xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision dcef77274ae52136925287b6b59d5c6e6a4adfb9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/blk-integrity.h>
17 #include <linux/types.h>
18 #include <linux/list.h>
19 #include <linux/mutex.h>
20 #include <linux/scatterlist.h>
21 #include <linux/nvme.h>
22 #include <asm/unaligned.h>
23 
24 #include <rdma/ib_verbs.h>
25 #include <rdma/rdma_cm.h>
26 #include <linux/nvme-rdma.h>
27 
28 #include "nvme.h"
29 #include "fabrics.h"
30 
31 
32 #define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */
33 
34 #define NVME_RDMA_MAX_SEGMENTS		256
35 
36 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
37 
38 #define NVME_RDMA_DATA_SGL_SIZE \
39 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
40 #define NVME_RDMA_METADATA_SGL_SIZE \
41 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42 
43 struct nvme_rdma_device {
44 	struct ib_device	*dev;
45 	struct ib_pd		*pd;
46 	struct kref		ref;
47 	struct list_head	entry;
48 	unsigned int		num_inline_segments;
49 };
50 
51 struct nvme_rdma_qe {
52 	struct ib_cqe		cqe;
53 	void			*data;
54 	u64			dma;
55 };
56 
57 struct nvme_rdma_sgl {
58 	int			nents;
59 	struct sg_table		sg_table;
60 };
61 
62 struct nvme_rdma_queue;
63 struct nvme_rdma_request {
64 	struct nvme_request	req;
65 	struct ib_mr		*mr;
66 	struct nvme_rdma_qe	sqe;
67 	union nvme_result	result;
68 	__le16			status;
69 	refcount_t		ref;
70 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71 	u32			num_sge;
72 	struct ib_reg_wr	reg_wr;
73 	struct ib_cqe		reg_cqe;
74 	struct nvme_rdma_queue  *queue;
75 	struct nvme_rdma_sgl	data_sgl;
76 	struct nvme_rdma_sgl	*metadata_sgl;
77 	bool			use_sig_mr;
78 };
79 
80 enum nvme_rdma_queue_flags {
81 	NVME_RDMA_Q_ALLOCATED		= 0,
82 	NVME_RDMA_Q_LIVE		= 1,
83 	NVME_RDMA_Q_TR_READY		= 2,
84 };
85 
86 struct nvme_rdma_queue {
87 	struct nvme_rdma_qe	*rsp_ring;
88 	int			queue_size;
89 	size_t			cmnd_capsule_len;
90 	struct nvme_rdma_ctrl	*ctrl;
91 	struct nvme_rdma_device	*device;
92 	struct ib_cq		*ib_cq;
93 	struct ib_qp		*qp;
94 
95 	unsigned long		flags;
96 	struct rdma_cm_id	*cm_id;
97 	int			cm_error;
98 	struct completion	cm_done;
99 	bool			pi_support;
100 	int			cq_size;
101 	struct mutex		queue_lock;
102 };
103 
104 struct nvme_rdma_ctrl {
105 	/* read only in the hot path */
106 	struct nvme_rdma_queue	*queues;
107 
108 	/* other member variables */
109 	struct blk_mq_tag_set	tag_set;
110 	struct work_struct	err_work;
111 
112 	struct nvme_rdma_qe	async_event_sqe;
113 
114 	struct delayed_work	reconnect_work;
115 
116 	struct list_head	list;
117 
118 	struct blk_mq_tag_set	admin_tag_set;
119 	struct nvme_rdma_device	*device;
120 
121 	u32			max_fr_pages;
122 
123 	struct sockaddr_storage addr;
124 	struct sockaddr_storage src_addr;
125 
126 	struct nvme_ctrl	ctrl;
127 	bool			use_inline_data;
128 	u32			io_queues[HCTX_MAX_TYPES];
129 };
130 
131 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
132 {
133 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
134 }
135 
136 static LIST_HEAD(device_list);
137 static DEFINE_MUTEX(device_list_mutex);
138 
139 static LIST_HEAD(nvme_rdma_ctrl_list);
140 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
141 
142 /*
143  * Disabling this option makes small I/O goes faster, but is fundamentally
144  * unsafe.  With it turned off we will have to register a global rkey that
145  * allows read and write access to all physical memory.
146  */
147 static bool register_always = true;
148 module_param(register_always, bool, 0444);
149 MODULE_PARM_DESC(register_always,
150 	 "Use memory registration even for contiguous memory regions");
151 
152 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
153 		struct rdma_cm_event *event);
154 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
155 static void nvme_rdma_complete_rq(struct request *rq);
156 
157 static const struct blk_mq_ops nvme_rdma_mq_ops;
158 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
159 
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162 	return queue - queue->ctrl->queues;
163 }
164 
165 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
166 {
167 	return nvme_rdma_queue_idx(queue) >
168 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
169 		queue->ctrl->io_queues[HCTX_TYPE_READ];
170 }
171 
172 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
173 {
174 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
175 }
176 
177 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 		size_t capsule_size, enum dma_data_direction dir)
179 {
180 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
181 	kfree(qe->data);
182 }
183 
184 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
185 		size_t capsule_size, enum dma_data_direction dir)
186 {
187 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
188 	if (!qe->data)
189 		return -ENOMEM;
190 
191 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
192 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
193 		kfree(qe->data);
194 		qe->data = NULL;
195 		return -ENOMEM;
196 	}
197 
198 	return 0;
199 }
200 
201 static void nvme_rdma_free_ring(struct ib_device *ibdev,
202 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
203 		size_t capsule_size, enum dma_data_direction dir)
204 {
205 	int i;
206 
207 	for (i = 0; i < ib_queue_size; i++)
208 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
209 	kfree(ring);
210 }
211 
212 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
213 		size_t ib_queue_size, size_t capsule_size,
214 		enum dma_data_direction dir)
215 {
216 	struct nvme_rdma_qe *ring;
217 	int i;
218 
219 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
220 	if (!ring)
221 		return NULL;
222 
223 	/*
224 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
225 	 * lifetime. It's safe, since any chage in the underlying RDMA device
226 	 * will issue error recovery and queue re-creation.
227 	 */
228 	for (i = 0; i < ib_queue_size; i++) {
229 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
230 			goto out_free_ring;
231 	}
232 
233 	return ring;
234 
235 out_free_ring:
236 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
237 	return NULL;
238 }
239 
240 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 {
242 	pr_debug("QP event %s (%d)\n",
243 		 ib_event_msg(event->event), event->event);
244 
245 }
246 
247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
248 {
249 	int ret;
250 
251 	ret = wait_for_completion_interruptible(&queue->cm_done);
252 	if (ret)
253 		return ret;
254 	WARN_ON_ONCE(queue->cm_error > 0);
255 	return queue->cm_error;
256 }
257 
258 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
259 {
260 	struct nvme_rdma_device *dev = queue->device;
261 	struct ib_qp_init_attr init_attr;
262 	int ret;
263 
264 	memset(&init_attr, 0, sizeof(init_attr));
265 	init_attr.event_handler = nvme_rdma_qp_event;
266 	/* +1 for drain */
267 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
268 	/* +1 for drain */
269 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
270 	init_attr.cap.max_recv_sge = 1;
271 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
272 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
273 	init_attr.qp_type = IB_QPT_RC;
274 	init_attr.send_cq = queue->ib_cq;
275 	init_attr.recv_cq = queue->ib_cq;
276 	if (queue->pi_support)
277 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
278 	init_attr.qp_context = queue;
279 
280 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
281 
282 	queue->qp = queue->cm_id->qp;
283 	return ret;
284 }
285 
286 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
287 		struct request *rq, unsigned int hctx_idx)
288 {
289 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
290 
291 	kfree(req->sqe.data);
292 }
293 
294 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
295 		struct request *rq, unsigned int hctx_idx,
296 		unsigned int numa_node)
297 {
298 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
299 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
300 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
301 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
302 
303 	nvme_req(rq)->ctrl = &ctrl->ctrl;
304 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
305 	if (!req->sqe.data)
306 		return -ENOMEM;
307 
308 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
309 	if (queue->pi_support)
310 		req->metadata_sgl = (void *)nvme_req(rq) +
311 			sizeof(struct nvme_rdma_request) +
312 			NVME_RDMA_DATA_SGL_SIZE;
313 
314 	req->queue = queue;
315 	nvme_req(rq)->cmd = req->sqe.data;
316 
317 	return 0;
318 }
319 
320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
321 		unsigned int hctx_idx)
322 {
323 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
324 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
325 
326 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
327 
328 	hctx->driver_data = queue;
329 	return 0;
330 }
331 
332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
333 		unsigned int hctx_idx)
334 {
335 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
336 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
337 
338 	BUG_ON(hctx_idx != 0);
339 
340 	hctx->driver_data = queue;
341 	return 0;
342 }
343 
344 static void nvme_rdma_free_dev(struct kref *ref)
345 {
346 	struct nvme_rdma_device *ndev =
347 		container_of(ref, struct nvme_rdma_device, ref);
348 
349 	mutex_lock(&device_list_mutex);
350 	list_del(&ndev->entry);
351 	mutex_unlock(&device_list_mutex);
352 
353 	ib_dealloc_pd(ndev->pd);
354 	kfree(ndev);
355 }
356 
357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
358 {
359 	kref_put(&dev->ref, nvme_rdma_free_dev);
360 }
361 
362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
363 {
364 	return kref_get_unless_zero(&dev->ref);
365 }
366 
367 static struct nvme_rdma_device *
368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
369 {
370 	struct nvme_rdma_device *ndev;
371 
372 	mutex_lock(&device_list_mutex);
373 	list_for_each_entry(ndev, &device_list, entry) {
374 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
375 		    nvme_rdma_dev_get(ndev))
376 			goto out_unlock;
377 	}
378 
379 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
380 	if (!ndev)
381 		goto out_err;
382 
383 	ndev->dev = cm_id->device;
384 	kref_init(&ndev->ref);
385 
386 	ndev->pd = ib_alloc_pd(ndev->dev,
387 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
388 	if (IS_ERR(ndev->pd))
389 		goto out_free_dev;
390 
391 	if (!(ndev->dev->attrs.device_cap_flags &
392 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
393 		dev_err(&ndev->dev->dev,
394 			"Memory registrations not supported.\n");
395 		goto out_free_pd;
396 	}
397 
398 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
399 					ndev->dev->attrs.max_send_sge - 1);
400 	list_add(&ndev->entry, &device_list);
401 out_unlock:
402 	mutex_unlock(&device_list_mutex);
403 	return ndev;
404 
405 out_free_pd:
406 	ib_dealloc_pd(ndev->pd);
407 out_free_dev:
408 	kfree(ndev);
409 out_err:
410 	mutex_unlock(&device_list_mutex);
411 	return NULL;
412 }
413 
414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
415 {
416 	if (nvme_rdma_poll_queue(queue))
417 		ib_free_cq(queue->ib_cq);
418 	else
419 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
420 }
421 
422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
423 {
424 	struct nvme_rdma_device *dev;
425 	struct ib_device *ibdev;
426 
427 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
428 		return;
429 
430 	dev = queue->device;
431 	ibdev = dev->dev;
432 
433 	if (queue->pi_support)
434 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
435 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
436 
437 	/*
438 	 * The cm_id object might have been destroyed during RDMA connection
439 	 * establishment error flow to avoid getting other cma events, thus
440 	 * the destruction of the QP shouldn't use rdma_cm API.
