xref: /openbmc/linux/drivers/nvme/host/pci.c (revision c0c45238fcf44b05c86f2f7d1dda136df7a83ff9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	4096
45 #define NVME_MAX_SEGS	127
46 
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49 
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53 
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58 
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 		"Use SGLs when average request segment size is larger or equal to "
63 		"this size. Use 0 to disable SGLs.");
64 
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 	.set = io_queue_depth_set,
70 	.get = param_get_uint,
71 };
72 
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76 
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79 	unsigned int n;
80 	int ret;
81 
82 	ret = kstrtouint(val, 10, &n);
83 	if (ret != 0 || n > num_possible_cpus())
84 		return -EINVAL;
85 	return param_set_uint(val, kp);
86 }
87 
88 static const struct kernel_param_ops io_queue_count_ops = {
89 	.set = io_queue_count_set,
90 	.get = param_get_uint,
91 };
92 
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 	"Number of queues to use for writes. If not set, reads and writes "
97 	"will share a queue set.");
98 
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102 
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106 
107 struct nvme_dev;
108 struct nvme_queue;
109 
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112 
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117 	struct nvme_queue *queues;
118 	struct blk_mq_tag_set tagset;
119 	struct blk_mq_tag_set admin_tagset;
120 	u32 __iomem *dbs;
121 	struct device *dev;
122 	struct dma_pool *prp_page_pool;
123 	struct dma_pool *prp_small_pool;
124 	unsigned online_queues;
125 	unsigned max_qid;
126 	unsigned io_queues[HCTX_MAX_TYPES];
127 	unsigned int num_vecs;
128 	u32 q_depth;
129 	int io_sqes;
130 	u32 db_stride;
131 	void __iomem *bar;
132 	unsigned long bar_mapped_size;
133 	struct work_struct remove_work;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 
162 	bool attrs_added;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	u32 *dbbuf_sq_db;
214 	u32 *dbbuf_cq_db;
215 	u32 *dbbuf_sq_ei;
216 	u32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227 	struct nvme_request req;
228 	struct nvme_command cmd;
229 	struct nvme_queue *nvmeq;
230 	bool use_sgl;
231 	int aborted;
232 	int npages;		/* In the PRP list. 0 means small pool in use */
233 	int nents;		/* Used in scatterlist */
234 	dma_addr_t first_dma;
235 	unsigned int dma_len;	/* length of single DMA segment mapping */
236 	dma_addr_t meta_dma;
237 	struct scatterlist *sg;
238 };
239 
240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
241 {
242 	return dev->nr_allocated_queues * 8 * dev->db_stride;
243 }
244 
245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246 {
247 	unsigned int mem_size = nvme_dbbuf_size(dev);
248 
249 	if (dev->dbbuf_dbs) {
250 		/*
251 		 * Clear the dbbuf memory so the driver doesn't observe stale
252 		 * values from the previous instantiation.
253 		 */
254 		memset(dev->dbbuf_dbs, 0, mem_size);
255 		memset(dev->dbbuf_eis, 0, mem_size);
256 		return 0;
257 	}
258 
259 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 					    &dev->dbbuf_dbs_dma_addr,
261 					    GFP_KERNEL);
262 	if (!dev->dbbuf_dbs)
263 		return -ENOMEM;
264 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 					    &dev->dbbuf_eis_dma_addr,
266 					    GFP_KERNEL);
267 	if (!dev->dbbuf_eis) {
268 		dma_free_coherent(dev->dev, mem_size,
269 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
270 		dev->dbbuf_dbs = NULL;
271 		return -ENOMEM;
272 	}
273 
274 	return 0;
275 }
276 
277 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
278 {
279 	unsigned int mem_size = nvme_dbbuf_size(dev);
280 
281 	if (dev->dbbuf_dbs) {
282 		dma_free_coherent(dev->dev, mem_size,
283 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
284 		dev->dbbuf_dbs = NULL;
285 	}
286 	if (dev->dbbuf_eis) {
287 		dma_free_coherent(dev->dev, mem_size,
288 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
289 		dev->dbbuf_eis = NULL;
290 	}
291 }
292 
293 static void nvme_dbbuf_init(struct nvme_dev *dev,
294 			    struct nvme_queue *nvmeq, int qid)
295 {
296 	if (!dev->dbbuf_dbs || !qid)
297 		return;
298 
299 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
302 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
303 }
304 
305 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
306 {
307 	if (!nvmeq->qid)
308 		return;
309 
310 	nvmeq->dbbuf_sq_db = NULL;
311 	nvmeq->dbbuf_cq_db = NULL;
312 	nvmeq->dbbuf_sq_ei = NULL;
313 	nvmeq->dbbuf_cq_ei = NULL;
314 }
315 
316 static void nvme_dbbuf_set(struct nvme_dev *dev)
317 {
318 	struct nvme_command c = { };
319 	unsigned int i;
320 
321 	if (!dev->dbbuf_dbs)
322 		return;
323 
324 	c.dbbuf.opcode = nvme_admin_dbbuf;
325 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
326 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
327 
328 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
329 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
330 		/* Free memory and continue on */
331 		nvme_dbbuf_dma_free(dev);
332 
333 		for (i = 1; i <= dev->online_queues; i++)
334 			nvme_dbbuf_free(&dev->queues[i]);
335 	}
336 }
337 
338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
339 {
340 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
341 }
342 
343 /* Update dbbuf and return true if an MMIO is required */
344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
345 					      volatile u32 *dbbuf_ei)
346 {
347 	if (dbbuf_db) {
348 		u16 old_value;
349 
350 		/*
351 		 * Ensure that the queue is written before updating
352 		 * the doorbell in memory
353 		 */
354 		wmb();
355 
356 		old_value = *dbbuf_db;
357 		*dbbuf_db = value;
358 
359 		/*
360 		 * Ensure that the doorbell is updated before reading the event
361 		 * index from memory.  The controller needs to provide similar
362 		 * ordering to ensure the envent index is updated before reading
363 		 * the doorbell.
364 		 */
365 		mb();
366 
367 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
368 			return false;
369 	}
370 
371 	return true;
372 }
373 
374 /*
375  * Will slightly overestimate the number of pages needed.  This is OK
376  * as it only leads to a small amount of wasted memory for the lifetime of
377  * the I/O.
378  */
379 static int nvme_pci_npages_prp(void)
380 {
381 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
382 				      NVME_CTRL_PAGE_SIZE);
383 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
384 }
385 
386 /*
387  * Calculates the number of pages needed for the SGL segments. For example a 4k
388  * page can accommodate 256 SGL descriptors.
389  */
390 static int nvme_pci_npages_sgl(void)
391 {
392 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
393 			PAGE_SIZE);
394 }
395 
396 static size_t nvme_pci_iod_alloc_size(void)
397 {
398 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
399 
400 	return sizeof(__le64 *) * npages +
401 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
402 }
403 
404 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405 				unsigned int hctx_idx)
406 {
407 	struct nvme_dev *dev = data;
408 	struct nvme_queue *nvmeq = &dev->queues[0];
409 
410 	WARN_ON(hctx_idx != 0);
411 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
412 
413 	hctx->driver_data = nvmeq;
414 	return 0;
415 }
416 
417 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
418 			  unsigned int hctx_idx)
419 {
420 	struct nvme_dev *dev = data;
421 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
422 
423 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
424 	hctx->driver_data = nvmeq;
425 	return 0;
426 }
427 
428 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
429 		struct request *req, unsigned int hctx_idx,
430 		unsigned int numa_node)
431 {
432 	struct nvme_dev *dev = set->driver_data;
433 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
434 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
435 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
436 
437 	BUG_ON(!nvmeq);
438 	iod->nvmeq = nvmeq;
439 
440 	nvme_req(req)->ctrl = &dev->ctrl;
441 	nvme_req(req)->cmd = &iod->cmd;
442 	return 0;
443 }
444 
445 static int queue_irq_offset(struct nvme_dev *dev)
446 {
447 	/* if we have more than 1 vec, admin queue offsets us by 1 */
448 	if (dev->num_vecs > 1)
449 		return 1;
450 
451 	return 0;
452 }
453 
454 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
455 {
456 	struct nvme_dev *dev = set->driver_data;
457 	int i, qoff, offset;
458 
459 	offset = queue_irq_offset(dev);
460 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
461 		struct blk_mq_queue_map *map = &set->map[i];
462 
463 		map->nr_queues = dev->io_queues[i];
464 		if (!map->nr_queues) {
465 			BUG_ON(i == HCTX_TYPE_DEFAULT);
466 			continue;
467 		}
468 
469 		/*
470 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
471 		 * affinity), so use the regular blk-mq cpu mapping
472 		 */
473 		map->queue_offset = qoff;
474 		if (i != HCTX_TYPE_POLL && offset)
475 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
476 		else
477 			blk_mq_map_queues(map);
478 		qoff += map->nr_queues;
479 		offset += map->nr_queues;
480 	}
481 
482 	return 0;
483 }
484 
485 /*
486  * Write sq tail if we are asked to, or if the next command would wrap.
