1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <linux/nvme-rdma.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 37 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 38 39 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 /* 46 * We handle AEN commands ourselves and don't even let the 47 * block layer know about them. 48 */ 49 #define NVME_RDMA_NR_AEN_COMMANDS 1 50 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 51 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 52 53 struct nvme_rdma_device { 54 struct ib_device *dev; 55 struct ib_pd *pd; 56 struct kref ref; 57 struct list_head entry; 58 }; 59 60 struct nvme_rdma_qe { 61 struct ib_cqe cqe; 62 void *data; 63 u64 dma; 64 }; 65 66 struct nvme_rdma_queue; 67 struct nvme_rdma_request { 68 struct nvme_request req; 69 struct ib_mr *mr; 70 struct nvme_rdma_qe sqe; 71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 72 u32 num_sge; 73 int nents; 74 bool inline_data; 75 struct ib_reg_wr reg_wr; 76 struct ib_cqe reg_cqe; 77 struct nvme_rdma_queue *queue; 78 struct sg_table sg_table; 79 struct scatterlist first_sgl[]; 80 }; 81 82 enum nvme_rdma_queue_flags { 83 NVME_RDMA_Q_LIVE = 0, 84 NVME_RDMA_Q_DELETING = 1, 85 }; 86 87 struct nvme_rdma_queue { 88 struct nvme_rdma_qe *rsp_ring; 89 atomic_t sig_count; 90 int queue_size; 91 size_t cmnd_capsule_len; 92 struct nvme_rdma_ctrl *ctrl; 93 struct nvme_rdma_device *device; 94 struct ib_cq *ib_cq; 95 struct ib_qp *qp; 96 97 unsigned long flags; 98 struct rdma_cm_id *cm_id; 99 int cm_error; 100 struct completion cm_done; 101 }; 102 103 struct nvme_rdma_ctrl { 104 /* read only in the hot path */ 105 struct nvme_rdma_queue *queues; 106 107 /* other member variables */ 108 struct blk_mq_tag_set tag_set; 109 struct work_struct delete_work; 110 struct work_struct err_work; 111 112 struct nvme_rdma_qe async_event_sqe; 113 114 struct delayed_work reconnect_work; 115 116 struct list_head list; 117 118 struct blk_mq_tag_set admin_tag_set; 119 struct nvme_rdma_device *device; 120 121 u32 max_fr_pages; 122 123 struct sockaddr_storage addr; 124 struct sockaddr_storage src_addr; 125 126 struct nvme_ctrl ctrl; 127 }; 128 129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 130 { 131 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 132 } 133 134 static LIST_HEAD(device_list); 135 static DEFINE_MUTEX(device_list_mutex); 136 137 static LIST_HEAD(nvme_rdma_ctrl_list); 138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 139 140 /* 141 * Disabling this option makes small I/O goes faster, but is fundamentally 142 * unsafe. With it turned off we will have to register a global rkey that 143 * allows read and write access to all physical memory. 144 */ 145 static bool register_always = true; 146 module_param(register_always, bool, 0444); 147 MODULE_PARM_DESC(register_always, 148 "Use memory registration even for contiguous memory regions"); 149 150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 151 struct rdma_cm_event *event); 152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 153 154 /* XXX: really should move to a generic header sooner or later.. */ 155 static inline void put_unaligned_le24(u32 val, u8 *p) 156 { 157 *p++ = val; 158 *p++ = val >> 8; 159 *p++ = val >> 16; 160 } 161 162 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 163 { 164 return queue - queue->ctrl->queues; 165 } 166 167 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 168 { 169 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 170 } 171 172 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 173 size_t capsule_size, enum dma_data_direction dir) 174 { 175 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 176 kfree(qe->data); 177 } 178 179 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 180 size_t capsule_size, enum dma_data_direction dir) 181 { 182 qe->data = kzalloc(capsule_size, GFP_KERNEL); 183 if (!qe->data) 184 return -ENOMEM; 185 186 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 187 if (ib_dma_mapping_error(ibdev, qe->dma)) { 188 kfree(qe->data); 189 return -ENOMEM; 190 } 191 192 return 0; 193 } 194 195 static void nvme_rdma_free_ring(struct ib_device *ibdev, 196 struct nvme_rdma_qe *ring, size_t ib_queue_size, 197 size_t capsule_size, enum dma_data_direction dir) 198 { 199 int i; 200 201 for (i = 0; i < ib_queue_size; i++) 202 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 203 kfree(ring); 204 } 205 206 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 207 size_t ib_queue_size, size_t capsule_size, 208 enum dma_data_direction dir) 209 { 210 struct nvme_rdma_qe *ring; 211 int i; 212 213 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 214 if (!ring) 215 return NULL; 216 217 for (i = 0; i < ib_queue_size; i++) { 218 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 219 goto out_free_ring; 220 } 221 222 return ring; 223 224 out_free_ring: 225 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 226 return NULL; 227 } 228 229 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 230 { 231 pr_debug("QP event %s (%d)\n", 232 ib_event_msg(event->event), event->event); 233 234 } 235 236 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 237 { 238 wait_for_completion_interruptible_timeout(&queue->cm_done, 239 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 240 return queue->cm_error; 241 } 242 243 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 244 { 245 struct nvme_rdma_device *dev = queue->device; 246 struct ib_qp_init_attr init_attr; 247 int ret; 248 249 memset(&init_attr, 0, sizeof(init_attr)); 250 init_attr.event_handler = nvme_rdma_qp_event; 251 /* +1 for drain */ 252 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 253 /* +1 for drain */ 254 init_attr.cap.max_recv_wr = queue->queue_size + 1; 255 init_attr.cap.max_recv_sge = 1; 256 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 257 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 258 init_attr.qp_type = IB_QPT_RC; 259 init_attr.send_cq = queue->ib_cq; 260 init_attr.recv_cq = queue->ib_cq; 261 262 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 263 264 queue->qp = queue->cm_id->qp; 265 return ret; 266 } 267 268 static int nvme_rdma_reinit_request(void *data, struct request *rq) 269 { 270 struct nvme_rdma_ctrl *ctrl = data; 271 struct nvme_rdma_device *dev = ctrl->device; 272 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 273 int ret = 0; 274 275 if (!req->mr->need_inval) 276 goto out; 277 278 ib_dereg_mr(req->mr); 279 280 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 281 ctrl->max_fr_pages); 282 if (IS_ERR(req->mr)) { 283 ret = PTR_ERR(req->mr); 284 req->mr = NULL; 285 goto out; 286 } 287 288 req->mr->need_inval = false; 289 290 out: 291 return ret; 292 } 293 294 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 295 struct request *rq, unsigned int hctx_idx) 296 { 297 struct nvme_rdma_ctrl *ctrl = set->driver_data; 298 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 299 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 300 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 