441 	 */
442 	ib_destroy_qp(queue->qp);
443 	nvme_rdma_free_cq(queue);
444 
445 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
446 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447 
448 	nvme_rdma_dev_put(dev);
449 }
450 
451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
452 {
453 	u32 max_page_list_len;
454 
455 	if (pi_support)
456 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
457 	else
458 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
459 
460 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
461 }
462 
463 static int nvme_rdma_create_cq(struct ib_device *ibdev,
464 		struct nvme_rdma_queue *queue)
465 {
466 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
467 	enum ib_poll_context poll_ctx;
468 
469 	/*
470 	 * Spread I/O queues completion vectors according their queue index.
471 	 * Admin queues can always go on completion vector 0.
472 	 */
473 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
474 
475 	/* Polling queues need direct cq polling context */
476 	if (nvme_rdma_poll_queue(queue)) {
477 		poll_ctx = IB_POLL_DIRECT;
478 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
479 					   comp_vector, poll_ctx);
480 	} else {
481 		poll_ctx = IB_POLL_SOFTIRQ;
482 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
483 					      comp_vector, poll_ctx);
484 	}
485 
486 	if (IS_ERR(queue->ib_cq)) {
487 		ret = PTR_ERR(queue->ib_cq);
488 		return ret;
489 	}
490 
491 	return 0;
492 }
493 
494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
495 {
496 	struct ib_device *ibdev;
497 	const int send_wr_factor = 3;			/* MR, SEND, INV */
498 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
499 	int ret, pages_per_mr;
500 
501 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
502 	if (!queue->device) {
503 		dev_err(queue->cm_id->device->dev.parent,
504 			"no client data found!\n");
505 		return -ECONNREFUSED;
506 	}
507 	ibdev = queue->device->dev;
508 
509 	/* +1 for ib_stop_cq */
510 	queue->cq_size = cq_factor * queue->queue_size + 1;
511 
512 	ret = nvme_rdma_create_cq(ibdev, queue);
513 	if (ret)
514 		goto out_put_dev;
515 
516 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
517 	if (ret)
518 		goto out_destroy_ib_cq;
519 
520 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
521 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
522 	if (!queue->rsp_ring) {
523 		ret = -ENOMEM;
524 		goto out_destroy_qp;
525 	}
526 
527 	/*
528 	 * Currently we don't use SG_GAPS MR's so if the first entry is
529 	 * misaligned we'll end up using two entries for a single data page,
530 	 * so one additional entry is required.
531 	 */
532 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
533 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
534 			      queue->queue_size,
535 			      IB_MR_TYPE_MEM_REG,
536 			      pages_per_mr, 0);
537 	if (ret) {
538 		dev_err(queue->ctrl->ctrl.device,
539 			"failed to initialize MR pool sized %d for QID %d\n",
540 			queue->queue_size, nvme_rdma_queue_idx(queue));
541 		goto out_destroy_ring;
542 	}
543 
544 	if (queue->pi_support) {
545 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
546 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
547 				      pages_per_mr, pages_per_mr);
548 		if (ret) {
549 			dev_err(queue->ctrl->ctrl.device,
550 				"failed to initialize PI MR pool sized %d for QID %d\n",
551 				queue->queue_size, nvme_rdma_queue_idx(queue));
552 			goto out_destroy_mr_pool;
553 		}
554 	}
555 
556 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
557 
558 	return 0;
559 
560 out_destroy_mr_pool:
561 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
562 out_destroy_ring:
563 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
564 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
565 out_destroy_qp:
566 	rdma_destroy_qp(queue->cm_id);
567 out_destroy_ib_cq:
568 	nvme_rdma_free_cq(queue);
569 out_put_dev:
570 	nvme_rdma_dev_put(queue->device);
571 	return ret;
572 }
573 
574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
575 		int idx, size_t queue_size)
576 {
577 	struct nvme_rdma_queue *queue;
578 	struct sockaddr *src_addr = NULL;
579 	int ret;
580 
581 	queue = &ctrl->queues[idx];
582 	mutex_init(&queue->queue_lock);
583 	queue->ctrl = ctrl;
584 	if (idx && ctrl->ctrl.max_integrity_segments)
585 		queue->pi_support = true;
586 	else
587 		queue->pi_support = false;
588 	init_completion(&queue->cm_done);
589 
590 	if (idx > 0)
591 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
592 	else
593 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
594 
595 	queue->queue_size = queue_size;
596 
597 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
598 			RDMA_PS_TCP, IB_QPT_RC);
599 	if (IS_ERR(queue->cm_id)) {
600 		dev_info(ctrl->ctrl.device,
601 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
602 		ret = PTR_ERR(queue->cm_id);
603 		goto out_destroy_mutex;
604 	}
605 
606 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
607 		src_addr = (struct sockaddr *)&ctrl->src_addr;
608 
609 	queue->cm_error = -ETIMEDOUT;
610 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
611 			(struct sockaddr *)&ctrl->addr,
612 			NVME_RDMA_CM_TIMEOUT_MS);
613 	if (ret) {
614 		dev_info(ctrl->ctrl.device,
615 			"rdma_resolve_addr failed (%d).\n", ret);
616 		goto out_destroy_cm_id;
617 	}
618 
619 	ret = nvme_rdma_wait_for_cm(queue);
620 	if (ret) {
621 		dev_info(ctrl->ctrl.device,
622 			"rdma connection establishment failed (%d)\n", ret);
623 		goto out_destroy_cm_id;
624 	}
625 
626 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
627 
628 	return 0;
629 
630 out_destroy_cm_id:
631 	rdma_destroy_id(queue->cm_id);
632 	nvme_rdma_destroy_queue_ib(queue);
633 out_destroy_mutex:
634 	mutex_destroy(&queue->queue_lock);
635 	return ret;
636 }
637 
638 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
639 {
640 	rdma_disconnect(queue->cm_id);
641 	ib_drain_qp(queue->qp);
642 }
643 
644 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
645 {
646 	mutex_lock(&queue->queue_lock);
647 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
648 		__nvme_rdma_stop_queue(queue);
649 	mutex_unlock(&queue->queue_lock);
650 }
651 
652 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
653 {
654 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
655 		return;
656 
657 	rdma_destroy_id(queue->cm_id);
658 	nvme_rdma_destroy_queue_ib(queue);
659 	mutex_destroy(&queue->queue_lock);
660 }
661 
662 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
663 {
664 	int i;
665 
666 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
667 		nvme_rdma_free_queue(&ctrl->queues[i]);
668 }
669 
670 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
671 {
672 	int i;
673 
674 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
675 		nvme_rdma_stop_queue(&ctrl->queues[i]);
676 }
677 
678 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
679 {
680 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
681 	int ret;
682 
683 	if (idx)
684 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
685 	else
686 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
687 
688 	if (!ret) {
689 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
690 	} else {
691 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
692 			__nvme_rdma_stop_queue(queue);
693 		dev_info(ctrl->ctrl.device,
694 			"failed to connect queue: %d ret=%d\n", idx, ret);
695 	}
696 	return ret;
697 }
698 
699 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
700 				     int first, int last)
701 {
702 	int i, ret = 0;
703 
704 	for (i = first; i < last; i++) {
705 		ret = nvme_rdma_start_queue(ctrl, i);
706 		if (ret)
707 			goto out_stop_queues;
708 	}
709 
710 	return 0;
711 
712 out_stop_queues:
713 	for (i--; i >= first; i--)
714 		nvme_rdma_stop_queue(&ctrl->queues[i]);
715 	return ret;
716 }
717 
718 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
719 {
720 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
721 	struct ib_device *ibdev = ctrl->device->dev;
722 	unsigned int nr_io_queues, nr_default_queues;
723 	unsigned int nr_read_queues, nr_poll_queues;
724 	int i, ret;
725 
726 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
727 				min(opts->nr_io_queues, num_online_cpus()));
728 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
729 				min(opts->nr_write_queues, num_online_cpus()));
730 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
731 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
732 
733 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
734 	if (ret)
735 		return ret;
736 
737 	if (nr_io_queues == 0) {
738 		dev_err(ctrl->ctrl.device,
739 			"unable to set any I/O queues\n");
740 		return -ENOMEM;
741 	}
742 
743 	ctrl->ctrl.queue_count = nr_io_queues + 1;
744 	dev_info(ctrl->ctrl.device,
745 		"creating %d I/O queues.\n", nr_io_queues);
746 
747 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
748 		/*
749 		 * separate read/write queues
750 		 * hand out dedicated default queues only after we have
751 		 * sufficient read queues.