487  */
488 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
489 {
490 	if (!write_sq) {
491 		u16 next_tail = nvmeq->sq_tail + 1;
492 
493 		if (next_tail == nvmeq->q_depth)
494 			next_tail = 0;
495 		if (next_tail != nvmeq->last_sq_tail)
496 			return;
497 	}
498 
499 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
500 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
501 		writel(nvmeq->sq_tail, nvmeq->q_db);
502 	nvmeq->last_sq_tail = nvmeq->sq_tail;
503 }
504 
505 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
506 				    struct nvme_command *cmd)
507 {
508 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
509 		absolute_pointer(cmd), sizeof(*cmd));
510 	if (++nvmeq->sq_tail == nvmeq->q_depth)
511 		nvmeq->sq_tail = 0;
512 }
513 
514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
515 {
516 	struct nvme_queue *nvmeq = hctx->driver_data;
517 
518 	spin_lock(&nvmeq->sq_lock);
519 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520 		nvme_write_sq_db(nvmeq, true);
521 	spin_unlock(&nvmeq->sq_lock);
522 }
523 
524 static void **nvme_pci_iod_list(struct request *req)
525 {
526 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
528 }
529 
530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
531 {
532 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533 	int nseg = blk_rq_nr_phys_segments(req);
534 	unsigned int avg_seg_size;
535 
536 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
537 
538 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
539 		return false;
540 	if (!iod->nvmeq->qid)
541 		return false;
542 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
543 		return false;
544 	return true;
545 }
546 
547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
548 {
549 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551 	dma_addr_t dma_addr = iod->first_dma;
552 	int i;
553 
554 	for (i = 0; i < iod->npages; i++) {
555 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
556 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
557 
558 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559 		dma_addr = next_dma_addr;
560 	}
561 }
562 
563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
564 {
565 	const int last_sg = SGES_PER_PAGE - 1;
566 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567 	dma_addr_t dma_addr = iod->first_dma;
568 	int i;
569 
570 	for (i = 0; i < iod->npages; i++) {
571 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
573 
574 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575 		dma_addr = next_dma_addr;
576 	}
577 }
578 
579 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
580 {
581 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
582 
583 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
584 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
585 				    rq_dma_dir(req));
586 	else
587 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
588 }
589 
590 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
591 {
592 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
593 
594 	if (iod->dma_len) {
595 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
596 			       rq_dma_dir(req));
597 		return;
598 	}
599 
600 	WARN_ON_ONCE(!iod->nents);
601 
602 	nvme_unmap_sg(dev, req);
603 	if (iod->npages == 0)
604 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
605 			      iod->first_dma);
606 	else if (iod->use_sgl)
607 		nvme_free_sgls(dev, req);
608 	else
609 		nvme_free_prps(dev, req);
610 	mempool_free(iod->sg, dev->iod_mempool);
611 }
612 
613 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
614 {
615 	int i;
616 	struct scatterlist *sg;
617 
618 	for_each_sg(sgl, sg, nents, i) {
619 		dma_addr_t phys = sg_phys(sg);
620 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
621 			"dma_address:%pad dma_length:%d\n",
622 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
623 			sg_dma_len(sg));
624 	}
625 }
626 
627 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
628 		struct request *req, struct nvme_rw_command *cmnd)
629 {
630 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
631 	struct dma_pool *pool;
632 	int length = blk_rq_payload_bytes(req);
633 	struct scatterlist *sg = iod->sg;
634 	int dma_len = sg_dma_len(sg);
635 	u64 dma_addr = sg_dma_address(sg);
636 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
637 	__le64 *prp_list;
638 	void **list = nvme_pci_iod_list(req);
639 	dma_addr_t prp_dma;
640 	int nprps, i;
641 
642 	length -= (NVME_CTRL_PAGE_SIZE - offset);
643 	if (length <= 0) {
644 		iod->first_dma = 0;
645 		goto done;
646 	}
647 
648 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
649 	if (dma_len) {
650 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
651 	} else {
652 		sg = sg_next(sg);
653 		dma_addr = sg_dma_address(sg);
654 		dma_len = sg_dma_len(sg);
655 	}
656 
657 	if (length <= NVME_CTRL_PAGE_SIZE) {
658 		iod->first_dma = dma_addr;
659 		goto done;
660 	}
661 
662 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
663 	if (nprps <= (256 / 8)) {
664 		pool = dev->prp_small_pool;
665 		iod->npages = 0;
666 	} else {
667 		pool = dev->prp_page_pool;
668 		iod->npages = 1;
669 	}
670 
671 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
672 	if (!prp_list) {
673 		iod->first_dma = dma_addr;
674 		iod->npages = -1;
675 		return BLK_STS_RESOURCE;
676 	}
677 	list[0] = prp_list;
678 	iod->first_dma = prp_dma;
679 	i = 0;
680 	for (;;) {
681 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
682 			__le64 *old_prp_list = prp_list;
683 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
684 			if (!prp_list)
685 				goto free_prps;
686 			list[iod->npages++] = prp_list;
687 			prp_list[0] = old_prp_list[i - 1];
688 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
689 			i = 1;
690 		}
691 		prp_list[i++] = cpu_to_le64(dma_addr);
692 		dma_len -= NVME_CTRL_PAGE_SIZE;
693 		dma_addr += NVME_CTRL_PAGE_SIZE;
694 		length -= NVME_CTRL_PAGE_SIZE;
695 		if (length <= 0)
696 			break;
697 		if (dma_len > 0)
698 			continue;
699 		if (unlikely(dma_len < 0))
700 			goto bad_sgl;
701 		sg = sg_next(sg);
702 		dma_addr = sg_dma_address(sg);
703 		dma_len = sg_dma_len(sg);
704 	}
705 done:
706 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
707 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
708 	return BLK_STS_OK;
709 free_prps:
710 	nvme_free_prps(dev, req);
711 	return BLK_STS_RESOURCE;
712 bad_sgl:
713 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
714 			"Invalid SGL for payload:%d nents:%d\n",
715 			blk_rq_payload_bytes(req), iod->nents);
716 	return BLK_STS_IOERR;
717 }
718 
719 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
720 		struct scatterlist *sg)
721 {
722 	sge->addr = cpu_to_le64(sg_dma_address(sg));
723 	sge->length = cpu_to_le32(sg_dma_len(sg));
724 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
725 }
726 
727 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
728 		dma_addr_t dma_addr, int entries)
729 {
730 	sge->addr = cpu_to_le64(dma_addr);
731 	if (entries < SGES_PER_PAGE) {
732 		sge->length = cpu_to_le32(entries * sizeof(*sge));
733 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
734 	} else {
735 		sge->length = cpu_to_le32(PAGE_SIZE);
736 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
737 	}
738 }
739 
740 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
741 		struct request *req, struct nvme_rw_command *cmd, int entries)
742 {
743 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
744 	struct dma_pool *pool;
745 	struct nvme_sgl_desc *sg_list;
746 	struct scatterlist *sg = iod->sg;
747 	dma_addr_t sgl_dma;
748 	int i = 0;
749 
750 	/* setting the transfer type as SGL */
751 	cmd->flags = NVME_CMD_SGL_METABUF;
752 
753 	if (entries == 1) {
754 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
755 		return BLK_STS_OK;
756 	}
757 
758 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
759 		pool = dev->prp_small_pool;
760 		iod->npages = 0;
761 	} else {
762 		pool = dev->prp_page_pool;
763 		iod->npages = 1;
764 	}
765 
766 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
767 	if (!sg_list) {
768 		iod->npages = -1;
769 		return BLK_STS_RESOURCE;
770 	}
771 
772 	nvme_pci_iod_list(req)[0] = sg_list;
773 	iod->first_dma = sgl_dma;
774 
775 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
776 
777 	do {
778 		if (i == SGES_PER_PAGE) {
779 			struct nvme_sgl_desc *old_sg_desc = sg_list;
780 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
781 
782 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
783 			if (!sg_list)
784 				goto free_sgls;
785 
786 			i = 0;
787 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
788 			sg_list[i++] = *link;
789 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
790 		}
791 
792 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
793 		sg = sg_next(sg);
794 	} while (--entries > 0);
795 
796 	return BLK_STS_OK;
797 free_sgls:
798 	nvme_free_sgls(dev, req);
799 	return BLK_STS_RESOURCE;
800 }
801 
802 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
803 		struct request *req, struct nvme_rw_command *cmnd,
804 		struct bio_vec *bv)
805 {
806 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
808 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
809 
810 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
811 	if (dma_mapping_error(dev->dev, iod->first_dma))
812 		return BLK_STS_RESOURCE;
813 	iod->dma_len = bv->bv_len;
814 
815 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
816 	if (bv->bv_len > first_prp_len)
817 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
818 	return BLK_STS_OK;
819 }
820 
821 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
822 		struct request *req, struct nvme_rw_command *cmnd,
823 		struct bio_vec *bv)
824 {
825 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
826 
827 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
828 	if (dma_mapping_error(dev->dev, iod->first_dma))
829 		return BLK_STS_RESOURCE;
830 	iod->dma_len = bv->bv_len;
831 
832 	cmnd->flags = NVME_CMD_SGL_METABUF;
833 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
834 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
835 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
836 	return BLK_STS_OK;
837 }
838 
839 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
840 		struct nvme_command *cmnd)
841 {
842 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
843 	blk_status_t ret = BLK_STS_RESOURCE;
844 	int nr_mapped;
845 
846 	if (blk_rq_nr_phys_segments(req) == 1) {
847 		struct bio_vec bv = req_bvec(req);
848 
849 		if (!is_pci_p2pdma_page(bv.bv_page)) {
850 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
851 				return nvme_setup_prp_simple(dev, req,
852 							     &cmnd->rw, &bv);
853 
854 			if (iod->nvmeq->qid && sgl_threshold &&
855 			    nvme_ctrl_sgl_supported(&dev->ctrl))
856 				return nvme_setup_sgl_simple(dev, req,
857 							     &cmnd->rw, &bv);
858 		}
859 	}
860 
861 	iod->dma_len = 0;
862 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
863 	if (!iod->sg)
864 		return BLK_STS_RESOURCE;
865 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
866 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
867 	if (!iod->nents)
868 		goto out_free_sg;
869 
870 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
871 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
872 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
873 	else
874 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
875 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
876 	if (!nr_mapped)
877 		goto out_free_sg;
878 
879 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
880 	if (iod->use_sgl)
881 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
882 	else
883 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
884 	if (ret != BLK_STS_OK)
885 		goto out_unmap_sg;
886 	return BLK_STS_OK;
887 
888 out_unmap_sg:
889 	nvme_unmap_sg(dev, req);
890 out_free_sg:
891 	mempool_free(iod->sg, dev->iod_mempool);
892 	return ret;
893 }
894 
895 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
896 		struct nvme_command *cmnd)
897 {
898 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
899 
900 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
901 			rq_dma_dir(req), 0);
902 	if (dma_mapping_error(dev->dev, iod->meta_dma))
903 		return BLK_STS_IOERR;
904 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
905 	return BLK_STS_OK;
906 }
907 
908 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
909 {
910 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911 	blk_status_t ret;
912 
913 	iod->aborted = 0;
914 	iod->npages = -1;
915 	iod->nents = 0;
916 
917 	ret = nvme_setup_cmd(req->q->queuedata, req);
918 	if (ret)
919 		return ret;
920 
921 	if (blk_rq_nr_phys_segments(req)) {
922 		ret = nvme_map_data(dev, req, &iod->cmd);
923 		if (ret)
924 			goto out_free_cmd;
925 	}
926 
927 	if (blk_integrity_rq(req)) {
928 		ret = nvme_map_metadata(dev, req, &iod->cmd);
929 		if (ret)
930 			goto out_unmap_data;
931 	}
932 
933 	blk_mq_start_request(req);
934 	return BLK_STS_OK;
935 out_unmap_data:
936 	nvme_unmap_data(dev, req);
937 out_free_cmd:
938 	nvme_cleanup_cmd(req);
939 	return ret;
940 }
941 
942 /*
943  * NOTE: ns is NULL when called on the admin queue.
944  */
945 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
946 			 const struct blk_mq_queue_data *bd)
947 {
948 	struct nvme_queue *nvmeq = hctx->driver_data;
949 	struct nvme_dev *dev = nvmeq->dev;
950 	struct request *req = bd->rq;
951 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
952 	blk_status_t ret;
953 
954 	/*
955 	 * We should not need to do this, but we're still using this to
956 	 * ensure we can drain requests on a dying queue.
