xref: /openbmc/linux/drivers/nvme/target/rdma.c (revision a032e4f6d60d0aca4f6570d2ad33105a2b9ba385)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19 
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 
24 #include <linux/nvme-rdma.h>
25 #include "nvmet.h"
26 
27 /*
28  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
29  */
30 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
31 #define NVMET_RDMA_MAX_INLINE_SGE		4
32 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
33 
34 /* Assume mpsmin == device_page_size == 4KB */
35 #define NVMET_RDMA_MAX_MDTS			8
36 
37 struct nvmet_rdma_cmd {
38 	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
39 	struct ib_cqe		cqe;
40 	struct ib_recv_wr	wr;
41 	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
42 	struct nvme_command     *nvme_cmd;
43 	struct nvmet_rdma_queue	*queue;
44 };
45 
46 enum {
47 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
48 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
49 };
50 
51 struct nvmet_rdma_rsp {
52 	struct ib_sge		send_sge;
53 	struct ib_cqe		send_cqe;
54 	struct ib_send_wr	send_wr;
55 
56 	struct nvmet_rdma_cmd	*cmd;
57 	struct nvmet_rdma_queue	*queue;
58 
59 	struct ib_cqe		read_cqe;
60 	struct rdma_rw_ctx	rw;
61 
62 	struct nvmet_req	req;
63 
64 	bool			allocated;
65 	u8			n_rdma;
66 	u32			flags;
67 	u32			invalidate_rkey;
68 
69 	struct list_head	wait_list;
70 	struct list_head	free_list;
71 };
72 
73 enum nvmet_rdma_queue_state {
74 	NVMET_RDMA_Q_CONNECTING,
75 	NVMET_RDMA_Q_LIVE,
76 	NVMET_RDMA_Q_DISCONNECTING,
77 };
78 
79 struct nvmet_rdma_queue {
80 	struct rdma_cm_id	*cm_id;
81 	struct nvmet_port	*port;
82 	struct ib_cq		*cq;
83 	atomic_t		sq_wr_avail;
84 	struct nvmet_rdma_device *dev;
85 	spinlock_t		state_lock;
86 	enum nvmet_rdma_queue_state state;
87 	struct nvmet_cq		nvme_cq;
88 	struct nvmet_sq		nvme_sq;
89 
90 	struct nvmet_rdma_rsp	*rsps;
91 	struct list_head	free_rsps;
92 	spinlock_t		rsps_lock;
93 	struct nvmet_rdma_cmd	*cmds;
94 
95 	struct work_struct	release_work;
96 	struct list_head	rsp_wait_list;
97 	struct list_head	rsp_wr_wait_list;
98 	spinlock_t		rsp_wr_wait_lock;
99 
100 	int			idx;
101 	int			host_qid;
102 	int			recv_queue_size;
103 	int			send_queue_size;
104 
105 	struct list_head	queue_list;
106 };
107 
108 struct nvmet_rdma_port {
109 	struct nvmet_port	*nport;
110 	struct sockaddr_storage addr;
111 	struct rdma_cm_id	*cm_id;
112 	struct delayed_work	repair_work;
113 };
114 
115 struct nvmet_rdma_device {
116 	struct ib_device	*device;
117 	struct ib_pd		*pd;
118 	struct ib_srq		*srq;
119 	struct nvmet_rdma_cmd	*srq_cmds;
120 	size_t			srq_size;
121 	struct kref		ref;
122 	struct list_head	entry;
123 	int			inline_data_size;
124 	int			inline_page_count;
125 };
126 
127 static bool nvmet_rdma_use_srq;
128 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
129 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
130 
131 static DEFINE_IDA(nvmet_rdma_queue_ida);
132 static LIST_HEAD(nvmet_rdma_queue_list);
133 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
139 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
140 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
142 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
143 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
144 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
145 				struct nvmet_rdma_rsp *r);
146 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
147 				struct nvmet_rdma_rsp *r);
148 
149 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
150 
151 static int num_pages(int len)
152 {
153 	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
154 }
155 
156 /* XXX: really should move to a generic header sooner or later.. */
157 static inline u32 get_unaligned_le24(const u8 *p)
158 {
159 	return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
160 }
161 
162 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
163 {
164 	return nvme_is_write(rsp->req.cmd) &&
165 		rsp->req.transfer_len &&
166 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
167 }
168 
169 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
170 {
171 	return !nvme_is_write(rsp->req.cmd) &&
172 		rsp->req.transfer_len &&
173 		!rsp->req.cqe->status &&
174 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
175 }
176 
177 static inline struct nvmet_rdma_rsp *
178 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
179 {
180 	struct nvmet_rdma_rsp *rsp;
181 	unsigned long flags;
182 
183 	spin_lock_irqsave(&queue->rsps_lock, flags);
184 	rsp = list_first_entry_or_null(&queue->free_rsps,
185 				struct nvmet_rdma_rsp, free_list);
186 	if (likely(rsp))
187 		list_del(&rsp->free_list);
188 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
189 
190 	if (unlikely(!rsp)) {
191 		int ret;
192 
193 		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
194 		if (unlikely(!rsp))
195 			return NULL;
196 		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
197 		if (unlikely(ret)) {
198 			kfree(rsp);
199 			return NULL;
200 		}
201 
202 		rsp->allocated = true;
203 	}
204 
205 	return rsp;
206 }
207 
208 static inline void
209 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
210 {
211 	unsigned long flags;
212 
213 	if (unlikely(rsp->allocated)) {
214 		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
215 		kfree(rsp);
216 		return;
217 	}
218 
219 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
220 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
221 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
222 }
223 
224 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
225 				struct nvmet_rdma_cmd *c)
226 {
227 	struct scatterlist *sg;
228 	struct ib_sge *sge;
229 	int i;
230 
231 	if (!ndev->inline_data_size)
232 		return;
233 
234 	sg = c->inline_sg;
235 	sge = &c->sge[1];
236 
237 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
238 		if (sge->length)
239 			ib_dma_unmap_page(ndev->device, sge->addr,
240 					sge->length, DMA_FROM_DEVICE);
241 		if (sg_page(sg))
242 			__free_page(sg_page(sg));
243 	}
244 }
245 
246 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
247 				struct nvmet_rdma_cmd *c)
248 {
249 	struct scatterlist *sg;
250 	struct ib_sge *sge;
251 	struct page *pg;
252 	int len;
253 	int i;
254 
255 	if (!ndev->inline_data_size)
256 		return 0;
257 
258 	sg = c->inline_sg;
259 	sg_init_table(sg, ndev->inline_page_count);
260 	sge = &c->sge[1];
261 	len = ndev->inline_data_size;
262 
263 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
264 		pg = alloc_page(GFP_KERNEL);
265 		if (!pg)
266 			goto out_err;
267 		sg_assign_page(sg, pg);
268 		sge->addr = ib_dma_map_page(ndev->device,
269 			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
270 		if (ib_dma_mapping_error(ndev->device, sge->addr))
271 			goto out_err;
272 		sge->length = min_t(int, len, PAGE_SIZE);