752 		 */
753 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
754 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
755 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
756 			min(nr_default_queues, nr_io_queues);
757 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
758 	} else {
759 		/*
760 		 * shared read/write queues
761 		 * either no write queues were requested, or we don't have
762 		 * sufficient queue count to have dedicated default queues.
763 		 */
764 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
765 			min(nr_read_queues, nr_io_queues);
766 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
767 	}
768 
769 	if (opts->nr_poll_queues && nr_io_queues) {
770 		/* map dedicated poll queues only if we have queues left */
771 		ctrl->io_queues[HCTX_TYPE_POLL] =
772 			min(nr_poll_queues, nr_io_queues);
773 	}
774 
775 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
776 		ret = nvme_rdma_alloc_queue(ctrl, i,
777 				ctrl->ctrl.sqsize + 1);
778 		if (ret)
779 			goto out_free_queues;
780 	}
781 
782 	return 0;
783 
784 out_free_queues:
785 	for (i--; i >= 1; i--)
786 		nvme_rdma_free_queue(&ctrl->queues[i]);
787 
788 	return ret;
789 }
790 
791 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
792 {
793 	unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
794 				NVME_RDMA_DATA_SGL_SIZE;
795 
796 	if (ctrl->max_integrity_segments)
797 		cmd_size += sizeof(struct nvme_rdma_sgl) +
798 			    NVME_RDMA_METADATA_SGL_SIZE;
799 
800 	return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
801 			&nvme_rdma_mq_ops, BLK_MQ_F_SHOULD_MERGE,
802 			ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
803 			cmd_size);
804 }
805 
806 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
807 {
808 	if (ctrl->async_event_sqe.data) {
809 		cancel_work_sync(&ctrl->ctrl.async_event_work);
810 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
811 				sizeof(struct nvme_command), DMA_TO_DEVICE);
812 		ctrl->async_event_sqe.data = NULL;
813 	}
814 	nvme_rdma_free_queue(&ctrl->queues[0]);
815 }
816 
817 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
818 		bool new)
819 {
820 	bool pi_capable = false;
821 	int error;
822 
823 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
824 	if (error)
825 		return error;
826 
827 	ctrl->device = ctrl->queues[0].device;
828 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
829 
830 	/* T10-PI support */
831 	if (ctrl->device->dev->attrs.kernel_cap_flags &
832 	    IBK_INTEGRITY_HANDOVER)
833 		pi_capable = true;
834 
835 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
836 							pi_capable);
837 
838 	/*
839 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
840 	 * It's safe, since any chage in the underlying RDMA device will issue
841 	 * error recovery and queue re-creation.
842 	 */
843 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
844 			sizeof(struct nvme_command), DMA_TO_DEVICE);
845 	if (error)
846 		goto out_free_queue;
847 
848 	if (new) {
849 		error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
850 				&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
851 				BLK_MQ_F_NO_SCHED,
852 				sizeof(struct nvme_rdma_request) +
853 				NVME_RDMA_DATA_SGL_SIZE);
854 		if (error)
855 			goto out_free_async_qe;
856 
857 	}
858 
859 	error = nvme_rdma_start_queue(ctrl, 0);
860 	if (error)
861 		goto out_remove_admin_tag_set;
862 
863 	error = nvme_enable_ctrl(&ctrl->ctrl);
864 	if (error)
865 		goto out_stop_queue;
866 
867 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
868 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
869 	if (pi_capable)
870 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
871 	else
872 		ctrl->ctrl.max_integrity_segments = 0;
873 
874 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
875 
876 	error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
877 	if (error)
878 		goto out_quiesce_queue;
879 
880 	return 0;
881 
882 out_quiesce_queue:
883 	nvme_quiesce_admin_queue(&ctrl->ctrl);
884 	blk_sync_queue(ctrl->ctrl.admin_q);
885 out_stop_queue:
886 	nvme_rdma_stop_queue(&ctrl->queues[0]);
887 	nvme_cancel_admin_tagset(&ctrl->ctrl);
888 out_remove_admin_tag_set:
889 	if (new)
890 		nvme_remove_admin_tag_set(&ctrl->ctrl);
891 out_free_async_qe:
892 	if (ctrl->async_event_sqe.data) {
893 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
894 			sizeof(struct nvme_command), DMA_TO_DEVICE);
895 		ctrl->async_event_sqe.data = NULL;
896 	}
897 out_free_queue:
898 	nvme_rdma_free_queue(&ctrl->queues[0]);
899 	return error;
900 }
901 
902 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
903 {
904 	int ret, nr_queues;
905 
906 	ret = nvme_rdma_alloc_io_queues(ctrl);
907 	if (ret)
908 		return ret;
909 
910 	if (new) {
911 		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
912 		if (ret)
913 			goto out_free_io_queues;
914 	}
915 
916 	/*
917 	 * Only start IO queues for which we have allocated the tagset
918 	 * and limitted it to the available queues. On reconnects, the
919 	 * queue number might have changed.
920 	 */
921 	nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
922 	ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
923 	if (ret)
924 		goto out_cleanup_tagset;
925 
926 	if (!new) {
927 		nvme_unquiesce_io_queues(&ctrl->ctrl);
928 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
929 			/*
930 			 * If we timed out waiting for freeze we are likely to
931 			 * be stuck.  Fail the controller initialization just
932 			 * to be safe.
933 			 */
934 			ret = -ENODEV;
935 			goto out_wait_freeze_timed_out;
936 		}
937 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
938 			ctrl->ctrl.queue_count - 1);
939 		nvme_unfreeze(&ctrl->ctrl);
940 	}
941 
942 	/*
943 	 * If the number of queues has increased (reconnect case)
944 	 * start all new queues now.
