xref: /openbmc/linux/drivers/nvme/target/fc.c (revision 17bc4815de586d001c82d0ddf75247283c3f002a)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25 
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29 
30 
31 /* *************************** Data Structures/Defines ****************** */
32 
33 
34 #define NVMET_LS_CTX_COUNT		256
35 
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE		2048
38 
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41 
42 struct nvmet_fc_ls_iod {
43 	struct nvmefc_tgt_ls_req	*lsreq;
44 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
45 
46 	struct list_head		ls_list;	/* tgtport->ls_list */
47 
48 	struct nvmet_fc_tgtport		*tgtport;
49 	struct nvmet_fc_tgt_assoc	*assoc;
50 
51 	u8				*rqstbuf;
52 	u8				*rspbuf;
53 	u16				rqstdatalen;
54 	dma_addr_t			rspdma;
55 
56 	struct scatterlist		sg[2];
57 
58 	struct work_struct		work;
59 } __aligned(sizeof(unsigned long long));
60 
61 /* desired maximum for a single sequence - if sg list allows it */
62 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
63 
64 enum nvmet_fcp_datadir {
65 	NVMET_FCP_NODATA,
66 	NVMET_FCP_WRITE,
67 	NVMET_FCP_READ,
68 	NVMET_FCP_ABORTED,
69 };
70 
71 struct nvmet_fc_fcp_iod {
72 	struct nvmefc_tgt_fcp_req	*fcpreq;
73 
74 	struct nvme_fc_cmd_iu		cmdiubuf;
75 	struct nvme_fc_ersp_iu		rspiubuf;
76 	dma_addr_t			rspdma;
77 	struct scatterlist		*next_sg;
78 	struct scatterlist		*data_sg;
79 	int				data_sg_cnt;
80 	u32				offset;
81 	enum nvmet_fcp_datadir		io_dir;
82 	bool				active;
83 	bool				abort;
84 	bool				aborted;
85 	bool				writedataactive;
86 	spinlock_t			flock;
87 
88 	struct nvmet_req		req;
89 	struct work_struct		defer_work;
90 
91 	struct nvmet_fc_tgtport		*tgtport;
92 	struct nvmet_fc_tgt_queue	*queue;
93 
94 	struct list_head		fcp_list;	/* tgtport->fcp_list */
95 };
96 
97 struct nvmet_fc_tgtport {
98 
99 	struct nvmet_fc_target_port	fc_target_port;
100 
101 	struct list_head		tgt_list; /* nvmet_fc_target_list */
102 	struct device			*dev;	/* dev for dma mapping */
103 	struct nvmet_fc_target_template	*ops;
104 
105 	struct nvmet_fc_ls_iod		*iod;
106 	spinlock_t			lock;
107 	struct list_head		ls_list;
108 	struct list_head		ls_busylist;
109 	struct list_head		assoc_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 };
115 
116 struct nvmet_fc_port_entry {
117 	struct nvmet_fc_tgtport		*tgtport;
118 	struct nvmet_port		*port;
119 	u64				node_name;
120 	u64				port_name;
121 	struct list_head		pe_list;
122 };
123 
124 struct nvmet_fc_defer_fcp_req {
125 	struct list_head		req_list;
126 	struct nvmefc_tgt_fcp_req	*fcp_req;
127 };
128 
129 struct nvmet_fc_tgt_queue {
130 	bool				ninetypercent;
131 	u16				qid;
132 	u16				sqsize;
133 	u16				ersp_ratio;
134 	__le16				sqhd;
135 	atomic_t			connected;
136 	atomic_t			sqtail;
137 	atomic_t			zrspcnt;
138 	atomic_t			rsn;
139 	spinlock_t			qlock;
140 	struct nvmet_cq			nvme_cq;
141 	struct nvmet_sq			nvme_sq;
142 	struct nvmet_fc_tgt_assoc	*assoc;
143 	struct nvmet_fc_fcp_iod		*fod;		/* array of fcp_iods */
144 	struct list_head		fod_list;
145 	struct list_head		pending_cmd_list;
146 	struct list_head		avail_defer_list;
147 	struct workqueue_struct		*work_q;
148 	struct kref			ref;
149 } __aligned(sizeof(unsigned long long));
150 
151 struct nvmet_fc_tgt_assoc {
152 	u64				association_id;
153 	u32				a_id;
154 	struct nvmet_fc_tgtport		*tgtport;
155 	struct list_head		a_list;
156 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1];
157 	struct kref			ref;
158 	struct work_struct		del_work;
159 };
160 
161 
162 static inline int
163 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
164 {
165 	return (iodptr - iodptr->tgtport->iod);
166 }
167 
168 static inline int
169 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
170 {
171 	return (fodptr - fodptr->queue->fod);
172 }
173 
174 
175 /*
176  * Association and Connection IDs:
177  *
178  * Association ID will have random number in upper 6 bytes and zero
179  *   in lower 2 bytes
180  *
181  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182  *
183  * note: Association ID = Connection ID for queue 0
184  */
185 #define BYTES_FOR_QID			sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188 
189 static inline u64
190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 	return (assoc->association_id | qid);
193 }
194 
195 static inline u64
196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200 
201 static inline u16
202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206 
207 static inline struct nvmet_fc_tgtport *
208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 	return container_of(targetport, struct nvmet_fc_tgtport,
211 				 fc_target_port);
212 }
213 
214 static inline struct nvmet_fc_fcp_iod *
215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219 
220 
221 /* *************************** Globals **************************** */
222 
223 
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225 
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229 
230 
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
238 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
239 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
240 					struct nvmet_fc_fcp_iod *fod);
241 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
242 
243 
244 /* *********************** FC-NVME DMA Handling **************************** */
245 
246 /*
247  * The fcloop device passes in a NULL device pointer. Real LLD's will
248  * pass in a valid device pointer. If NULL is passed to the dma mapping
249  * routines, depending on the platform, it may or may not succeed, and
250  * may crash.
251  *
252  * As such:
253  * Wrapper all the dma routines and check the dev pointer.
254  *
255  * If simple mappings (return just a dma address, we'll noop them,
256  * returning a dma address of 0.
257  *
258  * On more complex mappings (dma_map_sg), a pseudo routine fills
259  * in the scatter list, setting all dma addresses to 0.
260  */
261 
262 static inline dma_addr_t
263 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
264 		enum dma_data_direction dir)
265 {
266 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
267 }
268 
269 static inline int
270 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
271 {
272 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
273 }
274 
275 static inline void
276 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
277 	enum dma_data_direction dir)
278 {
279 	if (dev)
280 		dma_unmap_single(dev, addr, size, dir);
281 }
282 
283 static inline void
284 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
285 		enum dma_data_direction dir)
286 {
287 	if (dev)
288 		dma_sync_single_for_cpu(dev, addr, size, dir);
289 }
290 
291 static inline void
292 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
293 		enum dma_data_direction dir)
294 {
295 	if (dev)
296 		dma_sync_single_for_device(dev, addr, size, dir);
297 }
298 
299 /* pseudo dma_map_sg call */
300 static int
301 fc_map_sg(struct scatterlist *sg, int nents)
302 {
303 	struct scatterlist *s;
304 	int i;
305 
306 	WARN_ON(nents == 0 || sg[0].length == 0);
307 
308 	for_each_sg(sg, s, nents, i) {
309 		s->dma_address = 0L;
310 #ifdef CONFIG_NEED_SG_DMA_LENGTH
311 		s->dma_length = s->length;
312 #endif
313 	}
314 	return nents;
315 }
316 
317 static inline int
318 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
319 		enum dma_data_direction dir)
320 {
321 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
322 }
323 
324 static inline void
325 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
326 		enum dma_data_direction dir)
327 {
328 	if (dev)
329 		dma_unmap_sg(dev, sg, nents, dir);
330 }
331 
332 
333 /* *********************** FC-NVME Port Management ************************ */
334 
335 
336 static int
337 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
338 {
339 	struct nvmet_fc_ls_iod *iod;
340 	int i;
341 
342 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
343 			GFP_KERNEL);
344 	if (!iod)
345 		return -ENOMEM;
346 
347 	tgtport->iod = iod;
348 
349 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
350 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
351 		iod->tgtport = tgtport;
352 		list_add_tail(&iod->ls_list, &tgtport->ls_list);
353 
354 		iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
355 			GFP_KERNEL);
356 		if (!iod->rqstbuf)
357 			goto out_fail;
358 
359 		iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
360 
361 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
362 						NVME_FC_MAX_LS_BUFFER_SIZE,
363 						DMA_TO_DEVICE);
364 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
365 			goto out_fail;
366 	}
367 
368 	return 0;
369 
370 out_fail:
371 	kfree(iod->rqstbuf);
372 	list_del(&iod->ls_list);
373 	for (iod--, i--; i >= 0; iod--, i--) {
374 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
375 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
376 		kfree(iod->rqstbuf);
377 		list_del(&iod->ls_list);
378 	}
379 
380 	kfree(iod);
381 
382 	return -EFAULT;
383 }
384 
385 static void
386 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
387 {
388 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
389 	int i;
390 
391 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
392 		fc_dma_unmap_single(tgtport->dev,
393 				iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
394 				DMA_TO_DEVICE);
395 		kfree(iod->rqstbuf);
396 		list_del(&iod->ls_list);
397 	}
398 	kfree(tgtport->iod);
399 }
400 
401 static struct nvmet_fc_ls_iod *
402 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
403 {
404 	struct nvmet_fc_ls_iod *iod;
405 	unsigned long flags;
406 
407 	spin_lock_irqsave(&tgtport->lock, flags);
408 	iod = list_first_entry_or_null(&tgtport->ls_list,
409 					struct nvmet_fc_ls_iod, ls_list);
410 	if (iod)
411 		list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
412 	spin_unlock_irqrestore(&tgtport->lock, flags);
413 	return iod;
414 }
415 
416 
417 static void
418 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
419 			struct nvmet_fc_ls_iod *iod)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&tgtport->lock, flags);
424 	list_move(&iod->ls_list, &tgtport->ls_list);
425 	spin_unlock_irqrestore(&tgtport->lock, flags);
426 }
427 
428 static void
429 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
430 				struct nvmet_fc_tgt_queue *queue)
431 {
432 	struct nvmet_fc_fcp_iod *fod = queue->fod;
433 	int i;
434 
435 	for (i = 0; i < queue->sqsize; fod++, i++) {
436 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
437 		fod->tgtport = tgtport;
438 		fod->queue = queue;
439 		fod->active = false;
440 		fod->abort = false;
441 		fod->aborted = false;
442 		fod->fcpreq = NULL;
443 		list_add_tail(&fod->fcp_list, &queue->fod_list);
444 		spin_lock_init(&fod->flock);
445 
446 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
447 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
448 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
449 			list_del(&fod->fcp_list);
450 			for (fod--, i--; i >= 0; fod--, i--) {
451 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
452 						sizeof(fod->rspiubuf),
453 						DMA_TO_DEVICE);
454 				fod->rspdma = 0L;
455 				list_del(&fod->fcp_list);
456 			}
457 
458 			return;
459 		}
460 	}
461 }
462 
463 static void
464 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
465 				struct nvmet_fc_tgt_queue *queue)
466 {
467 	struct nvmet_fc_fcp_iod *fod = queue->fod;
468 	int i;
469 
470 	for (i = 0; i < queue->sqsize; fod++, i++) {
471 		if (fod->rspdma)
472 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
473 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
474 	}
475 }
476 
477 static struct nvmet_fc_fcp_iod *
478 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
479 {
480 	struct nvmet_fc_fcp_iod *fod;
481 
482 	lockdep_assert_held(&queue->qlock);
483 
484 	fod = list_first_entry_or_null(&queue->fod_list,
485 					struct nvmet_fc_fcp_iod, fcp_list);
486 	if (fod) {
487 		list_del(&fod->fcp_list);
488 		fod->active = true;
489 		/*
490 		 * no queue reference is taken, as it was taken by the
491 		 * queue lookup just prior to the allocation. The iod
492 		 * will "inherit" that reference.