273 		sge->lkey = ndev->pd->local_dma_lkey;
274 		len -= sge->length;
275 	}
276 
277 	return 0;
278 out_err:
279 	for (; i >= 0; i--, sg--, sge--) {
280 		if (sge->length)
281 			ib_dma_unmap_page(ndev->device, sge->addr,
282 					sge->length, DMA_FROM_DEVICE);
283 		if (sg_page(sg))
284 			__free_page(sg_page(sg));
285 	}
286 	return -ENOMEM;
287 }
288 
289 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
290 			struct nvmet_rdma_cmd *c, bool admin)
291 {
292 	/* NVMe command / RDMA RECV */
293 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
294 	if (!c->nvme_cmd)
295 		goto out;
296 
297 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
298 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
299 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
300 		goto out_free_cmd;
301 
302 	c->sge[0].length = sizeof(*c->nvme_cmd);
303 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
304 
305 	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
306 		goto out_unmap_cmd;
307 
308 	c->cqe.done = nvmet_rdma_recv_done;
309 
310 	c->wr.wr_cqe = &c->cqe;
311 	c->wr.sg_list = c->sge;
312 	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
313 
314 	return 0;
315 
316 out_unmap_cmd:
317 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
318 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
319 out_free_cmd:
320 	kfree(c->nvme_cmd);
321 
322 out:
323 	return -ENOMEM;
324 }
325 
326 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
327 		struct nvmet_rdma_cmd *c, bool admin)
328 {
329 	if (!admin)
330 		nvmet_rdma_free_inline_pages(ndev, c);
331 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
332 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
333 	kfree(c->nvme_cmd);
334 }
335 
336 static struct nvmet_rdma_cmd *
337 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
338 		int nr_cmds, bool admin)
339 {
340 	struct nvmet_rdma_cmd *cmds;
341 	int ret = -EINVAL, i;
342 
343 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
344 	if (!cmds)
345 		goto out;
346 
347 	for (i = 0; i < nr_cmds; i++) {
348 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
349 		if (ret)
350 			goto out_free;
351 	}
352 
353 	return cmds;
354 
355 out_free:
356 	while (--i >= 0)
357 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
358 	kfree(cmds);
359 out:
360 	return ERR_PTR(ret);
361 }
362 
363 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
364 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
365 {
366 	int i;
367 
368 	for (i = 0; i < nr_cmds; i++)
369 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
370 	kfree(cmds);
371 }
372 
373 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
374 		struct nvmet_rdma_rsp *r)
375 {
376 	/* NVMe CQE / RDMA SEND */
377 	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
378 	if (!r->req.cqe)
379 		goto out;
380 
381 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
382 			sizeof(*r->req.cqe), DMA_TO_DEVICE);
383 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
384 		goto out_free_rsp;
385 
386 	r->req.p2p_client = &ndev->device->dev;
387 	r->send_sge.length = sizeof(*r->req.cqe);
388 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
389 
390 	r->send_cqe.done = nvmet_rdma_send_done;
391 
392 	r->send_wr.wr_cqe = &r->send_cqe;
393 	r->send_wr.sg_list = &r->send_sge;
394 	r->send_wr.num_sge = 1;
395 	r->send_wr.send_flags = IB_SEND_SIGNALED;
396 
397 	/* Data In / RDMA READ */
398 	r->read_cqe.done = nvmet_rdma_read_data_done;
399 	return 0;
400 
401 out_free_rsp:
402 	kfree(r->req.cqe);
403 out:
404 	return -ENOMEM;
405 }
406 
407 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
408 		struct nvmet_rdma_rsp *r)
409 {
410 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
411 				sizeof(*r->req.cqe), DMA_TO_DEVICE);
412 	kfree(r->req.cqe);
413 }
414 
415 static int
416 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
417 {
418 	struct nvmet_rdma_device *ndev = queue->dev;
419 	int nr_rsps = queue->recv_queue_size * 2;
420 	int ret = -EINVAL, i;
421 
422 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
423 			GFP_KERNEL);
424 	if (!queue->rsps)
425 		goto out;
426 
427 	for (i = 0; i < nr_rsps; i++) {
428 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429 
430 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
431 		if (ret)
432 			goto out_free;
433 
434 		list_add_tail(&rsp->free_list, &queue->free_rsps);
435 	}
436 
437 	return 0;
438 
439 out_free:
440 	while (--i >= 0) {
441 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
442 
443 		list_del(&rsp->free_list);
444 		nvmet_rdma_free_rsp(ndev, rsp);
445 	}
446 	kfree(queue->rsps);
447 out:
448 	return ret;
449 }
450 
451 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
452 {
453 	struct nvmet_rdma_device *ndev = queue->dev;
454 	int i, nr_rsps = queue->recv_queue_size * 2;
455 
456 	for (i = 0; i < nr_rsps; i++) {
457 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
458 
459 		list_del(&rsp->free_list);
460 		nvmet_rdma_free_rsp(ndev, rsp);
461 	}
462 	kfree(queue->rsps);
463 }
464 
465 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
466 		struct nvmet_rdma_cmd *cmd)
467 {
468 	int ret;
469 
470 	ib_dma_sync_single_for_device(ndev->device,
471 		cmd->sge[0].addr, cmd->sge[0].length,
472 		DMA_FROM_DEVICE);
473 
474 	if (ndev->srq)
475 		ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
476 	else
477 		ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL);
478 
479 	if (unlikely(ret))
480 		pr_err("post_recv cmd failed\n");
481 
482 	return ret;
483 }
484 
485 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
486 {
487 	spin_lock(&queue->rsp_wr_wait_lock);
488 	while (!list_empty(&queue->rsp_wr_wait_list)) {
489 		struct nvmet_rdma_rsp *rsp;
490 		bool ret;
491 
492 		rsp = list_entry(queue->rsp_wr_wait_list.next,
493 				struct nvmet_rdma_rsp, wait_list);
494 		list_del(&rsp->wait_list);
495 
496 		spin_unlock(&queue->rsp_wr_wait_lock);
497 		ret = nvmet_rdma_execute_command(rsp);
498 		spin_lock(&queue->rsp_wr_wait_lock);
499 
500 		if (!ret) {
501 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
502 			break;
503 		}
504 	}
505 	spin_unlock(&queue->rsp_wr_wait_lock);
506 }
507 
508 
509 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
510 {
511 	struct nvmet_rdma_queue *queue = rsp->queue;
512 
513 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
514 
515 	if (rsp->n_rdma) {
516 		rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
517 				queue->cm_id->port_num, rsp->req.sg,
518 				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
519 	}
520 
521 	if (rsp->req.sg != rsp->cmd->inline_sg)
522 		nvmet_req_free_sgl(&rsp->req);
523 
524 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
525 		nvmet_rdma_process_wr_wait_list(queue);
526 
527 	nvmet_rdma_put_rsp(rsp);
528 }