945 	 */
946 	ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
947 					ctrl->tag_set.nr_hw_queues + 1);
948 	if (ret)
949 		goto out_wait_freeze_timed_out;
950 
951 	return 0;
952 
953 out_wait_freeze_timed_out:
954 	nvme_quiesce_io_queues(&ctrl->ctrl);
955 	nvme_sync_io_queues(&ctrl->ctrl);
956 	nvme_rdma_stop_io_queues(ctrl);
957 out_cleanup_tagset:
958 	nvme_cancel_tagset(&ctrl->ctrl);
959 	if (new)
960 		nvme_remove_io_tag_set(&ctrl->ctrl);
961 out_free_io_queues:
962 	nvme_rdma_free_io_queues(ctrl);
963 	return ret;
964 }
965 
966 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
967 		bool remove)
968 {
969 	nvme_quiesce_admin_queue(&ctrl->ctrl);
970 	blk_sync_queue(ctrl->ctrl.admin_q);
971 	nvme_rdma_stop_queue(&ctrl->queues[0]);
972 	nvme_cancel_admin_tagset(&ctrl->ctrl);
973 	if (remove) {
974 		nvme_unquiesce_admin_queue(&ctrl->ctrl);
975 		nvme_remove_admin_tag_set(&ctrl->ctrl);
976 	}
977 	nvme_rdma_destroy_admin_queue(ctrl);
978 }
979 
980 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
981 		bool remove)
982 {
983 	if (ctrl->ctrl.queue_count > 1) {
984 		nvme_start_freeze(&ctrl->ctrl);
985 		nvme_quiesce_io_queues(&ctrl->ctrl);
986 		nvme_sync_io_queues(&ctrl->ctrl);
987 		nvme_rdma_stop_io_queues(ctrl);
988 		nvme_cancel_tagset(&ctrl->ctrl);
989 		if (remove) {
990 			nvme_unquiesce_io_queues(&ctrl->ctrl);
991 			nvme_remove_io_tag_set(&ctrl->ctrl);
992 		}
993 		nvme_rdma_free_io_queues(ctrl);
994 	}
995 }
996 
997 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
998 {
999 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1000 
1001 	flush_work(&ctrl->err_work);
1002 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1003 }
1004 
1005 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1006 {
1007 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1008 
1009 	if (list_empty(&ctrl->list))
1010 		goto free_ctrl;
1011 
1012 	mutex_lock(&nvme_rdma_ctrl_mutex);
1013 	list_del(&ctrl->list);
1014 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1015 
1016 	nvmf_free_options(nctrl->opts);
1017 free_ctrl:
1018 	kfree(ctrl->queues);
1019 	kfree(ctrl);
1020 }
1021 
1022 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1023 {
1024 	/* If we are resetting/deleting then do nothing */
1025 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1026 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1027 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1028 		return;
1029 	}
1030 
1031 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1032 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1033 			ctrl->ctrl.opts->reconnect_delay);
1034 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1035 				ctrl->ctrl.opts->reconnect_delay * HZ);
1036 	} else {
1037 		nvme_delete_ctrl(&ctrl->ctrl);
1038 	}
1039 }
1040 
1041 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1042 {
1043 	int ret;
1044 	bool changed;
1045 
1046 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1047 	if (ret)
1048 		return ret;
1049 
1050 	if (ctrl->ctrl.icdoff) {
1051 		ret = -EOPNOTSUPP;
1052 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1053 		goto destroy_admin;
1054 	}
1055 
1056 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1057 		ret = -EOPNOTSUPP;
1058 		dev_err(ctrl->ctrl.device,
1059 			"Mandatory keyed sgls are not supported!\n");
1060 		goto destroy_admin;
1061 	}
1062 
1063 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1064 		dev_warn(ctrl->ctrl.device,
1065 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1066 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1067 	}
1068 
1069 	if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1070 		dev_warn(ctrl->ctrl.device,
1071 			"ctrl sqsize %u > max queue size %u, clamping down\n",
1072 			ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1073 		ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1074 	}
1075 
1076 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1077 		dev_warn(ctrl->ctrl.device,
1078 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1079 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1080 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1081 	}
1082 
1083 	if (ctrl->ctrl.sgls & (1 << 20))
1084 		ctrl->use_inline_data = true;
1085 
1086 	if (ctrl->ctrl.queue_count > 1) {
1087 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1088 		if (ret)
1089 			goto destroy_admin;
1090 	}
1091 
1092 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1093 	if (!changed) {
1094 		/*
1095 		 * state change failure is ok if we started ctrl delete,
1096 		 * unless we're during creation of a new controller to
1097 		 * avoid races with teardown flow.
1098 		 */
1099 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1100 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1101 		WARN_ON_ONCE(new);
1102 		ret = -EINVAL;
1103 		goto destroy_io;
1104 	}
1105 
1106 	nvme_start_ctrl(&ctrl->ctrl);
1107 	return 0;
1108 
1109 destroy_io:
1110 	if (ctrl->ctrl.queue_count > 1) {
1111 		nvme_quiesce_io_queues(&ctrl->ctrl);
1112 		nvme_sync_io_queues(&ctrl->ctrl);
1113 		nvme_rdma_stop_io_queues(ctrl);
1114 		nvme_cancel_tagset(&ctrl->ctrl);
1115 		if (new)
1116 			nvme_remove_io_tag_set(&ctrl->ctrl);
1117 		nvme_rdma_free_io_queues(ctrl);
1118 	}
1119 destroy_admin:
1120 	nvme_quiesce_admin_queue(&ctrl->ctrl);
1121 	blk_sync_queue(ctrl->ctrl.admin_q);
1122 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1123 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1124 	if (new)
1125 		nvme_remove_admin_tag_set(&ctrl->ctrl);
1126 	nvme_rdma_destroy_admin_queue(ctrl);
1127 	return ret;
1128 }
1129 
1130 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1131 {
1132 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1133 			struct nvme_rdma_ctrl, reconnect_work);
1134 
1135 	++ctrl->ctrl.nr_reconnects;
1136 
1137 	if (nvme_rdma_setup_ctrl(ctrl, false))
1138 		goto requeue;
1139 
1140 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1141 			ctrl->ctrl.nr_reconnects);
1142 
1143 	ctrl->ctrl.nr_reconnects = 0;
1144 
1145 	return;
1146 
1147 requeue:
1148 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1149 			ctrl->ctrl.nr_reconnects);
1150 	nvme_rdma_reconnect_or_remove(ctrl);
1151 }
1152 
1153 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1154 {
1155 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1156 			struct nvme_rdma_ctrl, err_work);
1157 
1158 	nvme_stop_keep_alive(&ctrl->ctrl);
1159 	flush_work(&ctrl->ctrl.async_event_work);
1160 	nvme_rdma_teardown_io_queues(ctrl, false);
1161 	nvme_unquiesce_io_queues(&ctrl->ctrl);
1162 	nvme_rdma_teardown_admin_queue(ctrl, false);
1163 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
1164 	nvme_auth_stop(&ctrl->ctrl);
1165 
1166 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1167 		/* state change failure is ok if we started ctrl delete */
1168 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1169 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1170 		return;
1171 	}
1172 
1173 	nvme_rdma_reconnect_or_remove(ctrl);
1174 }
1175 
1176 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1177 {
1178 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1179 		return;
1180 
1181 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1182 	queue_work(nvme_reset_wq, &ctrl->err_work);
1183 }
1184 
1185 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1186 {
1187 	struct request *rq = blk_mq_rq_from_pdu(req);
1188 
1189 	if (!refcount_dec_and_test(&req->ref))
1190 		return;
1191 	if (!nvme_try_complete_req(rq, req->status, req->result))
1192 		nvme_rdma_complete_rq(rq);
1193 }
1194 
1195 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1196 		const char *op)
1197 {
1198 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1199 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1200 
1201 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1202 		dev_info(ctrl->ctrl.device,
1203 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1204 			     op, wc->wr_cqe,
1205 			     ib_wc_status_msg(wc->status), wc->status);
1206 	nvme_rdma_error_recovery(ctrl);
1207 }
1208 
1209 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1210 {
1211 	if (unlikely(wc->status != IB_WC_SUCCESS))
1212 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1213 }
1214 
1215 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1216 {
1217 	struct nvme_rdma_request *req =
1218 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1219 
1220 	if (unlikely(wc->status != IB_WC_SUCCESS))
1221 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1222 	else
1223 		nvme_rdma_end_request(req);
1224 }
1225 
1226 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1227 		struct nvme_rdma_request *req)
1228 {
1229 	struct ib_send_wr wr = {
1230 		.opcode		    = IB_WR_LOCAL_INV,
1231 		.next		    = NULL,
1232 		.num_sge	    = 0,
1233 		.send_flags	    = IB_SEND_SIGNALED,
1234 		.ex.invalidate_rkey = req->mr->rkey,
1235 	};
1236 
1237 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1238 	wr.wr_cqe = &req->reg_cqe;
1239 
1240 	return ib_post_send(queue->qp, &wr, NULL);
1241 }
1242 
1243 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1244 {
1245 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1246 
1247 	if (blk_integrity_rq(rq)) {
1248 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1249 				req->metadata_sgl->nents, rq_dma_dir(rq));
1250 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1251 				      NVME_INLINE_METADATA_SG_CNT);
1252 	}
1253 
1254 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1255 			rq_dma_dir(rq));
1256 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1257 }
1258 
1259 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1260 		struct request *rq)
1261 {
1262 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1263 	struct nvme_rdma_device *dev = queue->device;
1264 	struct ib_device *ibdev = dev->dev;
1265 	struct list_head *pool = &queue->qp->rdma_mrs;
1266 
1267 	if (!blk_rq_nr_phys_segments(rq))
1268 		return;
1269 
1270 	if (req->use_sig_mr)
1271 		pool = &queue->qp->sig_mrs;
1272 
1273 	if (req->mr) {
1274 		ib_mr_pool_put(queue->qp, pool, req->mr);
1275 		req->mr = NULL;
1276 	}
1277 
1278 	nvme_rdma_dma_unmap_req(ibdev, rq);
1279 }
1280 
1281 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1282 {
1283 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1284 
1285 	sg->addr = 0;
1286 	put_unaligned_le24(0, sg->length);
1287 	put_unaligned_le32(0, sg->key);
1288 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1289 	return 0;
1290 }
1291 
1292 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1293 		struct nvme_rdma_request *req, struct nvme_command *c,
1294 		int count)
1295 {
1296 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1297 	struct ib_sge *sge = &req->sge[1];
1298 	struct scatterlist *sgl;
1299 	u32 len = 0;
1300 	int i;
1301 
1302 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1303 		sge->addr = sg_dma_address(sgl);
1304 		sge->length = sg_dma_len(sgl);
1305 		sge->lkey = queue->device->pd->local_dma_lkey;
1306 		len += sge->length;
1307 		sge++;
1308 	}
1309 
1310 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1311 	sg->length = cpu_to_le32(len);
1312 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1313 
1314 	req->num_sge += count;
1315 	return 0;
1316 }
1317 
1318 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1319 		struct nvme_rdma_request *req, struct nvme_command *c)
1320 {
1321 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1322 
1323 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1324 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1325 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1326 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1327 	return 0;
1328 }
1329 
1330 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1331 		struct nvme_rdma_request *req, struct nvme_command *c,
1332 		int count)
1333 {
1334 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1335 	int nr;
1336 
1337 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1338 	if (WARN_ON_ONCE(!req->mr))
1339 		return -EAGAIN;
1340 
1341 	/*
1342 	 * Align the MR to a 4K page size to match the ctrl page size and
1343 	 * the block virtual boundary.