493 		 */
494 	}
495 	return fod;
496 }
497 
498 
499 static void
500 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
501 		       struct nvmet_fc_tgt_queue *queue,
502 		       struct nvmefc_tgt_fcp_req *fcpreq)
503 {
504 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
505 
506 	/*
507 	 * put all admin cmds on hw queue id 0. All io commands go to
508 	 * the respective hw queue based on a modulo basis
509 	 */
510 	fcpreq->hwqid = queue->qid ?
511 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
512 
513 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
514 }
515 
516 static void
517 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
518 {
519 	struct nvmet_fc_fcp_iod *fod =
520 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
521 
522 	/* Submit deferred IO for processing */
523 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
524 
525 }
526 
527 static void
528 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
529 			struct nvmet_fc_fcp_iod *fod)
530 {
531 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
532 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
533 	struct nvmet_fc_defer_fcp_req *deferfcp;
534 	unsigned long flags;
535 
536 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
537 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
538 
539 	fcpreq->nvmet_fc_private = NULL;
540 
541 	fod->active = false;
542 	fod->abort = false;
543 	fod->aborted = false;
544 	fod->writedataactive = false;
545 	fod->fcpreq = NULL;
546 
547 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
548 
549 	/* release the queue lookup reference on the completed IO */
550 	nvmet_fc_tgt_q_put(queue);
551 
552 	spin_lock_irqsave(&queue->qlock, flags);
553 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
554 				struct nvmet_fc_defer_fcp_req, req_list);
555 	if (!deferfcp) {
556 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
557 		spin_unlock_irqrestore(&queue->qlock, flags);
558 		return;
559 	}
560 
561 	/* Re-use the fod for the next pending cmd that was deferred */
562 	list_del(&deferfcp->req_list);
563 
564 	fcpreq = deferfcp->fcp_req;
565 
566 	/* deferfcp can be reused for another IO at a later date */
567 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
568 
569 	spin_unlock_irqrestore(&queue->qlock, flags);
570 
571 	/* Save NVME CMD IO in fod */
572 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
573 
574 	/* Setup new fcpreq to be processed */
575 	fcpreq->rspaddr = NULL;
576 	fcpreq->rsplen  = 0;
577 	fcpreq->nvmet_fc_private = fod;
578 	fod->fcpreq = fcpreq;
579 	fod->active = true;
580 
581 	/* inform LLDD IO is now being processed */
582 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
583 
584 	/*
585 	 * Leave the queue lookup get reference taken when
586 	 * fod was originally allocated.
587 	 */
588 
589 	queue_work(queue->work_q, &fod->defer_work);
590 }
591 
592 static struct nvmet_fc_tgt_queue *
593 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
594 			u16 qid, u16 sqsize)
595 {
596 	struct nvmet_fc_tgt_queue *queue;
597 	unsigned long flags;
598 	int ret;
599 
600 	if (qid > NVMET_NR_QUEUES)
601 		return NULL;
602 
603 	queue = kzalloc((sizeof(*queue) +
604 				(sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
605 				GFP_KERNEL);
606 	if (!queue)
607 		return NULL;
608 
609 	if (!nvmet_fc_tgt_a_get(assoc))
610 		goto out_free_queue;
611 
612 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
613 				assoc->tgtport->fc_target_port.port_num,
614 				assoc->a_id, qid);
615 	if (!queue->work_q)
616 		goto out_a_put;
617 
618 	queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
619 	queue->qid = qid;
620 	queue->sqsize = sqsize;
621 	queue->assoc = assoc;
622 	INIT_LIST_HEAD(&queue->fod_list);
623 	INIT_LIST_HEAD(&queue->avail_defer_list);
624 	INIT_LIST_HEAD(&queue->pending_cmd_list);
625 	atomic_set(&queue->connected, 0);
626 	atomic_set(&queue->sqtail, 0);
627 	atomic_set(&queue->rsn, 1);
628 	atomic_set(&queue->zrspcnt, 0);
629 	spin_lock_init(&queue->qlock);
630 	kref_init(&queue->ref);
631 
632 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
633 
634 	ret = nvmet_sq_init(&queue->nvme_sq);
635 	if (ret)
636 		goto out_fail_iodlist;
637 
638 	WARN_ON(assoc->queues[qid]);
639 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
640 	assoc->queues[qid] = queue;
641 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
642 
643 	return queue;
644 
645 out_fail_iodlist:
646 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
647 	destroy_workqueue(queue->work_q);
648 out_a_put:
649 	nvmet_fc_tgt_a_put(assoc);
650 out_free_queue:
651 	kfree(queue);
652 	return NULL;
653 }
654 
655 
656 static void
657 nvmet_fc_tgt_queue_free(struct kref *ref)
658 {
659 	struct nvmet_fc_tgt_queue *queue =
660 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
661 	unsigned long flags;
662 
663 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
664 	queue->assoc->queues[queue->qid] = NULL;
665 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
666 
667 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
668 
669 	nvmet_fc_tgt_a_put(queue->assoc);
670 
671 	destroy_workqueue(queue->work_q);
672 
673 	kfree(queue);
674 }
675 
676 static void
677 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
678 {
679 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
680 }
681 
682 static int
683 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
684 {
685 	return kref_get_unless_zero(&queue->ref);
686 }
687 
688 
689 static void
690 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
691 {
692 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
693 	struct nvmet_fc_fcp_iod *fod = queue->fod;
694 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
695 	unsigned long flags;
696 	int i, writedataactive;
697 	bool disconnect;
698 
699 	disconnect = atomic_xchg(&queue->connected, 0);
700 
701 	spin_lock_irqsave(&queue->qlock, flags);
702 	/* about outstanding io's */
703 	for (i = 0; i < queue->sqsize; fod++, i++) {
704 		if (fod->active) {
705 			spin_lock(&fod->flock);
706 			fod->abort = true;
707 			writedataactive = fod->writedataactive;
708 			spin_unlock(&fod->flock);
709 			/*
710 			 * only call lldd abort routine if waiting for
711 			 * writedata. other outstanding ops should finish
712 			 * on their own.
