   config->read_only || !nvmem->reg_write;
919 
920 #ifdef CONFIG_NVMEM_SYSFS
921 	nvmem->dev.groups = nvmem_dev_groups;
922 #endif
923 
924 	if (nvmem->nkeepout) {
925 		rval = nvmem_validate_keepouts(nvmem);
926 		if (rval)
927 			goto err_put_device;
928 	}
929 
930 	if (config->compat) {
931 		rval = nvmem_sysfs_setup_compat(nvmem, config);
932 		if (rval)
933 			goto err_put_device;
934 	}
935 
936 	/*
937 	 * If the driver supplied a layout by config->layout, the module
938 	 * pointer will be NULL and nvmem_layout_put() will be a noop.
939 	 */
940 	nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
941 
942 	if (config->cells) {
943 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
944 		if (rval)
945 			goto err_remove_cells;
946 	}
947 
948 	rval = nvmem_add_cells_from_table(nvmem);
949 	if (rval)
950 		goto err_remove_cells;
951 
952 	rval = nvmem_add_cells_from_of(nvmem);
953 	if (rval)
954 		goto err_remove_cells;
955 
956 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
957 
958 	rval = device_add(&nvmem->dev);
959 	if (rval)
960 		goto err_remove_cells;
961 
962 	rval = nvmem_add_cells_from_layout(nvmem);
963 	if (rval)
964 		goto err_remove_cells;
965 
966 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
967 
968 	return nvmem;
969 
970 err_remove_cells:
971 	nvmem_device_remove_all_cells(nvmem);
972 	nvmem_layout_put(nvmem->layout);
973 	if (config->compat)
974 		nvmem_sysfs_remove_compat(nvmem, config);
975 err_put_device:
976 	put_device(&nvmem->dev);
977 
978 	return ERR_PTR(rval);
979 }
980 EXPORT_SYMBOL_GPL(nvmem_register);
981 
982 static void nvmem_device_release(struct kref *kref)
983 {
984 	struct nvmem_device *nvmem;
985 
986 	nvmem = container_of(kref, struct nvmem_device, refcnt);
987 
988 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
989 
990 	if (nvmem->flags & FLAG_COMPAT)
991 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
992 
993 	nvmem_device_remove_all_cells(nvmem);
994 	nvmem_layout_put(nvmem->layout);
995 	device_unregister(&nvmem->dev);
996 }
997 
998 /**
999  * nvmem_unregister() - Unregister previously registered nvmem device
1000  *
1001  * @nvmem: Pointer to previously registered nvmem device.
1002  */
1003 void nvmem_unregister(struct nvmem_device *nvmem)
1004 {
1005 	if (nvmem)
1006 		kref_put(&nvmem->refcnt, nvmem_device_release);
1007 }
1008 EXPORT_SYMBOL_GPL(nvmem_unregister);
1009 
1010 static void devm_nvmem_unregister(void *nvmem)
1011 {
1012 	nvmem_unregister(nvmem);
1013 }
1014 
1015 /**
1016  * devm_nvmem_register() - Register a managed nvmem device for given
1017  * nvmem_config.
1018  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1019  *
1020  * @dev: Device that uses the nvmem device.
1021  * @config: nvmem device configuration with which nvmem device is created.
1022  *
1023  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1024  * on success.