301 struct nvme_rdma_device *dev = queue->device; 302 303 if (req->mr) 304 ib_dereg_mr(req->mr); 305 306 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 307 DMA_TO_DEVICE); 308 } 309 310 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 311 struct request *rq, unsigned int hctx_idx, 312 unsigned int numa_node) 313 { 314 struct nvme_rdma_ctrl *ctrl = set->driver_data; 315 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 316 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 317 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 318 struct nvme_rdma_device *dev = queue->device; 319 struct ib_device *ibdev = dev->dev; 320 int ret; 321 322 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 323 DMA_TO_DEVICE); 324 if (ret) 325 return ret; 326 327 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 328 ctrl->max_fr_pages); 329 if (IS_ERR(req->mr)) { 330 ret = PTR_ERR(req->mr); 331 goto out_free_qe; 332 } 333 334 req->queue = queue; 335 336 return 0; 337 338 out_free_qe: 339 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 340 DMA_TO_DEVICE); 341 return -ENOMEM; 342 } 343 344 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 345 unsigned int hctx_idx) 346 { 347 struct nvme_rdma_ctrl *ctrl = data; 348 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 349 350 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 351 352 hctx->driver_data = queue; 353 return 0; 354 } 355 356 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 357 unsigned int hctx_idx) 358 { 359 struct nvme_rdma_ctrl *ctrl = data; 360 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 361 362 BUG_ON(hctx_idx != 0); 363 364 hctx->driver_data = queue; 365 return 0; 366 } 367 368 static void nvme_rdma_free_dev(struct kref *ref) 369 { 370 struct nvme_rdma_device *ndev = 371 container_of(ref, struct nvme_rdma_device, ref); 372 373 mutex_lock(&device_list_mutex); 374 list_del(&ndev->entry); 375 mutex_unlock(&device_list_mutex); 376 377 ib_dealloc_pd(ndev->pd); 378 kfree(ndev); 379 } 380 381 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 382 { 383 kref_put(&dev->ref, nvme_rdma_free_dev); 384 } 385 386 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 387 { 388 return kref_get_unless_zero(&dev->ref); 389 } 390 391 static struct nvme_rdma_device * 392 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 393 { 394 struct nvme_rdma_device *ndev; 395 396 mutex_lock(&device_list_mutex); 397 list_for_each_entry(ndev, &device_list, entry) { 398 if (ndev->dev->node_guid == cm_id->device->node_guid && 399 nvme_rdma_dev_get(ndev)) 400 goto out_unlock; 401 } 402 403 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 404 if (!ndev) 405 goto out_err; 406 407 ndev->dev = cm_id->device; 408 kref_init(&ndev->ref); 409 410 ndev->pd = ib_alloc_pd(ndev->dev, 411 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 412 if (IS_ERR(ndev->pd)) 413 goto out_free_dev; 414 415 if (!(ndev->dev->attrs.device_cap_flags & 416 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 417 dev_err(&ndev->dev->dev, 418 "Memory registrations not supported.\n"); 419 goto out_free_pd; 420 } 421 422 list_add(&ndev->entry, &device_list); 423 out_unlock: 424 mutex_unlock(&device_list_mutex); 425 return ndev; 426 427 out_free_pd: 428 ib_dealloc_pd(ndev->pd); 429 out_free_dev: 430 kfree(ndev); 431 out_err: 432 mutex_unlock(&device_list_mutex); 433 return NULL; 434 } 435 436 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 437 { 438 struct nvme_rdma_device *dev; 439 struct ib_device *ibdev; 440 441 dev = queue->device; 442 ibdev = dev->dev; 443 rdma_destroy_qp(queue->cm_id); 444 ib_free_cq(queue->ib_cq); 445 446 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 447 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 448 449 nvme_rdma_dev_put(dev); 450 } 451 452 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 453 { 454 struct ib_device *ibdev; 455 const int send_wr_factor = 3; /* MR, SEND, INV */ 456 const int cq_factor = send_wr_factor + 1; /* + RECV */ 457 int comp_vector, idx = nvme_rdma_queue_idx(queue); 458 int ret; 459 460 queue->device = nvme_rdma_find_get_device(queue->cm_id); 461 if (!queue->device) { 462 dev_err(queue->cm_id->device->dev.parent, 463 "no client data found!\n"); 464 return -ECONNREFUSED; 465 } 466 ibdev = queue->device->dev; 467 468 /* 469 * The admin queue is barely used once the controller is live, so don't 470 * bother to spread it out. 471 */ 472 if (idx == 0) 473 comp_vector = 0; 474 else 475 comp_vector = idx % ibdev->num_comp_vectors; 476 477 478 /* +1 for ib_stop_cq */ 479 queue->ib_cq = ib_alloc_cq(ibdev, queue, 480 cq_factor * queue->queue_size + 1, 481 comp_vector, IB_POLL_SOFTIRQ); 482 if (IS_ERR(queue->ib_cq)) { 483 ret = PTR_ERR(queue->ib_cq); 484 goto out_put_dev; 485 } 486 487 ret = nvme_rdma_create_qp(queue, send_wr_factor); 488 if (ret) 489 goto out_destroy_ib_cq; 490 491 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 492 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 493 if (!queue->rsp_ring) { 494 ret = -ENOMEM; 495 goto out_destroy_qp; 496 } 497 498 return 0; 499 500 out_destroy_qp: 501 ib_destroy_qp(queue->qp); 502 out_destroy_ib_cq: 503 ib_free_cq(queue->ib_cq); 504 out_put_dev: 505 nvme_rdma_dev_put(queue->device); 506 return ret; 507 } 508 509 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 510 int idx, size_t queue_size) 511 { 512 struct nvme_rdma_queue *queue; 513 struct sockaddr *src_addr = NULL; 514 int ret; 515 516 queue = &ctrl->queues[idx]; 517 queue->ctrl = ctrl; 518 init_completion(&queue->cm_done); 519 520 if (idx > 0) 521 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 522 else 523 queue->cmnd_capsule_len = sizeof(struct nvme_command); 524 525 queue->queue_size = queue_size; 526 atomic_set(&queue->sig_count, 0); 527 528 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 529 RDMA_PS_TCP, IB_QPT_RC); 530 if (IS_ERR(queue->cm_id)) { 531 dev_info(ctrl->ctrl.device, 532 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 533 return PTR_ERR(queue->cm_id); 534 } 535 536 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 537 src_addr = (struct sockaddr *)&ctrl->src_addr; 538 539 queue->cm_error = -ETIMEDOUT; 540 ret = rdma_resolve_addr(queue->cm_id, src_addr, 541 (struct sockaddr *)&ctrl->addr, 542 NVME_RDMA_CONNECT_TIMEOUT_MS); 543 if (ret) { 544 dev_info(ctrl->ctrl.device, 545 "rdma_resolve_addr failed (%d).\n", ret); 546 goto out_destroy_cm_id; 547 } 548 549 ret = nvme_rdma_wait_for_cm(queue); 550 if (ret) { 551 dev_info(ctrl->ctrl.device, 552 "rdma_resolve_addr wait failed (%d).