713 			 */
714 			if (writedataactive) {
715 				spin_lock(&fod->flock);
716 				fod->aborted = true;
717 				spin_unlock(&fod->flock);
718 				tgtport->ops->fcp_abort(
719 					&tgtport->fc_target_port, fod->fcpreq);
720 			}
721 		}
722 	}
723 
724 	/* Cleanup defer'ed IOs in queue */
725 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
726 				req_list) {
727 		list_del(&deferfcp->req_list);
728 		kfree(deferfcp);
729 	}
730 
731 	for (;;) {
732 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
733 				struct nvmet_fc_defer_fcp_req, req_list);
734 		if (!deferfcp)
735 			break;
736 
737 		list_del(&deferfcp->req_list);
738 		spin_unlock_irqrestore(&queue->qlock, flags);
739 
740 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
741 				deferfcp->fcp_req);
742 
743 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
744 				deferfcp->fcp_req);
745 
746 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
747 				deferfcp->fcp_req);
748 
749 		/* release the queue lookup reference */
750 		nvmet_fc_tgt_q_put(queue);
751 
752 		kfree(deferfcp);
753 
754 		spin_lock_irqsave(&queue->qlock, flags);
755 	}
756 	spin_unlock_irqrestore(&queue->qlock, flags);
757 
758 	flush_workqueue(queue->work_q);
759 
760 	if (disconnect)
761 		nvmet_sq_destroy(&queue->nvme_sq);
762 
763 	nvmet_fc_tgt_q_put(queue);
764 }
765 
766 static struct nvmet_fc_tgt_queue *
767 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
768 				u64 connection_id)
769 {
770 	struct nvmet_fc_tgt_assoc *assoc;
771 	struct nvmet_fc_tgt_queue *queue;
772 	u64 association_id = nvmet_fc_getassociationid(connection_id);
773 	u16 qid = nvmet_fc_getqueueid(connection_id);
774 	unsigned long flags;
775 
776 	if (qid > NVMET_NR_QUEUES)
777 		return NULL;
778 
779 	spin_lock_irqsave(&tgtport->lock, flags);
780 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
781 		if (association_id == assoc->association_id) {
782 			queue = assoc->queues[qid];
783 			if (queue &&
784 			    (!atomic_read(&queue->connected) ||
785 			     !nvmet_fc_tgt_q_get(queue)))
786 				queue = NULL;
787 			spin_unlock_irqrestore(&tgtport->lock, flags);
788 			return queue;
789 		}
790 	}
791 	spin_unlock_irqrestore(&tgtport->lock, flags);
792 	return NULL;
793 }
794 
795 static void
796 nvmet_fc_delete_assoc(struct work_struct *work)
797 {
798 	struct nvmet_fc_tgt_assoc *assoc =
799 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
800 
801 	nvmet_fc_delete_target_assoc(assoc);
802 	nvmet_fc_tgt_a_put(assoc);
803 }
804 
805 static struct nvmet_fc_tgt_assoc *
806 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
807 {
808 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
809 	unsigned long flags;
810 	u64 ran;
811 	int idx;
812 	bool needrandom = true;
813 
814 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
815 	if (!assoc)
816 		return NULL;
817 
818 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
819 	if (idx < 0)
820 		goto out_free_assoc;
821 
822 	if (!nvmet_fc_tgtport_get(tgtport))
823 		goto out_ida_put;
824 
825 	assoc->tgtport = tgtport;
826 	assoc->a_id = idx;
827 	INIT_LIST_HEAD(&assoc->a_list);
828 	kref_init(&assoc->ref);
829 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
830 
831 	while (needrandom) {
832 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
833 		ran = ran << BYTES_FOR_QID_SHIFT;
834 
835 		spin_lock_irqsave(&tgtport->lock, flags);
836 		needrandom = false;
837 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
838 			if (ran == tmpassoc->association_id) {
839 				needrandom = true;
840 				break;
841 			}
842 		if (!needrandom) {
843 			assoc->association_id = ran;
844 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
845 		}
846 		spin_unlock_irqrestore(&tgtport->lock, flags);
847 	}
848 
849 	return assoc;
850 
851 out_ida_put:
852 	ida_simple_remove(&tgtport->assoc_cnt, idx);
853 out_free_assoc:
854 	kfree(assoc);
855 	return NULL;
856 }
857 
858 static void
859 nvmet_fc_target_assoc_free(struct kref *ref)
860 {
861 	struct nvmet_fc_tgt_assoc *assoc =
862 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
863 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
864 	unsigned long flags;
865 
866 	spin_lock_irqsave(&tgtport->lock, flags);
867 	list_del(&assoc->a_list);
868 	spin_unlock_irqrestore(&tgtport->lock, flags);
869 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
870 	kfree(assoc);
871 	nvmet_fc_tgtport_put(tgtport);
872 }
873 
874 static void
875 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
876 {
877 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
878 }
879 
880 static int
881 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
882 {
883 	return kref_get_unless_zero(&assoc->ref);
884 }
885 
886 static void
887 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
888 {
889 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
890 	struct nvmet_fc_tgt_queue *queue;
891 	unsigned long flags;
892 	int i;
893 
894 	spin_lock_irqsave(&tgtport->lock, flags);
895 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
896 		queue = assoc->queues[i];
897 		if (queue) {
898 			if (!nvmet_fc_tgt_q_get(queue))
899 				continue;
900 			spin_unlock_irqrestore(&tgtport->lock, flags);
901 			nvmet_fc_delete_target_queue(queue);
902 			nvmet_fc_tgt_q_put(queue);
903 			spin_lock_irqsave(&tgtport->lock, flags);
904 		}
905 	}
906 	spin_unlock_irqrestore(&tgtport->lock, flags);
907 
908 	nvmet_fc_tgt_a_put(assoc);
909 }
910 
911 static struct nvmet_fc_tgt_assoc *
912 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
913 				u64 association_id)
914 {
915 	struct nvmet_fc_tgt_assoc *assoc;
916 	struct nvmet_fc_tgt_assoc *ret = NULL;
917 	unsigned long flags;
918 
919 	spin_lock_irqsave(&tgtport->lock, flags);
920 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
921 		if (association_id == assoc->association_id) {
922 			ret = assoc;
923 			nvmet_fc_tgt_a_get(assoc);
924 			break;
925 		}
926 	}
927 	spin_unlock_irqrestore(&tgtport->lock, flags);
928 
929 	return ret;
930 }
931 
932 static void
933 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
934 			struct nvmet_fc_port_entry *pe,
935 			struct nvmet_port *port)
936 {
937 	lockdep_assert_held(&nvmet_fc_tgtlock);
938 
939 	pe->tgtport = tgtport;
940 	tgtport->pe = pe;
941 
942 	pe->port = port;
943 	port->priv = pe;
944 
945 	pe->node_name = tgtport->fc_target_port.node_name;
946 	pe->port_name = tgtport->fc_target_port.port_name;
947 	INIT_LIST_HEAD(&pe->pe_list);
948 
949 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
950 }
951 
952 static void
953 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
954 {
955 	unsigned long flags;
956 
957 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
958 	if (pe->tgtport)
959 		pe->tgtport->pe = NULL;
960 	list_del(&pe->pe_list);
961 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
962 }
963 
964 /*
965  * called when a targetport deregisters. Breaks the relationship
966  * with the nvmet port, but leaves the port_entry in place so that
967  * re-registration can resume operation.
968  */
969 static void
970 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
971 {
972 	struct nvmet_fc_port_entry *pe;
973 	unsigned long flags;
974 
975 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
976 	pe = tgtport->pe;
977 	if (pe)
978 		pe->tgtport = NULL;
979 	tgtport->pe = NULL;
980 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
981 }
982 
983 /*
984  * called when a new targetport is registered. Looks in the
985  * existing nvmet port_entries to see if the nvmet layer is
986  * configured for the targetport's wwn's. (the targetport existed,
987  * nvmet configured, the lldd unregistered the tgtport, and is now
988  * reregistering the same targetport).  If so, set the nvmet port
989  * port entry on the targetport.
990  */
991 static void
992 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
993 {
994 	struct nvmet_fc_port_entry *pe;
995 	unsigned long flags;
996 
997 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
998 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
999 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1000 		    tgtport->fc_target_port.port_name == pe->port_name) {
1001 			WARN_ON(pe->tgtport);
1002 			tgtport->pe = pe;
1003 			pe->tgtport = tgtport;
1004 			break;
1005 		}
1006 	}
1007 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1008 }
1009 
1010 /**
1011  * nvme_fc_register_targetport - transport entry point called by an
1012  *                              LLDD to register the existence of a local
1013  *                              NVME subystem FC port.
1014  * @pinfo:     pointer to information about the port to be registered
1015  * @template:  LLDD entrypoints and operational parameters for the port
1016  * @dev:       physical hardware device node port corresponds to. Will be
1017  *             used for DMA mappings
1018  * @portptr:   pointer to a local port pointer. Upon success, the routine
1019  *             will allocate a nvme_fc_local_port structure and place its
1020  *             address in the local port pointer. Upon failure, local port
1021  *             pointer will be set to NULL.
1022  *
1023  * Returns:
1024  * a completion status. Must be 0 upon success; a negative errno
1025  * (ex: -ENXIO) upon failure.
