1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/blk-mq-rdma.h> 23 #include <linux/types.h> 24 #include <linux/list.h> 25 #include <linux/mutex.h> 26 #include <linux/scatterlist.h> 27 #include <linux/nvme.h> 28 #include <asm/unaligned.h> 29 30 #include <rdma/ib_verbs.h> 31 #include <rdma/rdma_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 39 40 #define NVME_RDMA_MAX_SEGMENTS 256 41 42 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 43 44 struct nvme_rdma_device { 45 struct ib_device *dev; 46 struct ib_pd *pd; 47 struct kref ref; 48 struct list_head entry; 49 }; 50 51 struct nvme_rdma_qe { 52 struct ib_cqe cqe; 53 void *data; 54 u64 dma; 55 }; 56 57 struct nvme_rdma_queue; 58 struct nvme_rdma_request { 59 struct nvme_request req; 60 struct ib_mr *mr; 61 struct nvme_rdma_qe sqe; 62 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 63 u32 num_sge; 64 int nents; 65 bool inline_data; 66 struct ib_reg_wr reg_wr; 67 struct ib_cqe reg_cqe; 68 struct nvme_rdma_queue *queue; 69 struct sg_table sg_table; 70 struct scatterlist first_sgl[]; 71 }; 72 73 enum nvme_rdma_queue_flags { 74 NVME_RDMA_Q_ALLOCATED = 0, 75 NVME_RDMA_Q_LIVE = 1, 76 }; 77 78 struct nvme_rdma_queue { 79 struct nvme_rdma_qe *rsp_ring; 80 atomic_t sig_count; 81 int queue_size; 82 size_t cmnd_capsule_len; 83 struct nvme_rdma_ctrl *ctrl; 84 struct nvme_rdma_device *device; 85 struct ib_cq *ib_cq; 86 struct ib_qp *qp; 87 88 unsigned long flags; 89 struct rdma_cm_id *cm_id; 90 int cm_error; 91 struct completion cm_done; 92 }; 93 94 struct nvme_rdma_ctrl { 95 /* read only in the hot path */ 96 struct nvme_rdma_queue *queues; 97 98 /* other member variables */ 99 struct blk_mq_tag_set tag_set; 100 struct work_struct err_work; 101 102 struct nvme_rdma_qe async_event_sqe; 103 104 struct delayed_work reconnect_work; 105 106 struct list_head list; 107 108 struct blk_mq_tag_set admin_tag_set; 109 struct nvme_rdma_device *device; 110 111 u32 max_fr_pages; 112 113 struct sockaddr_storage addr; 114 struct sockaddr_storage src_addr; 115 116 struct nvme_ctrl ctrl; 117 }; 118 119 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 120 { 121 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 122 } 123 124 static LIST_HEAD(device_list); 125 static DEFINE_MUTEX(device_list_mutex); 126 127 static LIST_HEAD(nvme_rdma_ctrl_list); 128 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 129 130 /* 131 * Disabling this option makes small I/O goes faster, but is fundamentally 132 * unsafe. With it turned off we will have to register a global rkey that 133 * allows read and write access to all physical memory. 134 */ 135 static bool register_always = true; 136 module_param(register_always, bool, 0444); 137 MODULE_PARM_DESC(register_always, 138 "Use memory registration even for contiguous memory regions"); 139 140 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 141 struct rdma_cm_event *event); 142 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 143 144 static const struct blk_mq_ops nvme_rdma_mq_ops; 145 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 146 147 /* XXX: really should move to a generic header sooner or later.. */ 148 static inline void put_unaligned_le24(u32 val, u8 *p) 149 { 150 *p++ = val; 151 *p++ = val >> 8; 152 *p++ = val >> 16; 153 } 154 155 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 156 { 157 return queue - queue->ctrl->queues; 158 } 159 160 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 161 { 162 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 163 } 164 165 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 166 size_t capsule_size, enum dma_data_direction dir) 167 { 168 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 169 kfree(qe->data); 170 } 171 172 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 173 size_t capsule_size, enum dma_data_direction dir) 174 { 175 qe->data = kzalloc(capsule_size, GFP_KERNEL); 176 if (!qe->data) 177 return -ENOMEM; 178 179 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 180 if (ib_dma_mapping_error(ibdev, qe->dma)) { 181 kfree(qe->data); 182 return -ENOMEM; 183 } 184 185 return 0; 186 } 187 188 static void nvme_rdma_free_ring(struct ib_device *ibdev, 189 struct nvme_rdma_qe *ring, size_t ib_queue_size, 190 size_t capsule_size, enum dma_data_direction dir) 191 { 192 int i; 193 194 for (i = 0; i < ib_queue_size; i++) 195 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 196 kfree(ring); 197 } 198 199 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 200 size_t ib_queue_size, size_t capsule_size, 201 enum dma_data_direction dir) 202 { 203 struct nvme_rdma_qe *ring; 204 int i; 205 206 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 207 if (!ring) 208 return NULL; 209 210 for (i = 0; i < ib_queue_size; i++) { 211 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 212 goto out_free_ring; 213 } 214 215 return ring; 216 217 out_free_ring: 218 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 219 return NULL; 220 } 221 222 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 223 { 224 pr_debug("QP event %s (%d)\n", 225 ib_event_msg(event->event), event->event); 226 227 } 228 229 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 230 { 231 wait_for_completion_interruptible_timeout(&queue->cm_done, 232 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 233 return queue->cm_error; 234 } 235 236 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 237 { 238 struct nvme_rdma_device *dev = queue->device; 239 struct ib_qp_init_attr init_attr; 240 int ret; 241 242 memset(&init_attr, 0, sizeof(init_attr)); 243 init_attr.event_handler = nvme_rdma_qp_event; 244 /* +1 for drain */ 245 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 246 /* +1 for drain */ 247 init_attr.cap.max_recv_wr = queue->queue_size + 1; 248 init_attr.cap.max_recv_sge = 1; 249 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 250 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 251 init_attr.qp_type = IB_QPT_RC; 252 init_attr.send_cq = queue->ib_cq; 253 init_attr.recv_cq = queue->ib_cq; 254 255 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 256 257 queue->qp = queue->cm_id->qp; 258 return ret; 259 } 260 261 static int nvme_rdma_reinit_request(void *data, struct request *rq) 262 { 263 struct nvme_rdma_ctrl *ctrl = data; 264 struct nvme_rdma_device *dev = ctrl->device; 265 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 266 int ret = 0; 267 268 if (WARN_ON_ONCE(!req->mr)) 269 return 0; 270 271 ib_dereg_mr(req->mr); 272 273 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 274 ctrl->max_fr_pages); 275 if (IS_ERR(req->mr)) { 276 ret = PTR_ERR(req->mr); 277 req->mr = NULL; 278 goto out; 279 } 280 281 req->mr->need_inval = false; 282 283 out: 284 return ret; 285 } 286 287 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx) 289 { 290 struct nvme_rdma_ctrl *ctrl = set->driver_data; 291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 292 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 293 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 294 struct nvme_rdma_device *dev = queue->device; 295 296 if (req->mr) 297 ib_dereg_mr(req->mr); 298 299 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 300 DMA_TO_DEVICE); 301 } 302 303 