529 
530 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
531 {
532 	if (queue->nvme_sq.ctrl) {
533 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
534 	} else {
535 		/*
536 		 * we didn't setup the controller yet in case
537 		 * of admin connect error, just disconnect and
538 		 * cleanup the queue
539 		 */
540 		nvmet_rdma_queue_disconnect(queue);
541 	}
542 }
543 
544 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
545 {
546 	struct nvmet_rdma_rsp *rsp =
547 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
548 	struct nvmet_rdma_queue *queue = cq->cq_context;
549 
550 	nvmet_rdma_release_rsp(rsp);
551 
552 	if (unlikely(wc->status != IB_WC_SUCCESS &&
553 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
554 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
555 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
556 		nvmet_rdma_error_comp(queue);
557 	}
558 }
559 
560 static void nvmet_rdma_queue_response(struct nvmet_req *req)
561 {
562 	struct nvmet_rdma_rsp *rsp =
563 		container_of(req, struct nvmet_rdma_rsp, req);
564 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
565 	struct ib_send_wr *first_wr;
566 
567 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
568 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
569 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
570 	} else {
571 		rsp->send_wr.opcode = IB_WR_SEND;
572 	}
573 
574 	if (nvmet_rdma_need_data_out(rsp))
575 		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
576 				cm_id->port_num, NULL, &rsp->send_wr);
577 	else
578 		first_wr = &rsp->send_wr;
579 
580 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
581 
582 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
583 		rsp->send_sge.addr, rsp->send_sge.length,
584 		DMA_TO_DEVICE);
585 
586 	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
587 		pr_err("sending cmd response failed\n");
588 		nvmet_rdma_release_rsp(rsp);
589 	}
590 }
591 
592 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
593 {
594 	struct nvmet_rdma_rsp *rsp =
595 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
596 	struct nvmet_rdma_queue *queue = cq->cq_context;
597 
598 	WARN_ON(rsp->n_rdma <= 0);
599 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
600 	rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
601 			queue->cm_id->port_num, rsp->req.sg,
602 			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
603 	rsp->n_rdma = 0;
604 
605 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
606 		nvmet_req_uninit(&rsp->req);
607 		nvmet_rdma_release_rsp(rsp);
608 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
609 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
610 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
611 			nvmet_rdma_error_comp(queue);
612 		}
613 		return;
614 	}
615 
616 	rsp->req.execute(&rsp->req);
617 }
618 
619 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
620 		u64 off)
621 {
622 	int sg_count = num_pages(len);
623 	struct scatterlist *sg;
624 	int i;
625 
626 	sg = rsp->cmd->inline_sg;
627 	for (i = 0; i < sg_count; i++, sg++) {
628 		if (i < sg_count - 1)
629 			sg_unmark_end(sg);
630 		else
631 			sg_mark_end(sg);
632 		sg->offset = off;
633 		sg->length = min_t(int, len, PAGE_SIZE - off);
634 		len -= sg->length;
635 		if (!i)
636 			off = 0;
637 	}
638 
639 	rsp->req.sg = rsp->cmd->inline_sg;
640 	rsp->req.sg_cnt = sg_count;
641 }
642 
643 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
644 {
645 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
646 	u64 off = le64_to_cpu(sgl->addr);
647 	u32 len = le32_to_cpu(sgl->length);
648 
649 	if (!nvme_is_write(rsp->req.cmd)) {
650 		rsp->req.error_loc =
651 			offsetof(struct nvme_common_command, opcode);
652 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
653 	}
654 
655 	if (off + len > rsp->queue->dev->inline_data_size) {
656 		pr_err("invalid inline data offset!\n");
657 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
658 	}
659 
660 	/* no data command? */
661 	if (!len)
662 		return 0;
663 
664 	nvmet_rdma_use_inline_sg(rsp, len, off);
665 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
666 	rsp->req.transfer_len += len;
667 	return 0;
668 }
669 
670 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
671 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
672 {
673 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
674 	u64 addr = le64_to_cpu(sgl->addr);
675 	u32 key = get_unaligned_le32(sgl->key);
676 	int ret;
677 
678 	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
679 
680 	/* no data command? */
681 	if (!rsp->req.transfer_len)
682 		return 0;
683 
684 	ret = nvmet_req_alloc_sgl(&rsp->req);
685 	if (unlikely(ret < 0))
686 		goto error_out;
687 
688 	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
689 			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
690 			nvmet_data_dir(&rsp->req));
691 	if (unlikely(ret < 0))
692 		goto error_out;
693 	rsp->n_rdma += ret;
694 
695 	if (invalidate) {
696 		rsp->invalidate_rkey = key;
697 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
698 	}
699 
700 	return 0;
701 
702 error_out:
703 	rsp->req.transfer_len = 0;
704 	return NVME_SC_INTERNAL;
705 }
706 
707 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
708 {
709 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
710 
711 	switch (sgl->type >> 4) {
712 	case NVME_SGL_FMT_DATA_DESC:
713 		switch (sgl->type & 0xf) {
714 		case NVME_SGL_FMT_OFFSET:
715 			return nvmet_rdma_map_sgl_inline(rsp);
716 		default:
717 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
718 			rsp->req.error_loc =
719 				offsetof(struct nvme_common_command, dptr);
720 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
721 		}
722 	case NVME_KEY_SGL_FMT_DATA_DESC:
723 		switch (sgl->type & 0xf) {
724 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
725 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
726 		case NVME_SGL_FMT_ADDRESS:
727 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
728 		default:
729 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
730 			rsp->req.error_loc =
731 				offsetof(struct nvme_common_command, dptr);
732 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
733 		}
734 	default:
735 		pr_err("invalid SGL type: %#x\n", sgl->type);
736 		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
737 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
738 	}
739 }
740 
741 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
742 {
743 	struct nvmet_rdma_queue *queue = rsp->queue;
744 
745 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
746 			&queue->sq_wr_avail) < 0)) {
747 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
748 				1 + rsp->n_rdma, queue->idx,
749 				queue->nvme_sq.ctrl->cntlid);
750 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