\n", ret); 553 goto out_destroy_cm_id; 554 } 555 556 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 557 558 return 0; 559 560 out_destroy_cm_id: 561 rdma_destroy_id(queue->cm_id); 562 return ret; 563 } 564 565 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 566 { 567 rdma_disconnect(queue->cm_id); 568 ib_drain_qp(queue->qp); 569 } 570 571 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 572 { 573 nvme_rdma_destroy_queue_ib(queue); 574 rdma_destroy_id(queue->cm_id); 575 } 576 577 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 578 { 579 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 580 return; 581 nvme_rdma_stop_queue(queue); 582 nvme_rdma_free_queue(queue); 583 } 584 585 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 586 { 587 int i; 588 589 for (i = 1; i < ctrl->ctrl.queue_count; i++) 590 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 591 } 592 593 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 594 { 595 int i, ret = 0; 596 597 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 598 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 599 if (ret) { 600 dev_info(ctrl->ctrl.device, 601 "failed to connect i/o queue: %d\n", ret); 602 goto out_free_queues; 603 } 604 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 605 } 606 607 return 0; 608 609 out_free_queues: 610 nvme_rdma_free_io_queues(ctrl); 611 return ret; 612 } 613 614 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 615 { 616 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 617 unsigned int nr_io_queues; 618 int i, ret; 619 620 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 621 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 622 if (ret) 623 return ret; 624 625 ctrl->ctrl.queue_count = nr_io_queues + 1; 626 if (ctrl->ctrl.queue_count < 2) 627 return 0; 628 629 dev_info(ctrl->ctrl.device, 630 "creating %d I/O queues.\n", nr_io_queues); 631 632 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 633 ret = nvme_rdma_init_queue(ctrl, i, 634 ctrl->ctrl.opts->queue_size); 635 if (ret) { 636 dev_info(ctrl->ctrl.device, 637 "failed to initialize i/o queue: %d\n", ret); 638 goto out_free_queues; 639 } 640 } 641 642 return 0; 643 644 out_free_queues: 645 for (i--; i >= 1; i--) 646 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 647 648 return ret; 649 } 650 651 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 652 { 653 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 654 sizeof(struct nvme_command), DMA_TO_DEVICE); 655 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 656 blk_cleanup_queue(ctrl->ctrl.admin_q); 657 blk_mq_free_tag_set(&ctrl->admin_tag_set); 658 nvme_rdma_dev_put(ctrl->device); 659 } 660 661 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 662 { 663 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 664 665 if (list_empty(&ctrl->list)) 666 goto free_ctrl; 667 668 mutex_lock(&nvme_rdma_ctrl_mutex); 669 list_del(&ctrl->list); 670 mutex_unlock(&nvme_rdma_ctrl_mutex); 671 672 kfree(ctrl->queues); 673 nvmf_free_options(nctrl->opts); 674 free_ctrl: 675 kfree(ctrl); 676 } 677 678 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 679 { 680 /* If we are resetting/deleting then do nothing */ 681 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 682 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 683 ctrl->ctrl.state == NVME_CTRL_LIVE); 684 return; 685 } 686 687 if (nvmf_should_reconnect(&ctrl->ctrl)) { 688 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 689 ctrl->ctrl.opts->reconnect_delay); 690 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 691 ctrl->ctrl.opts->reconnect_delay * HZ); 692 } else { 693 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 694 queue_work(nvme_wq, &ctrl->delete_work); 695 } 696 } 697 698 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 699 { 700 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 701 struct nvme_rdma_ctrl, reconnect_work); 702 bool changed; 703 int ret; 704 705 ++ctrl->ctrl.nr_reconnects; 706 707 if (ctrl->ctrl.queue_count > 1) { 708 nvme_rdma_free_io_queues(ctrl); 709 710 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 711 if (ret) 712 goto requeue; 713 } 714 715 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 716 717 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 718 if (ret) 719 goto requeue; 720 721 ret = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH); 722 if (ret) 723 goto requeue; 724 725 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 726 if (ret) 727 goto requeue; 728 729 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 730 731 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 732 if (ret) 733 goto requeue; 734 735 nvme_start_keep_alive(&ctrl->ctrl); 736 737 if (ctrl->ctrl.queue_count > 1) { 738 ret = nvme_rdma_init_io_queues(ctrl); 739 if (ret) 740 goto requeue; 741 742 ret = nvme_rdma_connect_io_queues(ctrl); 743 if (ret) 744 goto requeue; 745 746 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 747 ctrl->ctrl.queue_count - 1); 748 } 749 750 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 751 WARN_ON_ONCE(!changed); 752 ctrl->ctrl.nr_reconnects = 0; 753 754 if (ctrl->ctrl.queue_count > 1) { 755 nvme_queue_scan(&ctrl->ctrl); 756 nvme_queue_async_events(&ctrl->ctrl); 757 } 758 759 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 760 761 return; 762 763 requeue: 764 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 765 ctrl->ctrl.nr_reconnects); 766 nvme_rdma_reconnect_or_remove(ctrl); 767 } 768 769 static void nvme_rdma_error_recovery_work(struct work_struct *work) 770 { 771 struct nvme_rdma_ctrl *ctrl = container_of(work, 772 struct nvme_rdma_ctrl, err_work); 773 int i; 774 775 nvme_stop_keep_alive(&ctrl->ctrl); 776 777 for (i = 0; i < ctrl->ctrl.queue_count; i++) 778 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 779 780 if (ctrl->ctrl.queue_count > 1) 781 nvme_stop_queues(&ctrl->ctrl); 782 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 783 784 /* We must take care of fastfail/requeue all our inflight requests */ 785 if (ctrl->ctrl.queue_count > 1) 786 blk_mq_tagset_busy_iter(&ctrl->tag_set, 787 nvme_cancel_request, &ctrl->ctrl); 788 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 789 nvme_cancel_request, &ctrl->ctrl); 790 791 /* 792 * queues are not a live anymore, so restart the queues to fail fast 793 * new IO 794 */ 795 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 796 nvme_start_queues(&ctrl->ctrl); 797 798 nvme_rdma_reconnect_or_remove(ctrl); 799 } 800 801 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 802 { 803 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 804 return; 805 806 queue_work(nvme_wq, &ctrl->err_work); 807 } 808 809 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 810 const char *op) 811 { 812 struct nvme_rdma_queue *queue = cq->cq_context; 813 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 814 815 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 816 dev_info(ctrl->ctrl.device, 817 "%s for CQE 0x%p failed with status %s (%d)\n", 818 op, wc->wr_cqe, 819 ib_wc_status_msg(wc->status), wc->status); 820 nvme_rdma_error_recovery(ctrl); 821 } 822 823 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 824 { 825 if (unlikely(wc->status != IB_WC_SUCCESS)) 826 nvme_rdma_wr_error(cq, wc, "MEMREG"); 827 } 828 829 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 830 { 831 if (unlikely(wc->status != IB_WC_SUCCESS)) 832 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 833 } 834 835 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 836 struct nvme_rdma_request *req) 837 { 838 struct ib_send_wr *bad_wr; 839 struct ib_send_wr wr = { 840 .opcode = IB_WR_LOCAL_INV, 841 .next = NULL, 842 .num_sge = 0, 843 .send_flags = 0, 844 .ex.invalidate_rkey = req->mr->rkey, 845 }; 846 847 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 848 wr.wr_cqe = &req->reg_cqe; 849 850 return ib_post_send(queue->qp, &wr, &bad_wr); 851 } 852 853 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 854 struct request *rq) 855 { 856 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 857 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 858 struct nvme_rdma_device *dev = queue->device; 859 struct ib_device *ibdev = dev->dev; 860 int res; 861 862 if (!blk_rq_bytes(rq)) 863 return; 864 865 if (req->mr->need_inval) { 866 res = nvme_rdma_inv_rkey(queue, req); 867 if (res < 0) { 868 dev_err(ctrl->ctrl.device, 869 "Queueing INV WR for rkey %#x failed (%d)\n", 870 req->mr->rkey, res); 871 nvme_rdma_error_recovery(queue->ctrl); 872 } 873 } 874 875 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 876 req->nents, rq_data_dir(rq) == 877 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 878 879 nvme_cleanup_cmd(rq); 880 sg_free_table_chained(&req->sg_table, true); 881 } 882 883 static int nvme_rdma_set_sg_null(struct nvme_command *c) 884 { 885 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 886 887 sg->addr = 0; 888 put_unaligned_le24(0, sg->length); 889 put_unaligned_le32(0, sg->key); 890 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 891 return 0; 892 } 893 894 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 895 struct nvme_rdma_request *req, struct nvme_command *c) 896 { 897 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 898 899 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 900 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 901 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 902 903 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 904 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 905 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 906 907 req->inline_data = true; 908 req->num_sge++; 909 return 0; 910 } 911 912 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 913 struct nvme_rdma_request *req, struct nvme_command *c) 914 { 915 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 916 917 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 918 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 919 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 920 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 921 return 0; 922 } 923 924 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 925 struct nvme_rdma_request *req, struct nvme_command *c, 926 int count) 927 { 928 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 929 int nr; 930 931 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 932 if (nr < count) { 933 if (nr < 0) 934 return nr; 935 return -EINVAL; 936 } 937 938 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 939 940 req->reg_cqe.done = nvme_rdma_memreg_done; 941 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 942 req->reg_wr.wr.opcode = IB_WR_REG_MR; 943 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 944 req->reg_wr.wr.num_sge = 0; 945 req->reg_wr.mr = req->mr; 946 req->reg_wr.key = req->mr->rkey; 947 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 948 IB_ACCESS_REMOTE_READ | 949 IB_ACCESS_REMOTE_WRITE; 950 951 req->mr->need_inval = true; 952 953 sg->addr = cpu_to_le64(req->mr->iova); 954 put_unaligned_le24(req->mr->length, sg->length); 955 put_unaligned_le32(req->mr->rkey, sg->key); 956 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 957 NVME_SGL_FMT_INVALIDATE; 958 959 return 0; 960 } 961 962 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 963 struct request *rq, struct nvme_command *c) 964 { 965 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 966 struct nvme_rdma_device *dev = queue->device; 967 struct ib_device *ibdev = dev->dev; 968 int count, ret; 969 970 req->num_sge = 1; 971 req->inline_data = false; 972 req->mr->need_inval = false; 973 974 c->common.flags |= NVME_CMD_SGL_METABUF; 975 976 if (!blk_rq_bytes(rq)) 977 return nvme_rdma_set_sg_null(c); 978 979 req->sg_table.sgl = req->first_sgl; 980 ret = sg_alloc_table_chained(&req->sg_table, 981 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 982 if (ret) 983 return -ENOMEM; 984 985 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 986 987 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 988 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 989 if (unlikely(count <= 0)) { 990 sg_free_table_chained(&req->sg_table, true); 991 return -EIO; 992 } 993 994 if (count == 1) { 995 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 996 blk_rq_payload_bytes(rq) <= 997 nvme_rdma_inline_data_size(queue)) 998 return nvme_rdma_map_sg_inline(queue, req, c); 999 1000 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1001 return nvme_rdma_map_sg_single(queue, req, c); 1002 } 1003 1004 return nvme_rdma_map_sg_fr(queue, req, c, count); 1005 } 1006 1007 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1008 { 1009 if (unlikely(wc->status != IB_WC_SUCCESS)) 1010 nvme_rdma_wr_error(cq, wc, "SEND"); 1011 } 1012 1013 /* 1014 * We want to signal completion at least every queue depth/2. This returns the 1015 * largest power of two that is not above half of (queue size + 1) to optimize 1016 * (avoid divisions). 1017 */ 1018 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue) 1019 { 1020 int limit = 1 << ilog2((queue->queue_size + 1) / 2); 1021 1022 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0; 1023 } 1024 1025 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1026 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1027 struct ib_send_wr *first, bool flush) 1028 { 1029 struct ib_send_wr wr, *bad_wr; 1030 int ret; 1031 1032 sge->addr = qe->dma; 1033 sge->length = sizeof(struct nvme_command), 1034 sge->lkey = queue->device->pd->local_dma_lkey; 1035 1036 qe->cqe.done = nvme_rdma_send_done; 1037 1038 wr.next = NULL; 1039 wr.wr_cqe = &qe->cqe; 1040 wr.sg_list = sge; 1041 wr.num_sge = num_sge; 1042 wr.opcode = IB_WR_SEND; 1043 wr.send_flags = 0; 1044 1045 /* 1046 * Unsignalled send completions are another giant desaster in the 1047 * IB Verbs spec: If we don't regularly post signalled sends 1048 * the send queue will fill up and only a QP reset will rescue us. 1049 * Would have been way to obvious to handle this in hardware or 1050 * at least the RDMA stack.. 1051 * 1052 * Always signal the flushes. The magic request used for the flush 1053 * sequencer is not allocated in our driver's tagset and it's 1054 * triggered to be freed by blk_cleanup_queue(). So we need to 1055 * always mark it as signaled to ensure that the "wr_cqe", which is 1056 * embedded in request's payload, is not freed when __ib_process_cq() 1057 * calls wr_cqe->done(). 