1025  */
1026 struct nvmem_device *devm_nvmem_register(struct device *dev,
1027 					 const struct nvmem_config *config)
1028 {
1029 	struct nvmem_device *nvmem;
1030 	int ret;
1031 
1032 	nvmem = nvmem_register(config);
1033 	if (IS_ERR(nvmem))
1034 		return nvmem;
1035 
1036 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1037 	if (ret)
1038 		return ERR_PTR(ret);
1039 
1040 	return nvmem;
1041 }
1042 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1043 
1044 static struct nvmem_device *__nvmem_device_get(void *data,
1045 			int (*match)(struct device *dev, const void *data))
1046 {
1047 	struct nvmem_device *nvmem = NULL;
1048 	struct device *dev;
1049 
1050 	mutex_lock(&nvmem_mutex);
1051 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1052 	if (dev)
1053 		nvmem = to_nvmem_device(dev);
1054 	mutex_unlock(&nvmem_mutex);
1055 	if (!nvmem)
1056 		return ERR_PTR(-EPROBE_DEFER);
1057 
1058 	if (!try_module_get(nvmem->owner)) {
1059 		dev_err(&nvmem->dev,
1060 			"could not increase module refcount for cell %s\n",
1061 			nvmem_dev_name(nvmem));
1062 
1063 		put_device(&nvmem->dev);
1064 		return ERR_PTR(-EINVAL);
1065 	}
1066 
1067 	kref_get(&nvmem->refcnt);
1068 
1069 	return nvmem;
1070 }
1071 
1072 static void __nvmem_device_put(struct nvmem_device *nvmem)
1073 {
1074 	put_device(&nvmem->dev);
1075 	module_put(nvmem->owner);
1076 	kref_put(&nvmem->refcnt, nvmem_device_release);
1077 }
1078 
1079 #if IS_ENABLED(CONFIG_OF)
1080 /**
1081  * of_nvmem_device_get() - Get nvmem device from a given id
1082  *
1083  * @np: Device tree node that uses the nvmem device.
1084  * @id: nvmem name from nvmem-names property.
1085  *
1086  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1087  * on success.
1088  */
1089 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1090 {
1091 
1092 	struct device_node *nvmem_np;
1093 	struct nvmem_device *nvmem;
1094 	int index = 0;
1095 
1096 	if (id)
1097 		index = of_property_match_string(np, "nvmem-names", id);
1098 
1099 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1100 	if (!nvmem_np)
1101 		return ERR_PTR(-ENOENT);
1102 
1103 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1104 	of_node_put(nvmem_np);
1105 	return nvmem;
1106 }
1107 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1108 #endif
1109 
1110 /**
1111  * nvmem_device_get() - Get nvmem device from a given id
1112  *
1113  * @dev: Device that uses the nvmem device.
1114  * @dev_name: name of the requested nvmem device.
1115  *
1116  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1117  * on success.
1118  */
1119 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1120 {
1121 	if (dev->of_node) { /* try dt first */
1122 		struct nvmem_device *nvmem;
1123 
1124 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1125 
1126 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1127 			return nvmem;
1128 
1129 	}
1130 
1131 	return __nvmem_device_get((void *)dev_name, device_match_name);
1132 }
1133 EXPORT_SYMBOL_GPL(nvmem_device_get);
1134 
1135 /**
1136  * nvmem_device_find() - Find nvmem device with matching function
1137  *
1138  * @data: Data to pass to match function
1139  * @match: Callback function to check device
1140  *
1141  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1142  * on success.
1143  */
1144 struct nvmem_device *nvmem_device_find(void *data,
1145 			int (*match)(struct device *dev, const void *data))
1146 {
1147 	return __nvmem_device_get(data, match);
1148 }
1149 EXPORT_SYMBOL_GPL(nvmem_device_find);
1150 
1151 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1152 {
1153 	struct nvmem_device **nvmem = res;
1154 
1155 	if (WARN_ON(!nvmem || !*nvmem))
1156 		return 0;
1157 
1158 	return *nvmem == data;
1159 }
1160 
1161 static void devm_nvmem_device_release(struct device *dev, void *res)
1162 {
1163 	nvmem_device_put(*(struct nvmem_device **)res);
1164 }
1165 
1166 /**
1167  * devm_nvmem_device_put() - put alredy got nvmem device
1168  *
1169  * @dev: Device that uses the nvmem device.
1170  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1171  * that needs to be released.
1172  */
1173 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1174 {
1175 	int ret;
1176 
1177 	ret = devres_release(dev, devm_nvmem_device_release,
1178 			     devm_nvmem_device_match, nvmem);
1179 
1180 	WARN_ON(ret);
1181 }
1182 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1183 
1184 /**
1185  * nvmem_device_put() - put alredy got nvmem device
1186  *
1187  * @nvmem: pointer to nvmem device that needs to be released.
1188  */
1189 void nvmem_device_put(struct nvmem_device *nvmem)
1190 {
1191 	__nvmem_device_put(nvmem);
1192 }
1193 EXPORT_SYMBOL_GPL(nvmem_device_put);
1194 
1195 /**
1196  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1197  *
1198  * @dev: Device that requests the nvmem device.