957 	 */
958 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
959 		return BLK_STS_IOERR;
960 
961 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
962 		return nvme_fail_nonready_command(&dev->ctrl, req);
963 
964 	ret = nvme_prep_rq(dev, req);
965 	if (unlikely(ret))
966 		return ret;
967 	spin_lock(&nvmeq->sq_lock);
968 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
969 	nvme_write_sq_db(nvmeq, bd->last);
970 	spin_unlock(&nvmeq->sq_lock);
971 	return BLK_STS_OK;
972 }
973 
974 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
975 {
976 	spin_lock(&nvmeq->sq_lock);
977 	while (!rq_list_empty(*rqlist)) {
978 		struct request *req = rq_list_pop(rqlist);
979 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
980 
981 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
982 	}
983 	nvme_write_sq_db(nvmeq, true);
984 	spin_unlock(&nvmeq->sq_lock);
985 }
986 
987 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
988 {
989 	/*
990 	 * We should not need to do this, but we're still using this to
991 	 * ensure we can drain requests on a dying queue.
992 	 */
993 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
994 		return false;
995 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
996 		return false;
997 
998 	req->mq_hctx->tags->rqs[req->tag] = req;
999 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1000 }
1001 
1002 static void nvme_queue_rqs(struct request **rqlist)
1003 {
1004 	struct request *req, *next, *prev = NULL;
1005 	struct request *requeue_list = NULL;
1006 
1007 	rq_list_for_each_safe(rqlist, req, next) {
1008 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1009 
1010 		if (!nvme_prep_rq_batch(nvmeq, req)) {
1011 			/* detach 'req' and add to remainder list */
1012 			rq_list_move(rqlist, &requeue_list, req, prev);
1013 
1014 			req = prev;
1015 			if (!req)
1016 				continue;
1017 		}
1018 
1019 		if (!next || req->mq_hctx != next->mq_hctx) {
1020 			/* detach rest of list, and submit */
1021 			req->rq_next = NULL;
1022 			nvme_submit_cmds(nvmeq, rqlist);
1023 			*rqlist = next;
1024 			prev = NULL;
1025 		} else
1026 			prev = req;
1027 	}
1028 
1029 	*rqlist = requeue_list;
1030 }
1031 
1032 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1033 {
1034 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1035 	struct nvme_dev *dev = iod->nvmeq->dev;
1036 
1037 	if (blk_integrity_rq(req))
1038 		dma_unmap_page(dev->dev, iod->meta_dma,
1039 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1040 	if (blk_rq_nr_phys_segments(req))
1041 		nvme_unmap_data(dev, req);
1042 }
1043 
1044 static void nvme_pci_complete_rq(struct request *req)
1045 {
1046 	nvme_pci_unmap_rq(req);
1047 	nvme_complete_rq(req);
1048 }
1049 
1050 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1051 {
1052 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1053 }
1054 
1055 /* We read the CQE phase first to check if the rest of the entry is valid */
1056 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1057 {
1058 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1059 
1060 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1061 }
1062 
1063 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1064 {
1065 	u16 head = nvmeq->cq_head;
1066 
1067 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1068 					      nvmeq->dbbuf_cq_ei))
1069 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1070 }
1071 
1072 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1073 {
1074 	if (!nvmeq->qid)
1075 		return nvmeq->dev->admin_tagset.tags[0];
1076 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1077 }
1078 
1079 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1080 				   struct io_comp_batch *iob, u16 idx)
1081 {
1082 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1083 	__u16 command_id = READ_ONCE(cqe->command_id);
1084 	struct request *req;
1085 
1086 	/*
1087 	 * AEN requests are special as they don't time out and can
1088 	 * survive any kind of queue freeze and often don't respond to
1089 	 * aborts.  We don't even bother to allocate a struct request
1090 	 * for them but rather special case them here.
1091 	 */
1092 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1093 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1094 				cqe->status, &cqe->result);
1095 		return;
1096 	}
1097 
1098 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1099 	if (unlikely(!req)) {
1100 		dev_warn(nvmeq->dev->ctrl.device,
1101 			"invalid id %d completed on queue %d\n",
1102 			command_id, le16_to_cpu(cqe->sq_id));
1103 		return;
1104 	}
1105 
1106 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1107 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1108 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1109 					nvme_pci_complete_batch))
1110 		nvme_pci_complete_rq(req);
1111 }
1112 
1113 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1114 {
1115 	u32 tmp = nvmeq->cq_head + 1;
1116 
1117 	if (tmp == nvmeq->q_depth) {
1118 		nvmeq->cq_head = 0;
1119 		nvmeq->cq_phase ^= 1;
1120 	} else {
1121 		nvmeq->cq_head = tmp;
1122 	}
1123 }
1124 
1125 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1126 			       struct io_comp_batch *iob)
1127 {
1128 	int found = 0;
1129 
1130 	while (nvme_cqe_pending(nvmeq)) {
1131 		found++;
1132 		/*
1133 		 * load-load control dependency between phase and the rest of
1134 		 * the cqe requires a full read memory barrier
1135 		 */
1136 		dma_rmb();
1137 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1138 		nvme_update_cq_head(nvmeq);
1139 	}
1140 
1141 	if (found)
1142 		nvme_ring_cq_doorbell(nvmeq);
1143 	return found;
1144 }
1145 
1146 static irqreturn_t nvme_irq(int irq, void *data)
1147 {
1148 	struct nvme_queue *nvmeq = data;
1149 	DEFINE_IO_COMP_BATCH(iob);
1150 
1151 	if (nvme_poll_cq(nvmeq, &iob)) {
1152 		if (!rq_list_empty(iob.req_list))
1153 			nvme_pci_complete_batch(&iob);
1154 		return IRQ_HANDLED;
1155 	}
1156 	return IRQ_NONE;
1157 }
1158 
1159 static irqreturn_t nvme_irq_check(int irq, void *data)
1160 {
1161 	struct nvme_queue *nvmeq = data;
1162 
1163 	if (nvme_cqe_pending(nvmeq))
1164 		return IRQ_WAKE_THREAD;
1165 	return IRQ_NONE;
1166 }
1167 
1168 /*
1169  * Poll for completions for any interrupt driven queue
1170  * Can be called from any context.
1171  */
1172 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1173 {
1174 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1175 
1176 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1177 
1178 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1179 	nvme_poll_cq(nvmeq, NULL);
1180 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1181 }
1182 
1183 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1184 {
1185 	struct nvme_queue *nvmeq = hctx->driver_data;
1186 	bool found;
1187 
1188 	if (!nvme_cqe_pending(nvmeq))
1189 		return 0;
1190 
1191 	spin_lock(&nvmeq->cq_poll_lock);
1192 	found = nvme_poll_cq(nvmeq, iob);
1193 	spin_unlock(&nvmeq->cq_poll_lock);
1194 
1195 	return found;
1196 }
1197 
1198 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1199 {
1200 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1201 	struct nvme_queue *nvmeq = &dev->queues[0];
1202 	struct nvme_command c = { };
1203 
1204 	c.common.opcode = nvme_admin_async_event;
1205 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1206 
1207 	spin_lock(&nvmeq->sq_lock);
1208 	nvme_sq_copy_cmd(nvmeq, &c);
1209 	nvme_write_sq_db(nvmeq, true);
1210 	spin_unlock(&nvmeq->sq_lock);
1211 }
1212 
1213 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1214 {
1215 	struct nvme_command c = { };
1216 
1217 	c.delete_queue.opcode = opcode;
1218 	c.delete_queue.qid = cpu_to_le16(id);
1219 
1220 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1221 }
1222 
1223 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1224 		struct nvme_queue *nvmeq, s16 vector)
1225 {
1226 	struct nvme_command c = { };
1227 	int flags = NVME_QUEUE_PHYS_CONTIG;
1228 
1229 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1230 		flags |= NVME_CQ_IRQ_ENABLED;
1231 
1232 	/*
1233 	 * Note: we (ab)use the fact that the prp fields survive if no data
1234 	 * is attached to the request.
1235 	 */
1236 	c.create_cq.opcode = nvme_admin_create_cq;
1237 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1238 	c.create_cq.cqid = cpu_to_le16(qid);
1239 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1240 	c.create_cq.cq_flags = cpu_to_le16(flags);
1241 	c.create_cq.irq_vector = cpu_to_le16(vector);
1242 
1243 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1244 }
1245 
1246 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1247 						struct nvme_queue *nvmeq)
1248 {
1249 	struct nvme_ctrl *ctrl = &dev->ctrl;
1250 	struct nvme_command c = { };
1251 	int flags = NVME_QUEUE_PHYS_CONTIG;
1252 
1253 	/*
1254 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1255 	 * set. Since URGENT priority is zeroes, it makes all queues
1256 	 * URGENT.
1257 	 */
1258 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1259 		flags |= NVME_SQ_PRIO_MEDIUM;
1260 
1261 	/*
1262 	 * Note: we (ab)use the fact that the prp fields survive if no data
1263 	 * is attached to the request.
1264 	 */
1265 	c.create_sq.opcode = nvme_admin_create_sq;
1266 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1267 	c.create_sq.sqid = cpu_to_le16(qid);
1268 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1269 	c.create_sq.sq_flags = cpu_to_le16(flags);
1270 	c.create_sq.cqid = cpu_to_le16(qid);
1271 
1272 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1273 }
1274 
1275 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1276 {
1277 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1278 }
1279 
1280 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1281 {
1282 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1283 }
1284 
1285 static void abort_endio(struct request *req, blk_status_t error)
1286 {
1287 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1288 	struct nvme_queue *nvmeq = iod->nvmeq;
1289 
1290 	dev_warn(nvmeq->dev->ctrl.device,
1291 		 "Abort status: 0x%x", nvme_req(req)->status);
1292 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1293 	blk_mq_free_request(req);
1294 }
1295 
1296 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1297 {
1298 	/* If true, indicates loss of adapter communication, possibly by a
1299 	 * NVMe Subsystem reset.
1300 	 */
1301 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1302 
1303 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1304 	switch (dev->ctrl.state) {
1305 	case NVME_CTRL_RESETTING:
1306 	case NVME_CTRL_CONNECTING:
1307 		return false;
1308 	default:
1309 		break;
1310 	}
1311 
1312 	/* We shouldn't reset unless the controller is on fatal error state
1313 	 * _or_ if we lost the communication with it.