1058 */ 1059 if (nvme_rdma_queue_sig_limit(queue) || flush) 1060 wr.send_flags |= IB_SEND_SIGNALED; 1061 1062 if (first) 1063 first->next = ≀ 1064 else 1065 first = ≀ 1066 1067 ret = ib_post_send(queue->qp, first, &bad_wr); 1068 if (ret) { 1069 dev_err(queue->ctrl->ctrl.device, 1070 "%s failed with error code %d\n", __func__, ret); 1071 } 1072 return ret; 1073 } 1074 1075 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1076 struct nvme_rdma_qe *qe) 1077 { 1078 struct ib_recv_wr wr, *bad_wr; 1079 struct ib_sge list; 1080 int ret; 1081 1082 list.addr = qe->dma; 1083 list.length = sizeof(struct nvme_completion); 1084 list.lkey = queue->device->pd->local_dma_lkey; 1085 1086 qe->cqe.done = nvme_rdma_recv_done; 1087 1088 wr.next = NULL; 1089 wr.wr_cqe = &qe->cqe; 1090 wr.sg_list = &list; 1091 wr.num_sge = 1; 1092 1093 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1094 if (ret) { 1095 dev_err(queue->ctrl->ctrl.device, 1096 "%s failed with error code %d\n", __func__, ret); 1097 } 1098 return ret; 1099 } 1100 1101 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1102 { 1103 u32 queue_idx = nvme_rdma_queue_idx(queue); 1104 1105 if (queue_idx == 0) 1106 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1107 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1108 } 1109 1110 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1111 { 1112 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1113 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1114 struct ib_device *dev = queue->device->dev; 1115 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1116 struct nvme_command *cmd = sqe->data; 1117 struct ib_sge sge; 1118 int ret; 1119 1120 if (WARN_ON_ONCE(aer_idx != 0)) 1121 return; 1122 1123 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1124 1125 memset(cmd, 0, sizeof(*cmd)); 1126 cmd->common.opcode = nvme_admin_async_event; 1127 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1128 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1129 nvme_rdma_set_sg_null(cmd); 1130 1131 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1132 DMA_TO_DEVICE); 1133 1134 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1135 WARN_ON_ONCE(ret); 1136 } 1137 1138 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1139 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1140 { 1141 struct request *rq; 1142 struct nvme_rdma_request *req; 1143 int ret = 0; 1144 1145 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1146 if (!rq) { 1147 dev_err(queue->ctrl->ctrl.device, 1148 "tag 0x%x on QP %#x not found\n", 1149 cqe->command_id, queue->qp->qp_num); 1150 nvme_rdma_error_recovery(queue->ctrl); 1151 return ret; 1152 } 1153 req = blk_mq_rq_to_pdu(rq); 1154 1155 if (rq->tag == tag) 1156 ret = 1; 1157 1158 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1159 wc->ex.invalidate_rkey == req->mr->rkey) 1160 req->mr->need_inval = false; 1161 1162 nvme_end_request(rq, cqe->status, cqe->result); 1163 return ret; 1164 } 1165 1166 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1167 { 1168 struct nvme_rdma_qe *qe = 1169 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1170 struct nvme_rdma_queue *queue = cq->cq_context; 1171 struct ib_device *ibdev = queue->device->dev; 1172 struct nvme_completion *cqe = qe->data; 1173 const size_t len = sizeof(struct nvme_completion); 1174 int ret = 0; 1175 1176 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1177 nvme_rdma_wr_error(cq, wc, "RECV"); 1178 return 0; 1179 } 1180 1181 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1182 /* 1183 * AEN requests are special as they don't time out and can 1184 * survive any kind of queue freeze and often don't respond to 1185 * aborts. We don't even bother to allocate a struct request 1186 * for them but rather special case them here. 1187 */ 1188 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1189 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1190 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1191 &cqe->result); 1192 else 1193 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1194 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1195 1196 nvme_rdma_post_recv(queue, qe); 1197 return ret; 1198 } 1199 1200 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1201 { 1202 __nvme_rdma_recv_done(cq, wc, -1); 1203 } 1204 1205 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1206 { 1207 int ret, i; 1208 1209 for (i = 0; i < queue->queue_size; i++) { 1210 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1211 if (ret) 1212 goto out_destroy_queue_ib; 1213 } 1214 1215 return 0; 1216 1217 out_destroy_queue_ib: 1218 nvme_rdma_destroy_queue_ib(queue); 1219 return ret; 1220 } 1221 1222 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1223 struct rdma_cm_event *ev) 1224 { 1225 struct rdma_cm_id *cm_id = queue->cm_id; 1226 int status = ev->status; 1227 const char *rej_msg; 1228 const struct nvme_rdma_cm_rej *rej_data; 1229 u8 rej_data_len; 1230 1231 rej_msg = rdma_reject_msg(cm_id, status); 1232 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1233 1234 if (rej_data && rej_data_len >= sizeof(u16)) { 1235 u16 sts = le16_to_cpu(rej_data->sts); 1236 1237 dev_err(queue->ctrl->ctrl.device, 1238 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1239 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1240 } else { 1241 dev_err(queue->ctrl->ctrl.device, 1242 "Connect rejected: status %d (%s).\n", status, rej_msg); 1243 } 1244 1245 return -ECONNRESET; 1246 } 1247 1248 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1249 { 1250 int ret; 1251 1252 ret = nvme_rdma_create_queue_ib(queue); 1253 if (ret) 1254 return ret; 1255 1256 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1257 if (ret) { 1258 dev_err(queue->ctrl->ctrl.device, 1259 "rdma_resolve_route failed (%d).\n", 1260 queue->cm_error); 1261 goto out_destroy_queue; 1262 } 1263 1264 return 0; 1265 1266 out_destroy_queue: 1267 nvme_rdma_destroy_queue_ib(queue); 1268 return ret; 1269 } 1270 1271 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1272 { 1273 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1274 struct rdma_conn_param param = { }; 1275 struct nvme_rdma_cm_req priv = { }; 1276 int ret; 1277 1278 param.qp_num = queue->qp->qp_num; 1279 param.flow_control = 1; 1280 1281 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1282 /* maximum retry count */ 1283 param.retry_count = 7; 1284 param.rnr_retry_count = 7; 1285 param.private_data = &priv; 1286 param.private_data_len = sizeof(priv); 1287 1288 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1289 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1290 /* 1291 * set the admin queue depth to the minimum size 1292 * specified by the Fabrics standard. 1293 */ 1294 if (priv.qid == 0) { 1295 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1296 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1297 } else { 1298 /* 1299 * current interpretation of the fabrics spec 1300 * is at minimum you make hrqsize sqsize+1, or a 1301 * 1's based representation of sqsize. 