751 		return false;
752 	}
753 
754 	if (nvmet_rdma_need_data_in(rsp)) {
755 		if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
756 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
757 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
758 	} else {
759 		rsp->req.execute(&rsp->req);
760 	}
761 
762 	return true;
763 }
764 
765 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
766 		struct nvmet_rdma_rsp *cmd)
767 {
768 	u16 status;
769 
770 	ib_dma_sync_single_for_cpu(queue->dev->device,
771 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
772 		DMA_FROM_DEVICE);
773 	ib_dma_sync_single_for_cpu(queue->dev->device,
774 		cmd->send_sge.addr, cmd->send_sge.length,
775 		DMA_TO_DEVICE);
776 
777 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
778 			&queue->nvme_sq, &nvmet_rdma_ops))
779 		return;
780 
781 	status = nvmet_rdma_map_sgl(cmd);
782 	if (status)
783 		goto out_err;
784 
785 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
786 		spin_lock(&queue->rsp_wr_wait_lock);
787 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
788 		spin_unlock(&queue->rsp_wr_wait_lock);
789 	}
790 
791 	return;
792 
793 out_err:
794 	nvmet_req_complete(&cmd->req, status);
795 }
796 
797 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
798 {
799 	struct nvmet_rdma_cmd *cmd =
800 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
801 	struct nvmet_rdma_queue *queue = cq->cq_context;
802 	struct nvmet_rdma_rsp *rsp;
803 
804 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
805 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
806 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
807 				wc->wr_cqe, ib_wc_status_msg(wc->status),
808 				wc->status);
809 			nvmet_rdma_error_comp(queue);
810 		}
811 		return;
812 	}
813 
814 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
815 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
816 		nvmet_rdma_error_comp(queue);
817 		return;
818 	}
819 
820 	cmd->queue = queue;
821 	rsp = nvmet_rdma_get_rsp(queue);
822 	if (unlikely(!rsp)) {
823 		/*
824 		 * we get here only under memory pressure,
825 		 * silently drop and have the host retry
826 		 * as we can't even fail it.
827 		 */
828 		nvmet_rdma_post_recv(queue->dev, cmd);
829 		return;
830 	}
831 	rsp->queue = queue;
832 	rsp->cmd = cmd;
833 	rsp->flags = 0;
834 	rsp->req.cmd = cmd->nvme_cmd;
835 	rsp->req.port = queue->port;
836 	rsp->n_rdma = 0;
837 
838 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
839 		unsigned long flags;
840 
841 		spin_lock_irqsave(&queue->state_lock, flags);
842 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
843 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
844 		else
845 			nvmet_rdma_put_rsp(rsp);
846 		spin_unlock_irqrestore(&queue->state_lock, flags);
847 		return;
848 	}
849 
850 	nvmet_rdma_handle_command(queue, rsp);
851 }
852 
853 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
854 {
855 	if (!ndev->srq)
856 		return;
857 
858 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
859 	ib_destroy_srq(ndev->srq);
860 }
861 
862 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
863 {
864 	struct ib_srq_init_attr srq_attr = { NULL, };
865 	struct ib_srq *srq;
866 	size_t srq_size;
867 	int ret, i;
868 
869 	srq_size = 4095;	/* XXX: tune */
870 
871 	srq_attr.attr.max_wr = srq_size;
872 	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
873 	srq_attr.attr.srq_limit = 0;
874 	srq_attr.srq_type = IB_SRQT_BASIC;
875 	srq = ib_create_srq(ndev->pd, &srq_attr);
876 	if (IS_ERR(srq)) {
877 		/*
878 		 * If SRQs aren't supported we just go ahead and use normal
879 		 * non-shared receive queues.
880 		 */
881 		pr_info("SRQ requested but not supported.\n");
882 		return 0;
883 	}
884 
885 	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
886 	if (IS_ERR(ndev->srq_cmds)) {
887 		ret = PTR_ERR(ndev->srq_cmds);
888 		goto out_destroy_srq;
889 	}
890 
891 	ndev->srq = srq;
892 	ndev->srq_size = srq_size;
893 
894 	for (i = 0; i < srq_size; i++) {
895 		ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
896 		if (ret)
897 			goto out_free_cmds;
898 	}
899 
900 	return 0;
901 
902 out_free_cmds:
903 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
904 out_destroy_srq:
905 	ib_destroy_srq(srq);
906 	return ret;
907 }
908 
909 static void nvmet_rdma_free_dev(struct kref *ref)
910 {
911 	struct nvmet_rdma_device *ndev =
912 		container_of(ref, struct nvmet_rdma_device, ref);
913 
914 	mutex_lock(&device_list_mutex);
915 	list_del(&ndev->entry);
916 	mutex_unlock(&device_list_mutex);
917 
918 	nvmet_rdma_destroy_srq(ndev);
919 	ib_dealloc_pd(ndev->pd);
920 
921 	kfree(ndev);
922 }
923 
924 static struct nvmet_rdma_device *
925 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
926 {
927 	struct nvmet_rdma_port *port = cm_id->context;
928 	struct nvmet_port *nport = port->nport;
929 	struct nvmet_rdma_device *ndev;
930 	int inline_page_count;
931 	int inline_sge_count;
932 	int ret;
933 
934 	mutex_lock(&device_list_mutex);
935 	list_for_each_entry(ndev, &device_list, entry) {
936 		if (ndev->device->node_guid == cm_id->device->node_guid &&
937 		    kref_get_unless_zero(&ndev->ref))
938 			goto out_unlock;
939 	}
940 
941 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
942 	if (!ndev)
943 		goto out_err;
944 
945 	inline_page_count = num_pages(nport->inline_data_size);
946 	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
947 				cm_id->device->attrs.max_recv_sge) - 1;
948 	if (inline_page_count > inline_sge_count) {
949 		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
950 			nport->inline_data_size, cm_id->device->name,
951 			inline_sge_count * PAGE_SIZE);
952 		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
953 		inline_page_count = inline_sge_count;
954 	}
955 	ndev->inline_data_size = nport->inline_data_size;
956 	ndev->inline_page_count = inline_page_count;
957 	ndev->device = cm_id->device;
958 	kref_init(&ndev->ref);
959 
960 	ndev->pd = ib_alloc_pd(ndev->device, 0);
961 	if (IS_ERR(ndev->pd))
962 		goto out_free_dev;
963 
964 	if (nvmet_rdma_use_srq) {
965 		ret = nvmet_rdma_init_srq(ndev);
966 		if (ret)
967 			goto out_free_pd;
968 	}
969 
970 	list_add(&ndev->entry, &device_list);
971 out_unlock:
972 	mutex_unlock(&device_list_mutex);
973 	pr_debug("added %s.\n", ndev->device->name);
974 	return ndev;
975 
976 out_free_pd:
977 	ib_dealloc_pd(ndev->pd);
978 out_free_dev:
979 	kfree(ndev);
980 out_err:
981 	mutex_unlock(&device_list_mutex);
982 	return NULL;
983 }
984 
985 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
986 {
987 	struct ib_qp_init_attr qp_attr;
988 	struct nvmet_rdma_device *ndev = queue->dev;
989 	int comp_vector, nr_cqe, ret, i, factor;
990 
991 	/*
992 	 * Spread the io queues across completion vectors,
993 	 * but still keep all admin queues on vector 0.