1026  */
1027 int
1028 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1029 			struct nvmet_fc_target_template *template,
1030 			struct device *dev,
1031 			struct nvmet_fc_target_port **portptr)
1032 {
1033 	struct nvmet_fc_tgtport *newrec;
1034 	unsigned long flags;
1035 	int ret, idx;
1036 
1037 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1038 	    !template->fcp_abort ||
1039 	    !template->fcp_req_release || !template->targetport_delete ||
1040 	    !template->max_hw_queues || !template->max_sgl_segments ||
1041 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1042 		ret = -EINVAL;
1043 		goto out_regtgt_failed;
1044 	}
1045 
1046 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1047 			 GFP_KERNEL);
1048 	if (!newrec) {
1049 		ret = -ENOMEM;
1050 		goto out_regtgt_failed;
1051 	}
1052 
1053 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1054 	if (idx < 0) {
1055 		ret = -ENOSPC;
1056 		goto out_fail_kfree;
1057 	}
1058 
1059 	if (!get_device(dev) && dev) {
1060 		ret = -ENODEV;
1061 		goto out_ida_put;
1062 	}
1063 
1064 	newrec->fc_target_port.node_name = pinfo->node_name;
1065 	newrec->fc_target_port.port_name = pinfo->port_name;
1066 	newrec->fc_target_port.private = &newrec[1];
1067 	newrec->fc_target_port.port_id = pinfo->port_id;
1068 	newrec->fc_target_port.port_num = idx;
1069 	INIT_LIST_HEAD(&newrec->tgt_list);
1070 	newrec->dev = dev;
1071 	newrec->ops = template;
1072 	spin_lock_init(&newrec->lock);
1073 	INIT_LIST_HEAD(&newrec->ls_list);
1074 	INIT_LIST_HEAD(&newrec->ls_busylist);
1075 	INIT_LIST_HEAD(&newrec->assoc_list);
1076 	kref_init(&newrec->ref);
1077 	ida_init(&newrec->assoc_cnt);
1078 	newrec->max_sg_cnt = template->max_sgl_segments;
1079 
1080 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1081 	if (ret) {
1082 		ret = -ENOMEM;
1083 		goto out_free_newrec;
1084 	}
1085 
1086 	nvmet_fc_portentry_rebind_tgt(newrec);
1087 
1088 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1089 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1090 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1091 
1092 	*portptr = &newrec->fc_target_port;
1093 	return 0;
1094 
1095 out_free_newrec:
1096 	put_device(dev);
1097 out_ida_put:
1098 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1099 out_fail_kfree:
1100 	kfree(newrec);
1101 out_regtgt_failed:
1102 	*portptr = NULL;
1103 	return ret;
1104 }
1105 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1106 
1107 
1108 static void
1109 nvmet_fc_free_tgtport(struct kref *ref)
1110 {
1111 	struct nvmet_fc_tgtport *tgtport =
1112 		container_of(ref, struct nvmet_fc_tgtport, ref);
1113 	struct device *dev = tgtport->dev;
1114 	unsigned long flags;
1115 
1116 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1117 	list_del(&tgtport->tgt_list);
1118 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1119 
1120 	nvmet_fc_free_ls_iodlist(tgtport);
1121 
1122 	/* let the LLDD know we've finished tearing it down */
1123 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1124 
1125 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1126 			tgtport->fc_target_port.port_num);
1127 
1128 	ida_destroy(&tgtport->assoc_cnt);
1129 
1130 	kfree(tgtport);
1131 
1132 	put_device(dev);
1133 }
1134 
1135 static void
1136 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1137 {
1138 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1139 }
1140 
1141 static int
1142 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1143 {
1144 	return kref_get_unless_zero(&tgtport->ref);
1145 }
1146 
1147 static void
1148 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1149 {
1150 	struct nvmet_fc_tgt_assoc *assoc, *next;
1151 	unsigned long flags;
1152 
1153 	spin_lock_irqsave(&tgtport->lock, flags);
1154 	list_for_each_entry_safe(assoc, next,
1155 				&tgtport->assoc_list, a_list) {
1156 		if (!nvmet_fc_tgt_a_get(assoc))
1157 			continue;
1158 		spin_unlock_irqrestore(&tgtport->lock, flags);
1159 		nvmet_fc_delete_target_assoc(assoc);
1160 		nvmet_fc_tgt_a_put(assoc);
1161 		spin_lock_irqsave(&tgtport->lock, flags);
1162 	}
1163 	spin_unlock_irqrestore(&tgtport->lock, flags);
1164 }
1165 
1166 /*
1167  * nvmet layer has called to terminate an association
1168  */
1169 static void
1170 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1171 {
1172 	struct nvmet_fc_tgtport *tgtport, *next;
1173 	struct nvmet_fc_tgt_assoc *assoc;
1174 	struct nvmet_fc_tgt_queue *queue;
1175 	unsigned long flags;
1176 	bool found_ctrl = false;
1177 
1178 	/* this is a bit ugly, but don't want to make locks layered */
1179 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1180 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1181 			tgt_list) {
1182 		if (!nvmet_fc_tgtport_get(tgtport))
1183 			continue;
1184 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1185 
1186 		spin_lock_irqsave(&tgtport->lock, flags);
1187 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1188 			queue = assoc->queues[0];
1189 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1190 				if (nvmet_fc_tgt_a_get(assoc))
1191 					found_ctrl = true;
1192 				break;
1193 			}
1194 		}
1195 		spin_unlock_irqrestore(&tgtport->lock, flags);
1196 
1197 		nvmet_fc_tgtport_put(tgtport);
1198 
1199 		if (found_ctrl) {
1200 			schedule_work(&assoc->del_work);
1201 			return;
1202 		}
1203 
1204 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1205 	}
1206 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1207 }
1208 
1209 /**
1210  * nvme_fc_unregister_targetport - transport entry point called by an
1211  *                              LLDD to deregister/remove a previously
1212  *                              registered a local NVME subsystem FC port.
1213  * @target_port: pointer to the (registered) target port that is to be
1214  *               deregistered.
1215  *
1216  * Returns:
1217  * a completion status. Must be 0 upon success; a negative errno
1218  * (ex: -ENXIO) upon failure.
1219  */
1220 int
1221 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1222 {
1223 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1224 
1225 	nvmet_fc_portentry_unbind_tgt(tgtport);
1226 
1227 	/* terminate any outstanding associations */
1228 	__nvmet_fc_free_assocs(tgtport);
1229 
1230 	nvmet_fc_tgtport_put(tgtport);
1231 
1232 	return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1235 
1236 
1237 /* *********************** FC-NVME LS Handling **************************** */
1238 
1239 
1240 static void
1241 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1242 {
1243 	struct fcnvme_ls_acc_hdr *acc = buf;
1244 
1245 	acc->w0.ls_cmd = ls_cmd;
1246 	acc->desc_list_len = desc_len;
1247 	acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1248 	acc->rqst.desc_len =
1249 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1250 	acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1251 }
1252 
1253 static int
1254 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1255 			u8 reason, u8 explanation, u8 vendor)
1256 {
1257 	struct fcnvme_ls_rjt *rjt = buf;
1258 
1259 	nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1260 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1261 			ls_cmd);
1262 	rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1263 	rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1264 	rjt->rjt.reason_code = reason;
1265 	rjt->rjt.reason_explanation = explanation;
1266 	rjt->rjt.vendor = vendor;
1267 
1268 	return sizeof(struct fcnvme_ls_rjt);
1269 }
1270 
1271 /* Validation Error indexes into the string table below */
1272 enum {
1273 	VERR_NO_ERROR		= 0,
1274 	VERR_CR_ASSOC_LEN	= 1,
1275 	VERR_CR_ASSOC_RQST_LEN	= 2,
1276 	VERR_CR_ASSOC_CMD	= 3,
1277 	VERR_CR_ASSOC_CMD_LEN	= 4,
1278 	VERR_ERSP_RATIO		= 5,
1279 	VERR_ASSOC_ALLOC_FAIL	= 6,
1280 	VERR_QUEUE_ALLOC_FAIL	= 7,
1281 	VERR_CR_CONN_LEN	= 8,
1282 	VERR_CR_CONN_RQST_LEN	= 9,
1283 	VERR_ASSOC_ID		= 10,
1284 	VERR_ASSOC_ID_LEN	= 11,
1285 	VERR_NO_ASSOC		= 12,
1286 	VERR_CONN_ID		= 13,
1287 	VERR_CONN_ID_LEN	= 14,
1288 	VERR_NO_CONN		= 15,
1289 	VERR_CR_CONN_CMD	= 16,
1290 	VERR_CR_CONN_CMD_LEN	= 17,
1291 	VERR_DISCONN_LEN	= 18,
1292 	VERR_DISCONN_RQST_LEN	= 19,
1293 	VERR_DISCONN_CMD	= 20,
1294 	VERR_DISCONN_CMD_LEN	= 21,
1295 	VERR_DISCONN_SCOPE	= 22,
1296 	VERR_RS_LEN		= 23,
1297 	VERR_RS_RQST_LEN	= 24,
1298 	VERR_RS_CMD		= 25,
1299 	VERR_RS_CMD_LEN		= 26,
1300 	VERR_RS_RCTL		= 27,
1301 	VERR_RS_RO		= 28,
1302 };
1303 
1304 static char *validation_errors[] = {
1305 	"OK",
1306 	"Bad CR_ASSOC Length",
1307 	"Bad CR_ASSOC Rqst Length",
1308 	"Not CR_ASSOC Cmd",
1309 	"Bad CR_ASSOC Cmd Length",
1310 	"Bad Ersp Ratio",
1311 	"Association Allocation Failed",
1312 	"Queue Allocation Failed",
1313 	"Bad CR_CONN Length",
1314 	"Bad CR_CONN Rqst Length",
1315 	"Not Association ID",
1316 	"Bad Association ID Length",
1317 	"No Association",
1318 	"Not Connection ID",
1319 	"Bad Connection ID Length",
1320 	"No Connection",
1321 	"Not CR_CONN Cmd",
1322 	"Bad CR_CONN Cmd Length",
1323 	"Bad DISCONN Length",
1324 	"Bad DISCONN Rqst Length",
1325 	"Not DISCONN Cmd",
1326 	"Bad DISCONN Cmd Length",
1327 	"Bad Disconnect Scope",
1328 	"Bad RS Length",
1329 	"Bad RS Rqst Length",
1330 	"Not RS Cmd",
1331 	"Bad RS Cmd Length",
1332 	"Bad RS R_CTL",
1333 	"Bad RS Relative Offset",
1334 };
1335 
1336 static void
1337 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1338 			struct nvmet_fc_ls_iod *iod)
1339 {
1340 	struct fcnvme_ls_cr_assoc_rqst *rqst =
1341 				(struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1342 	struct fcnvme_ls_cr_assoc_acc *acc =
1343 				(struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1344 	struct nvmet_fc_tgt_queue *queue;
1345 	int ret = 0;
1346 
1347 	memset(acc, 0, sizeof(*acc));
1348 
1349 	/*
1350 	 * FC-NVME spec changes. There are initiators sending different
1351 	 * lengths as padding sizes for Create Association Cmd descriptor
1352 	 * was incorrect.
1353 	 * Accept anything of "minimum" length. Assume format per 1.15
1354 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1355 	 * trailing pad length is.