1302 */ 1303 priv.hrqsize = cpu_to_le16(queue->queue_size); 1304 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1305 } 1306 1307 ret = rdma_connect(queue->cm_id, ¶m); 1308 if (ret) { 1309 dev_err(ctrl->ctrl.device, 1310 "rdma_connect failed (%d).\n", ret); 1311 goto out_destroy_queue_ib; 1312 } 1313 1314 return 0; 1315 1316 out_destroy_queue_ib: 1317 nvme_rdma_destroy_queue_ib(queue); 1318 return ret; 1319 } 1320 1321 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1322 struct rdma_cm_event *ev) 1323 { 1324 struct nvme_rdma_queue *queue = cm_id->context; 1325 int cm_error = 0; 1326 1327 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1328 rdma_event_msg(ev->event), ev->event, 1329 ev->status, cm_id); 1330 1331 switch (ev->event) { 1332 case RDMA_CM_EVENT_ADDR_RESOLVED: 1333 cm_error = nvme_rdma_addr_resolved(queue); 1334 break; 1335 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1336 cm_error = nvme_rdma_route_resolved(queue); 1337 break; 1338 case RDMA_CM_EVENT_ESTABLISHED: 1339 queue->cm_error = nvme_rdma_conn_established(queue); 1340 /* complete cm_done regardless of success/failure */ 1341 complete(&queue->cm_done); 1342 return 0; 1343 case RDMA_CM_EVENT_REJECTED: 1344 nvme_rdma_destroy_queue_ib(queue); 1345 cm_error = nvme_rdma_conn_rejected(queue, ev); 1346 break; 1347 case RDMA_CM_EVENT_ROUTE_ERROR: 1348 case RDMA_CM_EVENT_CONNECT_ERROR: 1349 case RDMA_CM_EVENT_UNREACHABLE: 1350 nvme_rdma_destroy_queue_ib(queue); 1351 case RDMA_CM_EVENT_ADDR_ERROR: 1352 dev_dbg(queue->ctrl->ctrl.device, 1353 "CM error event %d\n", ev->event); 1354 cm_error = -ECONNRESET; 1355 break; 1356 case RDMA_CM_EVENT_DISCONNECTED: 1357 case RDMA_CM_EVENT_ADDR_CHANGE: 1358 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1359 dev_dbg(queue->ctrl->ctrl.device, 1360 "disconnect received - connection closed\n"); 1361 nvme_rdma_error_recovery(queue->ctrl); 1362 break; 1363 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1364 /* device removal is handled via the ib_client API */ 1365 break; 1366 default: 1367 dev_err(queue->ctrl->ctrl.device, 1368 "Unexpected RDMA CM event (%d)\n", ev->event); 1369 nvme_rdma_error_recovery(queue->ctrl); 1370 break; 1371 } 1372 1373 if (cm_error) { 1374 queue->cm_error = cm_error; 1375 complete(&queue->cm_done); 1376 } 1377 1378 return 0; 1379 } 1380 1381 static enum blk_eh_timer_return 1382 nvme_rdma_timeout(struct request *rq, bool reserved) 1383 { 1384 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1385 1386 /* queue error recovery */ 1387 nvme_rdma_error_recovery(req->queue->ctrl); 1388 1389 /* fail with DNR on cmd timeout */ 1390 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1391 1392 return BLK_EH_HANDLED; 1393 } 1394 1395 /* 1396 * We cannot accept any other command until the Connect command has completed. 1397 */ 1398 static inline blk_status_t 1399 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1400 { 1401 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1402 struct nvme_command *cmd = nvme_req(rq)->cmd; 1403 1404 if (!blk_rq_is_passthrough(rq) || 1405 cmd->common.opcode != nvme_fabrics_command || 1406 cmd->fabrics.fctype != nvme_fabrics_type_connect) { 1407 /* 1408 * reconnecting state means transport disruption, which 1409 * can take a long time and even might fail permanently, 1410 * so we can't let incoming I/O be requeued forever. 1411 * fail it fast to allow upper layers a chance to 1412 * failover. 1413 */ 1414 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING) 1415 return BLK_STS_IOERR; 1416 return BLK_STS_RESOURCE; /* try again later */ 1417 } 1418 } 1419 1420 return 0; 1421 } 1422 1423 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1424 const struct blk_mq_queue_data *bd) 1425 { 1426 struct nvme_ns *ns = hctx->queue->queuedata; 1427 struct nvme_rdma_queue *queue = hctx->driver_data; 1428 struct request *rq = bd->rq; 1429 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1430 struct nvme_rdma_qe *sqe = &req->sqe; 1431 struct nvme_command *c = sqe->data; 1432 bool flush = false; 1433 struct ib_device *dev; 1434 blk_status_t ret; 1435 int err; 1436 1437 WARN_ON_ONCE(rq->tag < 0); 1438 1439 ret = nvme_rdma_queue_is_ready(queue, rq); 1440 if (unlikely(ret)) 1441 return ret; 1442 1443 dev = queue->device->dev; 1444 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1445 sizeof(struct nvme_command), DMA_TO_DEVICE); 1446 1447 ret = nvme_setup_cmd(ns, rq, c); 1448 if (ret) 1449 return ret; 1450 1451 blk_mq_start_request(rq); 1452 1453 err = nvme_rdma_map_data(queue, rq, c); 1454 if (err < 0) { 1455 dev_err(queue->ctrl->ctrl.device, 1456 "Failed to map data (%d)\n", err); 1457 nvme_cleanup_cmd(rq); 1458 goto err; 1459 } 1460 1461 ib_dma_sync_single_for_device(dev, sqe->dma, 1462 sizeof(struct nvme_command), DMA_TO_DEVICE); 1463 1464 if (req_op(rq) == REQ_OP_FLUSH) 1465 flush = true; 1466 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1467 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1468 if (err) { 1469 nvme_rdma_unmap_data(queue, rq); 1470 goto err; 1471 } 1472 1473 return BLK_STS_OK; 1474 err: 1475 if (err == -ENOMEM || err == -EAGAIN) 1476 return BLK_STS_RESOURCE; 1477 return BLK_STS_IOERR; 1478 } 1479 1480 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1481 { 1482 struct nvme_rdma_queue *queue = hctx->driver_data; 1483 struct ib_cq *cq = queue->ib_cq; 1484 struct ib_wc wc; 1485 int found = 0; 1486 1487 while (ib_poll_cq(cq, 1, &wc) > 0) { 1488 struct ib_cqe *cqe = wc.wr_cqe; 1489 1490 if (cqe) { 1491 if (cqe->done == nvme_rdma_recv_done) 1492 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1493 else 1494 cqe->done(cq, &wc); 1495 } 1496 } 1497 1498 return found; 1499 } 1500 1501 static void nvme_rdma_complete_rq(struct request *rq) 1502 { 1503 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1504 1505 nvme_rdma_unmap_data(req->queue, rq); 1506 nvme_complete_rq(rq); 1507 } 1508 1509 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1510 .queue_rq = nvme_rdma_queue_rq, 1511 .complete = nvme_rdma_complete_rq, 1512 .init_request = nvme_rdma_init_request, 1513 .exit_request = nvme_rdma_exit_request, 1514 .reinit_request = nvme_rdma_reinit_request, 1515 .init_hctx = nvme_rdma_init_hctx, 1516 .poll = nvme_rdma_poll, 1517 .timeout = nvme_rdma_timeout, 1518 }; 1519 1520 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1521 .queue_rq = nvme_rdma_queue_rq, 1522 .complete = nvme_rdma_complete_rq, 1523 .init_request = nvme_rdma_init_request, 1524 .exit_request = nvme_rdma_exit_request, 1525 .reinit_request = nvme_rdma_reinit_request, 1526 .init_hctx = nvme_rdma_init_admin_hctx, 1527 .timeout = nvme_rdma_timeout, 1528 }; 1529 1530 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1531 { 1532 int error; 1533 1534 error = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH); 1535 if (error) 1536 return error; 1537 1538 ctrl->device = ctrl->queues[0].device; 1539 1540 /* 1541 * We need a reference on the device as long as the tag_set is alive, 1542 * as the MRs in the request structures need a valid ib_device. 