1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/once.h> 22 #include <linux/pci.h> 23 #include <linux/suspend.h> 24 #include <linux/t10-pi.h> 25 #include <linux/types.h> 26 #include <linux/io-64-nonatomic-lo-hi.h> 27 #include <linux/io-64-nonatomic-hi-lo.h> 28 #include <linux/sed-opal.h> 29 #include <linux/pci-p2pdma.h> 30 31 #include "trace.h" 32 #include "nvme.h" 33 34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 36 37 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 38 39 /* 40 * These can be higher, but we need to ensure that any command doesn't 41 * require an sg allocation that needs more than a page of data. 42 */ 43 #define NVME_MAX_KB_SZ 4096 44 #define NVME_MAX_SEGS 127 45 46 static int use_threaded_interrupts; 47 module_param(use_threaded_interrupts, int, 0); 48 49 static bool use_cmb_sqes = true; 50 module_param(use_cmb_sqes, bool, 0444); 51 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 52 53 static unsigned int max_host_mem_size_mb = 128; 54 module_param(max_host_mem_size_mb, uint, 0444); 55 MODULE_PARM_DESC(max_host_mem_size_mb, 56 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 57 58 static unsigned int sgl_threshold = SZ_32K; 59 module_param(sgl_threshold, uint, 0644); 60 MODULE_PARM_DESC(sgl_threshold, 61 "Use SGLs when average request segment size is larger or equal to " 62 "this size. Use 0 to disable SGLs."); 63 64 #define NVME_PCI_MIN_QUEUE_SIZE 2 65 #define NVME_PCI_MAX_QUEUE_SIZE 4095 66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 67 static const struct kernel_param_ops io_queue_depth_ops = { 68 .set = io_queue_depth_set, 69 .get = param_get_uint, 70 }; 71 72 static unsigned int io_queue_depth = 1024; 73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 75 76 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 77 { 78 unsigned int n; 79 int ret; 80 81 ret = kstrtouint(val, 10, &n); 82 if (ret != 0 || n > num_possible_cpus()) 83 return -EINVAL; 84 return param_set_uint(val, kp); 85 } 86 87 static const struct kernel_param_ops io_queue_count_ops = { 88 .set = io_queue_count_set, 89 .get = param_get_uint, 90 }; 91 92 static unsigned int write_queues; 93 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 94 MODULE_PARM_DESC(write_queues, 95 "Number of queues to use for writes. If not set, reads and writes " 96 "will share a queue set."); 97 98 static unsigned int poll_queues; 99 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 100 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 101 102 static bool noacpi; 103 module_param(noacpi, bool, 0444); 104 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 105 106 struct nvme_dev; 107 struct nvme_queue; 108 109 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 110 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 111 112 /* 113 * Represents an NVM Express device. Each nvme_dev is a PCI function. 114 */ 115 struct nvme_dev { 116 struct nvme_queue *queues; 117 struct blk_mq_tag_set tagset; 118 struct blk_mq_tag_set admin_tagset; 119 u32 __iomem *dbs; 120 struct device *dev; 121 struct dma_pool *prp_page_pool; 122 struct dma_pool *prp_small_pool; 123 unsigned online_queues; 124 unsigned max_qid; 125 unsigned io_queues[HCTX_MAX_TYPES]; 126 unsigned int num_vecs; 127 u32 q_depth; 128 int io_sqes; 129 u32 db_stride; 130 void __iomem *bar; 131 unsigned long bar_mapped_size; 132 struct work_struct remove_work; 133 struct mutex shutdown_lock; 134 bool subsystem; 135 u64 cmb_size; 136 bool cmb_use_sqes; 137 u32 cmbsz; 138 u32 cmbloc; 139 struct nvme_ctrl ctrl; 140 u32 last_ps; 141 bool hmb; 142 143 mempool_t *iod_mempool; 144 145 /* shadow doorbell buffer support: */ 146 u32 *dbbuf_dbs; 147 dma_addr_t dbbuf_dbs_dma_addr; 148 u32 *dbbuf_eis; 149 dma_addr_t dbbuf_eis_dma_addr; 150 151 /* host memory buffer support: */ 152 u64 host_mem_size; 153 u32 nr_host_mem_descs; 154 dma_addr_t host_mem_descs_dma; 155 struct nvme_host_mem_buf_desc *host_mem_descs; 156 void **host_mem_desc_bufs; 157 unsigned int nr_allocated_queues; 158 unsigned int nr_write_queues; 159 unsigned int nr_poll_queues; 160 161 bool attrs_added; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 u32 *dbbuf_sq_db; 213 u32 *dbbuf_cq_db; 214 u32 *dbbuf_sq_ei; 215 u32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 /* 220 * The nvme_iod describes the data in an I/O. 221 * 222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 223 * to the actual struct scatterlist. 224 */ 225 struct nvme_iod { 226 struct nvme_request req; 227 struct nvme_command cmd; 228 struct nvme_queue *nvmeq; 229 bool use_sgl; 230 int aborted; 231 int npages; /* In the PRP list. 0 means small pool in use */ 232 int nents; /* Used in scatterlist */ 233 dma_addr_t first_dma; 234 unsigned int dma_len; /* length of single DMA segment mapping */ 235 dma_addr_t meta_dma; 236 struct scatterlist *sg; 237 }; 238 239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 240 { 241 return dev->nr_allocated_queues * 8 * dev->db_stride; 242 } 243 244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 245 { 246 unsigned int mem_size = nvme_dbbuf_size(dev); 247 248 if (dev->dbbuf_dbs) 249 return 0; 250 251 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 252 &dev->dbbuf_dbs_dma_addr, 253 GFP_KERNEL); 254 if (!dev->dbbuf_dbs) 255 return -ENOMEM; 256 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 257 &dev->dbbuf_eis_dma_addr, 258 GFP_KERNEL); 259 if (!dev->dbbuf_eis) { 260 dma_free_coherent(dev->dev, mem_size, 261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 262 dev->dbbuf_dbs = NULL; 263 return -ENOMEM; 264 } 265 266 return 0; 267 } 268 269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 270 { 271 unsigned int mem_size = nvme_dbbuf_size(dev); 272 273 if (dev->dbbuf_dbs) { 274 dma_free_coherent(dev->dev, mem_size, 275 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 276 dev->dbbuf_dbs = NULL; 277 } 278 if (dev->dbbuf_eis) { 279 dma_free_coherent(dev->dev, mem_size, 280 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 281 dev->dbbuf_eis = NULL; 282 } 283 } 284 285 static void nvme_dbbuf_init(struct nvme_dev *dev, 286 struct nvme_queue *nvmeq, int qid) 287 { 288 if (!dev->dbbuf_dbs || !qid) 289 return; 290 291 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 292 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 293 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 294 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 295 } 296 297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 298 { 299 if (!nvmeq->qid) 300 return; 301 302 nvmeq->dbbuf_sq_db = NULL; 303 nvmeq->dbbuf_cq_db = NULL; 304 nvmeq->dbbuf_sq_ei = NULL; 305 nvmeq->dbbuf_cq_ei = NULL; 306 } 307 308 static void nvme_dbbuf_set(struct nvme_dev *dev) 309 { 310 struct nvme_command c = { }; 311 unsigned int i; 312 313 if (!dev->dbbuf_dbs) 314 return; 315 316 c.dbbuf.opcode = nvme_admin_dbbuf; 317 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 318 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 319 320 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 321 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 322 /* Free memory and continue on */ 323 nvme_dbbuf_dma_free(dev); 324 325 for (i = 1; i <= dev->online_queues; i++) 326 nvme_dbbuf_free(&dev->queues[i]); 327 } 328 } 329 330 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 331 { 332 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 333 } 334 335 /* Update dbbuf and return true if an MMIO is required */ 336 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 337 volatile u32 *dbbuf_ei) 338 { 339 if (dbbuf_db) { 340 u16 old_value; 341 342 /* 343 * Ensure that the queue is written before updating 344 * the doorbell in memory 345 */ 346 wmb(); 347 348 old_value = *dbbuf_db; 349 *dbbuf_db = value; 350 351 /* 352 * Ensure that the doorbell is updated before reading the event 353 * index from memory. The controller needs to provide similar 354 * ordering to ensure the envent index is updated before reading 355 * the doorbell. 356 */ 357 mb(); 358 359 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 360 return false; 361 } 362 363 return true; 364 } 365 366 /* 367 * Will slightly overestimate the number of pages needed. This is OK 368 * as it only leads to a small amount of wasted memory for the lifetime of 369 * the I/O. 370 */ 371 static int nvme_pci_npages_prp(void) 372 { 373 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 374 NVME_CTRL_PAGE_SIZE); 375 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 376 } 377 378 /* 379 * Calculates the number of pages needed for the SGL segments. For example a 4k 380 * page can accommodate 256 SGL descriptors. 381 */ 382 static int nvme_pci_npages_sgl(void) 383 { 384 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 385 PAGE_SIZE); 386 } 387 388 static size_t nvme_pci_iod_alloc_size(void) 389 { 390 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 391 392 return sizeof(__le64 *) * npages + 393 sizeof(struct scatterlist) * NVME_MAX_SEGS; 394 } 395 396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 397 unsigned int hctx_idx) 398 { 399 struct nvme_dev *dev = data; 400 struct nvme_queue *nvmeq = &dev->queues[0]; 401 402 WARN_ON(hctx_idx != 0); 403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 404 405 hctx->driver_data = nvmeq; 406 return 0; 407 } 408 409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 410 unsigned int hctx_idx) 411 { 412 struct nvme_dev *dev = data; 413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 414 415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 416 hctx->driver_data = nvmeq; 417 return 0; 418 } 419 420 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 421 unsigned int hctx_idx, unsigned int numa_node) 422 { 423 struct nvme_dev *dev = set->driver_data; 424 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 425 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 426 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 427 428 BUG_ON(!nvmeq); 429 iod->nvmeq = nvmeq; 430 431 nvme_req(req)->ctrl = &dev->ctrl; 432 nvme_req(req)->cmd = &iod->cmd; 433 return 0; 434 } 435 436 static int queue_irq_offset(struct nvme_dev *dev) 437 { 438 /* if we have more than 1 vec, admin queue offsets us by 1 */ 439 if (dev->num_vecs > 1) 440 return 1; 441 442 return 0; 443 } 444 445 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 446 { 447 struct nvme_dev *dev = set->driver_data; 448 int i, qoff, offset; 449 450 offset = queue_irq_offset(dev); 451 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 452 struct blk_mq_queue_map *map = &set->map[i]; 453 454 map->nr_queues = dev->io_queues[i]; 455 if (!map->nr_queues) { 456 BUG_ON(i == HCTX_TYPE_DEFAULT); 457 continue; 458 } 459 460 /* 461 * The poll queue(s) doesn't have an IRQ (and hence IRQ 462 * affinity), so use the regular blk-mq cpu mapping 463 */ 464 map->queue_offset = qoff; 465 if (i != HCTX_TYPE_POLL && offset) 466 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 467 else 468 blk_mq_map_queues(map); 469 qoff += map->nr_queues; 470 offset += map->nr_queues; 471 } 472 473 return 0; 474 } 475 476 /* 477 * Write sq tail if we are asked to, or if the next command would wrap. 478 */ 479 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 480 { 481 if (!write_sq) { 482 u16 next_tail = nvmeq->sq_tail + 1; 483 484 if (next_tail == nvmeq->q_depth) 485 next_tail = 0; 486 if (next_tail != nvmeq->last_sq_tail) 487 return; 488 } 489 490 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 491 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 492 writel(nvmeq->sq_tail, nvmeq->q_db); 493 nvmeq->last_sq_tail = nvmeq->sq_tail; 494 } 495 496 /** 497 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 498 * @nvmeq: The queue to use 499 * @cmd: The command to send 500 * @write_sq: whether to write to the SQ doorbell 501 */ 502 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 503 bool write_sq) 504 { 505 spin_lock(&nvmeq->sq_lock); 506 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 507 cmd, sizeof(*cmd)); 508 if (++nvmeq->sq_tail == nvmeq->q_depth) 509 nvmeq->sq_tail = 0; 510 nvme_write_sq_db(nvmeq, write_sq); 511 spin_unlock(&nvmeq->sq_lock); 512 } 513 514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 515 { 516 struct nvme_queue *nvmeq = hctx->driver_data; 517 518 spin_lock(&nvmeq->sq_lock); 519 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 