xref: /openbmc/linux/drivers/nvme/target/io-cmd-bdev.c (revision 78eee7b5f110c9884c8ffd1dfcdd9c29296f3e43)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe I/O command implementation.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/module.h>
9 #include "nvmet.h"
10 
11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
12 {
13 	const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14 	/* Number of logical blocks per physical block. */
15 	const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16 	/* Logical blocks per physical block, 0's based. */
17 	const __le16 lpp0b = to0based(lpp);
18 
19 	/*
20 	 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 	 * NAWUPF, and NACWU are defined for this namespace and should be
22 	 * used by the host for this namespace instead of the AWUN, AWUPF,
23 	 * and ACWU fields in the Identify Controller data structure. If
24 	 * any of these fields are zero that means that the corresponding
25 	 * field from the identify controller data structure should be used.
26 	 */
27 	id->nsfeat |= 1 << 1;
28 	id->nawun = lpp0b;
29 	id->nawupf = lpp0b;
30 	id->nacwu = lpp0b;
31 
32 	/*
33 	 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 	 * NOWS are defined for this namespace and should be used by
35 	 * the host for I/O optimization.
36 	 */
37 	id->nsfeat |= 1 << 4;
38 	/* NPWG = Namespace Preferred Write Granularity. 0's based */
39 	id->npwg = lpp0b;
40 	/* NPWA = Namespace Preferred Write Alignment. 0's based */
41 	id->npwa = id->npwg;
42 	/* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 	id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44 	/* NPDG = Namespace Preferred Deallocate Alignment */
45 	id->npda = id->npdg;
46 	/* NOWS = Namespace Optimal Write Size */
47 	id->nows = to0based(ql->io_opt / ql->logical_block_size);
48 }
49 
50 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
51 {
52 	if (ns->bdev) {
53 		blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
54 		ns->bdev = NULL;
55 	}
56 }
57 
58 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
59 {
60 	struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
61 
62 	if (bi) {
63 		ns->metadata_size = bi->tuple_size;
64 		if (bi->profile == &t10_pi_type1_crc)
65 			ns->pi_type = NVME_NS_DPS_PI_TYPE1;
66 		else if (bi->profile == &t10_pi_type3_crc)
67 			ns->pi_type = NVME_NS_DPS_PI_TYPE3;
68 		else
69 			/* Unsupported metadata type */
70 			ns->metadata_size = 0;
71 	}
72 }
73 
74 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
75 {
76 	int ret;
77 
78 	ns->bdev = blkdev_get_by_path(ns->device_path,
79 			FMODE_READ | FMODE_WRITE, NULL);
80 	if (IS_ERR(ns->bdev)) {
81 		ret = PTR_ERR(ns->bdev);
82 		if (ret != -ENOTBLK) {
83 			pr_err("failed to open block device %s: (%ld)\n",
84 					ns->device_path, PTR_ERR(ns->bdev));
85 		}
86 		ns->bdev = NULL;
87 		return ret;
88 	}
89 	ns->size = i_size_read(ns->bdev->bd_inode);
90 	ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
91 
92 	ns->pi_type = 0;
93 	ns->metadata_size = 0;
94 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
95 		nvmet_bdev_ns_enable_integrity(ns);
96 
97 	if (bdev_is_zoned(ns->bdev)) {
98 		if (!nvmet_bdev_zns_enable(ns)) {
99 			nvmet_bdev_ns_disable(ns);
100 			return -EINVAL;
101 		}
102 		ns->csi = NVME_CSI_ZNS;
103 	}
104 
105 	return 0;
106 }
107 
108 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
109 {
110 	ns->size = i_size_read(ns->bdev->bd_inode);
111 }
112 
113 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
114 {
115 	u16 status = NVME_SC_SUCCESS;
116 
117 	if (likely(blk_sts == BLK_STS_OK))
118 		return status;
119 	/*
120 	 * Right now there exists M : 1 mapping between block layer error
121 	 * to the NVMe status code (see nvme_error_status()). For consistency,
122 	 * when we reverse map we use most appropriate NVMe Status code from
123 	 * the group of the NVMe staus codes used in the nvme_error_status().