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 304 struct request *rq, unsigned int hctx_idx, 305 unsigned int numa_node) 306 { 307 struct nvme_rdma_ctrl *ctrl = set->driver_data; 308 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 309 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 310 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 311 struct nvme_rdma_device *dev = queue->device; 312 struct ib_device *ibdev = dev->dev; 313 int ret; 314 315 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 316 DMA_TO_DEVICE); 317 if (ret) 318 return ret; 319 320 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 321 ctrl->max_fr_pages); 322 if (IS_ERR(req->mr)) { 323 ret = PTR_ERR(req->mr); 324 goto out_free_qe; 325 } 326 327 req->queue = queue; 328 329 return 0; 330 331 out_free_qe: 332 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 333 DMA_TO_DEVICE); 334 return -ENOMEM; 335 } 336 337 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 338 unsigned int hctx_idx) 339 { 340 struct nvme_rdma_ctrl *ctrl = data; 341 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 342 343 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 344 345 hctx->driver_data = queue; 346 return 0; 347 } 348 349 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 350 unsigned int hctx_idx) 351 { 352 struct nvme_rdma_ctrl *ctrl = data; 353 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 354 355 BUG_ON(hctx_idx != 0); 356 357 hctx->driver_data = queue; 358 return 0; 359 } 360 361 static void nvme_rdma_free_dev(struct kref *ref) 362 { 363 struct nvme_rdma_device *ndev = 364 container_of(ref, struct nvme_rdma_device, ref); 365 366 mutex_lock(&device_list_mutex); 367 list_del(&ndev->entry); 368 mutex_unlock(&device_list_mutex); 369 370 ib_dealloc_pd(ndev->pd); 371 kfree(ndev); 372 } 373 374 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 375 { 376 kref_put(&dev->ref, nvme_rdma_free_dev); 377 } 378 379 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 380 { 381 return kref_get_unless_zero(&dev->ref); 382 } 383 384 static struct nvme_rdma_device * 385 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 386 { 387 struct nvme_rdma_device *ndev; 388 389 mutex_lock(&device_list_mutex); 390 list_for_each_entry(ndev, &device_list, entry) { 391 if (ndev->dev->node_guid == cm_id->device->node_guid && 392 nvme_rdma_dev_get(ndev)) 393 goto out_unlock; 394 } 395 396 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 397 if (!ndev) 398 goto out_err; 399 400 ndev->dev = cm_id->device; 401 kref_init(&ndev->ref); 402 403 ndev->pd = ib_alloc_pd(ndev->dev, 404 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 405 if (IS_ERR(ndev->pd)) 406 goto out_free_dev; 407 408 if (!(ndev->dev->attrs.device_cap_flags & 409 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 410 dev_err(&ndev->dev->dev, 411 "Memory registrations not supported.\n"); 412 goto out_free_pd; 413 } 414 415 list_add(&ndev->entry, &device_list); 416 out_unlock: 417 mutex_unlock(&device_list_mutex); 418 return ndev; 419 420 out_free_pd: 421 ib_dealloc_pd(ndev->pd); 422 out_free_dev: 423 kfree(ndev); 424 out_err: 425 mutex_unlock(&device_list_mutex); 426 return NULL; 427 } 428 429 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 430 { 431 struct nvme_rdma_device *dev = queue->device; 432 struct ib_device *ibdev = dev->dev; 433 434 rdma_destroy_qp(queue->cm_id); 435 ib_free_cq(queue->ib_cq); 436 437 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 438 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 439 440 nvme_rdma_dev_put(dev); 441 } 442 443 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 444 { 445 struct ib_device *ibdev; 446 const int send_wr_factor = 3; /* MR, SEND, INV */ 447 const int cq_factor = send_wr_factor + 1; /* + RECV */ 448 int comp_vector, idx = nvme_rdma_queue_idx(queue); 449 int ret; 450 451 queue->device = nvme_rdma_find_get_device(queue->cm_id); 452 if (!queue->device) { 453 dev_err(queue->cm_id->device->dev.parent, 454 "no client data found!\n"); 455 return -ECONNREFUSED; 456 } 457 ibdev = queue->device->dev; 458 459 /* 460 * Spread I/O queues completion vectors according their queue index. 461 * Admin queues can always go on completion vector 0. 462 */ 463 comp_vector = idx == 0 ? idx : idx - 1; 464 465 /* +1 for ib_stop_cq */ 466 queue->ib_cq = ib_alloc_cq(ibdev, queue, 467 cq_factor * queue->queue_size + 1, 468 comp_vector, IB_POLL_SOFTIRQ); 469 if (IS_ERR(queue->ib_cq)) { 470 ret = PTR_ERR(queue->ib_cq); 471 goto out_put_dev; 472 } 473 474 ret = nvme_rdma_create_qp(queue, send_wr_factor); 475 if (ret) 476 goto out_destroy_ib_cq; 477 478 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 479 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 480 if (!queue->rsp_ring) { 481 ret = -ENOMEM; 482 goto out_destroy_qp; 483 } 484 485 return 0; 486 487 out_destroy_qp: 488 rdma_destroy_qp(queue->cm_id); 489 out_destroy_ib_cq: 490 ib_free_cq(queue->ib_cq); 491 out_put_dev: 492 nvme_rdma_dev_put(queue->device); 493 return ret; 494 } 495 496 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 497 int idx, size_t queue_size) 498 { 499 struct nvme_rdma_queue *queue; 500 struct sockaddr *src_addr = NULL; 501 int ret; 502 503 queue = &ctrl->queues[idx]; 504 queue->ctrl = ctrl; 505 init_completion(&queue->cm_done); 506 507 if (idx > 0) 508 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 509 else 510 queue->cmnd_capsule_len = sizeof(struct nvme_command); 511 512 queue->queue_size = queue_size; 513 atomic_set(&queue->sig_count, 0); 514 515 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 516 RDMA_PS_TCP, IB_QPT_RC); 517 if (IS_ERR(queue->cm_id)) { 518 dev_info(ctrl->ctrl.device, 519 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 520 return PTR_ERR(queue->cm_id); 521 } 522 523 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 524 src_addr = (struct sockaddr *)&ctrl->src_addr; 525 526 queue->cm_error = -ETIMEDOUT; 527 ret = rdma_resolve_addr(queue->cm_id, src_addr, 528 (struct sockaddr *)&ctrl->addr, 529 NVME_RDMA_CONNECT_TIMEOUT_MS); 530 if (ret) { 531 dev_info(ctrl->ctrl.device, 532 "rdma_resolve_addr failed (%d).\n", ret); 533 goto out_destroy_cm_id; 534 } 535 536 ret = nvme_rdma_wait_for_cm(queue); 537 if (ret) { 538 dev_info(ctrl->ctrl.device, 539 "rdma connection establishment failed (%d)\n", ret); 540 goto out_destroy_cm_id; 541 } 542 543 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 544 545 return 0; 546 547 out_destroy_cm_id: 548 rdma_destroy_id(queue->cm_id); 549 return ret; 550 } 551 552 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 553 { 554 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 555 return; 556 557 rdma_disconnect(queue->cm_id); 558 ib_drain_qp(queue->qp); 559 } 560 561 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 562 { 563 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 564 return; 565 566 nvme_rdma_destroy_queue_ib(queue); 567 rdma_destroy_id(queue->cm_id); 568 } 569 570 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 571 { 572 int i; 573 574 for (i = 1; i < ctrl->ctrl.queue_count; i++) 575 nvme_rdma_free_queue(&ctrl->queues[i]); 576 } 577 578 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 579 { 580 int i; 581 582 for (i = 1; i < ctrl->ctrl.queue_count; i++) 583 nvme_rdma_stop_queue(&ctrl->queues[i]); 584 } 585 586 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 587 { 588 int ret; 589 590 if (idx) 591 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 592 else 593 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 594 595 if (!ret) 596 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 597 else 598 dev_info(ctrl->ctrl.device, 599 "failed to connect queue: %d ret=%d\n", idx, ret); 600 return ret; 601 } 602 603 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 604 { 605 int i, ret = 0; 606 607 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 608 ret = nvme_rdma_start_queue(ctrl, i); 609 if (ret) 610 goto out_stop_queues; 611 } 612 613 return 0; 614 615 out_stop_queues: 616 for (i--; i >= 1; i--) 617 nvme_rdma_stop_queue(&ctrl->queues[i]); 618 return ret; 619 } 620 621 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 622 { 623 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 624 struct ib_device *ibdev = ctrl->device->dev; 625 unsigned int nr_io_queues; 626 int i, ret; 627 628 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 629 630 /* 631 * we map queues according to the device irq vectors for 632 * optimal locality so we don't need more queues than 633 * completion vectors. 634 */ 635 nr_io_queues = min_t(unsigned int, nr_io_queues, 636 ibdev->num_comp_vectors); 637 638 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 639 if (ret) 640 return ret; 641 642 ctrl->ctrl.queue_count = nr_io_queues + 1; 643 if (ctrl->ctrl.queue_count < 2) 644 return 0; 645 646 dev_info(ctrl->ctrl.device, 647 "creating %d I/O queues.\n", nr_io_queues); 648 649 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 650 ret = nvme_rdma_alloc_queue(ctrl, i, 651 ctrl->ctrl.sqsize + 1); 652 if (ret) 653 goto out_free_queues; 654 } 655 656 return 0; 657 658 out_free_queues: 659 for (i--; i >= 1; i--) 660 nvme_rdma_free_queue(&ctrl->queues[i]); 661 662 return ret; 663 } 664 665 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 666 struct blk_mq_tag_set *set) 667 { 668 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 669 670 blk_mq_free_tag_set(set); 671 nvme_rdma_dev_put(ctrl->device); 672 } 673 674 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 675 bool admin) 676 { 677 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 678 struct blk_mq_tag_set *set; 679 int ret; 680 681 if (admin) { 682 set = &ctrl->admin_tag_set; 683 memset(set, 0, sizeof(*set)); 684 set->ops = &nvme_rdma_admin_mq_ops; 685 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 686 set->reserved_tags = 2; /* connect + keep-alive */ 687 set->numa_node = NUMA_NO_NODE; 688 set->cmd_size = sizeof(struct nvme_rdma_request) + 689 SG_CHUNK_SIZE * sizeof(struct scatterlist); 690 set->driver_data = ctrl; 691 set->nr_hw_queues = 1; 692 set->timeout = ADMIN_TIMEOUT; 693 set->flags = BLK_MQ_F_NO_SCHED; 694 } else { 695 set = &ctrl->tag_set; 696 memset(set, 0, sizeof(*set)); 697 set->ops = &nvme_rdma_mq_ops; 698 set->queue_depth = nctrl->opts->queue_size; 699 set->reserved_tags = 1; /* fabric connect */ 700 set->numa_node = NUMA_NO_NODE; 701 set->flags = BLK_MQ_F_SHOULD_MERGE; 702 set->cmd_size = sizeof(struct nvme_rdma_request) + 703 SG_CHUNK_SIZE * sizeof(struct scatterlist); 704 set->driver_data = ctrl; 705 set->nr_hw_queues = nctrl->queue_count - 1; 706 set->timeout = NVME_IO_TIMEOUT; 707 } 708 709 ret = blk_mq_alloc_tag_set(set); 710 if (ret) 711 goto out; 712 713 /* 714 * We need a reference on the device as long as the tag_set is alive, 715 * as the MRs in the request structures need a valid ib_device. 716 */ 717 ret = nvme_rdma_dev_get(ctrl->device); 718 if (!ret) { 719 ret = -EINVAL; 720 goto out_free_tagset; 721 } 722 723 return set; 724 725 out_free_tagset: 726 blk_mq_free_tag_set(set); 727 out: 728 return ERR_PTR(ret); 729 } 730 731 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 732 bool remove) 733 { 734 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 735 sizeof(struct nvme_command), DMA_TO_DEVICE); 736 nvme_rdma_stop_queue(&ctrl->queues[0]); 737 if (remove) { 738 blk_cleanup_queue(ctrl->ctrl.admin_q); 739 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 740 } 741 nvme_rdma_free_queue(&ctrl->queues[0]); 742 } 743 744 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 745 bool new) 746 { 747 int error; 748 749 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 750 if (error) 751 return error; 752 753 ctrl->device = ctrl->queues[0].device; 754 755 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 756 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 757 758 if (new) { 759 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 760 if (IS_ERR(ctrl->ctrl.admin_tagset)) 761 goto out_free_queue; 762 763 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 764 if (IS_ERR(ctrl->ctrl.admin_q)) { 765 error = PTR_ERR(ctrl->ctrl.admin_q); 766 goto out_free_tagset; 767 } 768 } else { 769 error = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 770 if (error) 771 goto out_free_queue; 772 } 773 774 error = nvme_rdma_start_queue(ctrl, 0); 775 if (error) 776 goto out_cleanup_queue; 777 778 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 779 &ctrl->ctrl.cap); 780 if (error) { 781 dev_err(ctrl->ctrl.device, 782 "prop_get NVME_REG_CAP failed\n"); 783 goto out_cleanup_queue; 784 } 785 786 ctrl->ctrl.sqsize = 787 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 788 789 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 790 if (error) 791 goto out_cleanup_queue; 792 793 ctrl->ctrl.max_hw_sectors = 794 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 795 796 error = nvme_init_identify(&ctrl->ctrl); 797 if (error) 798 goto out_cleanup_queue; 799 800 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 801 &ctrl->async_event_sqe, sizeof(struct nvme_command), 802 DMA_TO_DEVICE); 803 if (error) 804 goto out_cleanup_queue; 805 806 return 0; 807 808 out_cleanup_queue: 809 if (new) 810 blk_cleanup_queue(ctrl->ctrl.admin_q); 811 out_free_tagset: 812 if (new) 813 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 814 out_free_queue: 815 nvme_rdma_free_queue(&ctrl->queues[0]); 816 return error; 817 } 818 819 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 820 bool remove) 821 { 822 nvme_rdma_stop_io_queues(ctrl); 823 if (remove) { 824 blk_cleanup_queue(ctrl->ctrl.connect_q); 825 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 826 } 827 nvme_rdma_free_io_queues(ctrl); 828 } 829 830 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 831 { 832 int ret; 833 834 ret = nvme_rdma_alloc_io_queues(ctrl); 835 if (ret) 836 return ret; 837 838 if (new) { 839 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 840 if (IS_ERR(ctrl->ctrl.tagset)) 841 goto out_free_io_queues; 842 843 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 844 if (IS_ERR(ctrl->ctrl.connect_q)) { 845 ret = PTR_ERR(ctrl->ctrl.connect_q); 846 goto out_free_tag_set; 847 } 848 } else { 849 ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 850 if (ret) 851 goto out_free_io_queues; 852 853 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 854 ctrl->ctrl.queue_count - 1); 855 } 856 857 ret = nvme_rdma_start_io_queues(ctrl); 858 if (ret) 859 goto out_cleanup_connect_q; 