520 nvme_write_sq_db(nvmeq, true); 521 spin_unlock(&nvmeq->sq_lock); 522 } 523 524 static void **nvme_pci_iod_list(struct request *req) 525 { 526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 527 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 528 } 529 530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 531 { 532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 533 int nseg = blk_rq_nr_phys_segments(req); 534 unsigned int avg_seg_size; 535 536 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 537 538 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 539 return false; 540 if (!iod->nvmeq->qid) 541 return false; 542 if (!sgl_threshold || avg_seg_size < sgl_threshold) 543 return false; 544 return true; 545 } 546 547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 548 { 549 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 550 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 551 dma_addr_t dma_addr = iod->first_dma; 552 int i; 553 554 for (i = 0; i < iod->npages; i++) { 555 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 556 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 557 558 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 559 dma_addr = next_dma_addr; 560 } 561 } 562 563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 564 { 565 const int last_sg = SGES_PER_PAGE - 1; 566 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 567 dma_addr_t dma_addr = iod->first_dma; 568 int i; 569 570 for (i = 0; i < iod->npages; i++) { 571 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 572 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 573 574 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 575 dma_addr = next_dma_addr; 576 } 577 } 578 579 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) 580 { 581 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 582 583 if (is_pci_p2pdma_page(sg_page(iod->sg))) 584 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 585 rq_dma_dir(req)); 586 else 587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 588 } 589 590 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 591 { 592 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 593 594 if (iod->dma_len) { 595 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 596 rq_dma_dir(req)); 597 return; 598 } 599 600 WARN_ON_ONCE(!iod->nents); 601 602 nvme_unmap_sg(dev, req); 603 if (iod->npages == 0) 604 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 605 iod->first_dma); 606 else if (iod->use_sgl) 607 nvme_free_sgls(dev, req); 608 else 609 nvme_free_prps(dev, req); 610 mempool_free(iod->sg, dev->iod_mempool); 611 } 612 613 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 614 { 615 int i; 616 struct scatterlist *sg; 617 618 for_each_sg(sgl, sg, nents, i) { 619 dma_addr_t phys = sg_phys(sg); 620 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 621 "dma_address:%pad dma_length:%d\n", 622 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 623 sg_dma_len(sg)); 624 } 625 } 626 627 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 628 struct request *req, struct nvme_rw_command *cmnd) 629 { 630 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 631 struct dma_pool *pool; 632 int length = blk_rq_payload_bytes(req); 633 struct scatterlist *sg = iod->sg; 634 int dma_len = sg_dma_len(sg); 635 u64 dma_addr = sg_dma_address(sg); 636 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 637 __le64 *prp_list; 638 void **list = nvme_pci_iod_list(req); 639 dma_addr_t prp_dma; 640 int nprps, i; 641 642 length -= (NVME_CTRL_PAGE_SIZE - offset); 643 if (length <= 0) { 644 iod->first_dma = 0; 645 goto done; 646 } 647 648 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 649 if (dma_len) { 650 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 651 } else { 652 sg = sg_next(sg); 653 dma_addr = sg_dma_address(sg); 654 dma_len = sg_dma_len(sg); 655 } 656 657 if (length <= NVME_CTRL_PAGE_SIZE) { 658 iod->first_dma = dma_addr; 659 goto done; 660 } 661 662 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 663 if (nprps <= (256 / 8)) { 664 pool = dev->prp_small_pool; 665 iod->npages = 0; 666 } else { 667 pool = dev->prp_page_pool; 668 iod->npages = 1; 669 } 670 671 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 672 if (!prp_list) { 673 iod->first_dma = dma_addr; 674 iod->npages = -1; 675 return BLK_STS_RESOURCE; 676 } 677 list[0] = prp_list; 678 iod->first_dma = prp_dma; 679 i = 0; 680 for (;;) { 681 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 682 __le64 *old_prp_list = prp_list; 683 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 684 if (!prp_list) 685 goto free_prps; 686 list[iod->npages++] = prp_list; 687 prp_list[0] = old_prp_list[i - 1]; 688 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 689 i = 1; 690 } 691 prp_list[i++] = cpu_to_le64(dma_addr); 692 dma_len -= NVME_CTRL_PAGE_SIZE; 693 dma_addr += NVME_CTRL_PAGE_SIZE; 694 length -= NVME_CTRL_PAGE_SIZE; 695 if (length <= 0) 696 break; 697 if (dma_len > 0) 698 continue; 699 if (unlikely(dma_len < 0)) 700 goto bad_sgl; 701 sg = sg_next(sg); 702 dma_addr = sg_dma_address(sg); 703 dma_len = sg_dma_len(sg); 704 } 705 done: 706 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 707 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 708 return BLK_STS_OK; 709 free_prps: 710 nvme_free_prps(dev, req); 711 return BLK_STS_RESOURCE; 712 bad_sgl: 713 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 714 "Invalid SGL for payload:%d nents:%d\n", 715 blk_rq_payload_bytes(req), iod->nents); 716 return BLK_STS_IOERR; 717 } 718 719 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 720 struct scatterlist *sg) 721 { 722 sge->addr = cpu_to_le64(sg_dma_address(sg)); 723 sge->length = cpu_to_le32(sg_dma_len(sg)); 724 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 725 } 726 727 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 728 dma_addr_t dma_addr, int entries) 729 { 730 sge->addr = cpu_to_le64(dma_addr); 731 if (entries < SGES_PER_PAGE) { 732 sge->length = cpu_to_le32(entries * sizeof(*sge)); 733 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 734 } else { 735 sge->length = cpu_to_le32(PAGE_SIZE); 736 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 737 } 738 } 739 740 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 741 struct request *req, struct nvme_rw_command *cmd, int entries) 742 { 743 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 744 struct dma_pool *pool; 745 struct nvme_sgl_desc *sg_list; 746 struct scatterlist *sg = iod->sg; 747 dma_addr_t sgl_dma; 748 int i = 0; 749 750 /* setting the transfer type as SGL */ 751 cmd->flags = NVME_CMD_SGL_METABUF; 752 753 if (entries == 1) { 754 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 755 return BLK_STS_OK; 756 } 757 758 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 759 pool = dev->prp_small_pool; 760 iod->npages = 0; 761 } else { 762 pool = dev->prp_page_pool; 763 iod->npages = 1; 764 } 765 766 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 767 if (!sg_list) { 768 iod->npages = -1; 769 return BLK_STS_RESOURCE; 770 } 771 772 nvme_pci_iod_list(req)[0] = sg_list; 773 iod->first_dma = sgl_dma; 774 775 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 776 777 do { 778 if (i == SGES_PER_PAGE) { 779 struct nvme_sgl_desc *old_sg_desc = sg_list; 780 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 781 782 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 783 if (!sg_list) 784 goto free_sgls; 785 786 i = 0; 787 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 788 sg_list[i++] = *link; 789 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 790 } 791 792 nvme_pci_sgl_set_data(&sg_list[i++], sg); 793 sg = sg_next(sg); 794 } while (--entries > 0); 795 796 return BLK_STS_OK; 797 free_sgls: 798 nvme_free_sgls(dev, req); 799 return BLK_STS_RESOURCE; 800 } 801 802 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 803 struct request *req, struct nvme_rw_command *cmnd, 804 struct bio_vec *bv) 805 { 806 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 807 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 808 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 809 810 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 811 if (dma_mapping_error(dev->dev, iod->first_dma)) 812 return BLK_STS_RESOURCE; 813 iod->dma_len = bv->bv_len; 814 815 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 816 if (bv->bv_len > first_prp_len) 817 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 818 return BLK_STS_OK; 819 } 820 821 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 822 struct request *req, struct nvme_rw_command *cmnd, 823 struct bio_vec *bv) 824 { 825 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 826 827 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 828 if (dma_mapping_error(dev->dev, iod->first_dma)) 829 return BLK_STS_RESOURCE; 830 iod->dma_len = bv->bv_len; 831 832 cmnd->flags = NVME_CMD_SGL_METABUF; 833 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 834 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 835 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 836 return BLK_STS_OK; 837 } 838 839 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 840 struct nvme_command *cmnd) 841 { 842 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 843 blk_status_t ret = BLK_STS_RESOURCE; 844 int nr_mapped; 845 846 if (blk_rq_nr_phys_segments(req) == 1) { 847 struct bio_vec bv = req_bvec(req); 848 849 if (!is_pci_p2pdma_page(bv.bv_page)) { 850 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 851 return nvme_setup_prp_simple(dev, req, 852 &cmnd->rw, &bv); 853 854 if (iod->nvmeq->qid && sgl_threshold && 855 nvme_ctrl_sgl_supported(&dev->ctrl)) 856 return nvme_setup_sgl_simple(dev, req, 857 &cmnd->rw, &bv); 858 } 859 } 860 861 iod->dma_len = 0; 862 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 863 if (!iod->sg) 864 return BLK_STS_RESOURCE; 865 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 866 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 867 if (!iod->nents) 868 goto out_free_sg; 869 870 if (is_pci_p2pdma_page(sg_page(iod->sg))) 871 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 872 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 873 else 874 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 875 rq_dma_dir(req), DMA_ATTR_NO_WARN); 876 if (!nr_mapped) 877 goto out_free_sg; 878 879 iod->use_sgl = nvme_pci_use_sgls(dev, req); 880 if (iod->use_sgl) 881 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 882 else 883 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 884 if (ret != BLK_STS_OK) 885 goto out_unmap_sg; 886 return BLK_STS_OK; 887 888 out_unmap_sg: 889 nvme_unmap_sg(dev, req); 890 out_free_sg: 891 mempool_free(iod->sg, dev->iod_mempool); 892 return ret; 893 } 894 895 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 896 struct nvme_command *cmnd) 897 { 898 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 899 900 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 901 rq_dma_dir(req), 0); 902 if (dma_mapping_error(dev->dev, iod->meta_dma)) 903 return BLK_STS_IOERR; 904 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 905 return BLK_STS_OK; 906 } 907 908 /* 909 * NOTE: ns is NULL when called on the admin queue. 910 */ 911 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 912 const struct blk_mq_queue_data *bd) 913 { 914 struct nvme_ns *ns = hctx->queue->queuedata; 915 struct nvme_queue *nvmeq = hctx->driver_data; 916 struct nvme_dev *dev = nvmeq->dev; 917 struct request *req = bd->rq; 918 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 919 struct nvme_command *cmnd = &iod->cmd; 920 blk_status_t ret; 921 922 iod->aborted = 0; 923 iod->npages = -1; 924 iod->nents = 0; 925 926 /* 927 * We should not need to do this, but we're still using this to 928 * ensure we can drain requests on a dying queue. 