1314 	 */
1315 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1316 		return false;
1317 
1318 	return true;
1319 }
1320 
1321 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1322 {
1323 	/* Read a config register to help see what died. */
1324 	u16 pci_status;
1325 	int result;
1326 
1327 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1328 				      &pci_status);
1329 	if (result == PCIBIOS_SUCCESSFUL)
1330 		dev_warn(dev->ctrl.device,
1331 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1332 			 csts, pci_status);
1333 	else
1334 		dev_warn(dev->ctrl.device,
1335 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1336 			 csts, result);
1337 }
1338 
1339 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1340 {
1341 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1342 	struct nvme_queue *nvmeq = iod->nvmeq;
1343 	struct nvme_dev *dev = nvmeq->dev;
1344 	struct request *abort_req;
1345 	struct nvme_command cmd = { };
1346 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1347 
1348 	/* If PCI error recovery process is happening, we cannot reset or
1349 	 * the recovery mechanism will surely fail.
1350 	 */
1351 	mb();
1352 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1353 		return BLK_EH_RESET_TIMER;
1354 
1355 	/*
1356 	 * Reset immediately if the controller is failed
1357 	 */
1358 	if (nvme_should_reset(dev, csts)) {
1359 		nvme_warn_reset(dev, csts);
1360 		nvme_dev_disable(dev, false);
1361 		nvme_reset_ctrl(&dev->ctrl);
1362 		return BLK_EH_DONE;
1363 	}
1364 
1365 	/*
1366 	 * Did we miss an interrupt?
1367 	 */
1368 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1369 		nvme_poll(req->mq_hctx, NULL);
1370 	else
1371 		nvme_poll_irqdisable(nvmeq);
1372 
1373 	if (blk_mq_request_completed(req)) {
1374 		dev_warn(dev->ctrl.device,
1375 			 "I/O %d QID %d timeout, completion polled\n",
1376 			 req->tag, nvmeq->qid);
1377 		return BLK_EH_DONE;
1378 	}
1379 
1380 	/*
1381 	 * Shutdown immediately if controller times out while starting. The
1382 	 * reset work will see the pci device disabled when it gets the forced
1383 	 * cancellation error. All outstanding requests are completed on
1384 	 * shutdown, so we return BLK_EH_DONE.
1385 	 */
1386 	switch (dev->ctrl.state) {
1387 	case NVME_CTRL_CONNECTING:
1388 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1389 		fallthrough;
1390 	case NVME_CTRL_DELETING:
1391 		dev_warn_ratelimited(dev->ctrl.device,
1392 			 "I/O %d QID %d timeout, disable controller\n",
1393 			 req->tag, nvmeq->qid);
1394 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1395 		nvme_dev_disable(dev, true);
1396 		return BLK_EH_DONE;
1397 	case NVME_CTRL_RESETTING:
1398 		return BLK_EH_RESET_TIMER;
1399 	default:
1400 		break;
1401 	}
1402 
1403 	/*
1404 	 * Shutdown the controller immediately and schedule a reset if the
1405 	 * command was already aborted once before and still hasn't been
1406 	 * returned to the driver, or if this is the admin queue.
1407 	 */
1408 	if (!nvmeq->qid || iod->aborted) {
1409 		dev_warn(dev->ctrl.device,
1410 			 "I/O %d QID %d timeout, reset controller\n",
1411 			 req->tag, nvmeq->qid);
1412 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1413 		nvme_dev_disable(dev, false);
1414 		nvme_reset_ctrl(&dev->ctrl);
1415 
1416 		return BLK_EH_DONE;
1417 	}
1418 
1419 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1420 		atomic_inc(&dev->ctrl.abort_limit);
1421 		return BLK_EH_RESET_TIMER;
1422 	}
1423 	iod->aborted = 1;
1424 
1425 	cmd.abort.opcode = nvme_admin_abort_cmd;
1426 	cmd.abort.cid = nvme_cid(req);
1427 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1428 
1429 	dev_warn(nvmeq->dev->ctrl.device,
1430 		"I/O %d QID %d timeout, aborting\n",
1431 		 req->tag, nvmeq->qid);
1432 
1433 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1434 					 BLK_MQ_REQ_NOWAIT);
1435 	if (IS_ERR(abort_req)) {
1436 		atomic_inc(&dev->ctrl.abort_limit);
1437 		return BLK_EH_RESET_TIMER;
1438 	}
1439 	nvme_init_request(abort_req, &cmd);
1440 
1441 	abort_req->end_io_data = NULL;
1442 	blk_execute_rq_nowait(abort_req, false, abort_endio);
1443 
1444 	/*
1445 	 * The aborted req will be completed on receiving the abort req.
1446 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1447 	 * as the device then is in a faulty state.
1448 	 */
1449 	return BLK_EH_RESET_TIMER;
1450 }
1451 
1452 static void nvme_free_queue(struct nvme_queue *nvmeq)
1453 {
1454 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1455 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1456 	if (!nvmeq->sq_cmds)
1457 		return;
1458 
1459 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1460 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1461 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1462 	} else {
1463 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1464 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1465 	}
1466 }
1467 
1468 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1469 {
1470 	int i;
1471 
1472 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1473 		dev->ctrl.queue_count--;
1474 		nvme_free_queue(&dev->queues[i]);
1475 	}
1476 }
1477 
1478 /**
1479  * nvme_suspend_queue - put queue into suspended state
1480  * @nvmeq: queue to suspend
1481  */
1482 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1483 {
1484 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1485 		return 1;
1486 
1487 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1488 	mb();
1489 
1490 	nvmeq->dev->online_queues--;
1491 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1492 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1493 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1494 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1495 	return 0;
1496 }
1497 
1498 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1499 {
1500 	int i;
1501 
1502 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1503 		nvme_suspend_queue(&dev->queues[i]);
1504 }
1505 
1506 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1507 {
1508 	struct nvme_queue *nvmeq = &dev->queues[0];
1509 
1510 	if (shutdown)
1511 		nvme_shutdown_ctrl(&dev->ctrl);
1512 	else
1513 		nvme_disable_ctrl(&dev->ctrl);
1514 
1515 	nvme_poll_irqdisable(nvmeq);
1516 }
1517 
1518 /*
1519  * Called only on a device that has been disabled and after all other threads
1520  * that can check this device's completion queues have synced, except
1521  * nvme_poll(). This is the last chance for the driver to see a natural
1522  * completion before nvme_cancel_request() terminates all incomplete requests.
1523  */
1524 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1525 {
1526 	int i;
1527 
1528 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1529 		spin_lock(&dev->queues[i].cq_poll_lock);
1530 		nvme_poll_cq(&dev->queues[i], NULL);
1531 		spin_unlock(&dev->queues[i].cq_poll_lock);
1532 	}
1533 }
1534 
1535 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1536 				int entry_size)
1537 {
1538 	int q_depth = dev->q_depth;
1539 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1540 					  NVME_CTRL_PAGE_SIZE);
1541 
1542 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1543 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1544 
1545 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1546 		q_depth = div_u64(mem_per_q, entry_size);
1547 
1548 		/*
1549 		 * Ensure the reduced q_depth is above some threshold where it
1550 		 * would be better to map queues in system memory with the
1551 		 * original depth
1552 		 */
1553 		if (q_depth < 64)
1554 			return -ENOMEM;
1555 	}
1556 
1557 	return q_depth;
1558 }
1559 
1560 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1561 				int qid)
1562 {
1563 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1564 
1565 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1566 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1567 		if (nvmeq->sq_cmds) {
1568 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1569 							nvmeq->sq_cmds);
1570 			if (nvmeq->sq_dma_addr) {
1571 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1572 				return 0;
1573 			}
1574 
1575 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1576 		}
1577 	}
1578 
1579 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1580 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1581 	if (!nvmeq->sq_cmds)
1582 		return -ENOMEM;
1583 	return 0;
1584 }
1585 
1586 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1587 {
1588 	struct nvme_queue *nvmeq = &dev->queues[qid];
1589 
1590 	if (dev->ctrl.queue_count > qid)
1591 		return 0;
1592 
1593 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1594 	nvmeq->q_depth = depth;
1595 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1596 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1597 	if (!nvmeq->cqes)
1598 		goto free_nvmeq;
1599 
1600 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1601 		goto free_cqdma;
1602 
1603 	nvmeq->dev = dev;
1604 	spin_lock_init(&nvmeq->sq_lock);
1605 	spin_lock_init(&nvmeq->cq_poll_lock);
1606 	nvmeq->cq_head = 0;
1607 	nvmeq->cq_phase = 1;
1608 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1609 	nvmeq->qid = qid;
1610 	dev->ctrl.queue_count++;
1611 
1612 	return 0;
1613 
1614  free_cqdma:
1615 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1616 			  nvmeq->cq_dma_addr);
1617  free_nvmeq:
1618 	return -ENOMEM;
1619 }
1620 
1621 static int queue_request_irq(struct nvme_queue *nvmeq)
1622 {
1623 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1624 	int nr = nvmeq->dev->ctrl.instance;
1625 
1626 	if (use_threaded_interrupts) {
1627 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1628 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1629 	} else {
1630 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1631 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1632 	}
1633 }
1634 
1635 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1636 {
1637 	struct nvme_dev *dev = nvmeq->dev;
1638 
1639 	nvmeq->sq_tail = 0;
1640 	nvmeq->last_sq_tail = 0;
1641 	nvmeq->cq_head = 0;
1642 	nvmeq->cq_phase = 1;
1643 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1644 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1645 	nvme_dbbuf_init(dev, nvmeq, qid);
1646 	dev->online_queues++;
1647 	wmb(); /* ensure the first interrupt sees the initialization */
1648 }
1649 
1650 /*
1651  * Try getting shutdown_lock while setting up IO queues.
1652  */
1653 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1654 {
1655 	/*
1656 	 * Give up if the lock is being held by nvme_dev_disable.
1657 	 */
1658 	if (!mutex_trylock(&dev->shutdown_lock))
1659 		return -ENODEV;
1660 
1661 	/*
1662 	 * Controller is in wrong state, fail early.
1663 	 */
1664 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1665 		mutex_unlock(&dev->shutdown_lock);
1666 		return -ENODEV;
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1673 {
1674 	struct nvme_dev *dev = nvmeq->dev;
1675 	int result;
1676 	u16 vector = 0;
1677 
1678 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1679 
1680 	/*
1681 	 * A queue's vector matches the queue identifier unless the controller
1682 	 * has only one vector available.