860 861 return 0; 862 863 out_cleanup_connect_q: 864 if (new) 865 blk_cleanup_queue(ctrl->ctrl.connect_q); 866 out_free_tag_set: 867 if (new) 868 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 869 out_free_io_queues: 870 nvme_rdma_free_io_queues(ctrl); 871 return ret; 872 } 873 874 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 875 { 876 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 877 878 if (list_empty(&ctrl->list)) 879 goto free_ctrl; 880 881 mutex_lock(&nvme_rdma_ctrl_mutex); 882 list_del(&ctrl->list); 883 mutex_unlock(&nvme_rdma_ctrl_mutex); 884 885 kfree(ctrl->queues); 886 nvmf_free_options(nctrl->opts); 887 free_ctrl: 888 kfree(ctrl); 889 } 890 891 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 892 { 893 /* If we are resetting/deleting then do nothing */ 894 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 895 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 896 ctrl->ctrl.state == NVME_CTRL_LIVE); 897 return; 898 } 899 900 if (nvmf_should_reconnect(&ctrl->ctrl)) { 901 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 902 ctrl->ctrl.opts->reconnect_delay); 903 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 904 ctrl->ctrl.opts->reconnect_delay * HZ); 905 } else { 906 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 907 nvme_delete_ctrl(&ctrl->ctrl); 908 } 909 } 910 911 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 912 { 913 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 914 struct nvme_rdma_ctrl, reconnect_work); 915 bool changed; 916 int ret; 917 918 ++ctrl->ctrl.nr_reconnects; 919 920 ret = nvme_rdma_configure_admin_queue(ctrl, false); 921 if (ret) 922 goto requeue; 923 924 if (ctrl->ctrl.queue_count > 1) { 925 ret = nvme_rdma_configure_io_queues(ctrl, false); 926 if (ret) 927 goto destroy_admin; 928 } 929 930 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 931 if (!changed) { 932 /* state change failure is ok if we're in DELETING state */ 933 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 934 return; 935 } 936 937 nvme_start_ctrl(&ctrl->ctrl); 938 939 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 940 ctrl->ctrl.nr_reconnects); 941 942 ctrl->ctrl.nr_reconnects = 0; 943 944 return; 945 946 destroy_admin: 947 nvme_rdma_destroy_admin_queue(ctrl, false); 948 requeue: 949 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 950 ctrl->ctrl.nr_reconnects); 951 nvme_rdma_reconnect_or_remove(ctrl); 952 } 953 954 static void nvme_rdma_error_recovery_work(struct work_struct *work) 955 { 956 struct nvme_rdma_ctrl *ctrl = container_of(work, 957 struct nvme_rdma_ctrl, err_work); 958 959 nvme_stop_keep_alive(&ctrl->ctrl); 960 961 if (ctrl->ctrl.queue_count > 1) { 962 nvme_stop_queues(&ctrl->ctrl); 963 blk_mq_tagset_busy_iter(&ctrl->tag_set, 964 nvme_cancel_request, &ctrl->ctrl); 965 nvme_rdma_destroy_io_queues(ctrl, false); 966 } 967 968 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 969 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 970 nvme_cancel_request, &ctrl->ctrl); 971 nvme_rdma_destroy_admin_queue(ctrl, false); 972 973 /* 974 * queues are not a live anymore, so restart the queues to fail fast 975 * new IO 976 */ 977 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 978 nvme_start_queues(&ctrl->ctrl); 979 980 nvme_rdma_reconnect_or_remove(ctrl); 981 } 982 983 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 984 { 985 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 986 return; 987 988 queue_work(nvme_wq, &ctrl->err_work); 989 } 990 991 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 992 const char *op) 993 { 994 struct nvme_rdma_queue *queue = cq->cq_context; 995 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 996 997 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 998 dev_info(ctrl->ctrl.device, 999 "%s for CQE 0x%p failed with status %s (%d)\n", 1000 op, wc->wr_cqe, 1001 ib_wc_status_msg(wc->status), wc->status); 1002 nvme_rdma_error_recovery(ctrl); 1003 } 1004 1005 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1006 { 1007 if (unlikely(wc->status != IB_WC_SUCCESS)) 1008 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1009 } 1010 1011 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1012 { 1013 if (unlikely(wc->status != IB_WC_SUCCESS)) 1014 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1015 } 1016 1017 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1018 struct nvme_rdma_request *req) 1019 { 1020 struct ib_send_wr *bad_wr; 1021 struct ib_send_wr wr = { 1022 .opcode = IB_WR_LOCAL_INV, 1023 .next = NULL, 1024 .num_sge = 0, 1025 .send_flags = 0, 1026 .ex.invalidate_rkey = req->mr->rkey, 1027 }; 1028 1029 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1030 wr.wr_cqe = &req->reg_cqe; 1031 1032 return ib_post_send(queue->qp, &wr, &bad_wr); 1033 } 1034 1035 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1036 struct request *rq) 1037 { 1038 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1039 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1040 struct nvme_rdma_device *dev = queue->device; 1041 struct ib_device *ibdev = dev->dev; 1042 int res; 1043 1044 if (!blk_rq_bytes(rq)) 1045 return; 1046 1047 if (req->mr->need_inval && test_bit(NVME_RDMA_Q_LIVE, &req->queue->flags)) { 1048 res = nvme_rdma_inv_rkey(queue, req); 1049 if (unlikely(res < 0)) { 1050 dev_err(ctrl->ctrl.device, 1051 "Queueing INV WR for rkey %#x failed (%d)\n", 1052 req->mr->rkey, res); 1053 nvme_rdma_error_recovery(queue->ctrl); 1054 } 1055 } 1056 1057 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1058 req->nents, rq_data_dir(rq) == 1059 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1060 1061 nvme_cleanup_cmd(rq); 1062 sg_free_table_chained(&req->sg_table, true); 1063 } 1064 1065 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1066 { 1067 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1068 1069 sg->addr = 0; 1070 put_unaligned_le24(0, sg->length); 1071 put_unaligned_le32(0, sg->key); 1072 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1073 return 0; 1074 } 1075 1076 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1077 struct nvme_rdma_request *req, struct nvme_command *c) 1078 { 1079 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1080 1081 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1082 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1083 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1084 1085 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1086 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1087 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1088 1089 req->inline_data = true; 1090 req->num_sge++; 1091 return 0; 1092 } 1093 1094 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1095 struct nvme_rdma_request *req, struct nvme_command *c) 1096 { 1097 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1098 1099 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1100 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1101 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1102 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1103 return 0; 1104 } 1105 1106 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1107 struct nvme_rdma_request *req, struct nvme_command *c, 1108 int count) 1109 { 1110 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1111 int nr; 1112 1113 /* 1114 * Align the MR to a 4K page size to match the ctrl page size and 1115 * the block virtual boundary. 