994 	 */
995 	comp_vector = !queue->host_qid ? 0 :
996 		queue->idx % ndev->device->num_comp_vectors;
997 
998 	/*
999 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1000 	 */
1001 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1002 
1003 	queue->cq = ib_alloc_cq(ndev->device, queue,
1004 			nr_cqe + 1, comp_vector,
1005 			IB_POLL_WORKQUEUE);
1006 	if (IS_ERR(queue->cq)) {
1007 		ret = PTR_ERR(queue->cq);
1008 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1009 		       nr_cqe + 1, ret);
1010 		goto out;
1011 	}
1012 
1013 	memset(&qp_attr, 0, sizeof(qp_attr));
1014 	qp_attr.qp_context = queue;
1015 	qp_attr.event_handler = nvmet_rdma_qp_event;
1016 	qp_attr.send_cq = queue->cq;
1017 	qp_attr.recv_cq = queue->cq;
1018 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1019 	qp_attr.qp_type = IB_QPT_RC;
1020 	/* +1 for drain */
1021 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1022 	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1023 				   1 << NVMET_RDMA_MAX_MDTS);
1024 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1025 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1026 					ndev->device->attrs.max_send_sge);
1027 
1028 	if (ndev->srq) {
1029 		qp_attr.srq = ndev->srq;
1030 	} else {
1031 		/* +1 for drain */
1032 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1033 		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1034 	}
1035 
1036 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1037 	if (ret) {
1038 		pr_err("failed to create_qp ret= %d\n", ret);
1039 		goto err_destroy_cq;
1040 	}
1041 
1042 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1043 
1044 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1045 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1046 		 qp_attr.cap.max_send_wr, queue->cm_id);
1047 
1048 	if (!ndev->srq) {
1049 		for (i = 0; i < queue->recv_queue_size; i++) {
1050 			queue->cmds[i].queue = queue;
1051 			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1052 			if (ret)
1053 				goto err_destroy_qp;
1054 		}
1055 	}
1056 
1057 out:
1058 	return ret;
1059 
1060 err_destroy_qp:
1061 	rdma_destroy_qp(queue->cm_id);
1062 err_destroy_cq:
1063 	ib_free_cq(queue->cq);
1064 	goto out;
1065 }
1066 
1067 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1068 {
1069 	struct ib_qp *qp = queue->cm_id->qp;
1070 
1071 	ib_drain_qp(qp);
1072 	rdma_destroy_id(queue->cm_id);
1073 	ib_destroy_qp(qp);
1074 	ib_free_cq(queue->cq);
1075 }
1076 
1077 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1078 {
1079 	pr_debug("freeing queue %d\n", queue->idx);
1080 
1081 	nvmet_sq_destroy(&queue->nvme_sq);
1082 
1083 	nvmet_rdma_destroy_queue_ib(queue);
1084 	if (!queue->dev->srq) {
1085 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1086 				queue->recv_queue_size,
1087 				!queue->host_qid);
1088 	}
1089 	nvmet_rdma_free_rsps(queue);
1090 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1091 	kfree(queue);
1092 }
1093 
1094 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1095 {
1096 	struct nvmet_rdma_queue *queue =
1097 		container_of(w, struct nvmet_rdma_queue, release_work);
1098 	struct nvmet_rdma_device *dev = queue->dev;
1099 
1100 	nvmet_rdma_free_queue(queue);
1101 
1102 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1103 }
1104 
1105 static int
1106 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1107 				struct nvmet_rdma_queue *queue)
1108 {
1109 	struct nvme_rdma_cm_req *req;
1110 
1111 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1112 	if (!req || conn->private_data_len == 0)
1113 		return NVME_RDMA_CM_INVALID_LEN;
1114 
1115 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1116 		return NVME_RDMA_CM_INVALID_RECFMT;
1117 
1118 	queue->host_qid = le16_to_cpu(req->qid);
1119 
1120 	/*
1121 	 * req->hsqsize corresponds to our recv queue size plus 1
1122 	 * req->hrqsize corresponds to our send queue size
1123 	 */
1124 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1125 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1126 
1127 	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1128 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1129 
1130 	/* XXX: Should we enforce some kind of max for IO queues? */
1131 
1132 	return 0;
1133 }
1134 
1135 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1136 				enum nvme_rdma_cm_status status)
1137 {
1138 	struct nvme_rdma_cm_rej rej;
1139 
1140 	pr_debug("rejecting connect request: status %d (%s)\n",
1141 		 status, nvme_rdma_cm_msg(status));
1142 
1143 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1144 	rej.sts = cpu_to_le16(status);
1145 
1146 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1147 }
1148 
1149 static struct nvmet_rdma_queue *
1150 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1151 		struct rdma_cm_id *cm_id,
1152 		struct rdma_cm_event *event)
1153 {
1154 	struct nvmet_rdma_queue *queue;
1155 	int ret;
1156 
1157 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1158 	if (!queue) {
1159 		ret = NVME_RDMA_CM_NO_RSC;
1160 		goto out_reject;
1161 	}
1162 
1163 	ret = nvmet_sq_init(&queue->nvme_sq);
1164 	if (ret) {
1165 		ret = NVME_RDMA_CM_NO_RSC;
1166 		goto out_free_queue;
1167 	}
1168 
1169 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1170 	if (ret)
1171 		goto out_destroy_sq;
1172 
1173 	/*
1174 	 * Schedules the actual release because calling rdma_destroy_id from
1175 	 * inside a CM callback would trigger a deadlock. (great API design..)