929 */ 930 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 931 return BLK_STS_IOERR; 932 933 if (!nvme_check_ready(&dev->ctrl, req, true)) 934 return nvme_fail_nonready_command(&dev->ctrl, req); 935 936 ret = nvme_setup_cmd(ns, req); 937 if (ret) 938 return ret; 939 940 if (blk_rq_nr_phys_segments(req)) { 941 ret = nvme_map_data(dev, req, cmnd); 942 if (ret) 943 goto out_free_cmd; 944 } 945 946 if (blk_integrity_rq(req)) { 947 ret = nvme_map_metadata(dev, req, cmnd); 948 if (ret) 949 goto out_unmap_data; 950 } 951 952 blk_mq_start_request(req); 953 nvme_submit_cmd(nvmeq, cmnd, bd->last); 954 return BLK_STS_OK; 955 out_unmap_data: 956 nvme_unmap_data(dev, req); 957 out_free_cmd: 958 nvme_cleanup_cmd(req); 959 return ret; 960 } 961 962 static void nvme_pci_complete_rq(struct request *req) 963 { 964 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 965 struct nvme_dev *dev = iod->nvmeq->dev; 966 967 if (blk_integrity_rq(req)) 968 dma_unmap_page(dev->dev, iod->meta_dma, 969 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 970 if (blk_rq_nr_phys_segments(req)) 971 nvme_unmap_data(dev, req); 972 nvme_complete_rq(req); 973 } 974 975 /* We read the CQE phase first to check if the rest of the entry is valid */ 976 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 977 { 978 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 979 980 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 981 } 982 983 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 984 { 985 u16 head = nvmeq->cq_head; 986 987 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 988 nvmeq->dbbuf_cq_ei)) 989 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 990 } 991 992 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 993 { 994 if (!nvmeq->qid) 995 return nvmeq->dev->admin_tagset.tags[0]; 996 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 997 } 998 999 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 1000 { 1001 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1002 __u16 command_id = READ_ONCE(cqe->command_id); 1003 struct request *req; 1004 1005 /* 1006 * AEN requests are special as they don't time out and can 1007 * survive any kind of queue freeze and often don't respond to 1008 * aborts. We don't even bother to allocate a struct request 1009 * for them but rather special case them here. 1010 */ 1011 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1012 nvme_complete_async_event(&nvmeq->dev->ctrl, 1013 cqe->status, &cqe->result); 1014 return; 1015 } 1016 1017 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1018 if (unlikely(!req)) { 1019 dev_warn(nvmeq->dev->ctrl.device, 1020 "invalid id %d completed on queue %d\n", 1021 command_id, le16_to_cpu(cqe->sq_id)); 1022 return; 1023 } 1024 1025 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1026 if (!nvme_try_complete_req(req, cqe->status, cqe->result)) 1027 nvme_pci_complete_rq(req); 1028 } 1029 1030 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1031 { 1032 u32 tmp = nvmeq->cq_head + 1; 1033 1034 if (tmp == nvmeq->q_depth) { 1035 nvmeq->cq_head = 0; 1036 nvmeq->cq_phase ^= 1; 1037 } else { 1038 nvmeq->cq_head = tmp; 1039 } 1040 } 1041 1042 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 1043 { 1044 int found = 0; 1045 1046 while (nvme_cqe_pending(nvmeq)) { 1047 found++; 1048 /* 1049 * load-load control dependency between phase and the rest of 1050 * the cqe requires a full read memory barrier 1051 */ 1052 dma_rmb(); 1053 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 1054 nvme_update_cq_head(nvmeq); 1055 } 1056 1057 if (found) 1058 nvme_ring_cq_doorbell(nvmeq); 1059 return found; 1060 } 1061 1062 static irqreturn_t nvme_irq(int irq, void *data) 1063 { 1064 struct nvme_queue *nvmeq = data; 1065 1066 if (nvme_process_cq(nvmeq)) 1067 return IRQ_HANDLED; 1068 return IRQ_NONE; 1069 } 1070 1071 static irqreturn_t nvme_irq_check(int irq, void *data) 1072 { 1073 struct nvme_queue *nvmeq = data; 1074 1075 if (nvme_cqe_pending(nvmeq)) 1076 return IRQ_WAKE_THREAD; 1077 return IRQ_NONE; 1078 } 1079 1080 /* 1081 * Poll for completions for any interrupt driven queue 1082 * Can be called from any context. 1083 */ 1084 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1085 { 1086 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1087 1088 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1089 1090 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1091 nvme_process_cq(nvmeq); 1092 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1093 } 1094 1095 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1096 { 1097 struct nvme_queue *nvmeq = hctx->driver_data; 1098 bool found; 1099 1100 if (!nvme_cqe_pending(nvmeq)) 1101 return 0; 1102 1103 spin_lock(&nvmeq->cq_poll_lock); 1104 found = nvme_process_cq(nvmeq); 1105 spin_unlock(&nvmeq->cq_poll_lock); 1106 1107 return found; 1108 } 1109 1110 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1111 { 1112 struct nvme_dev *dev = to_nvme_dev(ctrl); 1113 struct nvme_queue *nvmeq = &dev->queues[0]; 1114 struct nvme_command c = { }; 1115 1116 c.common.opcode = nvme_admin_async_event; 1117 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1118 nvme_submit_cmd(nvmeq, &c, true); 1119 } 1120 1121 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1122 { 1123 struct nvme_command c = { }; 1124 1125 c.delete_queue.opcode = opcode; 1126 c.delete_queue.qid = cpu_to_le16(id); 1127 1128 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1129 } 1130 1131 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1132 struct nvme_queue *nvmeq, s16 vector) 1133 { 1134 struct nvme_command c = { }; 1135 int flags = NVME_QUEUE_PHYS_CONTIG; 1136 1137 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1138 flags |= NVME_CQ_IRQ_ENABLED; 1139 1140 /* 1141 * Note: we (ab)use the fact that the prp fields survive if no data 1142 * is attached to the request. 1143 */ 1144 c.create_cq.opcode = nvme_admin_create_cq; 1145 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1146 c.create_cq.cqid = cpu_to_le16(qid); 1147 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1148 c.create_cq.cq_flags = cpu_to_le16(flags); 1149 c.create_cq.irq_vector = cpu_to_le16(vector); 1150 1151 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1152 } 1153 1154 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1155 struct nvme_queue *nvmeq) 1156 { 1157 struct nvme_ctrl *ctrl = &dev->ctrl; 1158 struct nvme_command c = { }; 1159 int flags = NVME_QUEUE_PHYS_CONTIG; 1160 1161 /* 1162 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1163 * set. Since URGENT priority is zeroes, it makes all queues 1164 * URGENT. 1165 */ 1166 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1167 flags |= NVME_SQ_PRIO_MEDIUM; 1168 1169 /* 1170 * Note: we (ab)use the fact that the prp fields survive if no data 1171 * is attached to the request. 1172 */ 1173 c.create_sq.opcode = nvme_admin_create_sq; 1174 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1175 c.create_sq.sqid = cpu_to_le16(qid); 1176 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1177 c.create_sq.sq_flags = cpu_to_le16(flags); 1178 c.create_sq.cqid = cpu_to_le16(qid); 1179 1180 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1181 } 1182 1183 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1184 { 1185 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1186 } 1187 1188 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1189 { 1190 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1191 } 1192 1193 static void abort_endio(struct request *req, blk_status_t error) 1194 { 1195 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1196 struct nvme_queue *nvmeq = iod->nvmeq; 1197 1198 dev_warn(nvmeq->dev->ctrl.device, 1199 "Abort status: 0x%x", nvme_req(req)->status); 1200 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1201 blk_mq_free_request(req); 1202 } 1203 1204 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1205 { 1206 /* If true, indicates loss of adapter communication, possibly by a 1207 * NVMe Subsystem reset. 1208 */ 1209 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1210 1211 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1212 switch (dev->ctrl.state) { 1213 case NVME_CTRL_RESETTING: 1214 case NVME_CTRL_CONNECTING: 1215 return false; 1216 default: 1217 break; 1218 } 1219 1220 /* We shouldn't reset unless the controller is on fatal error state 1221 * _or_ if we lost the communication with it. 1222 */ 1223 if (!(csts & NVME_CSTS_CFS) && !nssro) 1224 return false; 1225 1226 return true; 1227 } 1228 1229 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1230 { 1231 /* Read a config register to help see what died. */ 1232 u16 pci_status; 1233 int result; 1234 1235 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1236 &pci_status); 1237 if (result == PCIBIOS_SUCCESSFUL) 1238 dev_warn(dev->ctrl.device, 1239 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1240 csts, pci_status); 1241 else 1242 dev_warn(dev->ctrl.device, 1243 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1244 csts, result); 1245 } 1246 1247 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1248 { 1249 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1250 struct nvme_queue *nvmeq = iod->nvmeq; 1251 struct nvme_dev *dev = nvmeq->dev; 1252 struct request *abort_req; 1253 struct nvme_command cmd = { }; 1254 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1255 1256 /* If PCI error recovery process is happening, we cannot reset or 1257 * the recovery mechanism will surely fail. 1258 */ 1259 mb(); 1260 if (pci_channel_offline(to_pci_dev(dev->dev))) 1261 return BLK_EH_RESET_TIMER; 1262 1263 /* 1264 * Reset immediately if the controller is failed 1265 */ 1266 if (nvme_should_reset(dev, csts)) { 1267 nvme_warn_reset(dev, csts); 1268 nvme_dev_disable(dev, false); 1269 nvme_reset_ctrl(&dev->ctrl); 1270 return BLK_EH_DONE; 1271 } 1272 1273 /* 1274 * Did we miss an interrupt? 1275 */ 1276 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1277 nvme_poll(req->mq_hctx); 1278 else 1279 nvme_poll_irqdisable(nvmeq); 1280 1281 if (blk_mq_request_completed(req)) { 1282 dev_warn(dev->ctrl.device, 1283 "I/O %d QID %d timeout, completion polled\n", 1284 req->tag, nvmeq->qid); 1285 return BLK_EH_DONE; 1286 } 1287 1288 /* 1289 * Shutdown immediately if controller times out while starting. The 1290 * reset work will see the pci device disabled when it gets the forced 1291 * cancellation error. All outstanding requests are completed on 1292 * shutdown, so we return BLK_EH_DONE. 1293 */ 1294 switch (dev->ctrl.state) { 1295 case NVME_CTRL_CONNECTING: 1296 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1297 fallthrough; 1298 case NVME_CTRL_DELETING: 1299 dev_warn_ratelimited(dev->ctrl.device, 1300 "I/O %d QID %d timeout, disable controller\n", 1301 req->tag, nvmeq->qid); 1302 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1303 nvme_dev_disable(dev, true); 1304 return BLK_EH_DONE; 1305 case NVME_CTRL_RESETTING: 1306 return BLK_EH_RESET_TIMER; 1307 default: 1308 break; 1309 } 1310 1311 /* 1312 * Shutdown the controller immediately and schedule a reset if the 1313 * command was already aborted once before and still hasn't been 1314 * returned to the driver, or if this is the admin queue. 1315 */ 1316 if (!nvmeq->qid || iod->aborted) { 1317 dev_warn(dev->ctrl.device, 1318 "I/O %d QID %d timeout, reset controller\n", 1319 req->tag, nvmeq->qid); 1320 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1321 nvme_dev_disable(dev, false); 1322 nvme_reset_ctrl(&dev->ctrl); 1323 1324 return BLK_EH_DONE; 1325 } 1326 1327 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1328 atomic_inc(&dev->ctrl.abort_limit); 1329 return BLK_EH_RESET_TIMER; 1330 } 1331 iod->aborted = 1; 1332 1333 cmd.abort.opcode = nvme_admin_abort_cmd; 1334 cmd.abort.cid = nvme_cid(req); 1335 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1336 1337 dev_warn(nvmeq->dev->ctrl.device, 1338 "I/O %d QID %d timeout, aborting\n", 1339 req->tag, nvmeq->qid); 1340 1341 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1342 BLK_MQ_REQ_NOWAIT); 1343 if (IS_ERR(abort_req)) { 1344 atomic_inc(&dev->ctrl.abort_limit); 1345 return BLK_EH_RESET_TIMER; 1346 } 1347 1348 abort_req->end_io_data = NULL; 1349 blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio); 1350 1351 /* 1352 * The aborted req will be completed on receiving the abort req. 1353 * We enable the timer again. If hit twice, it'll cause a device reset, 1354 * as the device then is in a faulty state. 