1116 */ 1117 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1118 if (unlikely(nr < count)) { 1119 if (nr < 0) 1120 return nr; 1121 return -EINVAL; 1122 } 1123 1124 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1125 1126 req->reg_cqe.done = nvme_rdma_memreg_done; 1127 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1128 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1129 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1130 req->reg_wr.wr.num_sge = 0; 1131 req->reg_wr.mr = req->mr; 1132 req->reg_wr.key = req->mr->rkey; 1133 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1134 IB_ACCESS_REMOTE_READ | 1135 IB_ACCESS_REMOTE_WRITE; 1136 1137 req->mr->need_inval = true; 1138 1139 sg->addr = cpu_to_le64(req->mr->iova); 1140 put_unaligned_le24(req->mr->length, sg->length); 1141 put_unaligned_le32(req->mr->rkey, sg->key); 1142 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1143 NVME_SGL_FMT_INVALIDATE; 1144 1145 return 0; 1146 } 1147 1148 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1149 struct request *rq, struct nvme_command *c) 1150 { 1151 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1152 struct nvme_rdma_device *dev = queue->device; 1153 struct ib_device *ibdev = dev->dev; 1154 int count, ret; 1155 1156 req->num_sge = 1; 1157 req->inline_data = false; 1158 req->mr->need_inval = false; 1159 1160 c->common.flags |= NVME_CMD_SGL_METABUF; 1161 1162 if (!blk_rq_bytes(rq)) 1163 return nvme_rdma_set_sg_null(c); 1164 1165 req->sg_table.sgl = req->first_sgl; 1166 ret = sg_alloc_table_chained(&req->sg_table, 1167 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1168 if (ret) 1169 return -ENOMEM; 1170 1171 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1172 1173 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1174 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1175 if (unlikely(count <= 0)) { 1176 sg_free_table_chained(&req->sg_table, true); 1177 return -EIO; 1178 } 1179 1180 if (count == 1) { 1181 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1182 blk_rq_payload_bytes(rq) <= 1183 nvme_rdma_inline_data_size(queue)) 1184 return nvme_rdma_map_sg_inline(queue, req, c); 1185 1186 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1187 return nvme_rdma_map_sg_single(queue, req, c); 1188 } 1189 1190 return nvme_rdma_map_sg_fr(queue, req, c, count); 1191 } 1192 1193 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1194 { 1195 if (unlikely(wc->status != IB_WC_SUCCESS)) 1196 nvme_rdma_wr_error(cq, wc, "SEND"); 1197 } 1198 1199 /* 1200 * We want to signal completion at least every queue depth/2. This returns the 1201 * largest power of two that is not above half of (queue size + 1) to optimize 1202 * (avoid divisions). 1203 */ 1204 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue) 1205 { 1206 int limit = 1 << ilog2((queue->queue_size + 1) / 2); 1207 1208 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0; 1209 } 1210 1211 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1212 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1213 struct ib_send_wr *first, bool flush) 1214 { 1215 struct ib_send_wr wr, *bad_wr; 1216 int ret; 1217 1218 sge->addr = qe->dma; 1219 sge->length = sizeof(struct nvme_command), 1220 sge->lkey = queue->device->pd->local_dma_lkey; 1221 1222 qe->cqe.done = nvme_rdma_send_done; 1223 1224 wr.next = NULL; 1225 wr.wr_cqe = &qe->cqe; 1226 wr.sg_list = sge; 1227 wr.num_sge = num_sge; 1228 wr.opcode = IB_WR_SEND; 1229 wr.send_flags = 0; 1230 1231 /* 1232 * Unsignalled send completions are another giant desaster in the 1233 * IB Verbs spec: If we don't regularly post signalled sends 1234 * the send queue will fill up and only a QP reset will rescue us. 1235 * Would have been way to obvious to handle this in hardware or 1236 * at least the RDMA stack.. 1237 * 1238 * Always signal the flushes. The magic request used for the flush 1239 * sequencer is not allocated in our driver's tagset and it's 1240 * triggered to be freed by blk_cleanup_queue(). So we need to 1241 * always mark it as signaled to ensure that the "wr_cqe", which is 1242 * embedded in request's payload, is not freed when __ib_process_cq() 1243 * calls wr_cqe->done(). 1244 */ 1245 if (nvme_rdma_queue_sig_limit(queue) || flush) 1246 wr.send_flags |= IB_SEND_SIGNALED; 1247 1248 if (first) 1249 first->next = ≀ 1250 else 1251 first = ≀ 1252 1253 ret = ib_post_send(queue->qp, first, &bad_wr); 1254 if (unlikely(ret)) { 1255 dev_err(queue->ctrl->ctrl.device, 1256 "%s failed with error code %d\n", __func__, ret); 1257 } 1258 return ret; 1259 } 1260 1261 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1262 struct nvme_rdma_qe *qe) 1263 { 1264 struct ib_recv_wr wr, *bad_wr; 1265 struct ib_sge list; 1266 int ret; 1267 1268 list.addr = qe->dma; 1269 list.length = sizeof(struct nvme_completion); 1270 list.lkey = queue->device->pd->local_dma_lkey; 1271 1272 qe->cqe.done = nvme_rdma_recv_done; 1273 1274 wr.next = NULL; 1275 wr.wr_cqe = &qe->cqe; 1276 wr.sg_list = &list; 1277 wr.num_sge = 1; 1278 1279 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1280 if (unlikely(ret)) { 1281 dev_err(queue->ctrl->ctrl.device, 1282 "%s failed with error code %d\n", __func__, ret); 1283 } 1284 return ret; 1285 } 1286 1287 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1288 { 1289 u32 queue_idx = nvme_rdma_queue_idx(queue); 1290 1291 if (queue_idx == 0) 1292 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1293 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1294 } 1295 1296 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1297 { 1298 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1299 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1300 struct ib_device *dev = queue->device->dev; 1301 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1302 struct nvme_command *cmd = sqe->data; 1303 struct ib_sge sge; 1304 int ret; 1305 1306 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1307 1308 memset(cmd, 0, sizeof(*cmd)); 1309 cmd->common.opcode = nvme_admin_async_event; 1310 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1311 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1312 nvme_rdma_set_sg_null(cmd); 1313 1314 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1315 DMA_TO_DEVICE); 1316 1317 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1318 WARN_ON_ONCE(ret); 1319 } 1320 1321 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1322 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1323 { 1324 struct request *rq; 1325 struct nvme_rdma_request *req; 1326 int ret = 0; 1327 1328 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1329 if (!rq) { 1330 dev_err(queue->ctrl->ctrl.device, 1331 "tag 0x%x on QP %#x not found\n", 1332 cqe->command_id, queue->qp->qp_num); 1333 nvme_rdma_error_recovery(queue->ctrl); 1334 return ret; 1335 } 1336 req = blk_mq_rq_to_pdu(rq); 1337 1338 if (rq->tag == tag) 1339 ret = 1; 1340 1341 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1342 wc->ex.invalidate_rkey == req->mr->rkey) 1343 req->mr->need_inval = false; 