1199  * @id: name id for the requested nvmem device.
1200  *
1201  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1202  * on success.  The nvmem_cell will be freed by the automatically once the
1203  * device is freed.
1204  */
1205 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1206 {
1207 	struct nvmem_device **ptr, *nvmem;
1208 
1209 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1210 	if (!ptr)
1211 		return ERR_PTR(-ENOMEM);
1212 
1213 	nvmem = nvmem_device_get(dev, id);
1214 	if (!IS_ERR(nvmem)) {
1215 		*ptr = nvmem;
1216 		devres_add(dev, ptr);
1217 	} else {
1218 		devres_free(ptr);
1219 	}
1220 
1221 	return nvmem;
1222 }
1223 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1224 
1225 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1226 					    const char *id, int index)
1227 {
1228 	struct nvmem_cell *cell;
1229 	const char *name = NULL;
1230 
1231 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1232 	if (!cell)
1233 		return ERR_PTR(-ENOMEM);
1234 
1235 	if (id) {
1236 		name = kstrdup_const(id, GFP_KERNEL);
1237 		if (!name) {
1238 			kfree(cell);
1239 			return ERR_PTR(-ENOMEM);
1240 		}
1241 	}
1242 
1243 	cell->id = name;
1244 	cell->entry = entry;
1245 	cell->index = index;
1246 
1247 	return cell;
1248 }
1249 
1250 static struct nvmem_cell *
1251 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1252 {
1253 	struct nvmem_cell_entry *cell_entry;
1254 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1255 	struct nvmem_cell_lookup *lookup;
1256 	struct nvmem_device *nvmem;
1257 	const char *dev_id;
1258 
1259 	if (!dev)
1260 		return ERR_PTR(-EINVAL);
1261 
1262 	dev_id = dev_name(dev);
1263 
1264 	mutex_lock(&nvmem_lookup_mutex);
1265 
1266 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1267 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1268 		    (strcmp(lookup->con_id, con_id) == 0)) {
1269 			/* This is the right entry. */
1270 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1271 						   device_match_name);
1272 			if (IS_ERR(nvmem)) {
1273 				/* Provider may not be registered yet. */
1274 				cell = ERR_CAST(nvmem);
1275 				break;
1276 			}
1277 
1278 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1279 								   lookup->cell_name);
1280 			if (!cell_entry) {
1281 				__nvmem_device_put(nvmem);
1282 				cell = ERR_PTR(-ENOENT);
1283 			} else {
1284 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1285 				if (IS_ERR(cell))
1286 					__nvmem_device_put(nvmem);
1287 			}
1288 			break;
1289 		}
1290 	}
1291 
1292 	mutex_unlock(&nvmem_lookup_mutex);
1293 	return cell;
1294 }
1295 
1296 #if IS_ENABLED(CONFIG_OF)
1297 static struct nvmem_cell_entry *
1298 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1299 {
1300 	struct nvmem_cell_entry *iter, *cell = NULL;
1301 
1302 	mutex_lock(&nvmem_mutex);
1303 	list_for_each_entry(iter, &nvmem->cells, node) {
1304 		if (np == iter->np) {
1305 			cell = iter;
1306 			break;
1307 		}
1308 	}
1309 	mutex_unlock(&nvmem_mutex);
1310 
1311 	return cell;
1312 }
1313 
1314 /**
1315  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1316  *
1317  * @np: Device tree node that uses the nvmem cell.
1318  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1319  *      for the cell at index 0 (the lone cell with no accompanying
1320  *      nvmem-cell-names property).
1321  *
1322  * Return: Will be an ERR_PTR() on error or a valid pointer
1323  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1324  * nvmem_cell_put().