1355 */ 1356 return BLK_EH_RESET_TIMER; 1357 } 1358 1359 static void nvme_free_queue(struct nvme_queue *nvmeq) 1360 { 1361 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1362 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1363 if (!nvmeq->sq_cmds) 1364 return; 1365 1366 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1367 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1368 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1369 } else { 1370 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1371 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1372 } 1373 } 1374 1375 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1376 { 1377 int i; 1378 1379 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1380 dev->ctrl.queue_count--; 1381 nvme_free_queue(&dev->queues[i]); 1382 } 1383 } 1384 1385 /** 1386 * nvme_suspend_queue - put queue into suspended state 1387 * @nvmeq: queue to suspend 1388 */ 1389 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1390 { 1391 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1392 return 1; 1393 1394 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1395 mb(); 1396 1397 nvmeq->dev->online_queues--; 1398 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1399 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1400 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1401 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1402 return 0; 1403 } 1404 1405 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1406 { 1407 int i; 1408 1409 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1410 nvme_suspend_queue(&dev->queues[i]); 1411 } 1412 1413 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1414 { 1415 struct nvme_queue *nvmeq = &dev->queues[0]; 1416 1417 if (shutdown) 1418 nvme_shutdown_ctrl(&dev->ctrl); 1419 else 1420 nvme_disable_ctrl(&dev->ctrl); 1421 1422 nvme_poll_irqdisable(nvmeq); 1423 } 1424 1425 /* 1426 * Called only on a device that has been disabled and after all other threads 1427 * that can check this device's completion queues have synced, except 1428 * nvme_poll(). This is the last chance for the driver to see a natural 1429 * completion before nvme_cancel_request() terminates all incomplete requests. 1430 */ 1431 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1432 { 1433 int i; 1434 1435 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1436 spin_lock(&dev->queues[i].cq_poll_lock); 1437 nvme_process_cq(&dev->queues[i]); 1438 spin_unlock(&dev->queues[i].cq_poll_lock); 1439 } 1440 } 1441 1442 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1443 int entry_size) 1444 { 1445 int q_depth = dev->q_depth; 1446 unsigned q_size_aligned = roundup(q_depth * entry_size, 1447 NVME_CTRL_PAGE_SIZE); 1448 1449 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1450 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1451 1452 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1453 q_depth = div_u64(mem_per_q, entry_size); 1454 1455 /* 1456 * Ensure the reduced q_depth is above some threshold where it 1457 * would be better to map queues in system memory with the 1458 * original depth 1459 */ 1460 if (q_depth < 64) 1461 return -ENOMEM; 1462 } 1463 1464 return q_depth; 1465 } 1466 1467 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1468 int qid) 1469 { 1470 struct pci_dev *pdev = to_pci_dev(dev->dev); 1471 1472 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1473 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1474 if (nvmeq->sq_cmds) { 1475 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1476 nvmeq->sq_cmds); 1477 if (nvmeq->sq_dma_addr) { 1478 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1479 return 0; 1480 } 1481 1482 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1483 } 1484 } 1485 1486 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1487 &nvmeq->sq_dma_addr, GFP_KERNEL); 1488 if (!nvmeq->sq_cmds) 1489 return -ENOMEM; 1490 return 0; 1491 } 1492 1493 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1494 { 1495 struct nvme_queue *nvmeq = &dev->queues[qid]; 1496 1497 if (dev->ctrl.queue_count > qid) 1498 return 0; 1499 1500 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1501 nvmeq->q_depth = depth; 1502 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1503 &nvmeq->cq_dma_addr, GFP_KERNEL); 1504 if (!nvmeq->cqes) 1505 goto free_nvmeq; 1506 1507 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1508 goto free_cqdma; 1509 1510 nvmeq->dev = dev; 1511 spin_lock_init(&nvmeq->sq_lock); 1512 spin_lock_init(&nvmeq->cq_poll_lock); 1513 nvmeq->cq_head = 0; 1514 nvmeq->cq_phase = 1; 1515 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1516 nvmeq->qid = qid; 1517 dev->ctrl.queue_count++; 1518 1519 return 0; 1520 1521 free_cqdma: 1522 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1523 nvmeq->cq_dma_addr); 1524 free_nvmeq: 1525 return -ENOMEM; 1526 } 1527 1528 static int queue_request_irq(struct nvme_queue *nvmeq) 1529 { 1530 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1531 int nr = nvmeq->dev->ctrl.instance; 1532 1533 if (use_threaded_interrupts) { 1534 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1535 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1536 } else { 1537 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1538 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1539 } 1540 } 1541 1542 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1543 { 1544 struct nvme_dev *dev = nvmeq->dev; 1545 1546 nvmeq->sq_tail = 0; 1547 nvmeq->last_sq_tail = 0; 1548 nvmeq->cq_head = 0; 1549 nvmeq->cq_phase = 1; 1550 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1551 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1552 nvme_dbbuf_init(dev, nvmeq, qid); 1553 dev->online_queues++; 1554 wmb(); /* ensure the first interrupt sees the initialization */ 1555 } 1556 1557 /* 1558 * Try getting shutdown_lock while setting up IO queues. 1559 */ 1560 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1561 { 1562 /* 1563 * Give up if the lock is being held by nvme_dev_disable. 1564 */ 1565 if (!mutex_trylock(&dev->shutdown_lock)) 1566 return -ENODEV; 1567 1568 /* 1569 * Controller is in wrong state, fail early. 1570 */ 1571 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1572 mutex_unlock(&dev->shutdown_lock); 1573 return -ENODEV; 1574 } 1575 1576 return 0; 1577 } 1578 1579 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1580 { 1581 struct nvme_dev *dev = nvmeq->dev; 1582 int result; 1583 u16 vector = 0; 1584 1585 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1586 1587 /* 1588 * A queue's vector matches the queue identifier unless the controller 1589 * has only one vector available. 1590 */ 1591 if (!polled) 1592 vector = dev->num_vecs == 1 ? 0 : qid; 1593 else 1594 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1595 1596 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1597 if (result) 1598 return result; 1599 1600 result = adapter_alloc_sq(dev, qid, nvmeq); 1601 if (result < 0) 1602 return result; 1603 if (result) 1604 goto release_cq; 1605 1606 nvmeq->cq_vector = vector; 1607 1608 result = nvme_setup_io_queues_trylock(dev); 1609 if (result) 1610 return result; 1611 nvme_init_queue(nvmeq, qid); 1612 if (!polled) { 1613 result = queue_request_irq(nvmeq); 1614 if (result < 0) 1615 goto release_sq; 1616 } 1617 1618 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1619 mutex_unlock(&dev->shutdown_lock); 1620 return result; 1621 1622 release_sq: 1623 dev->online_queues--; 1624 mutex_unlock(&dev->shutdown_lock); 1625 adapter_delete_sq(dev, qid); 1626 release_cq: 1627 adapter_delete_cq(dev, qid); 1628 return result; 1629 } 1630 1631 static const struct blk_mq_ops nvme_mq_admin_ops = { 1632 .queue_rq = nvme_queue_rq, 1633 .complete = nvme_pci_complete_rq, 1634 .init_hctx = nvme_admin_init_hctx, 1635 .init_request = nvme_init_request, 1636 .timeout = nvme_timeout, 1637 }; 1638 1639 static const struct blk_mq_ops nvme_mq_ops = { 1640 .queue_rq = nvme_queue_rq, 1641 .complete = nvme_pci_complete_rq, 1642 .commit_rqs = nvme_commit_rqs, 1643 .init_hctx = nvme_init_hctx, 1644 .init_request = nvme_init_request, 1645 .map_queues = nvme_pci_map_queues, 1646 .timeout = nvme_timeout, 1647 .poll = nvme_poll, 1648 }; 1649 1650 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1651 { 1652 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1653 /* 1654 * If the controller was reset during removal, it's possible 1655 * user requests may be waiting on a stopped queue. Start the 1656 * queue to flush these to completion. 1657 */ 1658 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1659 blk_cleanup_queue(dev->ctrl.admin_q); 1660 blk_mq_free_tag_set(&dev->admin_tagset); 1661 } 1662 } 1663 1664 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1665 { 1666 if (!dev->ctrl.admin_q) { 1667 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1668 dev->admin_tagset.nr_hw_queues = 1; 1669 1670 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1671 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1672 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1673 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1674 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1675 dev->admin_tagset.driver_data = dev; 1676 1677 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1678 return -ENOMEM; 1679 dev->ctrl.admin_tagset = &dev->admin_tagset; 1680 1681 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1682 if (IS_ERR(dev->ctrl.admin_q)) { 1683 blk_mq_free_tag_set(&dev->admin_tagset); 1684 return -ENOMEM; 1685 } 1686 if (!blk_get_queue(dev->ctrl.admin_q)) { 1687 nvme_dev_remove_admin(dev); 1688 dev->ctrl.admin_q = NULL; 1689 return -ENODEV; 1690 } 1691 } else 1692 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1693 1694 return 0; 1695 } 1696 1697 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1698 { 1699 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1700 } 1701 1702 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1703 { 1704 struct pci_dev *pdev = to_pci_dev(dev->dev); 1705 1706 if (size <= dev->bar_mapped_size) 1707 return 0; 1708 if (size > pci_resource_len(pdev, 0)) 1709 return -ENOMEM; 1710 if (dev->bar) 1711 iounmap(dev->bar); 1712 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1713 if (!dev->bar) { 1714 dev->bar_mapped_size = 0; 1715 return -ENOMEM; 1716 } 1717 dev->bar_mapped_size = size; 1718 dev->dbs = dev->bar + NVME_REG_DBS; 1719 1720 return 0; 1721 } 1722 1723 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1724 { 1725 int result; 1726 u32 aqa; 1727 struct nvme_queue *nvmeq; 1728 1729 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1730 if (result < 0) 1731 return result; 1732 1733 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1734 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1735 1736 if (dev->subsystem && 1737 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1738 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1739 1740 result = nvme_disable_ctrl(&dev->ctrl); 1741 if (result < 0) 1742 return result; 1743 1744 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1745 if (result) 1746 return result; 1747 1748 dev->ctrl.numa_node = dev_to_node(dev->dev); 1749 1750 nvmeq = &dev->queues[0]; 1751 aqa = nvmeq->q_depth - 1; 1752 aqa |= aqa << 16; 1753 1754 writel(aqa, dev->bar + NVME_REG_AQA); 1755 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1756 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1757 1758 result = nvme_enable_ctrl(&dev->ctrl); 1759 if (result) 1760 return result; 1761 1762 nvmeq->cq_vector = 0; 1763 nvme_init_queue(nvmeq, 0); 1764 result = queue_request_irq(nvmeq); 1765 if (result) { 1766 dev->online_queues--; 1767 return result; 1768 } 1769 1770 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1771 return result; 1772 } 1773 1774 static int nvme_create_io_queues(struct nvme_dev *dev) 1775 { 1776 unsigned i, max, rw_queues; 1777 int ret = 0; 1778 1779 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1780 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1781 ret = -ENOMEM; 1782 break; 1783 } 1784 } 1785 1786 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1787 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1788 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1789 dev->io_queues[HCTX_TYPE_READ]; 1790 } else { 1791 rw_queues = max; 1792 } 1793 1794 for (i = dev->online_queues; i <= max; i++) { 1795 bool polled = i > rw_queues; 1796 1797 ret = nvme_create_queue(&dev->queues[i], i, polled); 1798 if (ret) 1799 break; 1800 } 1801 1802 /* 1803 * Ignore failing Create SQ/CQ commands, we can continue with less 1804 * than the desired amount of queues, and even a controller without 1805 * I/O queues can still be used to issue admin commands. This might 1806 * be useful to upgrade a buggy firmware for example. 