1176 	 */
1177 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1178 	queue->dev = ndev;
1179 	queue->cm_id = cm_id;
1180 
1181 	spin_lock_init(&queue->state_lock);
1182 	queue->state = NVMET_RDMA_Q_CONNECTING;
1183 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1184 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1185 	spin_lock_init(&queue->rsp_wr_wait_lock);
1186 	INIT_LIST_HEAD(&queue->free_rsps);
1187 	spin_lock_init(&queue->rsps_lock);
1188 	INIT_LIST_HEAD(&queue->queue_list);
1189 
1190 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1191 	if (queue->idx < 0) {
1192 		ret = NVME_RDMA_CM_NO_RSC;
1193 		goto out_destroy_sq;
1194 	}
1195 
1196 	ret = nvmet_rdma_alloc_rsps(queue);
1197 	if (ret) {
1198 		ret = NVME_RDMA_CM_NO_RSC;
1199 		goto out_ida_remove;
1200 	}
1201 
1202 	if (!ndev->srq) {
1203 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1204 				queue->recv_queue_size,
1205 				!queue->host_qid);
1206 		if (IS_ERR(queue->cmds)) {
1207 			ret = NVME_RDMA_CM_NO_RSC;
1208 			goto out_free_responses;
1209 		}
1210 	}
1211 
1212 	ret = nvmet_rdma_create_queue_ib(queue);
1213 	if (ret) {
1214 		pr_err("%s: creating RDMA queue failed (%d).\n",
1215 			__func__, ret);
1216 		ret = NVME_RDMA_CM_NO_RSC;
1217 		goto out_free_cmds;
1218 	}
1219 
1220 	return queue;
1221 
1222 out_free_cmds:
1223 	if (!ndev->srq) {
1224 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1225 				queue->recv_queue_size,
1226 				!queue->host_qid);
1227 	}
1228 out_free_responses:
1229 	nvmet_rdma_free_rsps(queue);
1230 out_ida_remove:
1231 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1232 out_destroy_sq:
1233 	nvmet_sq_destroy(&queue->nvme_sq);
1234 out_free_queue:
1235 	kfree(queue);
1236 out_reject:
1237 	nvmet_rdma_cm_reject(cm_id, ret);
1238 	return NULL;
1239 }
1240 
1241 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1242 {
1243 	struct nvmet_rdma_queue *queue = priv;
1244 
1245 	switch (event->event) {
1246 	case IB_EVENT_COMM_EST:
1247 		rdma_notify(queue->cm_id, event->event);
1248 		break;
1249 	default:
1250 		pr_err("received IB QP event: %s (%d)\n",
1251 		       ib_event_msg(event->event), event->event);
1252 		break;
1253 	}
1254 }
1255 
1256 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1257 		struct nvmet_rdma_queue *queue,
1258 		struct rdma_conn_param *p)
1259 {
1260 	struct rdma_conn_param  param = { };
1261 	struct nvme_rdma_cm_rep priv = { };
1262 	int ret = -ENOMEM;
1263 
1264 	param.rnr_retry_count = 7;
1265 	param.flow_control = 1;
1266 	param.initiator_depth = min_t(u8, p->initiator_depth,
1267 		queue->dev->device->attrs.max_qp_init_rd_atom);
1268 	param.private_data = &priv;
1269 	param.private_data_len = sizeof(priv);
1270 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1271 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1272 
1273 	ret = rdma_accept(cm_id, &param);
1274 	if (ret)
1275 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1276 
1277 	return ret;
1278 }
1279 
1280 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1281 		struct rdma_cm_event *event)
1282 {
1283 	struct nvmet_rdma_port *port = cm_id->context;
1284 	struct nvmet_rdma_device *ndev;
1285 	struct nvmet_rdma_queue *queue;
1286 	int ret = -EINVAL;
1287 
1288 	ndev = nvmet_rdma_find_get_device(cm_id);
1289 	if (!ndev) {
1290 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1291 		return -ECONNREFUSED;
1292 	}
1293 
1294 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1295 	if (!queue) {
1296 		ret = -ENOMEM;
1297 		goto put_device;
1298 	}
1299 	queue->port = port->nport;
1300 
1301 	if (queue->host_qid == 0) {
1302 		/* Let inflight controller teardown complete */
1303 		flush_scheduled_work();
1304 	}
1305 
1306 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1307 	if (ret) {
1308 		schedule_work(&queue->release_work);
1309 		/* Destroying rdma_cm id is not needed here */
1310 		return 0;
1311 	}
1312 
1313 	mutex_lock(&nvmet_rdma_queue_mutex);
1314 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1315 	mutex_unlock(&nvmet_rdma_queue_mutex);
1316 
1317 	return 0;
1318 
1319 put_device:
1320 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1321 
1322 	return ret;
1323 }
1324 
1325 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1326 {
1327 	unsigned long flags;
1328 
1329 	spin_lock_irqsave(&queue->state_lock, flags);
1330 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1331 		pr_warn("trying to establish a connected queue\n");
1332 		goto out_unlock;
1333 	}
1334 	queue->state = NVMET_RDMA_Q_LIVE;
1335 
1336 	while (!list_empty(&queue->rsp_wait_list)) {
1337 		struct nvmet_rdma_rsp *cmd;
1338 
1339 		cmd = list_first_entry(&queue->rsp_wait_list,
1340 					struct nvmet_rdma_rsp, wait_list);
1341 		list_del(&cmd->wait_list);
1342 
1343 		spin_unlock_irqrestore(&queue->state_lock, flags);
1344 		nvmet_rdma_handle_command(queue, cmd);
1345 		spin_lock_irqsave(&queue->state_lock, flags);
1346 	}
1347 
1348 out_unlock:
1349 	spin_unlock_irqrestore(&queue->state_lock, flags);
1350 }
1351 
1352 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1353 {
1354 	bool disconnect = false;
1355 	unsigned long flags;
1356 
1357 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1358 
1359 	spin_lock_irqsave(&queue->state_lock, flags);
1360 	switch (queue->state) {
1361 	case NVMET_RDMA_Q_CONNECTING:
1362 	case NVMET_RDMA_Q_LIVE:
1363 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1364 		disconnect = true;
1365 		break;
1366 	case NVMET_RDMA_Q_DISCONNECTING:
1367 		break;
1368 	}
1369 	spin_unlock_irqrestore(&queue->state_lock, flags);
1370 
1371 	if (disconnect) {
1372 		rdma_disconnect(queue->cm_id);
1373 		schedule_work(&queue->release_work);
1374 	}
1375 }
1376 
1377 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1378 {
1379 	bool disconnect = false;
1380 
1381 	mutex_lock(&nvmet_rdma_queue_mutex);
1382 	if (!list_empty(&queue->queue_list)) {
1383 		list_del_init(&queue->queue_list);
1384 		disconnect = true;
1385 	}
1386 	mutex_unlock(&nvmet_rdma_queue_mutex);
1387 
1388 	if (disconnect)
1389 		__nvmet_rdma_queue_disconnect(queue);
1390 }
1391 
1392 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1393 		struct nvmet_rdma_queue *queue)
1394 {
1395 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1396 
1397 	mutex_lock(&nvmet_rdma_queue_mutex);
1398 	if (!list_empty(&queue->queue_list))
1399 		list_del_init(&queue->queue_list);
1400 	mutex_unlock(&nvmet_rdma_queue_mutex);
1401 
1402 	pr_err("failed to connect queue %d\n", queue->idx);
1403 	schedule_work(&queue->release_work);
1404 }
1405 
1406 /**
1407  * nvme_rdma_device_removal() - Handle RDMA device removal
1408  * @cm_id:	rdma_cm id, used for nvmet port
1409  * @queue:      nvmet rdma queue (cm id qp_context)
1410  *
1411  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1412  * to unplug. Note that this event can be generated on a normal
1413  * queue cm_id and/or a device bound listener cm_id (where in this
1414  * case queue will be null).