1356 	 */
1357 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1358 		ret = VERR_CR_ASSOC_LEN;
1359 	else if (be32_to_cpu(rqst->desc_list_len) <
1360 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1361 		ret = VERR_CR_ASSOC_RQST_LEN;
1362 	else if (rqst->assoc_cmd.desc_tag !=
1363 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1364 		ret = VERR_CR_ASSOC_CMD;
1365 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1366 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1367 		ret = VERR_CR_ASSOC_CMD_LEN;
1368 	else if (!rqst->assoc_cmd.ersp_ratio ||
1369 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1370 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1371 		ret = VERR_ERSP_RATIO;
1372 
1373 	else {
1374 		/* new association w/ admin queue */
1375 		iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1376 		if (!iod->assoc)
1377 			ret = VERR_ASSOC_ALLOC_FAIL;
1378 		else {
1379 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1380 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1381 			if (!queue)
1382 				ret = VERR_QUEUE_ALLOC_FAIL;
1383 		}
1384 	}
1385 
1386 	if (ret) {
1387 		dev_err(tgtport->dev,
1388 			"Create Association LS failed: %s\n",
1389 			validation_errors[ret]);
1390 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1391 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1392 				FCNVME_RJT_RC_LOGIC,
1393 				FCNVME_RJT_EXP_NONE, 0);
1394 		return;
1395 	}
1396 
1397 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1398 	atomic_set(&queue->connected, 1);
1399 	queue->sqhd = 0;	/* best place to init value */
1400 
1401 	/* format a response */
1402 
1403 	iod->lsreq->rsplen = sizeof(*acc);
1404 
1405 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1406 			fcnvme_lsdesc_len(
1407 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1408 			FCNVME_LS_CREATE_ASSOCIATION);
1409 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1410 	acc->associd.desc_len =
1411 			fcnvme_lsdesc_len(
1412 				sizeof(struct fcnvme_lsdesc_assoc_id));
1413 	acc->associd.association_id =
1414 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1415 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1416 	acc->connectid.desc_len =
1417 			fcnvme_lsdesc_len(
1418 				sizeof(struct fcnvme_lsdesc_conn_id));
1419 	acc->connectid.connection_id = acc->associd.association_id;
1420 }
1421 
1422 static void
1423 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1424 			struct nvmet_fc_ls_iod *iod)
1425 {
1426 	struct fcnvme_ls_cr_conn_rqst *rqst =
1427 				(struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1428 	struct fcnvme_ls_cr_conn_acc *acc =
1429 				(struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1430 	struct nvmet_fc_tgt_queue *queue;
1431 	int ret = 0;
1432 
1433 	memset(acc, 0, sizeof(*acc));
1434 
1435 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1436 		ret = VERR_CR_CONN_LEN;
1437 	else if (rqst->desc_list_len !=
1438 			fcnvme_lsdesc_len(
1439 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1440 		ret = VERR_CR_CONN_RQST_LEN;
1441 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1442 		ret = VERR_ASSOC_ID;
1443 	else if (rqst->associd.desc_len !=
1444 			fcnvme_lsdesc_len(
1445 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1446 		ret = VERR_ASSOC_ID_LEN;
1447 	else if (rqst->connect_cmd.desc_tag !=
1448 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1449 		ret = VERR_CR_CONN_CMD;
1450 	else if (rqst->connect_cmd.desc_len !=
1451 			fcnvme_lsdesc_len(
1452 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1453 		ret = VERR_CR_CONN_CMD_LEN;
1454 	else if (!rqst->connect_cmd.ersp_ratio ||
1455 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1456 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1457 		ret = VERR_ERSP_RATIO;
1458 
1459 	else {
1460 		/* new io queue */
1461 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1462 				be64_to_cpu(rqst->associd.association_id));
1463 		if (!iod->assoc)
1464 			ret = VERR_NO_ASSOC;
1465 		else {
1466 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1467 					be16_to_cpu(rqst->connect_cmd.qid),
1468 					be16_to_cpu(rqst->connect_cmd.sqsize));
1469 			if (!queue)
1470 				ret = VERR_QUEUE_ALLOC_FAIL;
1471 
1472 			/* release get taken in nvmet_fc_find_target_assoc */
1473 			nvmet_fc_tgt_a_put(iod->assoc);
1474 		}
1475 	}
1476 
1477 	if (ret) {
1478 		dev_err(tgtport->dev,
1479 			"Create Connection LS failed: %s\n",
1480 			validation_errors[ret]);
1481 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1482 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1483 				(ret == VERR_NO_ASSOC) ?
1484 					FCNVME_RJT_RC_INV_ASSOC :
1485 					FCNVME_RJT_RC_LOGIC,
1486 				FCNVME_RJT_EXP_NONE, 0);
1487 		return;
1488 	}
1489 
1490 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1491 	atomic_set(&queue->connected, 1);
1492 	queue->sqhd = 0;	/* best place to init value */
1493 
1494 	/* format a response */
1495 
1496 	iod->lsreq->rsplen = sizeof(*acc);
1497 
1498 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1499 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1500 			FCNVME_LS_CREATE_CONNECTION);
1501 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1502 	acc->connectid.desc_len =
1503 			fcnvme_lsdesc_len(
1504 				sizeof(struct fcnvme_lsdesc_conn_id));
1505 	acc->connectid.connection_id =
1506 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1507 				be16_to_cpu(rqst->connect_cmd.qid)));
1508 }
1509 
1510 static void
1511 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1512 			struct nvmet_fc_ls_iod *iod)
1513 {
1514 	struct fcnvme_ls_disconnect_rqst *rqst =
1515 			(struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1516 	struct fcnvme_ls_disconnect_acc *acc =
1517 			(struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1518 	struct nvmet_fc_tgt_queue *queue = NULL;
1519 	struct nvmet_fc_tgt_assoc *assoc;
1520 	int ret = 0;
1521 	bool del_assoc = false;
1522 
1523 	memset(acc, 0, sizeof(*acc));
1524 
1525 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1526 		ret = VERR_DISCONN_LEN;
1527 	else if (rqst->desc_list_len !=
1528 			fcnvme_lsdesc_len(
1529 				sizeof(struct fcnvme_ls_disconnect_rqst)))
1530 		ret = VERR_DISCONN_RQST_LEN;
1531 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1532 		ret = VERR_ASSOC_ID;
1533 	else if (rqst->associd.desc_len !=
1534 			fcnvme_lsdesc_len(
1535 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1536 		ret = VERR_ASSOC_ID_LEN;
1537 	else if (rqst->discon_cmd.desc_tag !=
1538 			cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1539 		ret = VERR_DISCONN_CMD;
1540 	else if (rqst->discon_cmd.desc_len !=
1541 			fcnvme_lsdesc_len(
1542 				sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1543 		ret = VERR_DISCONN_CMD_LEN;
1544 	else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1545 			(rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1546 		ret = VERR_DISCONN_SCOPE;
1547 	else {
1548 		/* match an active association */
1549 		assoc = nvmet_fc_find_target_assoc(tgtport,
1550 				be64_to_cpu(rqst->associd.association_id));
1551 		iod->assoc = assoc;
1552 		if (assoc) {
1553 			if (rqst->discon_cmd.scope ==
1554 					FCNVME_DISCONN_CONNECTION) {
1555 				queue = nvmet_fc_find_target_queue(tgtport,
1556 						be64_to_cpu(
1557 							rqst->discon_cmd.id));
1558 				if (!queue) {
1559 					nvmet_fc_tgt_a_put(assoc);
1560 					ret = VERR_NO_CONN;
1561 				}
1562 			}
1563 		} else
1564 			ret = VERR_NO_ASSOC;
1565 	}
1566 
1567 	if (ret) {
1568 		dev_err(tgtport->dev,
1569 			"Disconnect LS failed: %s\n",
1570 			validation_errors[ret]);
1571 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1572 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1573 				(ret == VERR_NO_ASSOC) ?
1574 					FCNVME_RJT_RC_INV_ASSOC :
1575 					(ret == VERR_NO_CONN) ?
1576 						FCNVME_RJT_RC_INV_CONN :
1577 						FCNVME_RJT_RC_LOGIC,
1578 				FCNVME_RJT_EXP_NONE, 0);
1579 		return;
1580 	}
1581 
1582 	/* format a response */
1583 
1584 	iod->lsreq->rsplen = sizeof(*acc);
1585 
1586 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1587 			fcnvme_lsdesc_len(
1588 				sizeof(struct fcnvme_ls_disconnect_acc)),
1589 			FCNVME_LS_DISCONNECT);
1590 
1591 
1592 	/* are we to delete a Connection ID (queue) */
1593 	if (queue) {
1594 		int qid = queue->qid;
1595 
1596 		nvmet_fc_delete_target_queue(queue);
1597 
1598 		/* release the get taken by find_target_queue */
1599 		nvmet_fc_tgt_q_put(queue);
1600 
1601 		/* tear association down if io queue terminated */
1602 		if (!qid)
1603 			del_assoc = true;
1604 	}
1605 
1606 	/* release get taken in nvmet_fc_find_target_assoc */
1607 	nvmet_fc_tgt_a_put(iod->assoc);
1608 
1609 	if (del_assoc)
1610 		nvmet_fc_delete_target_assoc(iod->assoc);
1611 }
1612 
1613 
1614 /* *********************** NVME Ctrl Routines **************************** */
1615 
1616 
1617 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1618 
1619 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1620 
1621 static void
1622 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1623 {
1624 	struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1625 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1626 
1627 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1628 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1629 	nvmet_fc_free_ls_iod(tgtport, iod);
1630 	nvmet_fc_tgtport_put(tgtport);
1631 }
1632 
1633 static void
1634 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1635 				struct nvmet_fc_ls_iod *iod)
1636 {
1637 	int ret;
1638 
1639 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1640 				  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1641 
1642 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1643 	if (ret)
1644 		nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1645 }
1646 
1647 /*
1648  * Actual processing routine for received FC-NVME LS Requests from the LLD
1649  */
1650 static void
1651 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1652 			struct nvmet_fc_ls_iod *iod)
1653 {
1654 	struct fcnvme_ls_rqst_w0 *w0 =
1655 			(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1656 
1657 	iod->lsreq->nvmet_fc_private = iod;
1658 	iod->lsreq->rspbuf = iod->rspbuf;
1659 	iod->lsreq->rspdma = iod->rspdma;
1660 	iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1661 	/* Be preventative. handlers will later set to valid length */
1662 	iod->lsreq->rsplen = 0;
1663 
1664 	iod->assoc = NULL;
1665 
1666 	/*
1667 	 * handlers:
1668 	 *   parse request input, execute the request, and format the
1669 	 *   LS response
1670 	 */
1671 	switch (w0->ls_cmd) {
1672 	case FCNVME_LS_CREATE_ASSOCIATION:
1673 		/* Creates Association and initial Admin Queue/Connection */
1674 		nvmet_fc_ls_create_association(tgtport, iod);
1675 		break;
1676 	case FCNVME_LS_CREATE_CONNECTION:
1677 		/* Creates an IO Queue/Connection */
1678 		nvmet_fc_ls_create_connection(tgtport, iod);
1679 		break;
1680 	case FCNVME_LS_DISCONNECT:
1681 		/* Terminate a Queue/Connection or the Association */
1682 		nvmet_fc_ls_disconnect(tgtport, iod);
1683 		break;
1684 	default:
1685 		iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1686 				NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1687 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1688 	}
1689 
1690 	nvmet_fc_xmt_ls_rsp(tgtport, iod);
1691 }
1692 
1693 /*
1694  * Actual processing routine for received FC-NVME LS Requests from the LLD
1695  */
1696 static void
1697 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1698 {
1699 	struct nvmet_fc_ls_iod *iod =
1700 		container_of(work, struct nvmet_fc_ls_iod, work);
1701 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1702 
1703 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1704 }
1705 
1706 
1707 /**
1708  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1709  *                       upon the reception of a NVME LS request.