1543 */ 1544 error = -EINVAL; 1545 if (!nvme_rdma_dev_get(ctrl->device)) 1546 goto out_free_queue; 1547 1548 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1549 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1550 1551 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1552 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1553 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1554 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1555 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1556 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1557 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1558 ctrl->admin_tag_set.driver_data = ctrl; 1559 ctrl->admin_tag_set.nr_hw_queues = 1; 1560 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1561 1562 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1563 if (error) 1564 goto out_put_dev; 1565 1566 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1567 if (IS_ERR(ctrl->ctrl.admin_q)) { 1568 error = PTR_ERR(ctrl->ctrl.admin_q); 1569 goto out_free_tagset; 1570 } 1571 1572 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1573 if (error) 1574 goto out_cleanup_queue; 1575 1576 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 1577 1578 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, 1579 &ctrl->ctrl.cap); 1580 if (error) { 1581 dev_err(ctrl->ctrl.device, 1582 "prop_get NVME_REG_CAP failed\n"); 1583 goto out_cleanup_queue; 1584 } 1585 1586 ctrl->ctrl.sqsize = 1587 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 1588 1589 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1590 if (error) 1591 goto out_cleanup_queue; 1592 1593 ctrl->ctrl.max_hw_sectors = 1594 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1595 1596 error = nvme_init_identify(&ctrl->ctrl); 1597 if (error) 1598 goto out_cleanup_queue; 1599 1600 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1601 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1602 DMA_TO_DEVICE); 1603 if (error) 1604 goto out_cleanup_queue; 1605 1606 nvme_start_keep_alive(&ctrl->ctrl); 1607 1608 return 0; 1609 1610 out_cleanup_queue: 1611 blk_cleanup_queue(ctrl->ctrl.admin_q); 1612 out_free_tagset: 1613 /* disconnect and drain the queue before freeing the tagset */ 1614 nvme_rdma_stop_queue(&ctrl->queues[0]); 1615 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1616 out_put_dev: 1617 nvme_rdma_dev_put(ctrl->device); 1618 out_free_queue: 1619 nvme_rdma_free_queue(&ctrl->queues[0]); 1620 return error; 1621 } 1622 1623 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1624 { 1625 nvme_stop_keep_alive(&ctrl->ctrl); 1626 cancel_work_sync(&ctrl->err_work); 1627 cancel_delayed_work_sync(&ctrl->reconnect_work); 1628 1629 if (ctrl->ctrl.queue_count > 1) { 1630 nvme_stop_queues(&ctrl->ctrl); 1631 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1632 nvme_cancel_request, &ctrl->ctrl); 1633 nvme_rdma_free_io_queues(ctrl); 1634 } 1635 1636 if (test_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags)) 1637 nvme_shutdown_ctrl(&ctrl->ctrl); 1638 1639 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1640 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1641 nvme_cancel_request, &ctrl->ctrl); 1642 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1643 nvme_rdma_destroy_admin_queue(ctrl); 1644 } 1645 1646 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1647 { 1648 nvme_uninit_ctrl(&ctrl->ctrl); 1649 if (shutdown) 1650 nvme_rdma_shutdown_ctrl(ctrl); 1651 1652 if (ctrl->ctrl.tagset) { 1653 blk_cleanup_queue(ctrl->ctrl.connect_q); 1654 blk_mq_free_tag_set(&ctrl->tag_set); 1655 nvme_rdma_dev_put(ctrl->device); 1656 } 1657 1658 nvme_put_ctrl(&ctrl->ctrl); 1659 } 1660 1661 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1662 { 1663 struct nvme_rdma_ctrl *ctrl = container_of(work, 1664 struct nvme_rdma_ctrl, delete_work); 1665 1666 __nvme_rdma_remove_ctrl(ctrl, true); 1667 } 1668 1669 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1670 { 1671 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1672 return -EBUSY; 1673 1674 if (!queue_work(nvme_wq, &ctrl->delete_work)) 1675 return -EBUSY; 1676 1677 return 0; 1678 } 1679 1680 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1681 { 1682 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1683 int ret = 0; 1684 1685 /* 1686 * Keep a reference until all work is flushed since 1687 * __nvme_rdma_del_ctrl can free the ctrl mem 1688 */ 1689 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1690 return -EBUSY; 1691 ret = __nvme_rdma_del_ctrl(ctrl); 1692 if (!ret) 1693 flush_work(&ctrl->delete_work); 1694 nvme_put_ctrl(&ctrl->ctrl); 1695 return ret; 1696 } 1697 1698 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1699 { 1700 struct nvme_rdma_ctrl *ctrl = container_of(work, 1701 struct nvme_rdma_ctrl, delete_work); 1702 1703 __nvme_rdma_remove_ctrl(ctrl, false); 1704 } 1705 1706 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1707 { 1708 struct nvme_rdma_ctrl *ctrl = 1709 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1710 int ret; 1711 bool changed; 1712 1713 nvme_rdma_shutdown_ctrl(ctrl); 1714 1715 ret = nvme_rdma_configure_admin_queue(ctrl); 1716 if (ret) { 1717 /* ctrl is already shutdown, just remove the ctrl */ 1718 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1719 goto del_dead_ctrl; 1720 } 1721 1722 if (ctrl->ctrl.queue_count > 1) { 1723 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1724 if (ret) 1725 goto del_dead_ctrl; 1726 1727 ret = nvme_rdma_init_io_queues(ctrl); 1728 if (ret) 1729 goto del_dead_ctrl; 1730 1731 ret = nvme_rdma_connect_io_queues(ctrl); 1732 if (ret) 1733 goto del_dead_ctrl; 1734 1735 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 1736 ctrl->ctrl.queue_count - 1); 1737 } 1738 1739 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1740 WARN_ON_ONCE(!changed); 1741 1742 if (ctrl->ctrl.queue_count > 1) { 1743 nvme_start_queues(&ctrl->ctrl); 1744 nvme_queue_scan(&ctrl->ctrl); 1745 nvme_queue_async_events(&ctrl->ctrl); 1746 } 1747 1748 return; 1749 1750 del_dead_ctrl: 1751 /* Deleting this dead controller... */ 1752 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1753 WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work)); 1754 } 1755 1756 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1757 .name = "rdma", 1758 .module = THIS_MODULE, 1759 .flags = NVME_F_FABRICS, 1760 .reg_read32 = nvmf_reg_read32, 1761 .reg_read64 = nvmf_reg_read64, 1762 .reg_write32 = nvmf_reg_write32, 1763 .free_ctrl = nvme_rdma_free_ctrl, 1764 .submit_async_event = nvme_rdma_submit_async_event, 1765 .delete_ctrl = nvme_rdma_del_ctrl, 1766 .get_address = nvmf_get_address, 1767 }; 1768 1769 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1770 { 1771 int ret; 1772 1773 ret = nvme_rdma_init_io_queues(ctrl); 1774 if (ret) 1775 return ret; 1776 1777 /* 1778 * We need a reference on the device as long as the tag_set is alive, 1779 * as the MRs in the request structures need a valid ib_device. 