1344 	 */
1345 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1346 			  SZ_4K);
1347 	if (unlikely(nr < count)) {
1348 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1349 		req->mr = NULL;
1350 		if (nr < 0)
1351 			return nr;
1352 		return -EINVAL;
1353 	}
1354 
1355 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1356 
1357 	req->reg_cqe.done = nvme_rdma_memreg_done;
1358 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1359 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1360 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1361 	req->reg_wr.wr.num_sge = 0;
1362 	req->reg_wr.mr = req->mr;
1363 	req->reg_wr.key = req->mr->rkey;
1364 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1365 			     IB_ACCESS_REMOTE_READ |
1366 			     IB_ACCESS_REMOTE_WRITE;
1367 
1368 	sg->addr = cpu_to_le64(req->mr->iova);
1369 	put_unaligned_le24(req->mr->length, sg->length);
1370 	put_unaligned_le32(req->mr->rkey, sg->key);
1371 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1372 			NVME_SGL_FMT_INVALIDATE;
1373 
1374 	return 0;
1375 }
1376 
1377 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1378 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1379 		u16 control, u8 pi_type)
1380 {
1381 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1382 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1383 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1384 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1385 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1386 		domain->sig.dif.ref_remap = true;
1387 
1388 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1389 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1390 	domain->sig.dif.app_escape = true;
1391 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1392 		domain->sig.dif.ref_escape = true;
1393 }
1394 
1395 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1396 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1397 		u8 pi_type)
1398 {
1399 	u16 control = le16_to_cpu(cmd->rw.control);
1400 
1401 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1402 	if (control & NVME_RW_PRINFO_PRACT) {
1403 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1404 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1405 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1406 					 pi_type);
1407 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1408 		control &= ~NVME_RW_PRINFO_PRACT;
1409 		cmd->rw.control = cpu_to_le16(control);
1410 	} else {
1411 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1412 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1413 					 pi_type);
1414 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1415 					 pi_type);
1416 	}
1417 }
1418 
1419 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1420 {
1421 	*mask = 0;
1422 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1423 		*mask |= IB_SIG_CHECK_REFTAG;
1424 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1425 		*mask |= IB_SIG_CHECK_GUARD;
1426 }
1427 
1428 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1429 {
1430 	if (unlikely(wc->status != IB_WC_SUCCESS))
1431 		nvme_rdma_wr_error(cq, wc, "SIG");
1432 }
1433 
1434 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1435 		struct nvme_rdma_request *req, struct nvme_command *c,
1436 		int count, int pi_count)
1437 {
1438 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1439 	struct ib_reg_wr *wr = &req->reg_wr;
1440 	struct request *rq = blk_mq_rq_from_pdu(req);
1441 	struct nvme_ns *ns = rq->q->queuedata;
1442 	struct bio *bio = rq->bio;
1443 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1444 	int nr;
1445 
1446 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1447 	if (WARN_ON_ONCE(!req->mr))
1448 		return -EAGAIN;
1449 
1450 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1451 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1452 			     SZ_4K);
1453 	if (unlikely(nr))
1454 		goto mr_put;
1455 
1456 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1457 				req->mr->sig_attrs, ns->pi_type);
1458 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1459 
1460 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1461 
1462 	req->reg_cqe.done = nvme_rdma_sig_done;
1463 	memset(wr, 0, sizeof(*wr));
1464 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1465 	wr->wr.wr_cqe = &req->reg_cqe;
1466 	wr->wr.num_sge = 0;
1467 	wr->wr.send_flags = 0;
1468 	wr->mr = req->mr;
1469 	wr->key = req->mr->rkey;
1470 	wr->access = IB_ACCESS_LOCAL_WRITE |
1471 		     IB_ACCESS_REMOTE_READ |
1472 		     IB_ACCESS_REMOTE_WRITE;
1473 
1474 	sg->addr = cpu_to_le64(req->mr->iova);
1475 	put_unaligned_le24(req->mr->length, sg->length);
1476 	put_unaligned_le32(req->mr->rkey, sg->key);
1477 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1478 
1479 	return 0;
1480 
1481 mr_put:
1482 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1483 	req->mr = NULL;
1484 	if (nr < 0)
1485 		return nr;
1486 	return -EINVAL;
1487 }
1488 
1489 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1490 		int *count, int *pi_count)
1491 {
1492 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1493 	int ret;
1494 
1495 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1496 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1497 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1498 			NVME_INLINE_SG_CNT);
1499 	if (ret)
1500 		return -ENOMEM;
1501 
1502 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1503 					    req->data_sgl.sg_table.sgl);
1504 
1505 	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1506 			       req->data_sgl.nents, rq_dma_dir(rq));
1507 	if (unlikely(*count <= 0)) {
1508 		ret = -EIO;
1509 		goto out_free_table;
1510 	}
1511 
1512 	if (blk_integrity_rq(rq)) {
1513 		req->metadata_sgl->sg_table.sgl =
1514 			(struct scatterlist *)(req->metadata_sgl + 1);
1515 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1516 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1517 				req->metadata_sgl->sg_table.sgl,
1518 				NVME_INLINE_METADATA_SG_CNT);
1519 		if (unlikely(ret)) {
1520 			ret = -ENOMEM;
1521 			goto out_unmap_sg;
1522 		}
1523 
1524 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1525 				rq->bio, req->metadata_sgl->sg_table.sgl);
1526 		*pi_count = ib_dma_map_sg(ibdev,
1527 					  req->metadata_sgl->sg_table.sgl,
1528 					  req->metadata_sgl->nents,
1529 					  rq_dma_dir(rq));
1530 		if (unlikely(*pi_count <= 0)) {
1531 			ret = -EIO;
1532 			goto out_free_pi_table;
1533 		}
1534 	}
1535 
1536 	return 0;
1537 
1538 out_free_pi_table:
1539 	sg_free_table_chained(&req->metadata_sgl->sg_table,
1540 			      NVME_INLINE_METADATA_SG_CNT);
1541 out_unmap_sg:
1542 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1543 			rq_dma_dir(rq));
1544 out_free_table:
1545 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1546 	return ret;
1547 }
1548 
1549 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1550 		struct request *rq, struct nvme_command *c)
1551 {
1552 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1553 	struct nvme_rdma_device *dev = queue->device;
1554 	struct ib_device *ibdev = dev->dev;
1555 	int pi_count = 0;
1556 	int count, ret;
1557 
1558 	req->num_sge = 1;
1559 	refcount_set(&req->ref, 2); /* send and recv completions */
1560 
1561 	c->common.flags |= NVME_CMD_SGL_METABUF;
1562 
1563 	if (!blk_rq_nr_phys_segments(rq))
1564 		return nvme_rdma_set_sg_null(c);
1565 
1566 	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1567 	if (unlikely(ret))
1568 		return ret;
1569 
1570 	if (req->use_sig_mr) {
1571 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1572 		goto out;
1573 	}
1574 
1575 	if (count <= dev->num_inline_segments) {
1576 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1577 		    queue->ctrl->use_inline_data &&
1578 		    blk_rq_payload_bytes(rq) <=
1579 				nvme_rdma_inline_data_size(queue)) {
1580 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1581 			goto out;
1582 		}
1583 
1584 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1585 			ret = nvme_rdma_map_sg_single(queue, req, c);
1586 			goto out;
1587 		}
1588 	}
1589 
1590 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1591 out:
1592 	if (unlikely(ret))
1593 		goto out_dma_unmap_req;
1594 
1595 	return 0;
1596 
1597 out_dma_unmap_req:
1598 	nvme_rdma_dma_unmap_req(ibdev, rq);
1599 	return ret;
1600 }
1601 
1602 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1603 {
1604 	struct nvme_rdma_qe *qe =
1605 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1606 	struct nvme_rdma_request *req =
1607 		container_of(qe, struct nvme_rdma_request, sqe);
1608 