1683 	 */
1684 	if (!polled)
1685 		vector = dev->num_vecs == 1 ? 0 : qid;
1686 	else
1687 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1688 
1689 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1690 	if (result)
1691 		return result;
1692 
1693 	result = adapter_alloc_sq(dev, qid, nvmeq);
1694 	if (result < 0)
1695 		return result;
1696 	if (result)
1697 		goto release_cq;
1698 
1699 	nvmeq->cq_vector = vector;
1700 
1701 	result = nvme_setup_io_queues_trylock(dev);
1702 	if (result)
1703 		return result;
1704 	nvme_init_queue(nvmeq, qid);
1705 	if (!polled) {
1706 		result = queue_request_irq(nvmeq);
1707 		if (result < 0)
1708 			goto release_sq;
1709 	}
1710 
1711 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1712 	mutex_unlock(&dev->shutdown_lock);
1713 	return result;
1714 
1715 release_sq:
1716 	dev->online_queues--;
1717 	mutex_unlock(&dev->shutdown_lock);
1718 	adapter_delete_sq(dev, qid);
1719 release_cq:
1720 	adapter_delete_cq(dev, qid);
1721 	return result;
1722 }
1723 
1724 static const struct blk_mq_ops nvme_mq_admin_ops = {
1725 	.queue_rq	= nvme_queue_rq,
1726 	.complete	= nvme_pci_complete_rq,
1727 	.init_hctx	= nvme_admin_init_hctx,
1728 	.init_request	= nvme_pci_init_request,
1729 	.timeout	= nvme_timeout,
1730 };
1731 
1732 static const struct blk_mq_ops nvme_mq_ops = {
1733 	.queue_rq	= nvme_queue_rq,
1734 	.queue_rqs	= nvme_queue_rqs,
1735 	.complete	= nvme_pci_complete_rq,
1736 	.commit_rqs	= nvme_commit_rqs,
1737 	.init_hctx	= nvme_init_hctx,
1738 	.init_request	= nvme_pci_init_request,
1739 	.map_queues	= nvme_pci_map_queues,
1740 	.timeout	= nvme_timeout,
1741 	.poll		= nvme_poll,
1742 };
1743 
1744 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1745 {
1746 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1747 		/*
1748 		 * If the controller was reset during removal, it's possible
1749 		 * user requests may be waiting on a stopped queue. Start the
1750 		 * queue to flush these to completion.
1751 		 */
1752 		nvme_start_admin_queue(&dev->ctrl);
1753 		blk_cleanup_queue(dev->ctrl.admin_q);
1754 		blk_mq_free_tag_set(&dev->admin_tagset);
1755 	}
1756 }
1757 
1758 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1759 {
1760 	if (!dev->ctrl.admin_q) {
1761 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1762 		dev->admin_tagset.nr_hw_queues = 1;
1763 
1764 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1765 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1766 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1767 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1768 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1769 		dev->admin_tagset.driver_data = dev;
1770 
1771 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1772 			return -ENOMEM;
1773 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1774 
1775 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1776 		if (IS_ERR(dev->ctrl.admin_q)) {
1777 			blk_mq_free_tag_set(&dev->admin_tagset);
1778 			return -ENOMEM;
1779 		}
1780 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1781 			nvme_dev_remove_admin(dev);
1782 			dev->ctrl.admin_q = NULL;
1783 			return -ENODEV;
1784 		}
1785 	} else
1786 		nvme_start_admin_queue(&dev->ctrl);
1787 
1788 	return 0;
1789 }
1790 
1791 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1792 {
1793 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1794 }
1795 
1796 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1797 {
1798 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1799 
1800 	if (size <= dev->bar_mapped_size)
1801 		return 0;
1802 	if (size > pci_resource_len(pdev, 0))
1803 		return -ENOMEM;
1804 	if (dev->bar)
1805 		iounmap(dev->bar);
1806 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1807 	if (!dev->bar) {
1808 		dev->bar_mapped_size = 0;
1809 		return -ENOMEM;
1810 	}
1811 	dev->bar_mapped_size = size;
1812 	dev->dbs = dev->bar + NVME_REG_DBS;
1813 
1814 	return 0;
1815 }
1816 
1817 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1818 {
1819 	int result;
1820 	u32 aqa;
1821 	struct nvme_queue *nvmeq;
1822 
1823 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1824 	if (result < 0)
1825 		return result;
1826 
1827 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1828 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1829 
1830 	if (dev->subsystem &&
1831 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1832 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1833 
1834 	result = nvme_disable_ctrl(&dev->ctrl);
1835 	if (result < 0)
1836 		return result;
1837 
1838 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1839 	if (result)
1840 		return result;
1841 
1842 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1843 
1844 	nvmeq = &dev->queues[0];
1845 	aqa = nvmeq->q_depth - 1;
1846 	aqa |= aqa << 16;
1847 
1848 	writel(aqa, dev->bar + NVME_REG_AQA);
1849 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1850 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1851 
1852 	result = nvme_enable_ctrl(&dev->ctrl);
1853 	if (result)
1854 		return result;
1855 
1856 	nvmeq->cq_vector = 0;
1857 	nvme_init_queue(nvmeq, 0);
1858 	result = queue_request_irq(nvmeq);
1859 	if (result) {
1860 		dev->online_queues--;
1861 		return result;
1862 	}
1863 
1864 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1865 	return result;
1866 }
1867 
1868 static int nvme_create_io_queues(struct nvme_dev *dev)
1869 {
1870 	unsigned i, max, rw_queues;
1871 	int ret = 0;
1872 
1873 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1874 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1875 			ret = -ENOMEM;
1876 			break;
1877 		}
1878 	}
1879 
1880 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1881 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1882 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1883 				dev->io_queues[HCTX_TYPE_READ];
1884 	} else {
1885 		rw_queues = max;
1886 	}
1887 
1888 	for (i = dev->online_queues; i <= max; i++) {
1889 		bool polled = i > rw_queues;
1890 
1891 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1892 		if (ret)
1893 			break;
1894 	}
1895 
1896 	/*
1897 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1898 	 * than the desired amount of queues, and even a controller without
1899 	 * I/O queues can still be used to issue admin commands.  This might
1900 	 * be useful to upgrade a buggy firmware for example.
1901 	 */
1902 	return ret >= 0 ? 0 : ret;
1903 }
1904 
1905 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1906 {
1907 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1908 
1909 	return 1ULL << (12 + 4 * szu);
1910 }
1911 
1912 static u32 nvme_cmb_size(struct nvme_dev *dev)
1913 {
1914 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1915 }
1916 
1917 static void nvme_map_cmb(struct nvme_dev *dev)
1918 {
1919 	u64 size, offset;
1920 	resource_size_t bar_size;
1921 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1922 	int bar;
1923 
1924 	if (dev->cmb_size)
1925 		return;
1926 
1927 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1928 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1929 
1930 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1931 	if (!dev->cmbsz)
1932 		return;
1933 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1934 
1935 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1936 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1937 	bar = NVME_CMB_BIR(dev->cmbloc);
1938 	bar_size = pci_resource_len(pdev, bar);
1939 
1940 	if (offset > bar_size)
1941 		return;
1942 
1943 	/*
1944 	 * Tell the controller about the host side address mapping the CMB,
1945 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1946 	 */
1947 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1948 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1949 			     (pci_bus_address(pdev, bar) + offset),
1950 			     dev->bar + NVME_REG_CMBMSC);
1951 	}
1952 
1953 	/*
1954 	 * Controllers may support a CMB size larger than their BAR,
1955 	 * for example, due to being behind a bridge. Reduce the CMB to
1956 	 * the reported size of the BAR
1957 	 */
1958 	if (size > bar_size - offset)
1959 		size = bar_size - offset;
1960 
1961 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1962 		dev_warn(dev->ctrl.device,
1963 			 "failed to register the CMB\n");
1964 		return;
1965 	}
1966 
1967 	dev->cmb_size = size;
1968 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1969 
1970 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1971 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1972 		pci_p2pmem_publish(pdev, true);
1973 }
1974 
1975 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1976 {
1977 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1978 	u64 dma_addr = dev->host_mem_descs_dma;
1979 	struct nvme_command c = { };
1980 	int ret;
1981 
1982 	c.features.opcode	= nvme_admin_set_features;
1983 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1984 	c.features.dword11	= cpu_to_le32(bits);
1985 	c.features.dword12	= cpu_to_le32(host_mem_size);
1986 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1987 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1988 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1989 
1990 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1991 	if (ret) {
1992 		dev_warn(dev->ctrl.device,
1993 			 "failed to set host mem (err %d, flags %#x).\n",
1994 			 ret, bits);
1995 	} else
1996 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1997 
1998 	return ret;
1999 }
2000 
2001 static void nvme_free_host_mem(struct nvme_dev *dev)
2002 {
2003 	int i;
2004 
2005 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2006 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2007 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2008 
2009 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2010 			       le64_to_cpu(desc->addr),
2011 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2012 	}
2013 
2014 	kfree(dev->host_mem_desc_bufs);
2015 	dev->host_mem_desc_bufs = NULL;
2016 	dma_free_coherent(dev->dev,
2017 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2018 			dev->host_mem_descs, dev->host_mem_descs_dma);
2019 	dev->host_mem_descs = NULL;
2020 	dev->nr_host_mem_descs = 0;
2021 }
2022 
2023 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2024 		u32 chunk_size)
2025 {
2026 	struct nvme_host_mem_buf_desc *descs;
2027 	u32 max_entries, len;
2028 	dma_addr_t descs_dma;
2029 	int i = 0;
2030 	void **bufs;
2031 	u64 size, tmp;
2032 
2033 	tmp = (preferred + chunk_size - 1);
2034 	do_div(tmp, chunk_size);
2035 	max_entries = tmp;
2036 
2037 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2038 		max_entries = dev->ctrl.hmmaxd;
2039 
2040 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2041 				   &descs_dma, GFP_KERNEL);
2042 	if (!descs)
2043 		goto out;
2044 
2045 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2046 	if (!bufs)
2047 		goto out_free_descs;
2048 
2049 	for (size = 0; size < preferred && i < max_entries; size += len) {
2050 		dma_addr_t dma_addr;
2051 
2052 		len = min_t(u64, chunk_size, preferred - size);
2053 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2054 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2055 		if (!bufs[i])
2056 			break;
2057 
2058 		descs[i].addr = cpu_to_le64(dma_addr);
2059 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2060 		i++;
2061 	}
2062 
2063 	if (!size)
2064 		goto out_free_bufs;
2065 
2066 	dev->nr_host_mem_descs = i;
2067 	dev->host_mem_size = size;
2068 	dev->host_mem_descs = descs;
2069 	dev->host_mem_descs_dma = descs_dma;
2070 	dev->host_mem_desc_bufs = bufs;
2071 	return 0;
2072 
2073 out_free_bufs:
2074 	while (--i >= 0) {
2075 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2076 
2077 		dma_free_attrs(dev->dev, size, bufs[i],
2078 			       le64_to_cpu(descs[i].addr),
2079 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2080 	}
2081 
2082 	kfree(bufs);
2083 out_free_descs:
2084 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2085 			descs_dma);
2086 out:
2087 	dev->host_mem_descs = NULL;
2088 	return -ENOMEM;
2089 }
2090 
2091 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2092 {
2093 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2094 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2095 	u64 chunk_size;
2096 
2097 	/* start big and work our way down */
2098 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2099 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2100 			if (!min || dev->host_mem_size >= min)
2101 				return 0;
2102 			nvme_free_host_mem(dev);
2103 		}
2104 	}
2105 
2106 	return -ENOMEM;
2107 }
2108 
2109 static int nvme_setup_host_mem(struct nvme_dev *dev)
2110 {
2111 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2112 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2113 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2114 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2115 	int ret;
2116 
2117 	preferred = min(preferred, max);
2118 	if (min > max) {
2119 		dev_warn(dev->ctrl.device,
2120 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2121 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2122 		nvme_free_host_mem(dev);
2123 		return 0;
2124 	}
2125 
2126 	/*
2127 	 * If we already have a buffer allocated check if we can reuse it.