1344 1345 nvme_end_request(rq, cqe->status, cqe->result); 1346 return ret; 1347 } 1348 1349 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1350 { 1351 struct nvme_rdma_qe *qe = 1352 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1353 struct nvme_rdma_queue *queue = cq->cq_context; 1354 struct ib_device *ibdev = queue->device->dev; 1355 struct nvme_completion *cqe = qe->data; 1356 const size_t len = sizeof(struct nvme_completion); 1357 int ret = 0; 1358 1359 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1360 nvme_rdma_wr_error(cq, wc, "RECV"); 1361 return 0; 1362 } 1363 1364 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1365 /* 1366 * AEN requests are special as they don't time out and can 1367 * survive any kind of queue freeze and often don't respond to 1368 * aborts. We don't even bother to allocate a struct request 1369 * for them but rather special case them here. 1370 */ 1371 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1372 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1373 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1374 &cqe->result); 1375 else 1376 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1377 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1378 1379 nvme_rdma_post_recv(queue, qe); 1380 return ret; 1381 } 1382 1383 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1384 { 1385 __nvme_rdma_recv_done(cq, wc, -1); 1386 } 1387 1388 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1389 { 1390 int ret, i; 1391 1392 for (i = 0; i < queue->queue_size; i++) { 1393 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1394 if (ret) 1395 goto out_destroy_queue_ib; 1396 } 1397 1398 return 0; 1399 1400 out_destroy_queue_ib: 1401 nvme_rdma_destroy_queue_ib(queue); 1402 return ret; 1403 } 1404 1405 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1406 struct rdma_cm_event *ev) 1407 { 1408 struct rdma_cm_id *cm_id = queue->cm_id; 1409 int status = ev->status; 1410 const char *rej_msg; 1411 const struct nvme_rdma_cm_rej *rej_data; 1412 u8 rej_data_len; 1413 1414 rej_msg = rdma_reject_msg(cm_id, status); 1415 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1416 1417 if (rej_data && rej_data_len >= sizeof(u16)) { 1418 u16 sts = le16_to_cpu(rej_data->sts); 1419 1420 dev_err(queue->ctrl->ctrl.device, 1421 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1422 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1423 } else { 1424 dev_err(queue->ctrl->ctrl.device, 1425 "Connect rejected: status %d (%s).\n", status, rej_msg); 1426 } 1427 1428 return -ECONNRESET; 1429 } 1430 1431 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1432 { 1433 int ret; 1434 1435 ret = nvme_rdma_create_queue_ib(queue); 1436 if (ret) 1437 return ret; 1438 1439 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1440 if (ret) { 1441 dev_err(queue->ctrl->ctrl.device, 1442 "rdma_resolve_route failed (%d).\n", 1443 queue->cm_error); 1444 goto out_destroy_queue; 1445 } 1446 1447 return 0; 1448 1449 out_destroy_queue: 1450 nvme_rdma_destroy_queue_ib(queue); 1451 return ret; 1452 } 1453 1454 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1455 { 1456 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1457 struct rdma_conn_param param = { }; 1458 struct nvme_rdma_cm_req priv = { }; 1459 int ret; 1460 1461 param.qp_num = queue->qp->qp_num; 1462 param.flow_control = 1; 1463 1464 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1465 /* maximum retry count */ 1466 param.retry_count = 7; 1467 param.rnr_retry_count = 7; 1468 param.private_data = &priv; 1469 param.private_data_len = sizeof(priv); 1470 1471 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1472 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1473 /* 1474 * set the admin queue depth to the minimum size 1475 * specified by the Fabrics standard. 1476 */ 1477 if (priv.qid == 0) { 1478 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1479 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1480 } else { 1481 /* 1482 * current interpretation of the fabrics spec 1483 * is at minimum you make hrqsize sqsize+1, or a 1484 * 1's based representation of sqsize. 1485 */ 1486 priv.hrqsize = cpu_to_le16(queue->queue_size); 1487 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1488 } 1489 1490 ret = rdma_connect(queue->cm_id, ¶m); 1491 if (ret) { 1492 dev_err(ctrl->ctrl.device, 1493 "rdma_connect failed (%d).\n", ret); 1494 goto out_destroy_queue_ib; 1495 } 1496 1497 return 0; 1498 1499 out_destroy_queue_ib: 1500 nvme_rdma_destroy_queue_ib(queue); 1501 return ret; 1502 } 1503 1504 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1505 struct rdma_cm_event *ev) 1506 { 1507 struct nvme_rdma_queue *queue = cm_id->context; 1508 int cm_error = 0; 1509 1510 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1511 rdma_event_msg(ev->event), ev->event, 1512 ev->status, cm_id); 1513 1514 switch (ev->event) { 1515 case RDMA_CM_EVENT_ADDR_RESOLVED: 1516 cm_error = nvme_rdma_addr_resolved(queue); 1517 break; 1518 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1519 cm_error = nvme_rdma_route_resolved(queue); 1520 break; 1521 case RDMA_CM_EVENT_ESTABLISHED: 1522 queue->cm_error = nvme_rdma_conn_established(queue); 1523 /* complete cm_done regardless of success/failure */ 1524 complete(&queue->cm_done); 1525 return 0; 1526 case RDMA_CM_EVENT_REJECTED: 1527 nvme_rdma_destroy_queue_ib(queue); 1528 cm_error = nvme_rdma_conn_rejected(queue, ev); 1529 break; 1530 case RDMA_CM_EVENT_ROUTE_ERROR: 1531 case RDMA_CM_EVENT_CONNECT_ERROR: 1532 case RDMA_CM_EVENT_UNREACHABLE: 1533 nvme_rdma_destroy_queue_ib(queue); 1534 case RDMA_CM_EVENT_ADDR_ERROR: 1535 dev_dbg(queue->ctrl->ctrl.device, 1536 "CM error event %d\n", ev->event); 1537 cm_error = -ECONNRESET; 1538 break; 1539 case RDMA_CM_EVENT_DISCONNECTED: 1540 case RDMA_CM_EVENT_ADDR_CHANGE: 1541 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1542 dev_dbg(queue->ctrl->ctrl.device, 1543 "disconnect received - connection closed\n"); 1544 nvme_rdma_error_recovery(queue->ctrl); 1545 break; 1546 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1547 /* device removal is handled via the ib_client API */ 1548 break; 1549 default: 1550 dev_err(queue->ctrl->ctrl.device, 1551 "Unexpected RDMA CM event (%d)\n", ev->event); 1552 nvme_rdma_error_recovery(queue->ctrl); 1553 break; 1554 } 1555 1556 if (cm_error) { 1557 queue->cm_error = cm_error; 1558 complete(&queue->cm_done); 1559 } 1560 1561 return 0; 1562 } 1563 1564 static enum blk_eh_timer_return 1565 nvme_rdma_timeout(struct request *rq, bool reserved) 1566 { 1567 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1568 1569 dev_warn(req->queue->ctrl->ctrl.device, 1570 "I/O %d QID %d timeout, reset controller\n", 1571 rq->tag, nvme_rdma_queue_idx(req->queue)); 1572 1573 /* queue error recovery */ 1574 nvme_rdma_error_recovery(req->queue->ctrl); 1575 1576 /* fail with DNR on cmd timeout */ 1577 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1578 1579 return BLK_EH_HANDLED; 1580 } 1581 1582 /* 1583 * We cannot accept any other command until the Connect command has completed. 