1807 */ 1808 return ret >= 0 ? 0 : ret; 1809 } 1810 1811 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1812 { 1813 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1814 1815 return 1ULL << (12 + 4 * szu); 1816 } 1817 1818 static u32 nvme_cmb_size(struct nvme_dev *dev) 1819 { 1820 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1821 } 1822 1823 static void nvme_map_cmb(struct nvme_dev *dev) 1824 { 1825 u64 size, offset; 1826 resource_size_t bar_size; 1827 struct pci_dev *pdev = to_pci_dev(dev->dev); 1828 int bar; 1829 1830 if (dev->cmb_size) 1831 return; 1832 1833 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1834 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1835 1836 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1837 if (!dev->cmbsz) 1838 return; 1839 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1840 1841 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1842 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1843 bar = NVME_CMB_BIR(dev->cmbloc); 1844 bar_size = pci_resource_len(pdev, bar); 1845 1846 if (offset > bar_size) 1847 return; 1848 1849 /* 1850 * Tell the controller about the host side address mapping the CMB, 1851 * and enable CMB decoding for the NVMe 1.4+ scheme: 1852 */ 1853 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1854 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1855 (pci_bus_address(pdev, bar) + offset), 1856 dev->bar + NVME_REG_CMBMSC); 1857 } 1858 1859 /* 1860 * Controllers may support a CMB size larger than their BAR, 1861 * for example, due to being behind a bridge. Reduce the CMB to 1862 * the reported size of the BAR 1863 */ 1864 if (size > bar_size - offset) 1865 size = bar_size - offset; 1866 1867 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1868 dev_warn(dev->ctrl.device, 1869 "failed to register the CMB\n"); 1870 return; 1871 } 1872 1873 dev->cmb_size = size; 1874 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1875 1876 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1877 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1878 pci_p2pmem_publish(pdev, true); 1879 } 1880 1881 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1882 { 1883 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1884 u64 dma_addr = dev->host_mem_descs_dma; 1885 struct nvme_command c = { }; 1886 int ret; 1887 1888 c.features.opcode = nvme_admin_set_features; 1889 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1890 c.features.dword11 = cpu_to_le32(bits); 1891 c.features.dword12 = cpu_to_le32(host_mem_size); 1892 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1893 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1894 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1895 1896 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1897 if (ret) { 1898 dev_warn(dev->ctrl.device, 1899 "failed to set host mem (err %d, flags %#x).\n", 1900 ret, bits); 1901 } else 1902 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1903 1904 return ret; 1905 } 1906 1907 static void nvme_free_host_mem(struct nvme_dev *dev) 1908 { 1909 int i; 1910 1911 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1912 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1913 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1914 1915 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1916 le64_to_cpu(desc->addr), 1917 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1918 } 1919 1920 kfree(dev->host_mem_desc_bufs); 1921 dev->host_mem_desc_bufs = NULL; 1922 dma_free_coherent(dev->dev, 1923 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1924 dev->host_mem_descs, dev->host_mem_descs_dma); 1925 dev->host_mem_descs = NULL; 1926 dev->nr_host_mem_descs = 0; 1927 } 1928 1929 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1930 u32 chunk_size) 1931 { 1932 struct nvme_host_mem_buf_desc *descs; 1933 u32 max_entries, len; 1934 dma_addr_t descs_dma; 1935 int i = 0; 1936 void **bufs; 1937 u64 size, tmp; 1938 1939 tmp = (preferred + chunk_size - 1); 1940 do_div(tmp, chunk_size); 1941 max_entries = tmp; 1942 1943 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1944 max_entries = dev->ctrl.hmmaxd; 1945 1946 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1947 &descs_dma, GFP_KERNEL); 1948 if (!descs) 1949 goto out; 1950 1951 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1952 if (!bufs) 1953 goto out_free_descs; 1954 1955 for (size = 0; size < preferred && i < max_entries; size += len) { 1956 dma_addr_t dma_addr; 1957 1958 len = min_t(u64, chunk_size, preferred - size); 1959 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1960 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1961 if (!bufs[i]) 1962 break; 1963 1964 descs[i].addr = cpu_to_le64(dma_addr); 1965 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1966 i++; 1967 } 1968 1969 if (!size) 1970 goto out_free_bufs; 1971 1972 dev->nr_host_mem_descs = i; 1973 dev->host_mem_size = size; 1974 dev->host_mem_descs = descs; 1975 dev->host_mem_descs_dma = descs_dma; 1976 dev->host_mem_desc_bufs = bufs; 1977 return 0; 1978 1979 out_free_bufs: 1980 while (--i >= 0) { 1981 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1982 1983 dma_free_attrs(dev->dev, size, bufs[i], 1984 le64_to_cpu(descs[i].addr), 1985 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1986 } 1987 1988 kfree(bufs); 1989 out_free_descs: 1990 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1991 descs_dma); 1992 out: 1993 dev->host_mem_descs = NULL; 1994 return -ENOMEM; 1995 } 1996 1997 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1998 { 1999 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2000 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2001 u64 chunk_size; 2002 2003 /* start big and work our way down */ 2004 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2005 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2006 if (!min || dev->host_mem_size >= min) 2007 return 0; 2008 nvme_free_host_mem(dev); 2009 } 2010 } 2011 2012 return -ENOMEM; 2013 } 2014 2015 static int nvme_setup_host_mem(struct nvme_dev *dev) 2016 { 2017 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2018 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2019 u64 min = (u64)dev->ctrl.hmmin * 4096; 2020 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2021 int ret; 2022 2023 preferred = min(preferred, max); 2024 if (min > max) { 2025 dev_warn(dev->ctrl.device, 2026 "min host memory (%lld MiB) above limit (%d MiB).\n", 2027 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2028 nvme_free_host_mem(dev); 2029 return 0; 2030 } 2031 2032 /* 2033 * If we already have a buffer allocated check if we can reuse it. 2034 */ 2035 if (dev->host_mem_descs) { 2036 if (dev->host_mem_size >= min) 2037 enable_bits |= NVME_HOST_MEM_RETURN; 2038 else 2039 nvme_free_host_mem(dev); 2040 } 2041 2042 if (!dev->host_mem_descs) { 2043 if (nvme_alloc_host_mem(dev, min, preferred)) { 2044 dev_warn(dev->ctrl.device, 2045 "failed to allocate host memory buffer.\n"); 2046 return 0; /* controller must work without HMB */ 2047 } 2048 2049 dev_info(dev->ctrl.device, 2050 "allocated %lld MiB host memory buffer.\n", 2051 dev->host_mem_size >> ilog2(SZ_1M)); 2052 } 2053 2054 ret = nvme_set_host_mem(dev, enable_bits); 2055 if (ret) 2056 nvme_free_host_mem(dev); 2057 return ret; 2058 } 2059 2060 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2061 char *buf) 2062 { 2063 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2064 2065 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2066 ndev->cmbloc, ndev->cmbsz); 2067 } 2068 static DEVICE_ATTR_RO(cmb); 2069 2070 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2071 char *buf) 2072 { 2073 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2074 2075 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2076 } 2077 static DEVICE_ATTR_RO(cmbloc); 2078 2079 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2080 char *buf) 2081 { 2082 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2083 2084 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2085 } 2086 static DEVICE_ATTR_RO(cmbsz); 2087 2088 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2089 char *buf) 2090 { 2091 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2092 2093 return sysfs_emit(buf, "%d\n", ndev->hmb); 2094 } 2095 2096 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2097 const char *buf, size_t count) 2098 { 2099 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2100 bool new; 2101 int ret; 2102 2103 if (strtobool(buf, &new) < 0) 2104 return -EINVAL; 2105 2106 if (new == ndev->hmb) 2107 return count; 2108 2109 if (new) { 2110 ret = nvme_setup_host_mem(ndev); 2111 } else { 2112 ret = nvme_set_host_mem(ndev, 0); 2113 if (!ret) 2114 nvme_free_host_mem(ndev); 2115 } 2116 2117 if (ret < 0) 2118 return ret; 2119 2120 return count; 2121 } 2122 static DEVICE_ATTR_RW(hmb); 2123 2124 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2125 struct attribute *a, int n) 2126 { 2127 struct nvme_ctrl *ctrl = 2128 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2129 struct nvme_dev *dev = to_nvme_dev(ctrl); 2130 2131 if (a == &dev_attr_cmb.attr || 2132 a == &dev_attr_cmbloc.attr || 2133 a == &dev_attr_cmbsz.attr) { 2134 if (!dev->cmbsz) 2135 return 0; 2136 } 2137 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2138 return 0; 2139 2140 return a->mode; 2141 } 2142 2143 static struct attribute *nvme_pci_attrs[] = { 2144 &dev_attr_cmb.attr, 2145 &dev_attr_cmbloc.attr, 2146 &dev_attr_cmbsz.attr, 2147 &dev_attr_hmb.attr, 2148 NULL, 2149 }; 2150 2151 static const struct attribute_group nvme_pci_attr_group = { 2152 .attrs = nvme_pci_attrs, 2153 .is_visible = nvme_pci_attrs_are_visible, 2154 }; 2155 2156 /* 2157 * nirqs is the number of interrupts available for write and read 2158 * queues. The core already reserved an interrupt for the admin queue. 2159 */ 2160 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2161 { 2162 struct nvme_dev *dev = affd->priv; 2163 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2164 2165 /* 2166 * If there is no interrupt available for queues, ensure that 2167 * the default queue is set to 1. The affinity set size is 2168 * also set to one, but the irq core ignores it for this case. 2169 * 2170 * If only one interrupt is available or 'write_queue' == 0, combine 2171 * write and read queues. 2172 * 2173 * If 'write_queues' > 0, ensure it leaves room for at least one read 2174 * queue. 2175 */ 2176 if (!nrirqs) { 2177 nrirqs = 1; 2178 nr_read_queues = 0; 2179 } else if (nrirqs == 1 || !nr_write_queues) { 2180 nr_read_queues = 0; 2181 } else if (nr_write_queues >= nrirqs) { 2182 nr_read_queues = 1; 2183 } else { 2184 nr_read_queues = nrirqs - nr_write_queues; 2185 } 2186 2187 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2188 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2189 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2190 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2191 affd->nr_sets = nr_read_queues ? 2 : 1; 2192 } 2193 2194 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2195 { 2196 struct pci_dev *pdev = to_pci_dev(dev->dev); 2197 struct irq_affinity affd = { 2198 .pre_vectors = 1, 2199 .calc_sets = nvme_calc_irq_sets, 2200 .priv = dev, 2201 }; 2202 unsigned int irq_queues, poll_queues; 2203 2204 /* 2205 * Poll queues don't need interrupts, but we need at least one I/O queue 2206 * left over for non-polled I/O. 2207 */ 2208 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2209 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2210 2211 /* 2212 * Initialize for the single interrupt case, will be updated in 2213 * nvme_calc_irq_sets(). 2214 */ 2215 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2216 dev->io_queues[HCTX_TYPE_READ] = 0; 2217 2218 /* 2219 * We need interrupts for the admin queue and each non-polled I/O queue, 2220 * but some Apple controllers require all queues to use the first 2221 * vector. 