2128 	 */
2129 	if (dev->host_mem_descs) {
2130 		if (dev->host_mem_size >= min)
2131 			enable_bits |= NVME_HOST_MEM_RETURN;
2132 		else
2133 			nvme_free_host_mem(dev);
2134 	}
2135 
2136 	if (!dev->host_mem_descs) {
2137 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2138 			dev_warn(dev->ctrl.device,
2139 				"failed to allocate host memory buffer.\n");
2140 			return 0; /* controller must work without HMB */
2141 		}
2142 
2143 		dev_info(dev->ctrl.device,
2144 			"allocated %lld MiB host memory buffer.\n",
2145 			dev->host_mem_size >> ilog2(SZ_1M));
2146 	}
2147 
2148 	ret = nvme_set_host_mem(dev, enable_bits);
2149 	if (ret)
2150 		nvme_free_host_mem(dev);
2151 	return ret;
2152 }
2153 
2154 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2155 		char *buf)
2156 {
2157 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2158 
2159 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2160 		       ndev->cmbloc, ndev->cmbsz);
2161 }
2162 static DEVICE_ATTR_RO(cmb);
2163 
2164 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2165 		char *buf)
2166 {
2167 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2168 
2169 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2170 }
2171 static DEVICE_ATTR_RO(cmbloc);
2172 
2173 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2174 		char *buf)
2175 {
2176 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2177 
2178 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2179 }
2180 static DEVICE_ATTR_RO(cmbsz);
2181 
2182 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2183 			char *buf)
2184 {
2185 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2186 
2187 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2188 }
2189 
2190 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2191 			 const char *buf, size_t count)
2192 {
2193 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2194 	bool new;
2195 	int ret;
2196 
2197 	if (strtobool(buf, &new) < 0)
2198 		return -EINVAL;
2199 
2200 	if (new == ndev->hmb)
2201 		return count;
2202 
2203 	if (new) {
2204 		ret = nvme_setup_host_mem(ndev);
2205 	} else {
2206 		ret = nvme_set_host_mem(ndev, 0);
2207 		if (!ret)
2208 			nvme_free_host_mem(ndev);
2209 	}
2210 
2211 	if (ret < 0)
2212 		return ret;
2213 
2214 	return count;
2215 }
2216 static DEVICE_ATTR_RW(hmb);
2217 
2218 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2219 		struct attribute *a, int n)
2220 {
2221 	struct nvme_ctrl *ctrl =
2222 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2223 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2224 
2225 	if (a == &dev_attr_cmb.attr ||
2226 	    a == &dev_attr_cmbloc.attr ||
2227 	    a == &dev_attr_cmbsz.attr) {
2228 	    	if (!dev->cmbsz)
2229 			return 0;
2230 	}
2231 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2232 		return 0;
2233 
2234 	return a->mode;
2235 }
2236 
2237 static struct attribute *nvme_pci_attrs[] = {
2238 	&dev_attr_cmb.attr,
2239 	&dev_attr_cmbloc.attr,
2240 	&dev_attr_cmbsz.attr,
2241 	&dev_attr_hmb.attr,
2242 	NULL,
2243 };
2244 
2245 static const struct attribute_group nvme_pci_attr_group = {
2246 	.attrs		= nvme_pci_attrs,
2247 	.is_visible	= nvme_pci_attrs_are_visible,
2248 };
2249 
2250 /*
2251  * nirqs is the number of interrupts available for write and read
2252  * queues. The core already reserved an interrupt for the admin queue.
2253  */
2254 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2255 {
2256 	struct nvme_dev *dev = affd->priv;
2257 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2258 
2259 	/*
2260 	 * If there is no interrupt available for queues, ensure that
2261 	 * the default queue is set to 1. The affinity set size is
2262 	 * also set to one, but the irq core ignores it for this case.
2263 	 *
2264 	 * If only one interrupt is available or 'write_queue' == 0, combine
2265 	 * write and read queues.
2266 	 *
2267 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2268 	 * queue.
2269 	 */
2270 	if (!nrirqs) {
2271 		nrirqs = 1;
2272 		nr_read_queues = 0;
2273 	} else if (nrirqs == 1 || !nr_write_queues) {
2274 		nr_read_queues = 0;
2275 	} else if (nr_write_queues >= nrirqs) {
2276 		nr_read_queues = 1;
2277 	} else {
2278 		nr_read_queues = nrirqs - nr_write_queues;
2279 	}
2280 
2281 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2282 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2283 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2284 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2285 	affd->nr_sets = nr_read_queues ? 2 : 1;
2286 }
2287 
2288 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2289 {
2290 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2291 	struct irq_affinity affd = {
2292 		.pre_vectors	= 1,
2293 		.calc_sets	= nvme_calc_irq_sets,
2294 		.priv		= dev,
2295 	};
2296 	unsigned int irq_queues, poll_queues;
2297 
2298 	/*
2299 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2300 	 * left over for non-polled I/O.
2301 	 */
2302 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2303 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2304 
2305 	/*
2306 	 * Initialize for the single interrupt case, will be updated in
2307 	 * nvme_calc_irq_sets().
2308 	 */
2309 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2310 	dev->io_queues[HCTX_TYPE_READ] = 0;
2311 
2312 	/*
2313 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2314 	 * but some Apple controllers require all queues to use the first
2315 	 * vector.
2316 	 */
2317 	irq_queues = 1;
2318 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2319 		irq_queues += (nr_io_queues - poll_queues);
2320 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2321 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2322 }
2323 
2324 static void nvme_disable_io_queues(struct nvme_dev *dev)
2325 {
2326 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2327 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2328 }
2329 
2330 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2331 {
2332 	/*
2333 	 * If tags are shared with admin queue (Apple bug), then
2334 	 * make sure we only use one IO queue.
2335 	 */
2336 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2337 		return 1;
2338 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2339 }
2340 
2341 static int nvme_setup_io_queues(struct nvme_dev *dev)
2342 {
2343 	struct nvme_queue *adminq = &dev->queues[0];
2344 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2345 	unsigned int nr_io_queues;
2346 	unsigned long size;
2347 	int result;
2348 
2349 	/*
2350 	 * Sample the module parameters once at reset time so that we have
2351 	 * stable values to work with.
2352 	 */
2353 	dev->nr_write_queues = write_queues;
2354 	dev->nr_poll_queues = poll_queues;
2355 
2356 	nr_io_queues = dev->nr_allocated_queues - 1;
2357 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2358 	if (result < 0)
2359 		return result;
2360 
2361 	if (nr_io_queues == 0)
2362 		return 0;
2363 
2364 	/*
2365 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2366 	 * from set to unset. If there is a window to it is truely freed,
2367 	 * pci_free_irq_vectors() jumping into this window will crash.
2368 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2369 	 * nvme_dev_disable() path.
2370 	 */
2371 	result = nvme_setup_io_queues_trylock(dev);
2372 	if (result)
2373 		return result;
2374 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2375 		pci_free_irq(pdev, 0, adminq);
2376 
2377 	if (dev->cmb_use_sqes) {
2378 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2379 				sizeof(struct nvme_command));
2380 		if (result > 0)
2381 			dev->q_depth = result;
2382 		else
2383 			dev->cmb_use_sqes = false;
2384 	}
2385 
2386 	do {
2387 		size = db_bar_size(dev, nr_io_queues);
2388 		result = nvme_remap_bar(dev, size);
2389 		if (!result)
2390 			break;
2391 		if (!--nr_io_queues) {
2392 			result = -ENOMEM;
2393 			goto out_unlock;
2394 		}
2395 	} while (1);
2396 	adminq->q_db = dev->dbs;
2397 
2398  retry:
2399 	/* Deregister the admin queue's interrupt */
2400 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2401 		pci_free_irq(pdev, 0, adminq);
2402 
2403 	/*
2404 	 * If we enable msix early due to not intx, disable it again before
2405 	 * setting up the full range we need.
2406 	 */
2407 	pci_free_irq_vectors(pdev);
2408 
2409 	result = nvme_setup_irqs(dev, nr_io_queues);
2410 	if (result <= 0) {
2411 		result = -EIO;
2412 		goto out_unlock;
2413 	}
2414 
2415 	dev->num_vecs = result;
2416 	result = max(result - 1, 1);
2417 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2418 
2419 	/*
2420 	 * Should investigate if there's a performance win from allocating
2421 	 * more queues than interrupt vectors; it might allow the submission
2422 	 * path to scale better, even if the receive path is limited by the
2423 	 * number of interrupts.
2424 	 */
2425 	result = queue_request_irq(adminq);
2426 	if (result)
2427 		goto out_unlock;
2428 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2429 	mutex_unlock(&dev->shutdown_lock);
2430 
2431 	result = nvme_create_io_queues(dev);
2432 	if (result || dev->online_queues < 2)
2433 		return result;
2434 
2435 	if (dev->online_queues - 1 < dev->max_qid) {
2436 		nr_io_queues = dev->online_queues - 1;
2437 		nvme_disable_io_queues(dev);
2438 		result = nvme_setup_io_queues_trylock(dev);
2439 		if (result)
2440 			return result;
2441 		nvme_suspend_io_queues(dev);
2442 		goto retry;
2443 	}
2444 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2445 					dev->io_queues[HCTX_TYPE_DEFAULT],
2446 					dev->io_queues[HCTX_TYPE_READ],
2447 					dev->io_queues[HCTX_TYPE_POLL]);
2448 	return 0;
2449 out_unlock:
2450 	mutex_unlock(&dev->shutdown_lock);
2451 	return result;
2452 }
2453 
2454 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2455 {
2456 	struct nvme_queue *nvmeq = req->end_io_data;
2457 
2458 	blk_mq_free_request(req);
2459 	complete(&nvmeq->delete_done);
2460 }
2461 
2462 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2463 {
2464 	struct nvme_queue *nvmeq = req->end_io_data;
2465 
2466 	if (error)
2467 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2468 
2469 	nvme_del_queue_end(req, error);
2470 }
2471 
2472 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2473 {
2474 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2475 	struct request *req;
2476 	struct nvme_command cmd = { };
2477 
2478 	cmd.delete_queue.opcode = opcode;
2479 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2480 
2481 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2482 	if (IS_ERR(req))
2483 		return PTR_ERR(req);
2484 	nvme_init_request(req, &cmd);
2485 
2486 	req->end_io_data = nvmeq;
2487 
2488 	init_completion(&nvmeq->delete_done);
2489 	blk_execute_rq_nowait(req, false, opcode == nvme_admin_delete_cq ?