1780 */ 1781 ret = -EINVAL; 1782 if (!nvme_rdma_dev_get(ctrl->device)) 1783 goto out_free_io_queues; 1784 1785 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1786 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1787 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1788 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1789 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1790 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1791 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1792 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1793 ctrl->tag_set.driver_data = ctrl; 1794 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 1795 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1796 1797 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1798 if (ret) 1799 goto out_put_dev; 1800 ctrl->ctrl.tagset = &ctrl->tag_set; 1801 1802 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1803 if (IS_ERR(ctrl->ctrl.connect_q)) { 1804 ret = PTR_ERR(ctrl->ctrl.connect_q); 1805 goto out_free_tag_set; 1806 } 1807 1808 ret = nvme_rdma_connect_io_queues(ctrl); 1809 if (ret) 1810 goto out_cleanup_connect_q; 1811 1812 return 0; 1813 1814 out_cleanup_connect_q: 1815 blk_cleanup_queue(ctrl->ctrl.connect_q); 1816 out_free_tag_set: 1817 blk_mq_free_tag_set(&ctrl->tag_set); 1818 out_put_dev: 1819 nvme_rdma_dev_put(ctrl->device); 1820 out_free_io_queues: 1821 nvme_rdma_free_io_queues(ctrl); 1822 return ret; 1823 } 1824 1825 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1826 struct nvmf_ctrl_options *opts) 1827 { 1828 struct nvme_rdma_ctrl *ctrl; 1829 int ret; 1830 bool changed; 1831 char *port; 1832 1833 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1834 if (!ctrl) 1835 return ERR_PTR(-ENOMEM); 1836 ctrl->ctrl.opts = opts; 1837 INIT_LIST_HEAD(&ctrl->list); 1838 1839 if (opts->mask & NVMF_OPT_TRSVCID) 1840 port = opts->trsvcid; 1841 else 1842 port = __stringify(NVME_RDMA_IP_PORT); 1843 1844 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1845 opts->traddr, port, &ctrl->addr); 1846 if (ret) { 1847 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1848 goto out_free_ctrl; 1849 } 1850 1851 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1852 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1853 opts->host_traddr, NULL, &ctrl->src_addr); 1854 if (ret) { 1855 pr_err("malformed src address passed: %s\n", 1856 opts->host_traddr); 1857 goto out_free_ctrl; 1858 } 1859 } 1860 1861 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1862 0 /* no quirks, we're perfect! */); 1863 if (ret) 1864 goto out_free_ctrl; 1865 1866 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1867 nvme_rdma_reconnect_ctrl_work); 1868 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1869 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1870 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1871 1872 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1873 ctrl->ctrl.sqsize = opts->queue_size - 1; 1874 ctrl->ctrl.kato = opts->kato; 1875 1876 ret = -ENOMEM; 1877 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1878 GFP_KERNEL); 1879 if (!ctrl->queues) 1880 goto out_uninit_ctrl; 1881 1882 ret = nvme_rdma_configure_admin_queue(ctrl); 1883 if (ret) 1884 goto out_kfree_queues; 1885 1886 /* sanity check icdoff */ 1887 if (ctrl->ctrl.icdoff) { 1888 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1889 ret = -EINVAL; 1890 goto out_remove_admin_queue; 1891 } 1892 1893 /* sanity check keyed sgls */ 1894 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1895 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1896 ret = -EINVAL; 1897 goto out_remove_admin_queue; 1898 } 1899 1900 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1901 /* warn if maxcmd is lower than queue_size */ 1902 dev_warn(ctrl->ctrl.device, 1903 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1904 opts->queue_size, ctrl->ctrl.maxcmd); 1905 opts->queue_size = ctrl->ctrl.maxcmd; 1906 } 1907 1908 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1909 /* warn if sqsize is lower than queue_size */ 1910 dev_warn(ctrl->ctrl.device, 1911 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1912 opts->queue_size, ctrl->ctrl.sqsize + 1); 1913 opts->queue_size = ctrl->ctrl.sqsize + 1; 1914 } 1915 1916 if (opts->nr_io_queues) { 1917 ret = nvme_rdma_create_io_queues(ctrl); 1918 if (ret) 1919 goto out_remove_admin_queue; 1920 } 1921 1922 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1923 WARN_ON_ONCE(!changed); 1924 1925 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1926 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1927 1928 kref_get(&ctrl->ctrl.kref); 1929 1930 mutex_lock(&nvme_rdma_ctrl_mutex); 1931 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1932 mutex_unlock(&nvme_rdma_ctrl_mutex); 1933 1934 if (ctrl->ctrl.queue_count > 1) { 1935 nvme_queue_scan(&ctrl->ctrl); 1936 nvme_queue_async_events(&ctrl->ctrl); 1937 } 1938 1939 return &ctrl->ctrl; 1940 1941 out_remove_admin_queue: 1942 nvme_stop_keep_alive(&ctrl->ctrl); 1943 nvme_rdma_destroy_admin_queue(ctrl); 1944 out_kfree_queues: 1945 kfree(ctrl->queues); 1946 out_uninit_ctrl: 1947 nvme_uninit_ctrl(&ctrl->ctrl); 1948 nvme_put_ctrl(&ctrl->ctrl); 1949 if (ret > 0) 1950 ret = -EIO; 1951 return ERR_PTR(ret); 1952 out_free_ctrl: 1953 kfree(ctrl); 1954 return ERR_PTR(ret); 1955 } 1956 1957 static struct nvmf_transport_ops nvme_rdma_transport = { 1958 .name = "rdma", 1959 .required_opts = NVMF_OPT_TRADDR, 1960 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 1961 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 1962 .create_ctrl = nvme_rdma_create_ctrl, 1963 }; 1964 1965 static void nvme_rdma_add_one(struct ib_device *ib_device) 1966 { 1967 } 1968 1969 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1970 { 1971 struct nvme_rdma_ctrl *ctrl; 1972 1973 /* Delete all controllers using this device */ 1974 mutex_lock(&nvme_rdma_ctrl_mutex); 1975 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1976 if (ctrl->device->dev != ib_device) 1977 continue; 1978 dev_info(ctrl->ctrl.device, 1979 "Removing ctrl: NQN \"%s\", addr %pISp\n", 1980 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1981 __nvme_rdma_del_ctrl(ctrl); 1982 } 1983 mutex_unlock(&nvme_rdma_ctrl_mutex); 1984 1985 flush_workqueue(nvme_wq); 1986 } 1987 1988 static struct ib_client nvme_rdma_ib_client = { 1989 .name = "nvme_rdma", 1990 .add = nvme_rdma_add_one, 1991 .remove = nvme_rdma_remove_one 1992 }; 1993 1994 static int __init nvme_rdma_init_module(void) 1995 { 1996 int ret; 1997 1998 ret = ib_register_client(&nvme_rdma_ib_client); 1999 if (ret) 2000 return ret; 2001 2002 ret = nvmf_register_transport(&nvme_rdma_transport); 2003 if (ret) 2004 goto err_unreg_client; 2005 2006 return 0; 2007 2008 err_unreg_client: 2009 ib_unregister_client(&nvme_rdma_ib_client); 2010 return ret; 2011 } 2012 2013 static void __exit nvme_rdma_cleanup_module(void) 2014 { 2015 nvmf_unregister_transport(&nvme_rdma_transport); 2016 ib_unregister_client(&nvme_rdma_ib_client); 2017 } 2018 2019 module_init(nvme_rdma_init_module); 2020 module_exit(nvme_rdma_cleanup_module); 2021 2022 MODULE_LICENSE("GPL v2"); 2023