1710  *
1711  * The nvmet-fc layer will copy payload to an internal structure for
1712  * processing.  As such, upon completion of the routine, the LLDD may
1713  * immediately free/reuse the LS request buffer passed in the call.
1714  *
1715  * If this routine returns error, the LLDD should abort the exchange.
1716  *
1717  * @target_port: pointer to the (registered) target port the LS was
1718  *              received on.
1719  * @lsreq:      pointer to a lsreq request structure to be used to reference
1720  *              the exchange corresponding to the LS.
1721  * @lsreqbuf:   pointer to the buffer containing the LS Request
1722  * @lsreqbuf_len: length, in bytes, of the received LS request
1723  */
1724 int
1725 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1726 			struct nvmefc_tgt_ls_req *lsreq,
1727 			void *lsreqbuf, u32 lsreqbuf_len)
1728 {
1729 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1730 	struct nvmet_fc_ls_iod *iod;
1731 
1732 	if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1733 		return -E2BIG;
1734 
1735 	if (!nvmet_fc_tgtport_get(tgtport))
1736 		return -ESHUTDOWN;
1737 
1738 	iod = nvmet_fc_alloc_ls_iod(tgtport);
1739 	if (!iod) {
1740 		nvmet_fc_tgtport_put(tgtport);
1741 		return -ENOENT;
1742 	}
1743 
1744 	iod->lsreq = lsreq;
1745 	iod->fcpreq = NULL;
1746 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1747 	iod->rqstdatalen = lsreqbuf_len;
1748 
1749 	schedule_work(&iod->work);
1750 
1751 	return 0;
1752 }
1753 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1754 
1755 
1756 /*
1757  * **********************
1758  * Start of FCP handling
1759  * **********************
1760  */
1761 
1762 static int
1763 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1764 {
1765 	struct scatterlist *sg;
1766 	unsigned int nent;
1767 
1768 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1769 	if (!sg)
1770 		goto out;
1771 
1772 	fod->data_sg = sg;
1773 	fod->data_sg_cnt = nent;
1774 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1775 				((fod->io_dir == NVMET_FCP_WRITE) ?
1776 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1777 				/* note: write from initiator perspective */
1778 	fod->next_sg = fod->data_sg;
1779 
1780 	return 0;
1781 
1782 out:
1783 	return NVME_SC_INTERNAL;
1784 }
1785 
1786 static void
1787 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1788 {
1789 	if (!fod->data_sg || !fod->data_sg_cnt)
1790 		return;
1791 
1792 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1793 				((fod->io_dir == NVMET_FCP_WRITE) ?
1794 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1795 	sgl_free(fod->data_sg);
1796 	fod->data_sg = NULL;
1797 	fod->data_sg_cnt = 0;
1798 }
1799 
1800 
1801 static bool
1802 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1803 {
1804 	u32 sqtail, used;
1805 
1806 	/* egad, this is ugly. And sqtail is just a best guess */
1807 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
1808 
1809 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1810 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1811 }
1812 
1813 /*
1814  * Prep RSP payload.
1815  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1816  */
1817 static void
1818 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1819 				struct nvmet_fc_fcp_iod *fod)
1820 {
1821 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1822 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1823 	struct nvme_completion *cqe = &ersp->cqe;
1824 	u32 *cqewd = (u32 *)cqe;
1825 	bool send_ersp = false;
1826 	u32 rsn, rspcnt, xfr_length;
1827 
1828 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1829 		xfr_length = fod->req.transfer_len;
1830 	else
1831 		xfr_length = fod->offset;
1832 
1833 	/*
1834 	 * check to see if we can send a 0's rsp.
1835 	 *   Note: to send a 0's response, the NVME-FC host transport will
1836 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
1837 	 *   seen in an ersp), and command_id. Thus it will create a
1838 	 *   zero-filled CQE with those known fields filled in. Transport
1839 	 *   must send an ersp for any condition where the cqe won't match
1840 	 *   this.
1841 	 *
1842 	 * Here are the FC-NVME mandated cases where we must send an ersp:
1843 	 *  every N responses, where N=ersp_ratio
1844 	 *  force fabric commands to send ersp's (not in FC-NVME but good
1845 	 *    practice)
1846 	 *  normal cmds: any time status is non-zero, or status is zero
1847 	 *     but words 0 or 1 are non-zero.
1848 	 *  the SQ is 90% or more full
1849 	 *  the cmd is a fused command
1850 	 *  transferred data length not equal to cmd iu length
1851 	 */
1852 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1853 	if (!(rspcnt % fod->queue->ersp_ratio) ||
1854 	    sqe->opcode == nvme_fabrics_command ||
1855 	    xfr_length != fod->req.transfer_len ||
1856 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1857 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1858 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1859 		send_ersp = true;
1860 
1861 	/* re-set the fields */
1862 	fod->fcpreq->rspaddr = ersp;
1863 	fod->fcpreq->rspdma = fod->rspdma;
1864 
1865 	if (!send_ersp) {
1866 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1867 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1868 	} else {
1869 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1870 		rsn = atomic_inc_return(&fod->queue->rsn);
1871 		ersp->rsn = cpu_to_be32(rsn);
1872 		ersp->xfrd_len = cpu_to_be32(xfr_length);
1873 		fod->fcpreq->rsplen = sizeof(*ersp);
1874 	}
1875 
1876 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1877 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1878 }
1879 
1880 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1881 
1882 static void
1883 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1884 				struct nvmet_fc_fcp_iod *fod)
1885 {
1886 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1887 
1888 	/* data no longer needed */
1889 	nvmet_fc_free_tgt_pgs(fod);
1890 
1891 	/*
1892 	 * if an ABTS was received or we issued the fcp_abort early
1893 	 * don't call abort routine again.
1894 	 */
1895 	/* no need to take lock - lock was taken earlier to get here */
1896 	if (!fod->aborted)
1897 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1898 
1899 	nvmet_fc_free_fcp_iod(fod->queue, fod);
1900 }
1901 
1902 static void
1903 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1904 				struct nvmet_fc_fcp_iod *fod)
1905 {
1906 	int ret;
1907 
1908 	fod->fcpreq->op = NVMET_FCOP_RSP;
1909 	fod->fcpreq->timeout = 0;
1910 
1911 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
1912 
1913 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1914 	if (ret)
1915 		nvmet_fc_abort_op(tgtport, fod);
1916 }
1917 
1918 static void
1919 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1920 				struct nvmet_fc_fcp_iod *fod, u8 op)
1921 {
1922 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1923 	struct scatterlist *sg = fod->next_sg;
1924 	unsigned long flags;
1925 	u32 remaininglen = fod->req.transfer_len - fod->offset;
1926 	u32 tlen = 0;
1927 	int ret;
1928 
1929 	fcpreq->op = op;
1930 	fcpreq->offset = fod->offset;
1931 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1932 
1933 	/*
1934 	 * for next sequence:
1935 	 *  break at a sg element boundary
1936 	 *  attempt to keep sequence length capped at
1937 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1938 	 *    be longer if a single sg element is larger
1939 	 *    than that amount. This is done to avoid creating
1940 	 *    a new sg list to use for the tgtport api.
1941 	 */
1942 	fcpreq->sg = sg;
1943 	fcpreq->sg_cnt = 0;
1944 	while (tlen < remaininglen &&
1945 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1946 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1947 		fcpreq->sg_cnt++;
1948 		tlen += sg_dma_len(sg);
1949 		sg = sg_next(sg);
1950 	}
1951 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1952 		fcpreq->sg_cnt++;
1953 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1954 		sg = sg_next(sg);
1955 	}
1956 	if (tlen < remaininglen)
1957 		fod->next_sg = sg;
1958 	else
1959 		fod->next_sg = NULL;
1960 
1961 	fcpreq->transfer_length = tlen;
1962 	fcpreq->transferred_length = 0;
1963 	fcpreq->fcp_error = 0;
1964 	fcpreq->rsplen = 0;
1965 
1966 	/*
1967 	 * If the last READDATA request: check if LLDD supports
1968 	 * combined xfr with response.