1609 	if (unlikely(wc->status != IB_WC_SUCCESS))
1610 		nvme_rdma_wr_error(cq, wc, "SEND");
1611 	else
1612 		nvme_rdma_end_request(req);
1613 }
1614 
1615 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1616 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1617 		struct ib_send_wr *first)
1618 {
1619 	struct ib_send_wr wr;
1620 	int ret;
1621 
1622 	sge->addr   = qe->dma;
1623 	sge->length = sizeof(struct nvme_command);
1624 	sge->lkey   = queue->device->pd->local_dma_lkey;
1625 
1626 	wr.next       = NULL;
1627 	wr.wr_cqe     = &qe->cqe;
1628 	wr.sg_list    = sge;
1629 	wr.num_sge    = num_sge;
1630 	wr.opcode     = IB_WR_SEND;
1631 	wr.send_flags = IB_SEND_SIGNALED;
1632 
1633 	if (first)
1634 		first->next = &wr;
1635 	else
1636 		first = &wr;
1637 
1638 	ret = ib_post_send(queue->qp, first, NULL);
1639 	if (unlikely(ret)) {
1640 		dev_err(queue->ctrl->ctrl.device,
1641 			     "%s failed with error code %d\n", __func__, ret);
1642 	}
1643 	return ret;
1644 }
1645 
1646 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1647 		struct nvme_rdma_qe *qe)
1648 {
1649 	struct ib_recv_wr wr;
1650 	struct ib_sge list;
1651 	int ret;
1652 
1653 	list.addr   = qe->dma;
1654 	list.length = sizeof(struct nvme_completion);
1655 	list.lkey   = queue->device->pd->local_dma_lkey;
1656 
1657 	qe->cqe.done = nvme_rdma_recv_done;
1658 
1659 	wr.next     = NULL;
1660 	wr.wr_cqe   = &qe->cqe;
1661 	wr.sg_list  = &list;
1662 	wr.num_sge  = 1;
1663 
1664 	ret = ib_post_recv(queue->qp, &wr, NULL);
1665 	if (unlikely(ret)) {
1666 		dev_err(queue->ctrl->ctrl.device,
1667 			"%s failed with error code %d\n", __func__, ret);
1668 	}
1669 	return ret;
1670 }
1671 
1672 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1673 {
1674 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1675 
1676 	if (queue_idx == 0)
1677 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1678 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1679 }
1680 
1681 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1682 {
1683 	if (unlikely(wc->status != IB_WC_SUCCESS))
1684 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1685 }
1686 
1687 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1688 {
1689 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1690 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1691 	struct ib_device *dev = queue->device->dev;
1692 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1693 	struct nvme_command *cmd = sqe->data;
1694 	struct ib_sge sge;
1695 	int ret;
1696 
1697 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1698 
1699 	memset(cmd, 0, sizeof(*cmd));
1700 	cmd->common.opcode = nvme_admin_async_event;
1701 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1702 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1703 	nvme_rdma_set_sg_null(cmd);
1704 
1705 	sqe->cqe.done = nvme_rdma_async_done;
1706 
1707 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1708 			DMA_TO_DEVICE);
1709 
1710 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1711 	WARN_ON_ONCE(ret);
1712 }
1713 
1714 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1715 		struct nvme_completion *cqe, struct ib_wc *wc)
1716 {
1717 	struct request *rq;
1718 	struct nvme_rdma_request *req;
1719 
1720 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1721 	if (!rq) {
1722 		dev_err(queue->ctrl->ctrl.device,
1723 			"got bad command_id %#x on QP %#x\n",
1724 			cqe->command_id, queue->qp->qp_num);
1725 		nvme_rdma_error_recovery(queue->ctrl);
1726 		return;
1727 	}
1728 	req = blk_mq_rq_to_pdu(rq);
1729 
1730 	req->status = cqe->status;
1731 	req->result = cqe->result;
1732 
1733 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1734 		if (unlikely(!req->mr ||
1735 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1736 			dev_err(queue->ctrl->ctrl.device,
1737 				"Bogus remote invalidation for rkey %#x\n",
1738 				req->mr ? req->mr->rkey : 0);
1739 			nvme_rdma_error_recovery(queue->ctrl);
1740 		}
1741 	} else if (req->mr) {
1742 		int ret;
1743 
1744 		ret = nvme_rdma_inv_rkey(queue, req);
1745 		if (unlikely(ret < 0)) {
1746 			dev_err(queue->ctrl->ctrl.device,
1747 				"Queueing INV WR for rkey %#x failed (%d)\n",
1748 				req->mr->rkey, ret);
1749 			nvme_rdma_error_recovery(queue->ctrl);
1750 		}
1751 		/* the local invalidation completion will end the request */
1752 		return;
1753 	}
1754 
1755 	nvme_rdma_end_request(req);
1756 }
1757 
1758 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1759 {
1760 	struct nvme_rdma_qe *qe =
1761 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1762 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1763 	struct ib_device *ibdev = queue->device->dev;
1764 	struct nvme_completion *cqe = qe->data;
1765 	const size_t len = sizeof(struct nvme_completion);
1766 
1767 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1768 		nvme_rdma_wr_error(cq, wc, "RECV");
1769 		return;
1770 	}
1771 
1772 	/* sanity checking for received data length */
1773 	if (unlikely(wc->byte_len < len)) {
1774 		dev_err(queue->ctrl->ctrl.device,
1775 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1776 		nvme_rdma_error_recovery(queue->ctrl);
1777 		return;
1778 	}
1779 
1780 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1781 	/*
1782 	 * AEN requests are special as they don't time out and can
1783 	 * survive any kind of queue freeze and often don't respond to
1784 	 * aborts.  We don't even bother to allocate a struct request
1785 	 * for them but rather special case them here.
1786 	 */
1787 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1788 				     cqe->command_id)))
1789 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1790 				&cqe->result);
1791 	else
1792 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1793 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1794 
1795 	nvme_rdma_post_recv(queue, qe);
1796 }
1797 
1798 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1799 {
1800 	int ret, i;
1801 
1802 	for (i = 0; i < queue->queue_size; i++) {
1803 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1804 		if (ret)
1805 			return ret;
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1812 		struct rdma_cm_event *ev)
1813 {
1814 	struct rdma_cm_id *cm_id = queue->cm_id;
1815 	int status = ev->status;
1816 	const char *rej_msg;
1817 	const struct nvme_rdma_cm_rej *rej_data;
1818 	u8 rej_data_len;
1819 
1820 	rej_msg = rdma_reject_msg(cm_id, status);
1821 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1822 
1823 	if (rej_data && rej_data_len >= sizeof(u16)) {
1824 		u16 sts = le16_to_cpu(rej_data->sts);
1825 
1826 		dev_err(queue->ctrl->ctrl.device,
1827 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1828 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1829 	} else {
1830 		dev_err(queue->ctrl->ctrl.device,
1831 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1832 	}
1833 
1834 	return -ECONNRESET;
1835 }
1836 
1837 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1838 {
1839 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1840 	int ret;
1841 
1842 	ret = nvme_rdma_create_queue_ib(queue);
1843 	if (ret)
1844 		return ret;
1845 
1846 	if (ctrl->opts->tos >= 0)
1847 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1848 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1849 	if (ret) {
1850 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1851 			queue->cm_error);
1852 		goto out_destroy_queue;
1853 	}
1854 
1855 	return 0;
1856 
1857 out_destroy_queue:
1858 	nvme_rdma_destroy_queue_ib(queue);
1859 	return ret;
1860 }
1861 
1862 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1863 {
1864 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1865 	struct rdma_conn_param param = { };
1866 	struct nvme_rdma_cm_req priv = { };
1867 	int ret;
1868 
1869 	param.qp_num = queue->qp->qp_num;
1870 	param.flow_control = 1;
1871 
1872 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1873 	/* maximum retry count */
1874 	param.retry_count = 7;
1875 	param.rnr_retry_count = 7;
1876 	param.private_data = &priv;
1877 	param.private_data_len = sizeof(priv);
1878 
1879 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1880 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1881 	/*
1882 	 * set the admin queue depth to the minimum size
1883 	 * specified by the Fabrics standard.
1884 	 */
1885 	if (priv.qid == 0) {
1886 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1887 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1888 	} else {
1889 		/*
1890 		 * current interpretation of the fabrics spec
1891 		 * is at minimum you make hrqsize sqsize+1, or a
1892 		 * 1's based representation of sqsize.