2222 */ 2223 irq_queues = 1; 2224 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2225 irq_queues += (nr_io_queues - poll_queues); 2226 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2227 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2228 } 2229 2230 static void nvme_disable_io_queues(struct nvme_dev *dev) 2231 { 2232 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2233 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2234 } 2235 2236 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2237 { 2238 /* 2239 * If tags are shared with admin queue (Apple bug), then 2240 * make sure we only use one IO queue. 2241 */ 2242 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2243 return 1; 2244 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2245 } 2246 2247 static int nvme_setup_io_queues(struct nvme_dev *dev) 2248 { 2249 struct nvme_queue *adminq = &dev->queues[0]; 2250 struct pci_dev *pdev = to_pci_dev(dev->dev); 2251 unsigned int nr_io_queues; 2252 unsigned long size; 2253 int result; 2254 2255 /* 2256 * Sample the module parameters once at reset time so that we have 2257 * stable values to work with. 2258 */ 2259 dev->nr_write_queues = write_queues; 2260 dev->nr_poll_queues = poll_queues; 2261 2262 nr_io_queues = dev->nr_allocated_queues - 1; 2263 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2264 if (result < 0) 2265 return result; 2266 2267 if (nr_io_queues == 0) 2268 return 0; 2269 2270 /* 2271 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2272 * from set to unset. If there is a window to it is truely freed, 2273 * pci_free_irq_vectors() jumping into this window will crash. 2274 * And take lock to avoid racing with pci_free_irq_vectors() in 2275 * nvme_dev_disable() path. 2276 */ 2277 result = nvme_setup_io_queues_trylock(dev); 2278 if (result) 2279 return result; 2280 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2281 pci_free_irq(pdev, 0, adminq); 2282 2283 if (dev->cmb_use_sqes) { 2284 result = nvme_cmb_qdepth(dev, nr_io_queues, 2285 sizeof(struct nvme_command)); 2286 if (result > 0) 2287 dev->q_depth = result; 2288 else 2289 dev->cmb_use_sqes = false; 2290 } 2291 2292 do { 2293 size = db_bar_size(dev, nr_io_queues); 2294 result = nvme_remap_bar(dev, size); 2295 if (!result) 2296 break; 2297 if (!--nr_io_queues) { 2298 result = -ENOMEM; 2299 goto out_unlock; 2300 } 2301 } while (1); 2302 adminq->q_db = dev->dbs; 2303 2304 retry: 2305 /* Deregister the admin queue's interrupt */ 2306 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2307 pci_free_irq(pdev, 0, adminq); 2308 2309 /* 2310 * If we enable msix early due to not intx, disable it again before 2311 * setting up the full range we need. 2312 */ 2313 pci_free_irq_vectors(pdev); 2314 2315 result = nvme_setup_irqs(dev, nr_io_queues); 2316 if (result <= 0) { 2317 result = -EIO; 2318 goto out_unlock; 2319 } 2320 2321 dev->num_vecs = result; 2322 result = max(result - 1, 1); 2323 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2324 2325 /* 2326 * Should investigate if there's a performance win from allocating 2327 * more queues than interrupt vectors; it might allow the submission 2328 * path to scale better, even if the receive path is limited by the 2329 * number of interrupts. 2330 */ 2331 result = queue_request_irq(adminq); 2332 if (result) 2333 goto out_unlock; 2334 set_bit(NVMEQ_ENABLED, &adminq->flags); 2335 mutex_unlock(&dev->shutdown_lock); 2336 2337 result = nvme_create_io_queues(dev); 2338 if (result || dev->online_queues < 2) 2339 return result; 2340 2341 if (dev->online_queues - 1 < dev->max_qid) { 2342 nr_io_queues = dev->online_queues - 1; 2343 nvme_disable_io_queues(dev); 2344 result = nvme_setup_io_queues_trylock(dev); 2345 if (result) 2346 return result; 2347 nvme_suspend_io_queues(dev); 2348 goto retry; 2349 } 2350 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2351 dev->io_queues[HCTX_TYPE_DEFAULT], 2352 dev->io_queues[HCTX_TYPE_READ], 2353 dev->io_queues[HCTX_TYPE_POLL]); 2354 return 0; 2355 out_unlock: 2356 mutex_unlock(&dev->shutdown_lock); 2357 return result; 2358 } 2359 2360 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2361 { 2362 struct nvme_queue *nvmeq = req->end_io_data; 2363 2364 blk_mq_free_request(req); 2365 complete(&nvmeq->delete_done); 2366 } 2367 2368 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2369 { 2370 struct nvme_queue *nvmeq = req->end_io_data; 2371 2372 if (error) 2373 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2374 2375 nvme_del_queue_end(req, error); 2376 } 2377 2378 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2379 { 2380 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2381 struct request *req; 2382 struct nvme_command cmd = { }; 2383 2384 cmd.delete_queue.opcode = opcode; 2385 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2386 2387 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 2388 if (IS_ERR(req)) 2389 return PTR_ERR(req); 2390 2391 req->end_io_data = nvmeq; 2392 2393 init_completion(&nvmeq->delete_done); 2394 blk_execute_rq_nowait(NULL, req, false, 2395 opcode == nvme_admin_delete_cq ? 2396 nvme_del_cq_end : nvme_del_queue_end); 2397 return 0; 2398 } 2399 2400 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2401 { 2402 int nr_queues = dev->online_queues - 1, sent = 0; 2403 unsigned long timeout; 2404 2405 retry: 2406 timeout = NVME_ADMIN_TIMEOUT; 2407 while (nr_queues > 0) { 2408 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2409 break; 2410 nr_queues--; 2411 sent++; 2412 } 2413 while (sent) { 2414 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2415 2416 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2417 timeout); 2418 if (timeout == 0) 2419 return false; 2420 2421 sent--; 2422 if (nr_queues) 2423 goto retry; 2424 } 2425 return true; 2426 } 2427 2428 static void nvme_dev_add(struct nvme_dev *dev) 2429 { 2430 int ret; 2431 2432 if (!dev->ctrl.tagset) { 2433 dev->tagset.ops = &nvme_mq_ops; 2434 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2435 dev->tagset.nr_maps = 2; /* default + read */ 2436 if (dev->io_queues[HCTX_TYPE_POLL]) 2437 dev->tagset.nr_maps++; 2438 dev->tagset.timeout = NVME_IO_TIMEOUT; 2439 dev->tagset.numa_node = dev->ctrl.numa_node; 2440 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2441 BLK_MQ_MAX_DEPTH) - 1; 2442 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2443 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2444 dev->tagset.driver_data = dev; 2445 2446 /* 2447 * Some Apple controllers requires tags to be unique 2448 * across admin and IO queue, so reserve the first 32 2449 * tags of the IO queue. 2450 */ 2451 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2452 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2453 2454 ret = blk_mq_alloc_tag_set(&dev->tagset); 2455 if (ret) { 2456 dev_warn(dev->ctrl.device, 2457 "IO queues tagset allocation failed %d\n", ret); 2458 return; 2459 } 2460 dev->ctrl.tagset = &dev->tagset; 2461 } else { 2462 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2463 2464 /* Free previously allocated queues that are no longer usable */ 2465 nvme_free_queues(dev, dev->online_queues); 2466 } 2467 2468 nvme_dbbuf_set(dev); 2469 } 2470 2471 static int nvme_pci_enable(struct nvme_dev *dev) 2472 { 2473 int result = -ENOMEM; 2474 struct pci_dev *pdev = to_pci_dev(dev->dev); 2475 int dma_address_bits = 64; 2476 2477 if (pci_enable_device_mem(pdev)) 2478 return result; 2479 2480 pci_set_master(pdev); 2481 2482 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2483 dma_address_bits = 48; 2484 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2485 goto disable; 2486 2487 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2488 result = -ENODEV; 2489 goto disable; 2490 } 2491 2492 /* 2493 * Some devices and/or platforms don't advertise or work with INTx 2494 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2495 * adjust this later. 2496 */ 2497 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2498 if (result < 0) 2499 return result; 2500 2501 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2502 2503 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2504 io_queue_depth); 2505 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2506 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2507 dev->dbs = dev->bar + 4096; 2508 2509 /* 2510 * Some Apple controllers require a non-standard SQE size. 2511 * Interestingly they also seem to ignore the CC:IOSQES register 2512 * so we don't bother updating it here. 2513 */ 2514 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2515 dev->io_sqes = 7; 2516 else 2517 dev->io_sqes = NVME_NVM_IOSQES; 2518 2519 /* 2520 * Temporary fix for the Apple controller found in the MacBook8,1 and 2521 * some MacBook7,1 to avoid controller resets and data loss. 2522 */ 2523 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2524 dev->q_depth = 2; 2525 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2526 "set queue depth=%u to work around controller resets\n", 2527 dev->q_depth); 2528 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2529 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2530 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2531 dev->q_depth = 64; 2532 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2533 "set queue depth=%u\n", dev->q_depth); 2534 } 2535 2536 /* 2537 * Controllers with the shared tags quirk need the IO queue to be 2538 * big enough so that we get 32 tags for the admin queue 2539 */ 2540 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2541 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2542 dev->q_depth = NVME_AQ_DEPTH + 2; 2543 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2544 dev->q_depth); 2545 } 2546 2547 2548 nvme_map_cmb(dev); 2549 2550 pci_enable_pcie_error_reporting(pdev); 2551 pci_save_state(pdev); 2552 return 0; 2553 2554 disable: 2555 pci_disable_device(pdev); 2556 return result; 2557 } 2558 2559 static void nvme_dev_unmap(struct nvme_dev *dev) 2560 { 2561 if (dev->bar) 2562 iounmap(dev->bar); 2563 pci_release_mem_regions(to_pci_dev(dev->dev)); 2564 } 2565 2566 static void nvme_pci_disable(struct nvme_dev *dev) 2567 { 2568 struct pci_dev *pdev = to_pci_dev(dev->dev); 2569 2570 pci_free_irq_vectors(pdev); 2571 2572 if (pci_is_enabled(pdev)) { 2573 pci_disable_pcie_error_reporting(pdev); 2574 pci_disable_device(pdev); 2575 } 2576 } 2577 2578 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2579 { 2580 bool dead = true, freeze = false; 2581 struct pci_dev *pdev = to_pci_dev(dev->dev); 2582 2583 mutex_lock(&dev->shutdown_lock); 2584 if (pci_is_enabled(pdev)) { 2585 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2586 2587 if (dev->ctrl.state == NVME_CTRL_LIVE || 2588 dev->ctrl.state == NVME_CTRL_RESETTING) { 2589 freeze = true; 2590 nvme_start_freeze(&dev->ctrl); 2591 } 2592 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2593 pdev->error_state != pci_channel_io_normal); 2594 } 2595 2596 /* 2597 * Give the controller a chance to complete all entered requests if 2598 * doing a safe shutdown. 2599 */ 2600 if (!dead && shutdown && freeze) 2601 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2602 2603 nvme_stop_queues(&dev->ctrl); 2604 2605 if (!dead && dev->ctrl.queue_count > 0) { 2606 nvme_disable_io_queues(dev); 2607 nvme_disable_admin_queue(dev, shutdown); 2608 } 2609 nvme_suspend_io_queues(dev); 2610 nvme_suspend_queue(&dev->queues[0]); 2611 nvme_pci_disable(dev); 2612 nvme_reap_pending_cqes(dev); 2613 2614 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2615 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2616 blk_mq_tagset_wait_completed_request(&dev->tagset); 2617 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2618 2619 /* 2620 * The driver will not be starting up queues again if shutting down so 2621 * must flush all entered requests to their failed completion to avoid 2622 * deadlocking blk-mq hot-cpu notifier. 