1969 	 */
1970 	if ((op == NVMET_FCOP_READDATA) &&
1971 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1972 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1973 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
1974 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
1975 	}
1976 
1977 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1978 	if (ret) {
1979 		/*
1980 		 * should be ok to set w/o lock as its in the thread of
1981 		 * execution (not an async timer routine) and doesn't
1982 		 * contend with any clearing action
1983 		 */
1984 		fod->abort = true;
1985 
1986 		if (op == NVMET_FCOP_WRITEDATA) {
1987 			spin_lock_irqsave(&fod->flock, flags);
1988 			fod->writedataactive = false;
1989 			spin_unlock_irqrestore(&fod->flock, flags);
1990 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1991 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1992 			fcpreq->fcp_error = ret;
1993 			fcpreq->transferred_length = 0;
1994 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1995 		}
1996 	}
1997 }
1998 
1999 static inline bool
2000 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2001 {
2002 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2003 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2004 
2005 	/* if in the middle of an io and we need to tear down */
2006 	if (abort) {
2007 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2008 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2009 			return true;
2010 		}
2011 
2012 		nvmet_fc_abort_op(tgtport, fod);
2013 		return true;
2014 	}
2015 
2016 	return false;
2017 }
2018 
2019 /*
2020  * actual done handler for FCP operations when completed by the lldd
2021  */
2022 static void
2023 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2024 {
2025 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2026 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2027 	unsigned long flags;
2028 	bool abort;
2029 
2030 	spin_lock_irqsave(&fod->flock, flags);
2031 	abort = fod->abort;
2032 	fod->writedataactive = false;
2033 	spin_unlock_irqrestore(&fod->flock, flags);
2034 
2035 	switch (fcpreq->op) {
2036 
2037 	case NVMET_FCOP_WRITEDATA:
2038 		if (__nvmet_fc_fod_op_abort(fod, abort))
2039 			return;
2040 		if (fcpreq->fcp_error ||
2041 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2042 			spin_lock(&fod->flock);
2043 			fod->abort = true;
2044 			spin_unlock(&fod->flock);
2045 
2046 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2047 			return;
2048 		}
2049 
2050 		fod->offset += fcpreq->transferred_length;
2051 		if (fod->offset != fod->req.transfer_len) {
2052 			spin_lock_irqsave(&fod->flock, flags);
2053 			fod->writedataactive = true;
2054 			spin_unlock_irqrestore(&fod->flock, flags);
2055 
2056 			/* transfer the next chunk */
2057 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2058 						NVMET_FCOP_WRITEDATA);
2059 			return;
2060 		}
2061 
2062 		/* data transfer complete, resume with nvmet layer */
2063 		nvmet_req_execute(&fod->req);
2064 		break;
2065 
2066 	case NVMET_FCOP_READDATA:
2067 	case NVMET_FCOP_READDATA_RSP:
2068 		if (__nvmet_fc_fod_op_abort(fod, abort))
2069 			return;
2070 		if (fcpreq->fcp_error ||
2071 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2072 			nvmet_fc_abort_op(tgtport, fod);
2073 			return;
2074 		}
2075 
2076 		/* success */
2077 
2078 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2079 			/* data no longer needed */
2080 			nvmet_fc_free_tgt_pgs(fod);
2081 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2082 			return;
2083 		}
2084 
2085 		fod->offset += fcpreq->transferred_length;
2086 		if (fod->offset != fod->req.transfer_len) {
2087 			/* transfer the next chunk */
2088 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2089 						NVMET_FCOP_READDATA);
2090 			return;
2091 		}
2092 
2093 		/* data transfer complete, send response */
2094 
2095 		/* data no longer needed */
2096 		nvmet_fc_free_tgt_pgs(fod);
2097 
2098 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2099 
2100 		break;
2101 
2102 	case NVMET_FCOP_RSP:
2103 		if (__nvmet_fc_fod_op_abort(fod, abort))
2104 			return;
2105 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2106 		break;
2107 
2108 	default:
2109 		break;
2110 	}
2111 }
2112 
2113 static void
2114 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2115 {
2116 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2117 
2118 	nvmet_fc_fod_op_done(fod);
2119 }
2120 
2121 /*
2122  * actual completion handler after execution by the nvmet layer
2123  */
2124 static void
2125 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2126 			struct nvmet_fc_fcp_iod *fod, int status)
2127 {
2128 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2129 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2130 	unsigned long flags;
2131 	bool abort;
2132 
2133 	spin_lock_irqsave(&fod->flock, flags);
2134 	abort = fod->abort;
2135 	spin_unlock_irqrestore(&fod->flock, flags);
2136 
2137 	/* if we have a CQE, snoop the last sq_head value */
2138 	if (!status)
2139 		fod->queue->sqhd = cqe->sq_head;
2140 
2141 	if (abort) {
2142 		nvmet_fc_abort_op(tgtport, fod);
2143 		return;
2144 	}
2145 
2146 	/* if an error handling the cmd post initial parsing */
2147 	if (status) {
2148 		/* fudge up a failed CQE status for our transport error */
2149 		memset(cqe, 0, sizeof(*cqe));
2150 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2151 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2152 		cqe->command_id = sqe->command_id;
2153 		cqe->status = cpu_to_le16(status);
2154 	} else {
2155 
2156 		/*
2157 		 * try to push the data even if the SQE status is non-zero.
2158 		 * There may be a status where data still was intended to
2159 		 * be moved
2160 		 */
2161 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2162 			/* push the data over before sending rsp */
2163 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2164 						NVMET_FCOP_READDATA);
2165 			return;
2166 		}
2167 
2168 		/* writes & no data - fall thru */
2169 	}
2170 
2171 	/* data no longer needed */
2172 	nvmet_fc_free_tgt_pgs(fod);
2173 
2174 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2175 }
2176 
2177 
2178 static void
2179 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2180 {
2181 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2182 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2183 
2184 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2185 }
2186 
2187 
2188 /*
2189  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2190  */
2191 static void
2192 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2193 			struct nvmet_fc_fcp_iod *fod)
2194 {
2195 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2196 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2197 	int ret;
2198 
2199 	/*
2200 	 * if there is no nvmet mapping to the targetport there
2201 	 * shouldn't be requests. just terminate them.
2202 	 */
2203 	if (!tgtport->pe)
2204 		goto transport_error;
2205 
2206 	/*
2207 	 * Fused commands are currently not supported in the linux
2208 	 * implementation.
2209 	 *
2210 	 * As such, the implementation of the FC transport does not
2211 	 * look at the fused commands and order delivery to the upper
2212 	 * layer until we have both based on csn.
2213 	 */
2214 
2215 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2216 
2217 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2218 		fod->io_dir = NVMET_FCP_WRITE;
2219 		if (!nvme_is_write(&cmdiu->sqe))
2220 			goto transport_error;
2221 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2222 		fod->io_dir = NVMET_FCP_READ;
2223 		if (nvme_is_write(&cmdiu->sqe))
2224 			goto transport_error;
2225 	} else {
2226 		fod->io_dir = NVMET_FCP_NODATA;
2227 		if (xfrlen)
2228 			goto transport_error;
2229 	}
2230 
2231 	fod->req.cmd = &fod->cmdiubuf.sqe;
2232 	fod->req.rsp = &fod->rspiubuf.cqe;
2233 	fod->req.port = tgtport->pe->port;
2234 
2235 	/* clear any response payload */
2236 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2237 
2238 	fod->data_sg = NULL;
2239 	fod->data_sg_cnt = 0;
2240 
2241 	ret = nvmet_req_init(&fod->req,
2242 				&fod->queue->nvme_cq,
2243 				&fod->queue->nvme_sq,
2244 				&nvmet_fc_tgt_fcp_ops);
2245 	if (!ret) {
2246 		/* bad SQE content or invalid ctrl state */
2247 		/* nvmet layer has already called op done to send rsp. */
2248 		return;
2249 	}
2250 
2251 	fod->req.transfer_len = xfrlen;
2252 
2253 	/* keep a running counter of tail position */
2254 	atomic_inc(&fod->queue->sqtail);
2255 
2256 	if (fod->req.transfer_len) {
2257 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2258 		if (ret) {
2259 			nvmet_req_complete(&fod->req, ret);
2260 			return;
2261 		}
2262 	}
2263 	fod->req.sg = fod->data_sg;
2264 	fod->req.sg_cnt = fod->data_sg_cnt;
2265 	fod->offset = 0;
2266 
2267 	if (fod->io_dir == NVMET_FCP_WRITE) {
2268 		/* pull the data over before invoking nvmet layer */
2269 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2270 		return;
2271 	}
2272 
2273 	/*
2274 	 * Reads or no data:
2275 	 *
2276 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2277 	 * push the data
2278 	 */
2279 	nvmet_req_execute(&fod->req);
2280 	return;
2281 
2282 transport_error:
2283 	nvmet_fc_abort_op(tgtport, fod);
2284 }
2285 
2286 /**
2287  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2288  *                       upon the reception of a NVME FCP CMD IU.
2289  *
2290  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2291  * layer for processing.
2292  *
2293  * The nvmet_fc layer allocates a local job structure (struct
2294  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2295  * CMD IU buffer to the job structure. As such, on a successful
2296  * completion (returns 0), the LLDD may immediately free/reuse
2297  * the CMD IU buffer passed in the call.
2298  *
2299  * However, in some circumstances, due to the packetized nature of FC
2300  * and the api of the FC LLDD which may issue a hw command to send the
2301  * response, but the LLDD may not get the hw completion for that command
2302  * and upcall the nvmet_fc layer before a new command may be
2303  * asynchronously received - its possible for a command to be received
2304  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2305  * the appearance of more commands received than fits in the sq.