1893 		 */
1894 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1895 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1896 	}
1897 
1898 	ret = rdma_connect_locked(queue->cm_id, &param);
1899 	if (ret) {
1900 		dev_err(ctrl->ctrl.device,
1901 			"rdma_connect_locked failed (%d).\n", ret);
1902 		return ret;
1903 	}
1904 
1905 	return 0;
1906 }
1907 
1908 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1909 		struct rdma_cm_event *ev)
1910 {
1911 	struct nvme_rdma_queue *queue = cm_id->context;
1912 	int cm_error = 0;
1913 
1914 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1915 		rdma_event_msg(ev->event), ev->event,
1916 		ev->status, cm_id);
1917 
1918 	switch (ev->event) {
1919 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1920 		cm_error = nvme_rdma_addr_resolved(queue);
1921 		break;
1922 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1923 		cm_error = nvme_rdma_route_resolved(queue);
1924 		break;
1925 	case RDMA_CM_EVENT_ESTABLISHED:
1926 		queue->cm_error = nvme_rdma_conn_established(queue);
1927 		/* complete cm_done regardless of success/failure */
1928 		complete(&queue->cm_done);
1929 		return 0;
1930 	case RDMA_CM_EVENT_REJECTED:
1931 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1932 		break;
1933 	case RDMA_CM_EVENT_ROUTE_ERROR:
1934 	case RDMA_CM_EVENT_CONNECT_ERROR:
1935 	case RDMA_CM_EVENT_UNREACHABLE:
1936 	case RDMA_CM_EVENT_ADDR_ERROR:
1937 		dev_dbg(queue->ctrl->ctrl.device,
1938 			"CM error event %d\n", ev->event);
1939 		cm_error = -ECONNRESET;
1940 		break;
1941 	case RDMA_CM_EVENT_DISCONNECTED:
1942 	case RDMA_CM_EVENT_ADDR_CHANGE:
1943 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1944 		dev_dbg(queue->ctrl->ctrl.device,
1945 			"disconnect received - connection closed\n");
1946 		nvme_rdma_error_recovery(queue->ctrl);
1947 		break;
1948 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1949 		/* device removal is handled via the ib_client API */
1950 		break;
1951 	default:
1952 		dev_err(queue->ctrl->ctrl.device,
1953 			"Unexpected RDMA CM event (%d)\n", ev->event);
1954 		nvme_rdma_error_recovery(queue->ctrl);
1955 		break;
1956 	}
1957 
1958 	if (cm_error) {
1959 		queue->cm_error = cm_error;
1960 		complete(&queue->cm_done);
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 static void nvme_rdma_complete_timed_out(struct request *rq)
1967 {
1968 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1969 	struct nvme_rdma_queue *queue = req->queue;
1970 
1971 	nvme_rdma_stop_queue(queue);
1972 	nvmf_complete_timed_out_request(rq);
1973 }
1974 
1975 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1976 {
1977 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1978 	struct nvme_rdma_queue *queue = req->queue;
1979 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1980 
1981 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1982 		 rq->tag, nvme_rdma_queue_idx(queue));
1983 
1984 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1985 		/*
1986 		 * If we are resetting, connecting or deleting we should
1987 		 * complete immediately because we may block controller
1988 		 * teardown or setup sequence
1989 		 * - ctrl disable/shutdown fabrics requests
1990 		 * - connect requests
1991 		 * - initialization admin requests
1992 		 * - I/O requests that entered after unquiescing and
1993 		 *   the controller stopped responding
1994 		 *
1995 		 * All other requests should be cancelled by the error
1996 		 * recovery work, so it's fine that we fail it here.
1997 		 */
1998 		nvme_rdma_complete_timed_out(rq);
1999 		return BLK_EH_DONE;
2000 	}
2001 
2002 	/*
2003 	 * LIVE state should trigger the normal error recovery which will
2004 	 * handle completing this request.
2005 	 */
2006 	nvme_rdma_error_recovery(ctrl);
2007 	return BLK_EH_RESET_TIMER;
2008 }
2009 
2010 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2011 		const struct blk_mq_queue_data *bd)
2012 {
2013 	struct nvme_ns *ns = hctx->queue->queuedata;
2014 	struct nvme_rdma_queue *queue = hctx->driver_data;
2015 	struct request *rq = bd->rq;
2016 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2017 	struct nvme_rdma_qe *sqe = &req->sqe;
2018 	struct nvme_command *c = nvme_req(rq)->cmd;
2019 	struct ib_device *dev;
2020 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2021 	blk_status_t ret;
2022 	int err;
2023 
2024 	WARN_ON_ONCE(rq->tag < 0);
2025 
2026 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2027 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2028 
2029 	dev = queue->device->dev;
2030 
2031 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2032 					 sizeof(struct nvme_command),
2033 					 DMA_TO_DEVICE);
2034 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2035 	if (unlikely(err))
2036 		return BLK_STS_RESOURCE;
2037 
2038 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2039 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2040 
2041 	ret = nvme_setup_cmd(ns, rq);
2042 	if (ret)
2043 		goto unmap_qe;
2044 
2045 	nvme_start_request(rq);
2046 
2047 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2048 	    queue->pi_support &&
2049 	    (c->common.opcode == nvme_cmd_write ||
2050 	     c->common.opcode == nvme_cmd_read) &&
2051 	    nvme_ns_has_pi(ns))
2052 		req->use_sig_mr = true;
2053 	else
2054 		req->use_sig_mr = false;
2055 
2056 	err = nvme_rdma_map_data(queue, rq, c);
2057 	if (unlikely(err < 0)) {
2058 		dev_err(queue->ctrl->ctrl.device,
2059 			     "Failed to map data (%d)\n", err);
2060 		goto err;
2061 	}
2062 
2063 	sqe->cqe.done = nvme_rdma_send_done;
2064 
2065 	ib_dma_sync_single_for_device(dev, sqe->dma,
2066 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2067 
2068 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2069 			req->mr ? &req->reg_wr.wr : NULL);
2070 	if (unlikely(err))
2071 		goto err_unmap;
2072 
2073 	return BLK_STS_OK;
2074 
2075 err_unmap:
2076 	nvme_rdma_unmap_data(queue, rq);
2077 err:
2078 	if (err == -EIO)
2079 		ret = nvme_host_path_error(rq);
2080 	else if (err == -ENOMEM || err == -EAGAIN)
2081 		ret = BLK_STS_RESOURCE;
2082 	else
2083 		ret = BLK_STS_IOERR;
2084 	nvme_cleanup_cmd(rq);
2085 unmap_qe:
2086 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2087 			    DMA_TO_DEVICE);
2088 	return ret;
2089 }
2090 
2091 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2092 {
2093 	struct nvme_rdma_queue *queue = hctx->driver_data;
2094 
2095 	return ib_process_cq_direct(queue->ib_cq, -1);
2096 }
2097 
2098 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2099 {
2100 	struct request *rq = blk_mq_rq_from_pdu(req);
2101 	struct ib_mr_status mr_status;
2102 	int ret;
2103 
2104 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2105 	if (ret) {
2106 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2107 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2108 		return;
2109 	}
2110 
2111 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2112 		switch (mr_status.sig_err.err_type) {
2113 		case IB_SIG_BAD_GUARD:
2114 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2115 			break;
2116 		case IB_SIG_BAD_REFTAG:
2117 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2118 			break;
2119 		case IB_SIG_BAD_APPTAG:
2120 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2121 			break;
2122 		}
2123 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2124 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2125 		       mr_status.sig_err.actual);
2126 	}
2127 }
2128 
2129 static void nvme_rdma_complete_rq(struct request *rq)
2130 {
2131 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2132 	struct nvme_rdma_queue *queue = req->queue;
2133 	struct ib_device *ibdev = queue->device->dev;
2134 
2135 	if (req->use_sig_mr)
2136 		nvme_rdma_check_pi_status(req);
2137 
2138 	nvme_rdma_unmap_data(queue, rq);
2139 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2140 			    DMA_TO_DEVICE);
2141 	nvme_complete_rq(rq);
2142 }
2143 
2144 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2145 {
2146 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2147 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2148 
2149 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2150 		/* separate read/write queues */
2151 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2152 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2153 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2154 		set->map[HCTX_TYPE_READ].nr_queues =
2155 			ctrl->io_queues[HCTX_TYPE_READ];
2156 		set->map[HCTX_TYPE_READ].queue_offset =
2157 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2158 	} else {
2159 		/* shared read/write queues */
2160 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2161 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2162 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2163 		set->map[HCTX_TYPE_READ].nr_queues =
2164 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2165 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2166 	}
2167 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2168 			ctrl->device->dev, 0);
2169 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2170 			ctrl->device->dev, 0);