124 	 */
125 	switch (blk_sts) {
126 	case BLK_STS_NOSPC:
127 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
128 		req->error_loc = offsetof(struct nvme_rw_command, length);
129 		break;
130 	case BLK_STS_TARGET:
131 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
132 		req->error_loc = offsetof(struct nvme_rw_command, slba);
133 		break;
134 	case BLK_STS_NOTSUPP:
135 		req->error_loc = offsetof(struct nvme_common_command, opcode);
136 		switch (req->cmd->common.opcode) {
137 		case nvme_cmd_dsm:
138 		case nvme_cmd_write_zeroes:
139 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
140 			break;
141 		default:
142 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
143 		}
144 		break;
145 	case BLK_STS_MEDIUM:
146 		status = NVME_SC_ACCESS_DENIED;
147 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
148 		break;
149 	case BLK_STS_IOERR:
150 	default:
151 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
152 		req->error_loc = offsetof(struct nvme_common_command, opcode);
153 	}
154 
155 	switch (req->cmd->common.opcode) {
156 	case nvme_cmd_read:
157 	case nvme_cmd_write:
158 		req->error_slba = le64_to_cpu(req->cmd->rw.slba);
159 		break;
160 	case nvme_cmd_write_zeroes:
161 		req->error_slba =
162 			le64_to_cpu(req->cmd->write_zeroes.slba);
163 		break;
164 	default:
165 		req->error_slba = 0;
166 	}
167 	return status;
168 }
169 
170 static void nvmet_bio_done(struct bio *bio)
171 {
172 	struct nvmet_req *req = bio->bi_private;
173 
174 	nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
175 	nvmet_req_bio_put(req, bio);
176 }
177 
178 #ifdef CONFIG_BLK_DEV_INTEGRITY
179 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
180 				struct sg_mapping_iter *miter)
181 {
182 	struct blk_integrity *bi;
183 	struct bio_integrity_payload *bip;
184 	int rc;
185 	size_t resid, len;
186 
187 	bi = bdev_get_integrity(req->ns->bdev);
188 	if (unlikely(!bi)) {
189 		pr_err("Unable to locate bio_integrity\n");
190 		return -ENODEV;
191 	}
192 
193 	bip = bio_integrity_alloc(bio, GFP_NOIO,
194 					bio_max_segs(req->metadata_sg_cnt));
195 	if (IS_ERR(bip)) {
196 		pr_err("Unable to allocate bio_integrity_payload\n");
197 		return PTR_ERR(bip);
198 	}
199 
200 	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
201 	/* virtual start sector must be in integrity interval units */
202 	bip_set_seed(bip, bio->bi_iter.bi_sector >>
203 		     (bi->interval_exp - SECTOR_SHIFT));
204 
205 	resid = bip->bip_iter.bi_size;
206 	while (resid > 0 && sg_miter_next(miter)) {
207 		len = min_t(size_t, miter->length, resid);
208 		rc = bio_integrity_add_page(bio, miter->page, len,
209 					    offset_in_page(miter->addr));
210 		if (unlikely(rc != len)) {
211 			pr_err("bio_integrity_add_page() failed; %d\n", rc);
212 			sg_miter_stop(miter);
213 			return -ENOMEM;
214 		}
215 
216 		resid -= len;
217 		if (len < miter->length)
218 			miter->consumed -= miter->length - len;
219 	}
220 	sg_miter_stop(miter);
221 
222 	return 0;
223 }
224 #else
225 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
226 				struct sg_mapping_iter *miter)
227 {
228 	return -EINVAL;
229 }
230 #endif /* CONFIG_BLK_DEV_INTEGRITY */
231 
232 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
233 {
234 	unsigned int sg_cnt = req->sg_cnt;
235 	struct bio *bio;
236 	struct scatterlist *sg;
237 	struct blk_plug plug;
238 	sector_t sector;
239 	int op, i, rc;
240 	struct sg_mapping_iter prot_miter;
241 	unsigned int iter_flags;
242 	unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
243 
244 	if (!nvmet_check_transfer_len(req, total_len))
245 		return;
246 
247 	if (!req->sg_cnt) {
248 		nvmet_req_complete(req, 0);
249 		return;
250 	}
251 
252 	if (req->cmd->rw.opcode == nvme_cmd_write) {
253 		op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
254 		if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
255 			op |= REQ_FUA;
256 		iter_flags = SG_MITER_TO_SG;
257 	} else {
258 		op = REQ_OP_READ;
259 		iter_flags = SG_MITER_FROM_SG;
260 	}
261 
262 	if (is_pci_p2pdma_page(sg_page(req->sg)))
263 		op |= REQ_NOMERGE;
264 
265 	sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
266 
267 	if (nvmet_use_inline_bvec(req)) {
268 		bio = &req->b.inline_bio;
269 		bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
270 	} else {
271 		bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt));
272 	}
273 	bio_set_dev(bio, req->ns->bdev);
274 	bio->bi_iter.bi_sector = sector;
275 	bio->bi_private = req;
276 	bio->bi_end_io = nvmet_bio_done;
277 	bio->bi_opf = op;
278 
279 	blk_start_plug(&plug);
280 	if (req->metadata_len)
281 		sg_miter_start(&prot_miter, req->metadata_sg,