1584 */ 1585 static inline blk_status_t 1586 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1587 { 1588 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1589 struct nvme_command *cmd = nvme_req(rq)->cmd; 1590 1591 if (!blk_rq_is_passthrough(rq) || 1592 cmd->common.opcode != nvme_fabrics_command || 1593 cmd->fabrics.fctype != nvme_fabrics_type_connect) { 1594 /* 1595 * reconnecting state means transport disruption, which 1596 * can take a long time and even might fail permanently, 1597 * so we can't let incoming I/O be requeued forever. 1598 * fail it fast to allow upper layers a chance to 1599 * failover. 1600 */ 1601 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING) 1602 return BLK_STS_IOERR; 1603 return BLK_STS_RESOURCE; /* try again later */ 1604 } 1605 } 1606 1607 return 0; 1608 } 1609 1610 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1611 const struct blk_mq_queue_data *bd) 1612 { 1613 struct nvme_ns *ns = hctx->queue->queuedata; 1614 struct nvme_rdma_queue *queue = hctx->driver_data; 1615 struct request *rq = bd->rq; 1616 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1617 struct nvme_rdma_qe *sqe = &req->sqe; 1618 struct nvme_command *c = sqe->data; 1619 bool flush = false; 1620 struct ib_device *dev; 1621 blk_status_t ret; 1622 int err; 1623 1624 WARN_ON_ONCE(rq->tag < 0); 1625 1626 ret = nvme_rdma_queue_is_ready(queue, rq); 1627 if (unlikely(ret)) 1628 return ret; 1629 1630 dev = queue->device->dev; 1631 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1632 sizeof(struct nvme_command), DMA_TO_DEVICE); 1633 1634 ret = nvme_setup_cmd(ns, rq, c); 1635 if (ret) 1636 return ret; 1637 1638 blk_mq_start_request(rq); 1639 1640 err = nvme_rdma_map_data(queue, rq, c); 1641 if (unlikely(err < 0)) { 1642 dev_err(queue->ctrl->ctrl.device, 1643 "Failed to map data (%d)\n", err); 1644 nvme_cleanup_cmd(rq); 1645 goto err; 1646 } 1647 1648 ib_dma_sync_single_for_device(dev, sqe->dma, 1649 sizeof(struct nvme_command), DMA_TO_DEVICE); 1650 1651 if (req_op(rq) == REQ_OP_FLUSH) 1652 flush = true; 1653 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1654 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1655 if (unlikely(err)) { 1656 nvme_rdma_unmap_data(queue, rq); 1657 goto err; 1658 } 1659 1660 return BLK_STS_OK; 1661 err: 1662 if (err == -ENOMEM || err == -EAGAIN) 1663 return BLK_STS_RESOURCE; 1664 return BLK_STS_IOERR; 1665 } 1666 1667 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1668 { 1669 struct nvme_rdma_queue *queue = hctx->driver_data; 1670 struct ib_cq *cq = queue->ib_cq; 1671 struct ib_wc wc; 1672 int found = 0; 1673 1674 while (ib_poll_cq(cq, 1, &wc) > 0) { 1675 struct ib_cqe *cqe = wc.wr_cqe; 1676 1677 if (cqe) { 1678 if (cqe->done == nvme_rdma_recv_done) 1679 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1680 else 1681 cqe->done(cq, &wc); 1682 } 1683 } 1684 1685 return found; 1686 } 1687 1688 static void nvme_rdma_complete_rq(struct request *rq) 1689 { 1690 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1691 1692 nvme_rdma_unmap_data(req->queue, rq); 1693 nvme_complete_rq(rq); 1694 } 1695 1696 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1697 { 1698 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1699 1700 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1701 } 1702 1703 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1704 .queue_rq = nvme_rdma_queue_rq, 1705 .complete = nvme_rdma_complete_rq, 1706 .init_request = nvme_rdma_init_request, 1707 .exit_request = nvme_rdma_exit_request, 1708 .init_hctx = nvme_rdma_init_hctx, 1709 .poll = nvme_rdma_poll, 1710 .timeout = nvme_rdma_timeout, 1711 .map_queues = nvme_rdma_map_queues, 1712 }; 1713 1714 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1715 .queue_rq = nvme_rdma_queue_rq, 1716 .complete = nvme_rdma_complete_rq, 1717 .init_request = nvme_rdma_init_request, 1718 .exit_request = nvme_rdma_exit_request, 1719 .init_hctx = nvme_rdma_init_admin_hctx, 1720 .timeout = nvme_rdma_timeout, 1721 }; 1722 1723 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1724 { 1725 cancel_work_sync(&ctrl->err_work); 1726 cancel_delayed_work_sync(&ctrl->reconnect_work); 1727 1728 if (ctrl->ctrl.queue_count > 1) { 1729 nvme_stop_queues(&ctrl->ctrl); 1730 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1731 nvme_cancel_request, &ctrl->ctrl); 1732 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1733 } 1734 1735 if (shutdown) 1736 nvme_shutdown_ctrl(&ctrl->ctrl); 1737 else 1738 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1739 1740 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1741 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1742 nvme_cancel_request, &ctrl->ctrl); 1743 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1744 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1745 } 1746 1747 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1748 { 1749 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1750 } 1751 1752 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1753 { 1754 struct nvme_rdma_ctrl *ctrl = 1755 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1756 int ret; 1757 bool changed; 1758 1759 nvme_stop_ctrl(&ctrl->ctrl); 1760 nvme_rdma_shutdown_ctrl(ctrl, false); 1761 1762 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1763 if (ret) 1764 goto out_fail; 1765 1766 if (ctrl->ctrl.queue_count > 1) { 1767 ret = nvme_rdma_configure_io_queues(ctrl, false); 1768 if (ret) 1769 goto out_fail; 1770 } 1771 1772 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1773 if (!changed) { 1774 /* state change failure is ok if we're in DELETING state */ 1775 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1776 return; 1777 } 1778 1779 nvme_start_ctrl(&ctrl->ctrl); 1780 1781 return; 1782 1783 out_fail: 1784 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1785 nvme_remove_namespaces(&ctrl->ctrl); 1786 nvme_rdma_shutdown_ctrl(ctrl, true); 1787 nvme_uninit_ctrl(&ctrl->ctrl); 1788 nvme_put_ctrl(&ctrl->ctrl); 1789 } 1790 1791 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1792 .name = "rdma", 1793 .module = THIS_MODULE, 1794 .flags = NVME_F_FABRICS, 1795 .reg_read32 = nvmf_reg_read32, 1796 .reg_read64 = nvmf_reg_read64, 1797 .reg_write32 = nvmf_reg_write32, 1798 .free_ctrl = nvme_rdma_free_ctrl, 1799 .submit_async_event = nvme_rdma_submit_async_event, 1800 .delete_ctrl = nvme_rdma_delete_ctrl, 1801 .get_address = nvmf_get_address, 1802 .reinit_request = nvme_rdma_reinit_request, 1803 }; 1804 1805 static inline bool 1806 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1807 struct nvmf_ctrl_options *opts) 1808 { 1809 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1810 1811 1812 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1813 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1814 return false; 1815 1816 if (opts->mask & NVMF_OPT_TRSVCID && 1817 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1818 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1819 return false; 1820 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1821 if (strcmp(opts->trsvcid, stdport)) 1822 return false; 1823 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1824 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1825 return false; 1826 } 1827 /* else, it's a match as both have stdport. Fall to next checks */ 1828 1829 /* 1830 * checking the local address is rough. In most cases, one 1831 * is not specified and the host port is selected by the stack. 