2490 			nvme_del_cq_end : nvme_del_queue_end);
2491 	return 0;
2492 }
2493 
2494 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2495 {
2496 	int nr_queues = dev->online_queues - 1, sent = 0;
2497 	unsigned long timeout;
2498 
2499  retry:
2500 	timeout = NVME_ADMIN_TIMEOUT;
2501 	while (nr_queues > 0) {
2502 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2503 			break;
2504 		nr_queues--;
2505 		sent++;
2506 	}
2507 	while (sent) {
2508 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2509 
2510 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2511 				timeout);
2512 		if (timeout == 0)
2513 			return false;
2514 
2515 		sent--;
2516 		if (nr_queues)
2517 			goto retry;
2518 	}
2519 	return true;
2520 }
2521 
2522 static void nvme_dev_add(struct nvme_dev *dev)
2523 {
2524 	int ret;
2525 
2526 	if (!dev->ctrl.tagset) {
2527 		dev->tagset.ops = &nvme_mq_ops;
2528 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2529 		dev->tagset.nr_maps = 2; /* default + read */
2530 		if (dev->io_queues[HCTX_TYPE_POLL])
2531 			dev->tagset.nr_maps++;
2532 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2533 		dev->tagset.numa_node = dev->ctrl.numa_node;
2534 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2535 						BLK_MQ_MAX_DEPTH) - 1;
2536 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2537 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2538 		dev->tagset.driver_data = dev;
2539 
2540 		/*
2541 		 * Some Apple controllers requires tags to be unique
2542 		 * across admin and IO queue, so reserve the first 32
2543 		 * tags of the IO queue.
2544 		 */
2545 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2546 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2547 
2548 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2549 		if (ret) {
2550 			dev_warn(dev->ctrl.device,
2551 				"IO queues tagset allocation failed %d\n", ret);
2552 			return;
2553 		}
2554 		dev->ctrl.tagset = &dev->tagset;
2555 	} else {
2556 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2557 
2558 		/* Free previously allocated queues that are no longer usable */
2559 		nvme_free_queues(dev, dev->online_queues);
2560 	}
2561 
2562 	nvme_dbbuf_set(dev);
2563 }
2564 
2565 static int nvme_pci_enable(struct nvme_dev *dev)
2566 {
2567 	int result = -ENOMEM;
2568 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2569 	int dma_address_bits = 64;
2570 
2571 	if (pci_enable_device_mem(pdev))
2572 		return result;
2573 
2574 	pci_set_master(pdev);
2575 
2576 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2577 		dma_address_bits = 48;
2578 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2579 		goto disable;
2580 
2581 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2582 		result = -ENODEV;
2583 		goto disable;
2584 	}
2585 
2586 	/*
2587 	 * Some devices and/or platforms don't advertise or work with INTx
2588 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2589 	 * adjust this later.
2590 	 */
2591 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2592 	if (result < 0)
2593 		return result;
2594 
2595 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2596 
2597 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2598 				io_queue_depth);
2599 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2600 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2601 	dev->dbs = dev->bar + 4096;
2602 
2603 	/*
2604 	 * Some Apple controllers require a non-standard SQE size.
2605 	 * Interestingly they also seem to ignore the CC:IOSQES register
2606 	 * so we don't bother updating it here.
2607 	 */
2608 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2609 		dev->io_sqes = 7;
2610 	else
2611 		dev->io_sqes = NVME_NVM_IOSQES;
2612 
2613 	/*
2614 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2615 	 * some MacBook7,1 to avoid controller resets and data loss.
2616 	 */
2617 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2618 		dev->q_depth = 2;
2619 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2620 			"set queue depth=%u to work around controller resets\n",
2621 			dev->q_depth);
2622 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2623 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2624 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2625 		dev->q_depth = 64;
2626 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2627                         "set queue depth=%u\n", dev->q_depth);
2628 	}
2629 
2630 	/*
2631 	 * Controllers with the shared tags quirk need the IO queue to be
2632 	 * big enough so that we get 32 tags for the admin queue
2633 	 */
2634 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2635 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2636 		dev->q_depth = NVME_AQ_DEPTH + 2;
2637 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2638 			 dev->q_depth);
2639 	}
2640 
2641 
2642 	nvme_map_cmb(dev);
2643 
2644 	pci_enable_pcie_error_reporting(pdev);
2645 	pci_save_state(pdev);
2646 	return 0;
2647 
2648  disable:
2649 	pci_disable_device(pdev);
2650 	return result;
2651 }
2652 
2653 static void nvme_dev_unmap(struct nvme_dev *dev)
2654 {
2655 	if (dev->bar)
2656 		iounmap(dev->bar);
2657 	pci_release_mem_regions(to_pci_dev(dev->dev));
2658 }
2659 
2660 static void nvme_pci_disable(struct nvme_dev *dev)
2661 {
2662 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2663 
2664 	pci_free_irq_vectors(pdev);
2665 
2666 	if (pci_is_enabled(pdev)) {
2667 		pci_disable_pcie_error_reporting(pdev);
2668 		pci_disable_device(pdev);
2669 	}
2670 }
2671 
2672 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2673 {
2674 	bool dead = true, freeze = false;
2675 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2676 
2677 	mutex_lock(&dev->shutdown_lock);
2678 	if (pci_is_enabled(pdev)) {
2679 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2680 
2681 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2682 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2683 			freeze = true;
2684 			nvme_start_freeze(&dev->ctrl);
2685 		}
2686 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2687 			pdev->error_state  != pci_channel_io_normal);
2688 	}
2689 
2690 	/*
2691 	 * Give the controller a chance to complete all entered requests if
2692 	 * doing a safe shutdown.
2693 	 */
2694 	if (!dead && shutdown && freeze)
2695 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2696 
2697 	nvme_stop_queues(&dev->ctrl);
2698 
2699 	if (!dead && dev->ctrl.queue_count > 0) {
2700 		nvme_disable_io_queues(dev);
2701 		nvme_disable_admin_queue(dev, shutdown);
2702 	}
2703 	nvme_suspend_io_queues(dev);
2704 	nvme_suspend_queue(&dev->queues[0]);
2705 	nvme_pci_disable(dev);
2706 	nvme_reap_pending_cqes(dev);
2707 
2708 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2709 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2710 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2711 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2712 
2713 	/*
2714 	 * The driver will not be starting up queues again if shutting down so
2715 	 * must flush all entered requests to their failed completion to avoid
2716 	 * deadlocking blk-mq hot-cpu notifier.
2717 	 */
2718 	if (shutdown) {
2719 		nvme_start_queues(&dev->ctrl);
2720 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2721 			nvme_start_admin_queue(&dev->ctrl);
2722 	}
2723 	mutex_unlock(&dev->shutdown_lock);
2724 }
2725 
2726 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2727 {
2728 	if (!nvme_wait_reset(&dev->ctrl))
2729 		return -EBUSY;
2730 	nvme_dev_disable(dev, shutdown);
2731 	return 0;
2732 }
2733 
2734 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2735 {
2736 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2737 						NVME_CTRL_PAGE_SIZE,
2738 						NVME_CTRL_PAGE_SIZE, 0);
2739 	if (!dev->prp_page_pool)
2740 		return -ENOMEM;
2741 
2742 	/* Optimisation for I/Os between 4k and 128k */
2743 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2744 						256, 256, 0);
2745 	if (!dev->prp_small_pool) {
2746 		dma_pool_destroy(dev->prp_page_pool);
2747 		return -ENOMEM;
2748 	}
2749 	return 0;
2750 }
2751 
2752 static void nvme_release_prp_pools(struct nvme_dev *dev)
2753 {
2754 	dma_pool_destroy(dev->prp_page_pool);
2755 	dma_pool_destroy(dev->prp_small_pool);
2756 }
2757 
2758 static void nvme_free_tagset(struct nvme_dev *dev)
2759 {
2760 	if (dev->tagset.tags)
2761 		blk_mq_free_tag_set(&dev->tagset);
2762 	dev->ctrl.tagset = NULL;
2763 }
2764 
2765 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2766 {
2767 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2768 
2769 	nvme_dbbuf_dma_free(dev);
2770 	nvme_free_tagset(dev);
2771 	if (dev->ctrl.admin_q)
2772 		blk_put_queue(dev->ctrl.admin_q);
2773 	free_opal_dev(dev->ctrl.opal_dev);
2774 	mempool_destroy(dev->iod_mempool);
2775 	put_device(dev->dev);
2776 	kfree(dev->queues);
2777 	kfree(dev);
2778 }
2779 
2780 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2781 {
2782 	/*
2783 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2784 	 * may be holding this pci_dev's device lock.
2785 	 */
2786 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2787 	nvme_get_ctrl(&dev->ctrl);
2788 	nvme_dev_disable(dev, false);
2789 	nvme_kill_queues(&dev->ctrl);
2790 	if (!queue_work(nvme_wq, &dev->remove_work))
2791 		nvme_put_ctrl(&dev->ctrl);
2792 }
2793 
2794 static void nvme_reset_work(struct work_struct *work)
2795 {
2796 	struct nvme_dev *dev =
2797 		container_of(work, struct nvme_dev, ctrl.reset_work);
2798 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2799 	int result;
2800 
2801 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2802 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2803 			 dev->ctrl.state);
2804 		result = -ENODEV;
2805 		goto out;
2806 	}
2807 
2808 	/*
2809 	 * If we're called to reset a live controller first shut it down before
2810 	 * moving on.
2811 	 */
2812 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2813 		nvme_dev_disable(dev, false);
2814 	nvme_sync_queues(&dev->ctrl);
2815 
2816 	mutex_lock(&dev->shutdown_lock);
2817 	result = nvme_pci_enable(dev);
2818 	if (result)
2819 		goto out_unlock;
2820 
2821 	result = nvme_pci_configure_admin_queue(dev);
2822 	if (result)
2823 		goto out_unlock;
2824 
2825 	result = nvme_alloc_admin_tags(dev);
2826 	if (result)
2827 		goto out_unlock;
2828 
2829 	/*
2830 	 * Limit the max command size to prevent iod->sg allocations going
2831 	 * over a single page.
2832 	 */
2833 	dev->ctrl.max_hw_sectors = min_t(u32,
2834 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2835 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2836 
2837 	/*
2838 	 * Don't limit the IOMMU merged segment size.
2839 	 */
2840 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2841 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2842 
2843 	mutex_unlock(&dev->shutdown_lock);
2844 
2845 	/*
2846 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2847 	 * initializing procedure here.