282 			       req->metadata_sg_cnt, iter_flags);
283 
284 	for_each_sg(req->sg, sg, req->sg_cnt, i) {
285 		while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
286 				!= sg->length) {
287 			struct bio *prev = bio;
288 
289 			if (req->metadata_len) {
290 				rc = nvmet_bdev_alloc_bip(req, bio,
291 							  &prot_miter);
292 				if (unlikely(rc)) {
293 					bio_io_error(bio);
294 					return;
295 				}
296 			}
297 
298 			bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt));
299 			bio_set_dev(bio, req->ns->bdev);
300 			bio->bi_iter.bi_sector = sector;
301 			bio->bi_opf = op;
302 
303 			bio_chain(bio, prev);
304 			submit_bio(prev);
305 		}
306 
307 		sector += sg->length >> 9;
308 		sg_cnt--;
309 	}
310 
311 	if (req->metadata_len) {
312 		rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
313 		if (unlikely(rc)) {
314 			bio_io_error(bio);
315 			return;
316 		}
317 	}
318 
319 	submit_bio(bio);
320 	blk_finish_plug(&plug);
321 }
322 
323 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
324 {
325 	struct bio *bio = &req->b.inline_bio;
326 
327 	if (!nvmet_check_transfer_len(req, 0))
328 		return;
329 
330 	bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
331 	bio_set_dev(bio, req->ns->bdev);
332 	bio->bi_private = req;
333 	bio->bi_end_io = nvmet_bio_done;
334 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
335 
336 	submit_bio(bio);
337 }
338 
339 u16 nvmet_bdev_flush(struct nvmet_req *req)
340 {
341 	if (blkdev_issue_flush(req->ns->bdev))
342 		return NVME_SC_INTERNAL | NVME_SC_DNR;
343 	return 0;
344 }
345 
346 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
347 		struct nvme_dsm_range *range, struct bio **bio)
348 {
349 	struct nvmet_ns *ns = req->ns;
350 	int ret;
351 
352 	ret = __blkdev_issue_discard(ns->bdev,
353 			nvmet_lba_to_sect(ns, range->slba),
354 			le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
355 			GFP_KERNEL, 0, bio);
356 	if (ret && ret != -EOPNOTSUPP) {
357 		req->error_slba = le64_to_cpu(range->slba);
358 		return errno_to_nvme_status(req, ret);
359 	}
360 	return NVME_SC_SUCCESS;
361 }
362 
363 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
364 {
365 	struct nvme_dsm_range range;
366 	struct bio *bio = NULL;
367 	int i;
368 	u16 status;
369 
370 	for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
371 		status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
372 				sizeof(range));
373 		if (status)
374 			break;
375 
376 		status = nvmet_bdev_discard_range(req, &range, &bio);
377 		if (status)
378 			break;
379 	}
380 
381 	if (bio) {
382 		bio->bi_private = req;
383 		bio->bi_end_io = nvmet_bio_done;
384 		if (status)
385 			bio_io_error(bio);
386 		else
387 			submit_bio(bio);
388 	} else {
389 		nvmet_req_complete(req, status);
390 	}
391 }
392 
393 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
394 {
395 	if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
396 		return;
397 
398 	switch (le32_to_cpu(req->cmd->dsm.attributes)) {
399 	case NVME_DSMGMT_AD:
400 		nvmet_bdev_execute_discard(req);
401 		return;
402 	case NVME_DSMGMT_IDR:
403 	case NVME_DSMGMT_IDW:
404 	default:
405 		/* Not supported yet */
406 		nvmet_req_complete(req, 0);
407 		return;
408 	}
409 }
410 
411 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
412 {
413 	struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
414 	struct bio *bio = NULL;
415 	sector_t sector;
416 	sector_t nr_sector;
417 	int ret;
418 
419 	if (!nvmet_check_transfer_len(req, 0))
420 		return;
421 
422 	sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
423 	nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
424 		(req->ns->blksize_shift - 9));
425 
426 	ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
427 			GFP_KERNEL, &bio, 0);
428 	if (bio) {
429 		bio->bi_private = req;
430 		bio->bi_end_io = nvmet_bio_done;
431 		submit_bio(bio);
432 	} else {
433 		nvmet_req_complete(req, errno_to_nvme_status(req, ret));
434 	}
435 }
436 
437 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
438 {
439 	switch (req->cmd->common.opcode) {
440 	case nvme_cmd_read:
441 	case nvme_cmd_write:
442 		req->execute = nvmet_bdev_execute_rw;
443 		if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
444 			req->metadata_len = nvmet_rw_metadata_len(req);
445 		return 0;
446 	case nvme_cmd_flush:
447 		req->execute = nvmet_bdev_execute_flush;
448 		return 0;
449 	case nvme_cmd_dsm:
450 		req->execute = nvmet_bdev_execute_dsm;
451 		return 0;
452 	case nvme_cmd_write_zeroes:
453 		req->execute = nvmet_bdev_execute_write_zeroes;
454 		return 0;
455 	default:
456 		return nvmet_report_invalid_opcode(req);
457 	}
458 }
459