1832 * 1833 * Assume no match if: 1834 * local address is specified and address is not the same 1835 * local address is not specified but remote is, or vice versa 1836 * (admin using specific host_traddr when it matters). 1837 */ 1838 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1839 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1840 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1841 return false; 1842 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1843 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1844 return false; 1845 /* 1846 * if neither controller had an host port specified, assume it's 1847 * a match as everything else matched. 1848 */ 1849 1850 return true; 1851 } 1852 1853 /* 1854 * Fails a connection request if it matches an existing controller 1855 * (association) with the same tuple: 1856 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1857 * 1858 * if local address is not specified in the request, it will match an 1859 * existing controller with all the other parameters the same and no 1860 * local port address specified as well. 1861 * 1862 * The ports don't need to be compared as they are intrinsically 1863 * already matched by the port pointers supplied. 1864 */ 1865 static bool 1866 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1867 { 1868 struct nvme_rdma_ctrl *ctrl; 1869 bool found = false; 1870 1871 mutex_lock(&nvme_rdma_ctrl_mutex); 1872 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1873 found = __nvme_rdma_options_match(ctrl, opts); 1874 if (found) 1875 break; 1876 } 1877 mutex_unlock(&nvme_rdma_ctrl_mutex); 1878 1879 return found; 1880 } 1881 1882 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1883 struct nvmf_ctrl_options *opts) 1884 { 1885 struct nvme_rdma_ctrl *ctrl; 1886 int ret; 1887 bool changed; 1888 char *port; 1889 1890 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1891 if (!ctrl) 1892 return ERR_PTR(-ENOMEM); 1893 ctrl->ctrl.opts = opts; 1894 INIT_LIST_HEAD(&ctrl->list); 1895 1896 if (opts->mask & NVMF_OPT_TRSVCID) 1897 port = opts->trsvcid; 1898 else 1899 port = __stringify(NVME_RDMA_IP_PORT); 1900 1901 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1902 opts->traddr, port, &ctrl->addr); 1903 if (ret) { 1904 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1905 goto out_free_ctrl; 1906 } 1907 1908 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1909 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1910 opts->host_traddr, NULL, &ctrl->src_addr); 1911 if (ret) { 1912 pr_err("malformed src address passed: %s\n", 1913 opts->host_traddr); 1914 goto out_free_ctrl; 1915 } 1916 } 1917 1918 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1919 ret = -EALREADY; 1920 goto out_free_ctrl; 1921 } 1922 1923 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1924 0 /* no quirks, we're perfect! */); 1925 if (ret) 1926 goto out_free_ctrl; 1927 1928 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1929 nvme_rdma_reconnect_ctrl_work); 1930 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1931 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1932 1933 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1934 ctrl->ctrl.sqsize = opts->queue_size - 1; 1935 ctrl->ctrl.kato = opts->kato; 1936 1937 ret = -ENOMEM; 1938 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1939 GFP_KERNEL); 1940 if (!ctrl->queues) 1941 goto out_uninit_ctrl; 1942 1943 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1944 if (ret) 1945 goto out_kfree_queues; 1946 1947 /* sanity check icdoff */ 1948 if (ctrl->ctrl.icdoff) { 1949 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1950 ret = -EINVAL; 1951 goto out_remove_admin_queue; 1952 } 1953 1954 /* sanity check keyed sgls */ 1955 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1956 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1957 ret = -EINVAL; 1958 goto out_remove_admin_queue; 1959 } 1960 1961 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1962 /* warn if maxcmd is lower than queue_size */ 1963 dev_warn(ctrl->ctrl.device, 1964 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1965 opts->queue_size, ctrl->ctrl.maxcmd); 1966 opts->queue_size = ctrl->ctrl.maxcmd; 1967 } 1968 1969 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1970 /* warn if sqsize is lower than queue_size */ 1971 dev_warn(ctrl->ctrl.device, 1972 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1973 opts->queue_size, ctrl->ctrl.sqsize + 1); 1974 opts->queue_size = ctrl->ctrl.sqsize + 1; 1975 } 1976 1977 if (opts->nr_io_queues) { 1978 ret = nvme_rdma_configure_io_queues(ctrl, true); 1979 if (ret) 1980 goto out_remove_admin_queue; 1981 } 1982 1983 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1984 WARN_ON_ONCE(!changed); 1985 1986 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1987 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1988 1989 nvme_get_ctrl(&ctrl->ctrl); 1990 1991 mutex_lock(&nvme_rdma_ctrl_mutex); 1992 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1993 mutex_unlock(&nvme_rdma_ctrl_mutex); 1994 1995 nvme_start_ctrl(&ctrl->ctrl); 1996 1997 return &ctrl->ctrl; 1998 1999 out_remove_admin_queue: 2000 nvme_rdma_destroy_admin_queue(ctrl, true); 2001 out_kfree_queues: 2002 kfree(ctrl->queues); 2003 out_uninit_ctrl: 2004 nvme_uninit_ctrl(&ctrl->ctrl); 2005 nvme_put_ctrl(&ctrl->ctrl); 2006 if (ret > 0) 2007 ret = -EIO; 2008 return ERR_PTR(ret); 2009 out_free_ctrl: 2010 kfree(ctrl); 2011 return ERR_PTR(ret); 2012 } 2013 2014 static struct nvmf_transport_ops nvme_rdma_transport = { 2015 .name = "rdma", 2016 .required_opts = NVMF_OPT_TRADDR, 2017 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2018 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2019 .create_ctrl = nvme_rdma_create_ctrl, 2020 }; 2021 2022 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2023 { 2024 struct nvme_rdma_ctrl *ctrl; 2025 2026 /* Delete all controllers using this device */ 2027 mutex_lock(&nvme_rdma_ctrl_mutex); 2028 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2029 if (ctrl->device->dev != ib_device) 2030 continue; 2031 dev_info(ctrl->ctrl.device, 2032 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2033 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2034 nvme_delete_ctrl(&ctrl->ctrl); 2035 } 2036 mutex_unlock(&nvme_rdma_ctrl_mutex); 2037 2038 flush_workqueue(nvme_wq); 2039 } 2040 2041 static struct ib_client nvme_rdma_ib_client = { 2042 .name = "nvme_rdma", 2043 .remove = nvme_rdma_remove_one 2044 }; 2045 2046 static int __init nvme_rdma_init_module(void) 2047 { 2048 int ret; 2049 2050 ret = ib_register_client(&nvme_rdma_ib_client); 2051 if (ret) 2052 return ret; 2053 2054 ret = nvmf_register_transport(&nvme_rdma_transport); 2055 if (ret) 2056 goto err_unreg_client; 2057 2058 return 0; 2059 2060 err_unreg_client: 2061 ib_unregister_client(&nvme_rdma_ib_client); 2062 return ret; 2063 } 2064 2065 static void __exit nvme_rdma_cleanup_module(void) 2066 { 2067 nvmf_unregister_transport(&nvme_rdma_transport); 2068 ib_unregister_client(&nvme_rdma_ib_client); 2069 } 2070 2071 module_init(nvme_rdma_init_module); 2072 module_exit(nvme_rdma_cleanup_module); 2073 2074 MODULE_LICENSE("GPL v2"); 2075