1325  */
1326 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1327 {
1328 	struct device_node *cell_np, *nvmem_np;
1329 	struct nvmem_device *nvmem;
1330 	struct nvmem_cell_entry *cell_entry;
1331 	struct nvmem_cell *cell;
1332 	struct of_phandle_args cell_spec;
1333 	int index = 0;
1334 	int cell_index = 0;
1335 	int ret;
1336 
1337 	/* if cell name exists, find index to the name */
1338 	if (id)
1339 		index = of_property_match_string(np, "nvmem-cell-names", id);
1340 
1341 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1342 						  "#nvmem-cell-cells",
1343 						  index, &cell_spec);
1344 	if (ret)
1345 		return ERR_PTR(-ENOENT);
1346 
1347 	if (cell_spec.args_count > 1)
1348 		return ERR_PTR(-EINVAL);
1349 
1350 	cell_np = cell_spec.np;
1351 	if (cell_spec.args_count)
1352 		cell_index = cell_spec.args[0];
1353 
1354 	nvmem_np = of_get_parent(cell_np);
1355 	if (!nvmem_np) {
1356 		of_node_put(cell_np);
1357 		return ERR_PTR(-EINVAL);
1358 	}
1359 
1360 	/* nvmem layouts produce cells within the nvmem-layout container */
1361 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1362 		nvmem_np = of_get_next_parent(nvmem_np);
1363 		if (!nvmem_np) {
1364 			of_node_put(cell_np);
1365 			return ERR_PTR(-EINVAL);
1366 		}
1367 	}
1368 
1369 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1370 	of_node_put(nvmem_np);
1371 	if (IS_ERR(nvmem)) {
1372 		of_node_put(cell_np);
1373 		return ERR_CAST(nvmem);
1374 	}
1375 
1376 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1377 	of_node_put(cell_np);
1378 	if (!cell_entry) {
1379 		__nvmem_device_put(nvmem);
1380 		return ERR_PTR(-ENOENT);
1381 	}
1382 
1383 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1384 	if (IS_ERR(cell))
1385 		__nvmem_device_put(nvmem);
1386 
1387 	return cell;
1388 }
1389 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1390 #endif
1391 
1392 /**
1393  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1394  *
1395  * @dev: Device that requests the nvmem cell.
1396  * @id: nvmem cell name to get (this corresponds with the name from the
1397  *      nvmem-cell-names property for DT systems and with the con_id from
1398  *      the lookup entry for non-DT systems).
1399  *
1400  * Return: Will be an ERR_PTR() on error or a valid pointer
1401  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1402  * nvmem_cell_put().
1403  */
1404 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1405 {
1406 	struct nvmem_cell *cell;
1407 
1408 	if (dev->of_node) { /* try dt first */
1409 		cell = of_nvmem_cell_get(dev->of_node, id);
1410 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1411 			return cell;
1412 	}
1413 
1414 	/* NULL cell id only allowed for device tree; invalid otherwise */
1415 	if (!id)
1416 		return ERR_PTR(-EINVAL);
1417 
1418 	return nvmem_cell_get_from_lookup(dev, id);
1419 }
1420 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1421 
1422 static void devm_nvmem_cell_release(struct device *dev, void *res)
1423 {
1424 	nvmem_cell_put(*(struct nvmem_cell **)res);
1425 }
1426 
1427 /**
1428  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1429  *
1430  * @dev: Device that requests the nvmem cell.
1431  * @id: nvmem cell name id to get.
1432  *
1433  * Return: Will be an ERR_PTR() on error or a valid pointer
1434  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1435  * automatically once the device is freed.
1436  */
1437 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1438 {
1439 	struct nvmem_cell **ptr, *cell;
1440 
1441 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1442 	if (!ptr)
1443 		return ERR_PTR(-ENOMEM);
1444 
1445 	cell = nvmem_cell_get(dev, id);
1446 	if (!IS_ERR(cell)) {
1447 		*ptr = cell;
1448 		devres_add(dev, ptr);
1449 	} else {
1450 		devres_free(ptr);
1451 	}
1452 
1453 	return cell;
1454 }
1455 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1456 
1457 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1458 {
1459 	struct nvmem_cell **c = res;
1460 
1461 	if (WARN_ON(!c || !*c))
1462 		return 0;
1463 
1464 	return *c == data;
1465 }
1466 
1467 /**
1468  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1469  * from devm_nvmem_cell_get.
1470  *
1471  * @dev: Device that requests the nvmem cell.