2171 
2172 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2173 		/* map dedicated poll queues only if we have queues left */
2174 		set->map[HCTX_TYPE_POLL].nr_queues =
2175 				ctrl->io_queues[HCTX_TYPE_POLL];
2176 		set->map[HCTX_TYPE_POLL].queue_offset =
2177 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2178 			ctrl->io_queues[HCTX_TYPE_READ];
2179 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2180 	}
2181 
2182 	dev_info(ctrl->ctrl.device,
2183 		"mapped %d/%d/%d default/read/poll queues.\n",
2184 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2185 		ctrl->io_queues[HCTX_TYPE_READ],
2186 		ctrl->io_queues[HCTX_TYPE_POLL]);
2187 }
2188 
2189 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2190 	.queue_rq	= nvme_rdma_queue_rq,
2191 	.complete	= nvme_rdma_complete_rq,
2192 	.init_request	= nvme_rdma_init_request,
2193 	.exit_request	= nvme_rdma_exit_request,
2194 	.init_hctx	= nvme_rdma_init_hctx,
2195 	.timeout	= nvme_rdma_timeout,
2196 	.map_queues	= nvme_rdma_map_queues,
2197 	.poll		= nvme_rdma_poll,
2198 };
2199 
2200 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2201 	.queue_rq	= nvme_rdma_queue_rq,
2202 	.complete	= nvme_rdma_complete_rq,
2203 	.init_request	= nvme_rdma_init_request,
2204 	.exit_request	= nvme_rdma_exit_request,
2205 	.init_hctx	= nvme_rdma_init_admin_hctx,
2206 	.timeout	= nvme_rdma_timeout,
2207 };
2208 
2209 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2210 {
2211 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2212 	nvme_quiesce_admin_queue(&ctrl->ctrl);
2213 	nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2214 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2215 }
2216 
2217 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2218 {
2219 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2220 }
2221 
2222 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2223 {
2224 	struct nvme_rdma_ctrl *ctrl =
2225 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2226 
2227 	nvme_stop_ctrl(&ctrl->ctrl);
2228 	nvme_rdma_shutdown_ctrl(ctrl, false);
2229 
2230 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2231 		/* state change failure should never happen */
2232 		WARN_ON_ONCE(1);
2233 		return;
2234 	}
2235 
2236 	if (nvme_rdma_setup_ctrl(ctrl, false))
2237 		goto out_fail;
2238 
2239 	return;
2240 
2241 out_fail:
2242 	++ctrl->ctrl.nr_reconnects;
2243 	nvme_rdma_reconnect_or_remove(ctrl);
2244 }
2245 
2246 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2247 	.name			= "rdma",
2248 	.module			= THIS_MODULE,
2249 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2250 	.reg_read32		= nvmf_reg_read32,
2251 	.reg_read64		= nvmf_reg_read64,
2252 	.reg_write32		= nvmf_reg_write32,
2253 	.free_ctrl		= nvme_rdma_free_ctrl,
2254 	.submit_async_event	= nvme_rdma_submit_async_event,
2255 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2256 	.get_address		= nvmf_get_address,
2257 	.stop_ctrl		= nvme_rdma_stop_ctrl,
2258 };
2259 
2260 /*
2261  * Fails a connection request if it matches an existing controller
2262  * (association) with the same tuple:
2263  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2264  *
2265  * if local address is not specified in the request, it will match an
2266  * existing controller with all the other parameters the same and no
2267  * local port address specified as well.
2268  *
2269  * The ports don't need to be compared as they are intrinsically
2270  * already matched by the port pointers supplied.
2271  */
2272 static bool
2273 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2274 {
2275 	struct nvme_rdma_ctrl *ctrl;
2276 	bool found = false;
2277 
2278 	mutex_lock(&nvme_rdma_ctrl_mutex);
2279 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2280 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2281 		if (found)
2282 			break;
2283 	}
2284 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2285 
2286 	return found;
2287 }
2288 
2289 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2290 		struct nvmf_ctrl_options *opts)
2291 {
2292 	struct nvme_rdma_ctrl *ctrl;
2293 	int ret;
2294 	bool changed;
2295 
2296 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2297 	if (!ctrl)
2298 		return ERR_PTR(-ENOMEM);
2299 	ctrl->ctrl.opts = opts;
2300 	INIT_LIST_HEAD(&ctrl->list);
2301 
2302 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2303 		opts->trsvcid =
2304 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2305 		if (!opts->trsvcid) {
2306 			ret = -ENOMEM;
2307 			goto out_free_ctrl;
2308 		}
2309 		opts->mask |= NVMF_OPT_TRSVCID;
2310 	}
2311 
2312 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2313 			opts->traddr, opts->trsvcid, &ctrl->addr);
2314 	if (ret) {
2315 		pr_err("malformed address passed: %s:%s\n",
2316 			opts->traddr, opts->trsvcid);
2317 		goto out_free_ctrl;
2318 	}
2319 
2320 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2321 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2322 			opts->host_traddr, NULL, &ctrl->src_addr);
2323 		if (ret) {
2324 			pr_err("malformed src address passed: %s\n",
2325 			       opts->host_traddr);
2326 			goto out_free_ctrl;
2327 		}
2328 	}
2329 
2330 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2331 		ret = -EALREADY;
2332 		goto out_free_ctrl;
2333 	}
2334 
2335 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2336 			nvme_rdma_reconnect_ctrl_work);
2337 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2338 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2339 
2340 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2341 				opts->nr_poll_queues + 1;
2342 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2343 	ctrl->ctrl.kato = opts->kato;
2344 
2345 	ret = -ENOMEM;
2346 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2347 				GFP_KERNEL);
2348 	if (!ctrl->queues)
2349 		goto out_free_ctrl;
2350 
2351 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2352 				0 /* no quirks, we're perfect! */);
2353 	if (ret)
2354 		goto out_kfree_queues;
2355 
2356 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2357 	WARN_ON_ONCE(!changed);
2358 
2359 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2360 	if (ret)
2361 		goto out_uninit_ctrl;
2362 
2363 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2364 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2365 
2366 	mutex_lock(&nvme_rdma_ctrl_mutex);
2367 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2368 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2369 
2370 	return &ctrl->ctrl;
2371 
2372 out_uninit_ctrl:
2373 	nvme_uninit_ctrl(&ctrl->ctrl);
2374 	nvme_put_ctrl(&ctrl->ctrl);
2375 	if (ret > 0)
2376 		ret = -EIO;
2377 	return ERR_PTR(ret);
2378 out_kfree_queues:
2379 	kfree(ctrl->queues);
2380 out_free_ctrl:
2381 	kfree(ctrl);
2382 	return ERR_PTR(ret);
2383 }
2384 
2385 static struct nvmf_transport_ops nvme_rdma_transport = {
2386 	.name		= "rdma",
2387 	.module		= THIS_MODULE,
2388 	.required_opts	= NVMF_OPT_TRADDR,
2389 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2390 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2391 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2392 			  NVMF_OPT_TOS,
2393 	.create_ctrl	= nvme_rdma_create_ctrl,
2394 };
2395 
2396 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2397 {
2398 	struct nvme_rdma_ctrl *ctrl;
2399 	struct nvme_rdma_device *ndev;
2400 	bool found = false;
2401 
2402 	mutex_lock(&device_list_mutex);
2403 	list_for_each_entry(ndev, &device_list, entry) {
2404 		if (ndev->dev == ib_device) {
2405 			found = true;
2406 			break;
2407 		}
2408 	}
2409 	mutex_unlock(&device_list_mutex);
2410 
2411 	if (!found)
2412 		return;
2413 
2414 	/* Delete all controllers using this device */
2415 	mutex_lock(&nvme_rdma_ctrl_mutex);
2416 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2417 		if (ctrl->device->dev != ib_device)
2418 			continue;
2419 		nvme_delete_ctrl(&ctrl->ctrl);
2420 	}
2421 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2422 
2423 	flush_workqueue(nvme_delete_wq);
2424 }
2425 
2426 static struct ib_client nvme_rdma_ib_client = {
2427 	.name   = "nvme_rdma",
2428 	.remove = nvme_rdma_remove_one
2429 };
2430 
2431 static int __init nvme_rdma_init_module(void)
2432 {
2433 	int ret;
2434 
2435 	ret = ib_register_client(&nvme_rdma_ib_client);
2436 	if (ret)
2437 		return ret;
2438 
2439 	ret = nvmf_register_transport(&nvme_rdma_transport);
2440 	if (ret)
2441 		goto err_unreg_client;
2442 
2443 	return 0;
2444 
2445 err_unreg_client:
2446 	ib_unregister_client(&nvme_rdma_ib_client);
2447 	return ret;
2448 }
2449 
2450 static void __exit nvme_rdma_cleanup_module(void)
2451 {
2452 	struct nvme_rdma_ctrl *ctrl;
2453 
2454 	nvmf_unregister_transport(&nvme_rdma_transport);
2455 	ib_unregister_client(&nvme_rdma_ib_client);
2456 
2457 	mutex_lock(&nvme_rdma_ctrl_mutex);
2458 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2459 		nvme_delete_ctrl(&ctrl->ctrl);
2460 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2461 	flush_workqueue(nvme_delete_wq);
2462 }
2463 
2464 module_init(nvme_rdma_init_module);
2465 module_exit(nvme_rdma_cleanup_module);
2466 
2467 MODULE_LICENSE("GPL v2");
2468