2623 */ 2624 if (shutdown) { 2625 nvme_start_queues(&dev->ctrl); 2626 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2627 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2628 } 2629 mutex_unlock(&dev->shutdown_lock); 2630 } 2631 2632 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2633 { 2634 if (!nvme_wait_reset(&dev->ctrl)) 2635 return -EBUSY; 2636 nvme_dev_disable(dev, shutdown); 2637 return 0; 2638 } 2639 2640 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2641 { 2642 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2643 NVME_CTRL_PAGE_SIZE, 2644 NVME_CTRL_PAGE_SIZE, 0); 2645 if (!dev->prp_page_pool) 2646 return -ENOMEM; 2647 2648 /* Optimisation for I/Os between 4k and 128k */ 2649 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2650 256, 256, 0); 2651 if (!dev->prp_small_pool) { 2652 dma_pool_destroy(dev->prp_page_pool); 2653 return -ENOMEM; 2654 } 2655 return 0; 2656 } 2657 2658 static void nvme_release_prp_pools(struct nvme_dev *dev) 2659 { 2660 dma_pool_destroy(dev->prp_page_pool); 2661 dma_pool_destroy(dev->prp_small_pool); 2662 } 2663 2664 static void nvme_free_tagset(struct nvme_dev *dev) 2665 { 2666 if (dev->tagset.tags) 2667 blk_mq_free_tag_set(&dev->tagset); 2668 dev->ctrl.tagset = NULL; 2669 } 2670 2671 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2672 { 2673 struct nvme_dev *dev = to_nvme_dev(ctrl); 2674 2675 nvme_dbbuf_dma_free(dev); 2676 nvme_free_tagset(dev); 2677 if (dev->ctrl.admin_q) 2678 blk_put_queue(dev->ctrl.admin_q); 2679 free_opal_dev(dev->ctrl.opal_dev); 2680 mempool_destroy(dev->iod_mempool); 2681 put_device(dev->dev); 2682 kfree(dev->queues); 2683 kfree(dev); 2684 } 2685 2686 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2687 { 2688 /* 2689 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2690 * may be holding this pci_dev's device lock. 2691 */ 2692 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2693 nvme_get_ctrl(&dev->ctrl); 2694 nvme_dev_disable(dev, false); 2695 nvme_kill_queues(&dev->ctrl); 2696 if (!queue_work(nvme_wq, &dev->remove_work)) 2697 nvme_put_ctrl(&dev->ctrl); 2698 } 2699 2700 static void nvme_reset_work(struct work_struct *work) 2701 { 2702 struct nvme_dev *dev = 2703 container_of(work, struct nvme_dev, ctrl.reset_work); 2704 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2705 int result; 2706 2707 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2708 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2709 dev->ctrl.state); 2710 result = -ENODEV; 2711 goto out; 2712 } 2713 2714 /* 2715 * If we're called to reset a live controller first shut it down before 2716 * moving on. 2717 */ 2718 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2719 nvme_dev_disable(dev, false); 2720 nvme_sync_queues(&dev->ctrl); 2721 2722 mutex_lock(&dev->shutdown_lock); 2723 result = nvme_pci_enable(dev); 2724 if (result) 2725 goto out_unlock; 2726 2727 result = nvme_pci_configure_admin_queue(dev); 2728 if (result) 2729 goto out_unlock; 2730 2731 result = nvme_alloc_admin_tags(dev); 2732 if (result) 2733 goto out_unlock; 2734 2735 /* 2736 * Limit the max command size to prevent iod->sg allocations going 2737 * over a single page. 2738 */ 2739 dev->ctrl.max_hw_sectors = min_t(u32, 2740 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2741 dev->ctrl.max_segments = NVME_MAX_SEGS; 2742 2743 /* 2744 * Don't limit the IOMMU merged segment size. 2745 */ 2746 dma_set_max_seg_size(dev->dev, 0xffffffff); 2747 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2748 2749 mutex_unlock(&dev->shutdown_lock); 2750 2751 /* 2752 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2753 * initializing procedure here. 2754 */ 2755 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2756 dev_warn(dev->ctrl.device, 2757 "failed to mark controller CONNECTING\n"); 2758 result = -EBUSY; 2759 goto out; 2760 } 2761 2762 /* 2763 * We do not support an SGL for metadata (yet), so we are limited to a 2764 * single integrity segment for the separate metadata pointer. 2765 */ 2766 dev->ctrl.max_integrity_segments = 1; 2767 2768 result = nvme_init_ctrl_finish(&dev->ctrl); 2769 if (result) 2770 goto out; 2771 2772 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2773 if (!dev->ctrl.opal_dev) 2774 dev->ctrl.opal_dev = 2775 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2776 else if (was_suspend) 2777 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2778 } else { 2779 free_opal_dev(dev->ctrl.opal_dev); 2780 dev->ctrl.opal_dev = NULL; 2781 } 2782 2783 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2784 result = nvme_dbbuf_dma_alloc(dev); 2785 if (result) 2786 dev_warn(dev->dev, 2787 "unable to allocate dma for dbbuf\n"); 2788 } 2789 2790 if (dev->ctrl.hmpre) { 2791 result = nvme_setup_host_mem(dev); 2792 if (result < 0) 2793 goto out; 2794 } 2795 2796 result = nvme_setup_io_queues(dev); 2797 if (result) 2798 goto out; 2799 2800 /* 2801 * Keep the controller around but remove all namespaces if we don't have 2802 * any working I/O queue. 2803 */ 2804 if (dev->online_queues < 2) { 2805 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2806 nvme_kill_queues(&dev->ctrl); 2807 nvme_remove_namespaces(&dev->ctrl); 2808 nvme_free_tagset(dev); 2809 } else { 2810 nvme_start_queues(&dev->ctrl); 2811 nvme_wait_freeze(&dev->ctrl); 2812 nvme_dev_add(dev); 2813 nvme_unfreeze(&dev->ctrl); 2814 } 2815 2816 /* 2817 * If only admin queue live, keep it to do further investigation or 2818 * recovery. 2819 */ 2820 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2821 dev_warn(dev->ctrl.device, 2822 "failed to mark controller live state\n"); 2823 result = -ENODEV; 2824 goto out; 2825 } 2826 2827 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj, 2828 &nvme_pci_attr_group)) 2829 dev->attrs_added = true; 2830 2831 nvme_start_ctrl(&dev->ctrl); 2832 return; 2833 2834 out_unlock: 2835 mutex_unlock(&dev->shutdown_lock); 2836 out: 2837 if (result) 2838 dev_warn(dev->ctrl.device, 2839 "Removing after probe failure status: %d\n", result); 2840 nvme_remove_dead_ctrl(dev); 2841 } 2842 2843 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2844 { 2845 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2846 struct pci_dev *pdev = to_pci_dev(dev->dev); 2847 2848 if (pci_get_drvdata(pdev)) 2849 device_release_driver(&pdev->dev); 2850 nvme_put_ctrl(&dev->ctrl); 2851 } 2852 2853 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2854 { 2855 *val = readl(to_nvme_dev(ctrl)->bar + off); 2856 return 0; 2857 } 2858 2859 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2860 { 2861 writel(val, to_nvme_dev(ctrl)->bar + off); 2862 return 0; 2863 } 2864 2865 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2866 { 2867 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2868 return 0; 2869 } 2870 2871 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2872 { 2873 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2874 2875 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2876 } 2877 2878 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2879 .name = "pcie", 2880 .module = THIS_MODULE, 2881 .flags = NVME_F_METADATA_SUPPORTED | 2882 NVME_F_PCI_P2PDMA, 2883 .reg_read32 = nvme_pci_reg_read32, 2884 .reg_write32 = nvme_pci_reg_write32, 2885 .reg_read64 = nvme_pci_reg_read64, 2886 .free_ctrl = nvme_pci_free_ctrl, 2887 .submit_async_event = nvme_pci_submit_async_event, 2888 .get_address = nvme_pci_get_address, 2889 }; 2890 2891 static int nvme_dev_map(struct nvme_dev *dev) 2892 { 2893 struct pci_dev *pdev = to_pci_dev(dev->dev); 2894 2895 if (pci_request_mem_regions(pdev, "nvme")) 2896 return -ENODEV; 2897 2898 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2899 goto release; 2900 2901 return 0; 2902 release: 2903 pci_release_mem_regions(pdev); 2904 return -ENODEV; 2905 } 2906 2907 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2908 { 2909 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2910 /* 2911 * Several Samsung devices seem to drop off the PCIe bus 2912 * randomly when APST is on and uses the deepest sleep state. 2913 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2914 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2915 * 950 PRO 256GB", but it seems to be restricted to two Dell 2916 * laptops. 2917 */ 2918 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2919 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2920 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2921 return NVME_QUIRK_NO_DEEPEST_PS; 2922 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2923 /* 2924 * Samsung SSD 960 EVO drops off the PCIe bus after system 2925 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2926 * within few minutes after bootup on a Coffee Lake board - 2927 * ASUS PRIME Z370-A 2928 */ 2929 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2930 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2931 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2932 return NVME_QUIRK_NO_APST; 2933 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2934 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2935 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2936 /* 2937 * Forcing to use host managed nvme power settings for 2938 * lowest idle power with quick resume latency on 2939 * Samsung and Toshiba SSDs based on suspend behavior 2940 * on Coffee Lake board for LENOVO C640 2941 */ 2942 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2943 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2944 return NVME_QUIRK_SIMPLE_SUSPEND; 2945 } 2946 2947 return 0; 2948 } 2949 2950 static void nvme_async_probe(void *data, async_cookie_t cookie) 2951 { 2952 struct nvme_dev *dev = data; 2953 2954 flush_work(&dev->ctrl.reset_work); 2955 flush_work(&dev->ctrl.scan_work); 2956 nvme_put_ctrl(&dev->ctrl); 2957 } 2958 2959 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2960 { 2961 int node, result = -ENOMEM; 2962 struct nvme_dev *dev; 2963 unsigned long quirks = id->driver_data; 2964 size_t alloc_size; 2965 2966 node = dev_to_node(&pdev->dev); 2967 if (node == NUMA_NO_NODE) 2968 set_dev_node(&pdev->dev, first_memory_node); 2969 2970 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2971 if (!dev) 2972 return -ENOMEM; 2973 2974 dev->nr_write_queues = write_queues; 2975 dev->nr_poll_queues = poll_queues; 2976 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2977 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2978 sizeof(struct nvme_queue), GFP_KERNEL, node); 2979 if (!dev->queues) 2980 goto free; 2981 2982 dev->dev = get_device(&pdev->dev); 2983 pci_set_drvdata(pdev, dev); 2984 2985 result = nvme_dev_map(dev); 2986 if (result) 2987 goto put_pci; 2988 2989 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2990 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2991 mutex_init(&dev->shutdown_lock); 2992 2993 result = nvme_setup_prp_pools(dev); 2994 if (result) 2995 goto unmap; 2996 2997 quirks |= check_vendor_combination_bug(pdev); 2998 2999 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 3000 /* 3001 * Some systems use a bios work around to ask for D3 on 3002 * platforms that support kernel managed suspend. 3003 */ 3004 dev_info(&pdev->dev, 3005 "platform quirk: setting simple suspend\n"); 3006 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3007 } 3008 3009 /* 3010 * Double check that our mempool alloc size will cover the biggest 3011 * command we support. 3012 */ 3013 alloc_size = nvme_pci_iod_alloc_size(); 3014 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 3015 3016 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 3017 mempool_kfree, 3018 (void *) alloc_size, 3019 GFP_KERNEL, node); 3020 if (!dev->iod_mempool) { 3021 result = -ENOMEM; 3022 goto release_pools; 3023 } 3024 3025 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3026 quirks); 3027 if (result) 3028 goto release_mempool; 3029 3030 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3031 3032 nvme_reset_ctrl(&dev->ctrl); 3033 async_schedule(nvme_async_probe, dev); 3034 3035 return 0; 3036 3037 release_mempool: 3038 mempool_destroy(dev->iod_mempool); 3039 release_pools: 3040 nvme_release_prp_pools(dev); 3041 unmap: 3042 nvme_dev_unmap(dev); 3043 put_pci: 3044 put_device(dev->dev); 3045 free: 3046 kfree(dev->queues); 3047 kfree(dev); 3048 return result; 3049 } 3050 3051 static void nvme_reset_prepare(struct pci_dev *pdev) 3052 { 3053 struct nvme_dev *dev = pci_get_drvdata(pdev); 3054 3055 /* 3056 * We don't need to check the return value from waiting for the reset 3057 * state as pci_dev device lock is held, making it impossible to race 3058 * with ->remove(). 3059 */ 3060 nvme_disable_prepare_reset(dev, false); 3061 nvme_sync_queues(&dev->ctrl); 3062 } 3063 3064 static void nvme_reset_done(struct pci_dev *pdev) 3065 { 3066 struct nvme_dev *dev = pci_get_drvdata(pdev); 3067 3068 if (!nvme_try_sched_reset(&dev->ctrl)) 3069 flush_work(&dev->ctrl.reset_work); 3070 } 3071 3072 static void nvme_shutdown(struct pci_dev *pdev) 3073 { 3074 struct nvme_dev *dev = pci_get_drvdata(pdev); 3075 3076 nvme_disable_prepare_reset(dev, true); 3077 } 3078 3079 static void nvme_remove_attrs(struct nvme_dev *dev) 3080 { 3081 if (dev->attrs_added) 3082 sysfs_remove_group(&dev->ctrl.device->kobj, 3083 &nvme_pci_attr_group); 3084 } 3085 3086 /* 3087 * The driver's remove may be called on a device in a partially initialized 3088 * state. This function must not have any dependencies on the device state in 3089 * order to proceed. 