1472  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1473  */
1474 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1475 {
1476 	int ret;
1477 
1478 	ret = devres_release(dev, devm_nvmem_cell_release,
1479 				devm_nvmem_cell_match, cell);
1480 
1481 	WARN_ON(ret);
1482 }
1483 EXPORT_SYMBOL(devm_nvmem_cell_put);
1484 
1485 /**
1486  * nvmem_cell_put() - Release previously allocated nvmem cell.
1487  *
1488  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1489  */
1490 void nvmem_cell_put(struct nvmem_cell *cell)
1491 {
1492 	struct nvmem_device *nvmem = cell->entry->nvmem;
1493 
1494 	if (cell->id)
1495 		kfree_const(cell->id);
1496 
1497 	kfree(cell);
1498 	__nvmem_device_put(nvmem);
1499 }
1500 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1501 
1502 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1503 {
1504 	u8 *p, *b;
1505 	int i, extra, bit_offset = cell->bit_offset;
1506 
1507 	p = b = buf;
1508 	if (bit_offset) {
1509 		/* First shift */
1510 		*b++ >>= bit_offset;
1511 
1512 		/* setup rest of the bytes if any */
1513 		for (i = 1; i < cell->bytes; i++) {
1514 			/* Get bits from next byte and shift them towards msb */
1515 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1516 
1517 			p = b;
1518 			*b++ >>= bit_offset;
1519 		}
1520 	} else {
1521 		/* point to the msb */
1522 		p += cell->bytes - 1;
1523 	}
1524 
1525 	/* result fits in less bytes */
1526 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1527 	while (--extra >= 0)
1528 		*p-- = 0;
1529 
1530 	/* clear msb bits if any leftover in the last byte */
1531 	if (cell->nbits % BITS_PER_BYTE)
1532 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1533 }
1534 
1535 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1536 			     struct nvmem_cell_entry *cell,
1537 			     void *buf, size_t *len, const char *id, int index)
1538 {
1539 	int rc;
1540 
1541 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1542 
1543 	if (rc)
1544 		return rc;
1545 
1546 	/* shift bits in-place */
1547 	if (cell->bit_offset || cell->nbits)
1548 		nvmem_shift_read_buffer_in_place(cell, buf);
1549 
1550 	if (nvmem->cell_post_process) {
1551 		rc = nvmem->cell_post_process(nvmem->priv, id, index,
1552 					      cell->offset, buf, cell->bytes);
1553 		if (rc)
1554 			return rc;
1555 	}
1556 
1557 	if (len)
1558 		*len = cell->bytes;
1559 
1560 	return 0;
1561 }
1562 
1563 /**
1564  * nvmem_cell_read() - Read a given nvmem cell
1565  *
1566  * @cell: nvmem cell to be read.
1567  * @len: pointer to length of cell which will be populated on successful read;
1568  *	 can be NULL.
1569  *
1570  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1571  * buffer should be freed by the consumer with a kfree().
1572  */
1573 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1574 {
1575 	struct nvmem_device *nvmem = cell->entry->nvmem;
1576 	u8 *buf;
1577 	int rc;
1578 
1579 	if (!nvmem)
1580 		return ERR_PTR(-EINVAL);
1581 
1582 	buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1583 	if (!buf)
1584 		return ERR_PTR(-ENOMEM);
1585 
1586 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1587 	if (rc) {
1588 		kfree(buf);
1589 		return ERR_PTR(rc);
1590 	}
1591 
1592 	return buf;
1593 }
1594 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1595 
1596 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1597 					     u8 *_buf, int len)
1598 {
1599 	struct nvmem_device *nvmem = cell->nvmem;
1600 	int i, rc, nbits, bit_offset = cell->bit_offset;
1601 	u8 v, *p, *buf, *b, pbyte, pbits;
1602 
1603 	nbits = cell->nbits;
1604 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1605 	if (!buf)
1606 		return ERR_PTR(-ENOMEM);
1607 
1608 	memcpy(buf, _buf, len);
1609 	p = b = buf;
1610 
1611 	if (bit_offset) {
1612 		pbyte = *b;
1613 		*b <<= bit_offset;
1614 
1615 		/* setup the first byte with lsb bits from nvmem */
1616 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1617 		if (rc)
1618 			goto err;
1619 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1620 
1621 		/* setup rest of the byte if any */
1622 		for (i = 1; i < cell->bytes; i++) {