1415  *
1416  * We registered an ib_client to handle device removal for queues,
1417  * so we only need to handle the listening port cm_ids. In this case
1418  * we nullify the priv to prevent double cm_id destruction and destroying
1419  * the cm_id implicitely by returning a non-zero rc to the callout.
1420  */
1421 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1422 		struct nvmet_rdma_queue *queue)
1423 {
1424 	struct nvmet_rdma_port *port;
1425 
1426 	if (queue) {
1427 		/*
1428 		 * This is a queue cm_id. we have registered
1429 		 * an ib_client to handle queues removal
1430 		 * so don't interfear and just return.
1431 		 */
1432 		return 0;
1433 	}
1434 
1435 	port = cm_id->context;
1436 
1437 	/*
1438 	 * This is a listener cm_id. Make sure that
1439 	 * future remove_port won't invoke a double
1440 	 * cm_id destroy. use atomic xchg to make sure
1441 	 * we don't compete with remove_port.
1442 	 */
1443 	if (xchg(&port->cm_id, NULL) != cm_id)
1444 		return 0;
1445 
1446 	/*
1447 	 * We need to return 1 so that the core will destroy
1448 	 * it's own ID.  What a great API design..
1449 	 */
1450 	return 1;
1451 }
1452 
1453 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1454 		struct rdma_cm_event *event)
1455 {
1456 	struct nvmet_rdma_queue *queue = NULL;
1457 	int ret = 0;
1458 
1459 	if (cm_id->qp)
1460 		queue = cm_id->qp->qp_context;
1461 
1462 	pr_debug("%s (%d): status %d id %p\n",
1463 		rdma_event_msg(event->event), event->event,
1464 		event->status, cm_id);
1465 
1466 	switch (event->event) {
1467 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1468 		ret = nvmet_rdma_queue_connect(cm_id, event);
1469 		break;
1470 	case RDMA_CM_EVENT_ESTABLISHED:
1471 		nvmet_rdma_queue_established(queue);
1472 		break;
1473 	case RDMA_CM_EVENT_ADDR_CHANGE:
1474 		if (!queue) {
1475 			struct nvmet_rdma_port *port = cm_id->context;
1476 
1477 			schedule_delayed_work(&port->repair_work, 0);
1478 			break;
1479 		}
1480 		/* FALLTHROUGH */
1481 	case RDMA_CM_EVENT_DISCONNECTED:
1482 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1483 		nvmet_rdma_queue_disconnect(queue);
1484 		break;
1485 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1486 		ret = nvmet_rdma_device_removal(cm_id, queue);
1487 		break;
1488 	case RDMA_CM_EVENT_REJECTED:
1489 		pr_debug("Connection rejected: %s\n",
1490 			 rdma_reject_msg(cm_id, event->status));
1491 		/* FALLTHROUGH */
1492 	case RDMA_CM_EVENT_UNREACHABLE:
1493 	case RDMA_CM_EVENT_CONNECT_ERROR:
1494 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1495 		break;
1496 	default:
1497 		pr_err("received unrecognized RDMA CM event %d\n",
1498 			event->event);
1499 		break;
1500 	}
1501 
1502 	return ret;
1503 }
1504 
1505 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1506 {
1507 	struct nvmet_rdma_queue *queue;
1508 
1509 restart:
1510 	mutex_lock(&nvmet_rdma_queue_mutex);
1511 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1512 		if (queue->nvme_sq.ctrl == ctrl) {
1513 			list_del_init(&queue->queue_list);
1514 			mutex_unlock(&nvmet_rdma_queue_mutex);
1515 
1516 			__nvmet_rdma_queue_disconnect(queue);
1517 			goto restart;
1518 		}
1519 	}
1520 	mutex_unlock(&nvmet_rdma_queue_mutex);
1521 }
1522 
1523 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1524 {
1525 	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1526 
1527 	if (cm_id)
1528 		rdma_destroy_id(cm_id);
1529 }
1530 
1531 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1532 {
1533 	struct sockaddr *addr = (struct sockaddr *)&port->addr;
1534 	struct rdma_cm_id *cm_id;
1535 	int ret;
1536 
1537 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1538 			RDMA_PS_TCP, IB_QPT_RC);
1539 	if (IS_ERR(cm_id)) {
1540 		pr_err("CM ID creation failed\n");
1541 		return PTR_ERR(cm_id);
1542 	}
1543 
1544 	/*
1545 	 * Allow both IPv4 and IPv6 sockets to bind a single port
1546 	 * at the same time.