3090 */ 3091 static void nvme_remove(struct pci_dev *pdev) 3092 { 3093 struct nvme_dev *dev = pci_get_drvdata(pdev); 3094 3095 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3096 pci_set_drvdata(pdev, NULL); 3097 3098 if (!pci_device_is_present(pdev)) { 3099 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3100 nvme_dev_disable(dev, true); 3101 } 3102 3103 flush_work(&dev->ctrl.reset_work); 3104 nvme_stop_ctrl(&dev->ctrl); 3105 nvme_remove_namespaces(&dev->ctrl); 3106 nvme_dev_disable(dev, true); 3107 nvme_remove_attrs(dev); 3108 nvme_free_host_mem(dev); 3109 nvme_dev_remove_admin(dev); 3110 nvme_free_queues(dev, 0); 3111 nvme_release_prp_pools(dev); 3112 nvme_dev_unmap(dev); 3113 nvme_uninit_ctrl(&dev->ctrl); 3114 } 3115 3116 #ifdef CONFIG_PM_SLEEP 3117 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3118 { 3119 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3120 } 3121 3122 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3123 { 3124 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3125 } 3126 3127 static int nvme_resume(struct device *dev) 3128 { 3129 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3130 struct nvme_ctrl *ctrl = &ndev->ctrl; 3131 3132 if (ndev->last_ps == U32_MAX || 3133 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3134 goto reset; 3135 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3136 goto reset; 3137 3138 return 0; 3139 reset: 3140 return nvme_try_sched_reset(ctrl); 3141 } 3142 3143 static int nvme_suspend(struct device *dev) 3144 { 3145 struct pci_dev *pdev = to_pci_dev(dev); 3146 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3147 struct nvme_ctrl *ctrl = &ndev->ctrl; 3148 int ret = -EBUSY; 3149 3150 ndev->last_ps = U32_MAX; 3151 3152 /* 3153 * The platform does not remove power for a kernel managed suspend so 3154 * use host managed nvme power settings for lowest idle power if 3155 * possible. This should have quicker resume latency than a full device 3156 * shutdown. But if the firmware is involved after the suspend or the 3157 * device does not support any non-default power states, shut down the 3158 * device fully. 3159 * 3160 * If ASPM is not enabled for the device, shut down the device and allow 3161 * the PCI bus layer to put it into D3 in order to take the PCIe link 3162 * down, so as to allow the platform to achieve its minimum low-power 3163 * state (which may not be possible if the link is up). 3164 */ 3165 if (pm_suspend_via_firmware() || !ctrl->npss || 3166 !pcie_aspm_enabled(pdev) || 3167 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3168 return nvme_disable_prepare_reset(ndev, true); 3169 3170 nvme_start_freeze(ctrl); 3171 nvme_wait_freeze(ctrl); 3172 nvme_sync_queues(ctrl); 3173 3174 if (ctrl->state != NVME_CTRL_LIVE) 3175 goto unfreeze; 3176 3177 /* 3178 * Host memory access may not be successful in a system suspend state, 3179 * but the specification allows the controller to access memory in a 3180 * non-operational power state. 3181 */ 3182 if (ndev->hmb) { 3183 ret = nvme_set_host_mem(ndev, 0); 3184 if (ret < 0) 3185 goto unfreeze; 3186 } 3187 3188 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3189 if (ret < 0) 3190 goto unfreeze; 3191 3192 /* 3193 * A saved state prevents pci pm from generically controlling the 3194 * device's power. If we're using protocol specific settings, we don't 3195 * want pci interfering. 3196 */ 3197 pci_save_state(pdev); 3198 3199 ret = nvme_set_power_state(ctrl, ctrl->npss); 3200 if (ret < 0) 3201 goto unfreeze; 3202 3203 if (ret) { 3204 /* discard the saved state */ 3205 pci_load_saved_state(pdev, NULL); 3206 3207 /* 3208 * Clearing npss forces a controller reset on resume. The 3209 * correct value will be rediscovered then. 3210 */ 3211 ret = nvme_disable_prepare_reset(ndev, true); 3212 ctrl->npss = 0; 3213 } 3214 unfreeze: 3215 nvme_unfreeze(ctrl); 3216 return ret; 3217 } 3218 3219 static int nvme_simple_suspend(struct device *dev) 3220 { 3221 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3222 3223 return nvme_disable_prepare_reset(ndev, true); 3224 } 3225 3226 static int nvme_simple_resume(struct device *dev) 3227 { 3228 struct pci_dev *pdev = to_pci_dev(dev); 3229 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3230 3231 return nvme_try_sched_reset(&ndev->ctrl); 3232 } 3233 3234 static const struct dev_pm_ops nvme_dev_pm_ops = { 3235 .suspend = nvme_suspend, 3236 .resume = nvme_resume, 3237 .freeze = nvme_simple_suspend, 3238 .thaw = nvme_simple_resume, 3239 .poweroff = nvme_simple_suspend, 3240 .restore = nvme_simple_resume, 3241 }; 3242 #endif /* CONFIG_PM_SLEEP */ 3243 3244 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3245 pci_channel_state_t state) 3246 { 3247 struct nvme_dev *dev = pci_get_drvdata(pdev); 3248 3249 /* 3250 * A frozen channel requires a reset. When detected, this method will 3251 * shutdown the controller to quiesce. The controller will be restarted 3252 * after the slot reset through driver's slot_reset callback. 3253 */ 3254 switch (state) { 3255 case pci_channel_io_normal: 3256 return PCI_ERS_RESULT_CAN_RECOVER; 3257 case pci_channel_io_frozen: 3258 dev_warn(dev->ctrl.device, 3259 "frozen state error detected, reset controller\n"); 3260 nvme_dev_disable(dev, false); 3261 return PCI_ERS_RESULT_NEED_RESET; 3262 case pci_channel_io_perm_failure: 3263 dev_warn(dev->ctrl.device, 3264 "failure state error detected, request disconnect\n"); 3265 return PCI_ERS_RESULT_DISCONNECT; 3266 } 3267 return PCI_ERS_RESULT_NEED_RESET; 3268 } 3269 3270 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3271 { 3272 struct nvme_dev *dev = pci_get_drvdata(pdev); 3273 3274 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3275 pci_restore_state(pdev); 3276 nvme_reset_ctrl(&dev->ctrl); 3277 return PCI_ERS_RESULT_RECOVERED; 3278 } 3279 3280 static void nvme_error_resume(struct pci_dev *pdev) 3281 { 3282 struct nvme_dev *dev = pci_get_drvdata(pdev); 3283 3284 flush_work(&dev->ctrl.reset_work); 3285 } 3286 3287 static const struct pci_error_handlers nvme_err_handler = { 3288 .error_detected = nvme_error_detected, 3289 .slot_reset = nvme_slot_reset, 3290 .resume = nvme_error_resume, 3291 .reset_prepare = nvme_reset_prepare, 3292 .reset_done = nvme_reset_done, 3293 }; 3294 3295 static const struct pci_device_id nvme_id_table[] = { 3296 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3297 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3298 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3299 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3300 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3301 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3302 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3303 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3304 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3305 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3306 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3307 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3308 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3309 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3310 NVME_QUIRK_MEDIUM_PRIO_SQ | 3311 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3312 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3313 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3314 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3315 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3316 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3317 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3318 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3319 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3320 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3321 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3322 NVME_QUIRK_NO_NS_DESC_LIST, }, 3323 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3324 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3325 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3326 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3327 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3328 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3329 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3330 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3331 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3332 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3333 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3334 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3335 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3336 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3337 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3338 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3339 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3340 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3341 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3342 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3343 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3344 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3345 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3346 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3347 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3348 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3349 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3350 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3351 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3352 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3353 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3354 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3355 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3356 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3357 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3358 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3359 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3360 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3361 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3362 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3363 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3364 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3365 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3366 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3367 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3368 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3369 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3370 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3371 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3372 NVME_QUIRK_128_BYTES_SQES | 3373 NVME_QUIRK_SHARED_TAGS | 3374 NVME_QUIRK_SKIP_CID_GEN }, 3375 3376 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3377 { 0, } 3378 }; 3379 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3380 3381 static struct pci_driver nvme_driver = { 3382 .name = "nvme", 3383 .id_table = nvme_id_table, 3384 .probe = nvme_probe, 3385 .remove = nvme_remove, 3386 .shutdown = nvme_shutdown, 3387 #ifdef CONFIG_PM_SLEEP 3388 .driver = { 3389 .pm = &nvme_dev_pm_ops, 3390 }, 3391 #endif 3392 .sriov_configure = pci_sriov_configure_simple, 3393 .err_handler = &nvme_err_handler, 3394 }; 3395 3396 static int __init nvme_init(void) 3397 { 3398 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3399 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3400 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3401 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3402 3403 return pci_register_driver(&nvme_driver); 3404 } 3405 3406 static void __exit nvme_exit(void) 3407 { 3408 pci_unregister_driver(&nvme_driver); 3409 flush_workqueue(nvme_wq); 3410 } 3411 3412 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3413 MODULE_LICENSE("GPL"); 3414 MODULE_VERSION("1.0"); 3415 module_init(nvme_init); 3416 module_exit(nvme_exit); 3417