1623 			/* Get last byte bits and shift them towards lsb */
1624 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1625 			pbyte = *b;
1626 			p = b;
1627 			*b <<= bit_offset;
1628 			*b++ |= pbits;
1629 		}
1630 	}
1631 
1632 	/* if it's not end on byte boundary */
1633 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1634 		/* setup the last byte with msb bits from nvmem */
1635 		rc = nvmem_reg_read(nvmem,
1636 				    cell->offset + cell->bytes - 1, &v, 1);
1637 		if (rc)
1638 			goto err;
1639 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1640 
1641 	}
1642 
1643 	return buf;
1644 err:
1645 	kfree(buf);
1646 	return ERR_PTR(rc);
1647 }
1648 
1649 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1650 {
1651 	struct nvmem_device *nvmem = cell->nvmem;
1652 	int rc;
1653 
1654 	if (!nvmem || nvmem->read_only ||
1655 	    (cell->bit_offset == 0 && len != cell->bytes))
1656 		return -EINVAL;
1657 
1658 	if (cell->bit_offset || cell->nbits) {
1659 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1660 		if (IS_ERR(buf))
1661 			return PTR_ERR(buf);
1662 	}
1663 
1664 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1665 
1666 	/* free the tmp buffer */
1667 	if (cell->bit_offset || cell->nbits)
1668 		kfree(buf);
1669 
1670 	if (rc)
1671 		return rc;
1672 
1673 	return len;
1674 }
1675 
1676 /**
1677  * nvmem_cell_write() - Write to a given nvmem cell
1678  *
1679  * @cell: nvmem cell to be written.
1680  * @buf: Buffer to be written.
1681  * @len: length of buffer to be written to nvmem cell.
1682  *
1683  * Return: length of bytes written or negative on failure.
1684  */
1685 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1686 {
1687 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1688 }
1689 
1690 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1691 
1692 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1693 				  void *val, size_t count)
1694 {
1695 	struct nvmem_cell *cell;
1696 	void *buf;
1697 	size_t len;
1698 
1699 	cell = nvmem_cell_get(dev, cell_id);
1700 	if (IS_ERR(cell))
1701 		return PTR_ERR(cell);
1702 
1703 	buf = nvmem_cell_read(cell, &len);
1704 	if (IS_ERR(buf)) {
1705 		nvmem_cell_put(cell);
1706 		return PTR_ERR(buf);
1707 	}
1708 	if (len != count) {
1709 		kfree(buf);
1710 		nvmem_cell_put(cell);
1711 		return -EINVAL;
1712 	}
1713 	memcpy(val, buf, count);
1714 	kfree(buf);
1715 	nvmem_cell_put(cell);
1716 
1717 	return 0;
1718 }
1719 
1720 /**
1721  * nvmem_cell_read_u8() - Read a cell value as a u8
1722  *
1723  * @dev: Device that requests the nvmem cell.
1724  * @cell_id: Name of nvmem cell to read.
1725  * @val: pointer to output value.
1726  *
1727  * Return: 0 on success or negative errno.
1728  */
1729 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1730 {
1731 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1732 }
1733 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1734 
1735 /**
1736  * nvmem_cell_read_u16() - Read a cell value as a u16
1737  *
1738  * @dev: Device that requests the nvmem cell.
1739  * @cell_id: Name of nvmem cell to read.
1740  * @val: pointer to output value.
1741  *
1742  * Return: 0 on success or negative errno.
1743  */
1744 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1745 {
1746 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1747 }
1748 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1749 
1750 /**
1751  * nvmem_cell_read_u32() - Read a cell value as a u32
1752  *
1753  * @dev: Device that requests the nvmem cell.
1754  * @cell_id: Name of nvmem cell to read.
1755  * @val: pointer to output value.
1756  *
1757  * Return: 0 on success or negative errno.
1758  */
1759 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1760 {
1761 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1762 }
1763 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1764 
1765 /**
1766  * nvmem_cell_read_u64() - Read a cell value as a u64
1767  *
1768  * @dev: Device that requests the nvmem cell.
1769  * @cell_id: Name of nvmem cell to read.
1770  * @val: pointer to output value.
1771  *
1772  * Return: 0 on success or negative errno.