2306  * To alleviate this scenario, a temporary queue is maintained in the
2307  * transport for pending LLDD requests waiting for a queue job structure.
2308  * In these "overrun" cases, a temporary queue element is allocated
2309  * the LLDD request and CMD iu buffer information remembered, and the
2310  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2311  * structure is freed, it is immediately reallocated for anything on the
2312  * pending request list. The LLDDs defer_rcv() callback is called,
2313  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2314  * is then started normally with the transport.
2315  *
2316  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2317  * the completion as successful but must not reuse the CMD IU buffer
2318  * until the LLDD's defer_rcv() callback has been called for the
2319  * corresponding struct nvmefc_tgt_fcp_req pointer.
2320  *
2321  * If there is any other condition in which an error occurs, the
2322  * transport will return a non-zero status indicating the error.
2323  * In all cases other than -EOVERFLOW, the transport has not accepted the
2324  * request and the LLDD should abort the exchange.
2325  *
2326  * @target_port: pointer to the (registered) target port the FCP CMD IU
2327  *              was received on.
2328  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2329  *              the exchange corresponding to the FCP Exchange.
2330  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2331  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2332  */
2333 int
2334 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2335 			struct nvmefc_tgt_fcp_req *fcpreq,
2336 			void *cmdiubuf, u32 cmdiubuf_len)
2337 {
2338 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2339 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2340 	struct nvmet_fc_tgt_queue *queue;
2341 	struct nvmet_fc_fcp_iod *fod;
2342 	struct nvmet_fc_defer_fcp_req *deferfcp;
2343 	unsigned long flags;
2344 
2345 	/* validate iu, so the connection id can be used to find the queue */
2346 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2347 			(cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2348 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2349 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2350 		return -EIO;
2351 
2352 	queue = nvmet_fc_find_target_queue(tgtport,
2353 				be64_to_cpu(cmdiu->connection_id));
2354 	if (!queue)
2355 		return -ENOTCONN;
2356 
2357 	/*
2358 	 * note: reference taken by find_target_queue
2359 	 * After successful fod allocation, the fod will inherit the
2360 	 * ownership of that reference and will remove the reference
2361 	 * when the fod is freed.
2362 	 */
2363 
2364 	spin_lock_irqsave(&queue->qlock, flags);
2365 
2366 	fod = nvmet_fc_alloc_fcp_iod(queue);
2367 	if (fod) {
2368 		spin_unlock_irqrestore(&queue->qlock, flags);
2369 
2370 		fcpreq->nvmet_fc_private = fod;
2371 		fod->fcpreq = fcpreq;
2372 
2373 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2374 
2375 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2376 
2377 		return 0;
2378 	}
2379 
2380 	if (!tgtport->ops->defer_rcv) {
2381 		spin_unlock_irqrestore(&queue->qlock, flags);
2382 		/* release the queue lookup reference */
2383 		nvmet_fc_tgt_q_put(queue);
2384 		return -ENOENT;
2385 	}
2386 
2387 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2388 			struct nvmet_fc_defer_fcp_req, req_list);
2389 	if (deferfcp) {
2390 		/* Just re-use one that was previously allocated */
2391 		list_del(&deferfcp->req_list);
2392 	} else {
2393 		spin_unlock_irqrestore(&queue->qlock, flags);
2394 
2395 		/* Now we need to dynamically allocate one */
2396 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2397 		if (!deferfcp) {
2398 			/* release the queue lookup reference */
2399 			nvmet_fc_tgt_q_put(queue);
2400 			return -ENOMEM;
2401 		}
2402 		spin_lock_irqsave(&queue->qlock, flags);
2403 	}
2404 
2405 	/* For now, use rspaddr / rsplen to save payload information */
2406 	fcpreq->rspaddr = cmdiubuf;
2407 	fcpreq->rsplen  = cmdiubuf_len;
2408 	deferfcp->fcp_req = fcpreq;
2409 
2410 	/* defer processing till a fod becomes available */
2411 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2412 
2413 	/* NOTE: the queue lookup reference is still valid */
2414 
2415 	spin_unlock_irqrestore(&queue->qlock, flags);
2416 
2417 	return -EOVERFLOW;
2418 }
2419 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2420 
2421 /**
2422  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2423  *                       upon the reception of an ABTS for a FCP command
2424  *
2425  * Notify the transport that an ABTS has been received for a FCP command
2426  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2427  * LLDD believes the command is still being worked on
2428  * (template_ops->fcp_req_release() has not been called).
2429  *
2430  * The transport will wait for any outstanding work (an op to the LLDD,
2431  * which the lldd should complete with error due to the ABTS; or the
2432  * completion from the nvmet layer of the nvme command), then will
2433  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2434  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2435  * to the ABTS either after return from this function (assuming any
2436  * outstanding op work has been terminated) or upon the callback being
2437  * called.
2438  *
2439  * @target_port: pointer to the (registered) target port the FCP CMD IU
2440  *              was received on.
2441  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2442  *              to the exchange that received the ABTS.
2443  */
2444 void
2445 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2446 			struct nvmefc_tgt_fcp_req *fcpreq)
2447 {
2448 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2449 	struct nvmet_fc_tgt_queue *queue;
2450 	unsigned long flags;
2451 
2452 	if (!fod || fod->fcpreq != fcpreq)
2453 		/* job appears to have already completed, ignore abort */
2454 		return;
2455 
2456 	queue = fod->queue;
2457 
2458 	spin_lock_irqsave(&queue->qlock, flags);
2459 	if (fod->active) {
2460 		/*
2461 		 * mark as abort. The abort handler, invoked upon completion
2462 		 * of any work, will detect the aborted status and do the
2463 		 * callback.
2464 		 */
2465 		spin_lock(&fod->flock);
2466 		fod->abort = true;
2467 		fod->aborted = true;
2468 		spin_unlock(&fod->flock);
2469 	}
2470 	spin_unlock_irqrestore(&queue->qlock, flags);
2471 }
2472 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2473 
2474 
2475 struct nvmet_fc_traddr {
2476 	u64	nn;
2477 	u64	pn;
2478 };
2479 
2480 static int
2481 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2482 {
2483 	u64 token64;
2484 
2485 	if (match_u64(sstr, &token64))
2486 		return -EINVAL;
2487 	*val = token64;
2488 
2489 	return 0;
2490 }
2491 
2492 /*
2493  * This routine validates and extracts the WWN's from the TRADDR string.
2494  * As kernel parsers need the 0x to determine number base, universally
2495  * build string to parse with 0x prefix before parsing name strings.
2496  */
2497 static int
2498 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2499 {
2500 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2501 	substring_t wwn = { name, &name[sizeof(name)-1] };
2502 	int nnoffset, pnoffset;
2503 
2504 	/* validate if string is one of the 2 allowed formats */
2505 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2506 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2507 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2508 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2509 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2510 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2511 						NVME_FC_TRADDR_OXNNLEN;
2512 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2513 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2514 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2515 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2516 		nnoffset = NVME_FC_TRADDR_NNLEN;
2517 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2518 	} else
2519 		goto out_einval;
2520 
2521 	name[0] = '0';
2522 	name[1] = 'x';
2523 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2524 
2525 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2526 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2527 		goto out_einval;
2528 
2529 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2530 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2531 		goto out_einval;
2532 
2533 	return 0;
2534 
2535 out_einval:
2536 	pr_warn("%s: bad traddr string\n", __func__);
2537 	return -EINVAL;
2538 }
2539 
2540 static int
2541 nvmet_fc_add_port(struct nvmet_port *port)
2542 {
2543 	struct nvmet_fc_tgtport *tgtport;
2544 	struct nvmet_fc_port_entry *pe;
2545 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2546 	unsigned long flags;
2547 	int ret;
2548 
2549 	/* validate the address info */
2550 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2551 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2552 		return -EINVAL;
2553 
2554 	/* map the traddr address info to a target port */
2555 
2556 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2557 			sizeof(port->disc_addr.traddr));
2558 	if (ret)
2559 		return ret;
2560 
2561 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2562 	if (!pe)
2563 		return -ENOMEM;
2564 
2565 	ret = -ENXIO;
2566 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2567 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2568 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2569 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2570 			/* a FC port can only be 1 nvmet port id */
2571 			if (!tgtport->pe) {
2572 				nvmet_fc_portentry_bind(tgtport, pe, port);
2573 				ret = 0;
2574 			} else
2575 				ret = -EALREADY;
2576 			break;
2577 		}
2578 	}
2579 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2580 
2581 	if (ret)
2582 		kfree(pe);
2583 
2584 	return ret;
2585 }
2586 
2587 static void
2588 nvmet_fc_remove_port(struct nvmet_port *port)
2589 {
2590 	struct nvmet_fc_port_entry *pe = port->priv;
2591 
2592 	nvmet_fc_portentry_unbind(pe);
2593 
2594 	kfree(pe);
2595 }
2596 
2597 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2598 	.owner			= THIS_MODULE,
2599 	.type			= NVMF_TRTYPE_FC,
2600 	.msdbd			= 1,
2601 	.add_port		= nvmet_fc_add_port,
2602 	.remove_port		= nvmet_fc_remove_port,
2603 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2604 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2605 };
2606 
2607 static int __init nvmet_fc_init_module(void)
2608 {
2609 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2610 }
2611 
2612 static void __exit nvmet_fc_exit_module(void)
2613 {
2614 	/* sanity check - all lports should be removed */
2615 	if (!list_empty(&nvmet_fc_target_list))
2616 		pr_warn("%s: targetport list not empty\n", __func__);
2617 
2618 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2619 
2620 	ida_destroy(&nvmet_fc_tgtport_cnt);
2621 }
2622 
2623 module_init(nvmet_fc_init_module);
2624 module_exit(nvmet_fc_exit_module);
2625 
2626 MODULE_LICENSE("GPL v2");
2627