1547 	 */
1548 	ret = rdma_set_afonly(cm_id, 1);
1549 	if (ret) {
1550 		pr_err("rdma_set_afonly failed (%d)\n", ret);
1551 		goto out_destroy_id;
1552 	}
1553 
1554 	ret = rdma_bind_addr(cm_id, addr);
1555 	if (ret) {
1556 		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1557 		goto out_destroy_id;
1558 	}
1559 
1560 	ret = rdma_listen(cm_id, 128);
1561 	if (ret) {
1562 		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1563 		goto out_destroy_id;
1564 	}
1565 
1566 	port->cm_id = cm_id;
1567 	return 0;
1568 
1569 out_destroy_id:
1570 	rdma_destroy_id(cm_id);
1571 	return ret;
1572 }
1573 
1574 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1575 {
1576 	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1577 			struct nvmet_rdma_port, repair_work);
1578 	int ret;
1579 
1580 	nvmet_rdma_disable_port(port);
1581 	ret = nvmet_rdma_enable_port(port);
1582 	if (ret)
1583 		schedule_delayed_work(&port->repair_work, 5 * HZ);
1584 }
1585 
1586 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1587 {
1588 	struct nvmet_rdma_port *port;
1589 	__kernel_sa_family_t af;
1590 	int ret;
1591 
1592 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1593 	if (!port)
1594 		return -ENOMEM;
1595 
1596 	nport->priv = port;
1597 	port->nport = nport;
1598 	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1599 
1600 	switch (nport->disc_addr.adrfam) {
1601 	case NVMF_ADDR_FAMILY_IP4:
1602 		af = AF_INET;
1603 		break;
1604 	case NVMF_ADDR_FAMILY_IP6:
1605 		af = AF_INET6;
1606 		break;
1607 	default:
1608 		pr_err("address family %d not supported\n",
1609 			nport->disc_addr.adrfam);
1610 		ret = -EINVAL;
1611 		goto out_free_port;
1612 	}
1613 
1614 	if (nport->inline_data_size < 0) {
1615 		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1616 	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1617 		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1618 			nport->inline_data_size,
1619 			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1620 		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1621 	}
1622 
1623 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1624 			nport->disc_addr.trsvcid, &port->addr);
1625 	if (ret) {
1626 		pr_err("malformed ip/port passed: %s:%s\n",
1627 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1628 		goto out_free_port;
1629 	}
1630 
1631 	ret = nvmet_rdma_enable_port(port);
1632 	if (ret)
1633 		goto out_free_port;
1634 
1635 	pr_info("enabling port %d (%pISpcs)\n",
1636 		le16_to_cpu(nport->disc_addr.portid),
1637 		(struct sockaddr *)&port->addr);
1638 
1639 	return 0;
1640 
1641 out_free_port:
1642 	kfree(port);
1643 	return ret;
1644 }
1645 
1646 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1647 {
1648 	struct nvmet_rdma_port *port = nport->priv;
1649 
1650 	cancel_delayed_work_sync(&port->repair_work);
1651 	nvmet_rdma_disable_port(port);
1652 	kfree(port);
1653 }
1654 
1655 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1656 		struct nvmet_port *nport, char *traddr)
1657 {
1658 	struct nvmet_rdma_port *port = nport->priv;
1659 	struct rdma_cm_id *cm_id = port->cm_id;
1660 
1661 	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1662 		struct nvmet_rdma_rsp *rsp =
1663 			container_of(req, struct nvmet_rdma_rsp, req);
1664 		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1665 		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1666 
1667 		sprintf(traddr, "%pISc", addr);
1668 	} else {
1669 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1670 	}
1671 }
1672 
1673 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1674 {
1675 	return NVMET_RDMA_MAX_MDTS;
1676 }
1677 
1678 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1679 	.owner			= THIS_MODULE,
1680 	.type			= NVMF_TRTYPE_RDMA,
1681 	.msdbd			= 1,
1682 	.has_keyed_sgls		= 1,
1683 	.add_port		= nvmet_rdma_add_port,
1684 	.remove_port		= nvmet_rdma_remove_port,
1685 	.queue_response		= nvmet_rdma_queue_response,
1686 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1687 	.disc_traddr		= nvmet_rdma_disc_port_addr,
1688 	.get_mdts		= nvmet_rdma_get_mdts,
1689 };
1690 
1691 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1692 {
1693 	struct nvmet_rdma_queue *queue, *tmp;
1694 	struct nvmet_rdma_device *ndev;
1695 	bool found = false;
1696 
1697 	mutex_lock(&device_list_mutex);
1698 	list_for_each_entry(ndev, &device_list, entry) {
1699 		if (ndev->device == ib_device) {
1700 			found = true;
1701 			break;
1702 		}
1703 	}
1704 	mutex_unlock(&device_list_mutex);
1705 
1706 	if (!found)
1707 		return;
1708 
1709 	/*
1710 	 * IB Device that is used by nvmet controllers is being removed,
1711 	 * delete all queues using this device.
1712 	 */
1713 	mutex_lock(&nvmet_rdma_queue_mutex);
1714 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1715 				 queue_list) {
1716 		if (queue->dev->device != ib_device)
1717 			continue;
1718 
1719 		pr_info("Removing queue %d\n", queue->idx);
1720 		list_del_init(&queue->queue_list);
1721 		__nvmet_rdma_queue_disconnect(queue);
1722 	}
1723 	mutex_unlock(&nvmet_rdma_queue_mutex);
1724 
1725 	flush_scheduled_work();
1726 }
1727 
1728 static struct ib_client nvmet_rdma_ib_client = {
1729 	.name   = "nvmet_rdma",
1730 	.remove = nvmet_rdma_remove_one
1731 };
1732 
1733 static int __init nvmet_rdma_init(void)
1734 {
1735 	int ret;
1736 
1737 	ret = ib_register_client(&nvmet_rdma_ib_client);
1738 	if (ret)
1739 		return ret;
1740 
1741 	ret = nvmet_register_transport(&nvmet_rdma_ops);
1742 	if (ret)
1743 		goto err_ib_client;
1744 
1745 	return 0;
1746 
1747 err_ib_client:
1748 	ib_unregister_client(&nvmet_rdma_ib_client);
1749 	return ret;
1750 }
1751 
1752 static void __exit nvmet_rdma_exit(void)
1753 {
1754 	nvmet_unregister_transport(&nvmet_rdma_ops);
1755 	ib_unregister_client(&nvmet_rdma_ib_client);
1756 	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1757 	ida_destroy(&nvmet_rdma_queue_ida);
1758 }
1759 
1760 module_init(nvmet_rdma_init);
1761 module_exit(nvmet_rdma_exit);
1762 
1763 MODULE_LICENSE("GPL v2");
1764 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
1765