1773  */
1774 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1775 {
1776 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1777 }
1778 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1779 
1780 static const void *nvmem_cell_read_variable_common(struct device *dev,
1781 						   const char *cell_id,
1782 						   size_t max_len, size_t *len)
1783 {
1784 	struct nvmem_cell *cell;
1785 	int nbits;
1786 	void *buf;
1787 
1788 	cell = nvmem_cell_get(dev, cell_id);
1789 	if (IS_ERR(cell))
1790 		return cell;
1791 
1792 	nbits = cell->entry->nbits;
1793 	buf = nvmem_cell_read(cell, len);
1794 	nvmem_cell_put(cell);
1795 	if (IS_ERR(buf))
1796 		return buf;
1797 
1798 	/*
1799 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1800 	 * the length of the real data. Throw away the extra junk.
1801 	 */
1802 	if (nbits)
1803 		*len = DIV_ROUND_UP(nbits, 8);
1804 
1805 	if (*len > max_len) {
1806 		kfree(buf);
1807 		return ERR_PTR(-ERANGE);
1808 	}
1809 
1810 	return buf;
1811 }
1812 
1813 /**
1814  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1815  *
1816  * @dev: Device that requests the nvmem cell.
1817  * @cell_id: Name of nvmem cell to read.
1818  * @val: pointer to output value.
1819  *
1820  * Return: 0 on success or negative errno.
1821  */
1822 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1823 				    u32 *val)
1824 {
1825 	size_t len;
1826 	const u8 *buf;
1827 	int i;
1828 
1829 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1830 	if (IS_ERR(buf))
1831 		return PTR_ERR(buf);
1832 
1833 	/* Copy w/ implicit endian conversion */
1834 	*val = 0;
1835 	for (i = 0; i < len; i++)
1836 		*val |= buf[i] << (8 * i);
1837 
1838 	kfree(buf);
1839 
1840 	return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1843 
1844 /**
1845  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1846  *
1847  * @dev: Device that requests the nvmem cell.
1848  * @cell_id: Name of nvmem cell to read.
1849  * @val: pointer to output value.
1850  *
1851  * Return: 0 on success or negative errno.
1852  */
1853 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1854 				    u64 *val)
1855 {
1856 	size_t len;
1857 	const u8 *buf;
1858 	int i;
1859 
1860 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1861 	if (IS_ERR(buf))
1862 		return PTR_ERR(buf);
1863 
1864 	/* Copy w/ implicit endian conversion */
1865 	*val = 0;
1866 	for (i = 0; i < len; i++)
1867 		*val |= (uint64_t)buf[i] << (8 * i);
1868 
1869 	kfree(buf);
1870 
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1874 
1875 /**
1876  * nvmem_device_cell_read() - Read a given nvmem device and cell
1877  *
1878  * @nvmem: nvmem device to read from.
1879  * @info: nvmem cell info to be read.
1880  * @buf: buffer pointer which will be populated on successful read.
1881  *
1882  * Return: length of successful bytes read on success and negative
1883  * error code on error.
1884  */
1885 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1886 			   struct nvmem_cell_info *info, void *buf)
1887 {
1888 	struct nvmem_cell_entry cell;
1889 	int rc;
1890 	ssize_t len;
1891 
1892 	if (!nvmem)
1893 		return -EINVAL;
1894 
1895 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1896 	if (rc)
1897 		return rc;
1898 
1899 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1900 	if (rc)
1901 		return rc;
1902 
1903 	return len;
1904 }
1905 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1906 
1907 /**
1908  * nvmem_device_cell_write() - Write cell to a given nvmem device
1909  *
1910  * @nvmem: nvmem device to be written to.
1911  * @info: nvmem cell info to be written.
1912  * @buf: buffer to be written to cell.
1913  *
1914  * Return: length of bytes written or negative error code on failure.
1915  */
1916 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1917 			    struct nvmem_cell_info *info, void *buf)
1918 {
1919 	struct nvmem_cell_entry cell;
1920 	int rc;
1921 
1922 	if (!nvmem)
1923 		return -EINVAL;
1924 
1925 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1926 	if (rc)
1927 		return rc;
1928 
1929 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1930 }
1931 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1932 
1933 /**
1934  * nvmem_device_read() - Read from a given nvmem device
1935  *
1936  * @nvmem: nvmem device to read from.
1937  * @offset: offset in nvmem device.
1938  * @bytes: number of bytes to read.
1939  * @buf: buffer pointer which will be populated on successful read.
1940  *
1941  * Return: length of successful bytes read on success and negative
1942  * error code on error.
1943  */
1944 int nvmem_device_read(struct nvmem_device *nvmem,
1945 		      unsigned int offset,
1946 		      size_t bytes, void *buf)
1947 {
1948 	int rc;
1949 
1950 	if (!nvmem)
1951 		return -EINVAL;
1952 
1953 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1954 
1955 	if (rc)
1956 		return rc;
1957 
1958 	return bytes;
1959 }
1960 EXPORT_SYMBOL_GPL(nvmem_device_read);
1961 
1962 /**
1963  * nvmem_device_write() - Write cell to a given nvmem device
1964  *
1965  * @nvmem: nvmem device to be written to.
1966  * @offset: offset in nvmem device.
1967  * @bytes: number of bytes to write.
1968  * @buf: buffer to be written.
1969  *
1970  * Return: length of bytes written or negative error code on failure.
1971  */
1972 int nvmem_device_write(struct nvmem_device *nvmem,
1973 		       unsigned int offset,
1974 		       size_t bytes, void *buf)
1975 {
1976 	int rc;
1977 
1978 	if (!nvmem)
1979 		return -EINVAL;
1980 
1981 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1982 
1983 	if (rc)
1984 		return rc;
1985 
1986 
1987 	return bytes;
1988 }
1989 EXPORT_SYMBOL_GPL(nvmem_device_write);
1990 
1991 /**
1992  * nvmem_add_cell_table() - register a table of cell info entries
1993  *
1994  * @table: table of cell info entries
1995  */
1996 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1997 {
1998 	mutex_lock(&nvmem_cell_mutex);
1999 	list_add_tail(&table->node, &nvmem_cell_tables);
2000 	mutex_unlock(&nvmem_cell_mutex);
2001 }
2002 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2003 
2004 /**
2005  * nvmem_del_cell_table() - remove a previously registered cell info table
2006  *
2007  * @table: table of cell info entries
2008  */
2009 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2010 {
2011 	mutex_lock(&nvmem_cell_mutex);
2012 	list_del(&table->node);
2013 	mutex_unlock(&nvmem_cell_mutex);
2014 }
2015 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2016 
2017 /**
2018  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2019  *
2020  * @entries: array of cell lookup entries
2021  * @nentries: number of cell lookup entries in the array
2022  */
2023 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2024 {
2025 	int i;
2026 
2027 	mutex_lock(&nvmem_lookup_mutex);
2028 	for (i = 0; i < nentries; i++)
2029 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2030 	mutex_unlock(&nvmem_lookup_mutex);
2031 }
2032 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2033 
2034 /**
2035  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2036  *                            entries
2037  *
2038  * @entries: array of cell lookup entries
2039  * @nentries: number of cell lookup entries in the array
2040  */
2041 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2042 {
2043 	int i;
2044 
2045 	mutex_lock(&nvmem_lookup_mutex);
2046 	for (i = 0; i < nentries; i++)
2047 		list_del(&entries[i].node);
2048 	mutex_unlock(&nvmem_lookup_mutex);
2049 }
2050 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2051 
2052 /**
2053  * nvmem_dev_name() - Get the name of a given nvmem device.
2054  *
2055  * @nvmem: nvmem device.
2056  *
2057  * Return: name of the nvmem device.
2058  */
2059 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2060 {
2061 	return dev_name(&nvmem->dev);
2062 }
2063 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2064 
2065 static int __init nvmem_init(void)
2066 {
2067 	return bus_register(&nvmem_bus_type);
2068 }
2069 
2070 static void __exit nvmem_exit(void)
2071 {
2072 	bus_unregister(&nvmem_bus_type);
2073 }
2074 
2075 subsys_initcall(nvmem_init);
2076 module_exit(nvmem_exit);
2077 
2078 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2079 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2080 MODULE_DESCRIPTION("nvmem Driver Core");
2081 MODULE_LICENSE("GPL v2");
2082