2848 	 */
2849 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2850 		dev_warn(dev->ctrl.device,
2851 			"failed to mark controller CONNECTING\n");
2852 		result = -EBUSY;
2853 		goto out;
2854 	}
2855 
2856 	/*
2857 	 * We do not support an SGL for metadata (yet), so we are limited to a
2858 	 * single integrity segment for the separate metadata pointer.
2859 	 */
2860 	dev->ctrl.max_integrity_segments = 1;
2861 
2862 	result = nvme_init_ctrl_finish(&dev->ctrl);
2863 	if (result)
2864 		goto out;
2865 
2866 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2867 		if (!dev->ctrl.opal_dev)
2868 			dev->ctrl.opal_dev =
2869 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2870 		else if (was_suspend)
2871 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2872 	} else {
2873 		free_opal_dev(dev->ctrl.opal_dev);
2874 		dev->ctrl.opal_dev = NULL;
2875 	}
2876 
2877 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2878 		result = nvme_dbbuf_dma_alloc(dev);
2879 		if (result)
2880 			dev_warn(dev->dev,
2881 				 "unable to allocate dma for dbbuf\n");
2882 	}
2883 
2884 	if (dev->ctrl.hmpre) {
2885 		result = nvme_setup_host_mem(dev);
2886 		if (result < 0)
2887 			goto out;
2888 	}
2889 
2890 	result = nvme_setup_io_queues(dev);
2891 	if (result)
2892 		goto out;
2893 
2894 	/*
2895 	 * Keep the controller around but remove all namespaces if we don't have
2896 	 * any working I/O queue.
2897 	 */
2898 	if (dev->online_queues < 2) {
2899 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2900 		nvme_kill_queues(&dev->ctrl);
2901 		nvme_remove_namespaces(&dev->ctrl);
2902 		nvme_free_tagset(dev);
2903 	} else {
2904 		nvme_start_queues(&dev->ctrl);
2905 		nvme_wait_freeze(&dev->ctrl);
2906 		nvme_dev_add(dev);
2907 		nvme_unfreeze(&dev->ctrl);
2908 	}
2909 
2910 	/*
2911 	 * If only admin queue live, keep it to do further investigation or
2912 	 * recovery.
2913 	 */
2914 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2915 		dev_warn(dev->ctrl.device,
2916 			"failed to mark controller live state\n");
2917 		result = -ENODEV;
2918 		goto out;
2919 	}
2920 
2921 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2922 			&nvme_pci_attr_group))
2923 		dev->attrs_added = true;
2924 
2925 	nvme_start_ctrl(&dev->ctrl);
2926 	return;
2927 
2928  out_unlock:
2929 	mutex_unlock(&dev->shutdown_lock);
2930  out:
2931 	if (result)
2932 		dev_warn(dev->ctrl.device,
2933 			 "Removing after probe failure status: %d\n", result);
2934 	nvme_remove_dead_ctrl(dev);
2935 }
2936 
2937 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2938 {
2939 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2940 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2941 
2942 	if (pci_get_drvdata(pdev))
2943 		device_release_driver(&pdev->dev);
2944 	nvme_put_ctrl(&dev->ctrl);
2945 }
2946 
2947 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2948 {
2949 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2950 	return 0;
2951 }
2952 
2953 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2954 {
2955 	writel(val, to_nvme_dev(ctrl)->bar + off);
2956 	return 0;
2957 }
2958 
2959 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2960 {
2961 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2962 	return 0;
2963 }
2964 
2965 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2966 {
2967 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2968 
2969 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2970 }
2971 
2972 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2973 	.name			= "pcie",
2974 	.module			= THIS_MODULE,
2975 	.flags			= NVME_F_METADATA_SUPPORTED |
2976 				  NVME_F_PCI_P2PDMA,
2977 	.reg_read32		= nvme_pci_reg_read32,
2978 	.reg_write32		= nvme_pci_reg_write32,
2979 	.reg_read64		= nvme_pci_reg_read64,
2980 	.free_ctrl		= nvme_pci_free_ctrl,
2981 	.submit_async_event	= nvme_pci_submit_async_event,
2982 	.get_address		= nvme_pci_get_address,
2983 };
2984 
2985 static int nvme_dev_map(struct nvme_dev *dev)
2986 {
2987 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2988 
2989 	if (pci_request_mem_regions(pdev, "nvme"))
2990 		return -ENODEV;
2991 
2992 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2993 		goto release;
2994 
2995 	return 0;
2996   release:
2997 	pci_release_mem_regions(pdev);
2998 	return -ENODEV;
2999 }
3000 
3001 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3002 {
3003 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3004 		/*
3005 		 * Several Samsung devices seem to drop off the PCIe bus
3006 		 * randomly when APST is on and uses the deepest sleep state.
3007 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3008 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3009 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3010 		 * laptops.
3011 		 */
3012 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3013 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3014 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3015 			return NVME_QUIRK_NO_DEEPEST_PS;
3016 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3017 		/*
3018 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3019 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3020 		 * within few minutes after bootup on a Coffee Lake board -
3021 		 * ASUS PRIME Z370-A
3022 		 */
3023 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3024 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3025 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3026 			return NVME_QUIRK_NO_APST;
3027 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3028 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3029 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3030 		/*
3031 		 * Forcing to use host managed nvme power settings for
3032 		 * lowest idle power with quick resume latency on
3033 		 * Samsung and Toshiba SSDs based on suspend behavior
3034 		 * on Coffee Lake board for LENOVO C640
3035 		 */
3036 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3037 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3038 			return NVME_QUIRK_SIMPLE_SUSPEND;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 static void nvme_async_probe(void *data, async_cookie_t cookie)
3045 {
3046 	struct nvme_dev *dev = data;
3047 
3048 	flush_work(&dev->ctrl.reset_work);
3049 	flush_work(&dev->ctrl.scan_work);
3050 	nvme_put_ctrl(&dev->ctrl);
3051 }
3052 
3053 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3054 {
3055 	int node, result = -ENOMEM;
3056 	struct nvme_dev *dev;
3057 	unsigned long quirks = id->driver_data;
3058 	size_t alloc_size;
3059 
3060 	node = dev_to_node(&pdev->dev);
3061 	if (node == NUMA_NO_NODE)
3062 		set_dev_node(&pdev->dev, first_memory_node);
3063 
3064 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3065 	if (!dev)
3066 		return -ENOMEM;
3067 
3068 	dev->nr_write_queues = write_queues;
3069 	dev->nr_poll_queues = poll_queues;
3070 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3071 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3072 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3073 	if (!dev->queues)
3074 		goto free;
3075 
3076 	dev->dev = get_device(&pdev->dev);
3077 	pci_set_drvdata(pdev, dev);
3078 
3079 	result = nvme_dev_map(dev);
3080 	if (result)
3081 		goto put_pci;
3082 
3083 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3084 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3085 	mutex_init(&dev->shutdown_lock);
3086 
3087 	result = nvme_setup_prp_pools(dev);
3088 	if (result)
3089 		goto unmap;
3090 
3091 	quirks |= check_vendor_combination_bug(pdev);
3092 
3093 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3094 		/*
3095 		 * Some systems use a bios work around to ask for D3 on
3096 		 * platforms that support kernel managed suspend.
3097 		 */
3098 		dev_info(&pdev->dev,
3099 			 "platform quirk: setting simple suspend\n");
3100 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3101 	}
3102 
3103 	/*
3104 	 * Double check that our mempool alloc size will cover the biggest
3105 	 * command we support.
3106 	 */
3107 	alloc_size = nvme_pci_iod_alloc_size();
3108 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3109 
3110 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3111 						mempool_kfree,
3112 						(void *) alloc_size,
3113 						GFP_KERNEL, node);
3114 	if (!dev->iod_mempool) {
3115 		result = -ENOMEM;
3116 		goto release_pools;
3117 	}
3118 
3119 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3120 			quirks);
3121 	if (result)
3122 		goto release_mempool;
3123 
3124 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3125 
3126 	nvme_reset_ctrl(&dev->ctrl);
3127 	async_schedule(nvme_async_probe, dev);
3128 
3129 	return 0;
3130 
3131  release_mempool:
3132 	mempool_destroy(dev->iod_mempool);
3133  release_pools:
3134 	nvme_release_prp_pools(dev);
3135  unmap:
3136 	nvme_dev_unmap(dev);
3137  put_pci:
3138 	put_device(dev->dev);
3139  free:
3140 	kfree(dev->queues);
3141 	kfree(dev);
3142 	return result;
3143 }
3144 
3145 static void nvme_reset_prepare(struct pci_dev *pdev)
3146 {
3147 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3148 
3149 	/*
3150 	 * We don't need to check the return value from waiting for the reset
3151 	 * state as pci_dev device lock is held, making it impossible to race
3152 	 * with ->remove().
3153 	 */
3154 	nvme_disable_prepare_reset(dev, false);
3155 	nvme_sync_queues(&dev->ctrl);
3156 }
3157 
3158 static void nvme_reset_done(struct pci_dev *pdev)
3159 {
3160 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3161 
3162 	if (!nvme_try_sched_reset(&dev->ctrl))
3163 		flush_work(&dev->ctrl.reset_work);
3164 }
3165 
3166 static void nvme_shutdown(struct pci_dev *pdev)
3167 {
3168 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3169 
3170 	nvme_disable_prepare_reset(dev, true);
3171 }
3172 
3173 static void nvme_remove_attrs(struct nvme_dev *dev)
3174 {
3175 	if (dev->attrs_added)
3176 		sysfs_remove_group(&dev->ctrl.device->kobj,
3177 				   &nvme_pci_attr_group);
3178 }
3179 
3180 /*
3181  * The driver's remove may be called on a device in a partially initialized
3182  * state. This function must not have any dependencies on the device state in
3183  * order to proceed.
3184  */
3185 static void nvme_remove(struct pci_dev *pdev)
3186 {
3187 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3188 
3189 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3190 	pci_set_drvdata(pdev, NULL);
3191 
3192 	if (!pci_device_is_present(pdev)) {
3193 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3194 		nvme_dev_disable(dev, true);
3195 	}
3196 
3197 	flush_work(&dev->ctrl.reset_work);
3198 	nvme_stop_ctrl(&dev->ctrl);
3199 	nvme_remove_namespaces(&dev->ctrl);
3200 	nvme_dev_disable(dev, true);
3201 	nvme_remove_attrs(dev);
3202 	nvme_free_host_mem(dev);
3203 	nvme_dev_remove_admin(dev);
3204 	nvme_free_queues(dev, 0);
3205 	nvme_release_prp_pools(dev);
3206 	nvme_dev_unmap(dev);
3207 	nvme_uninit_ctrl(&dev->ctrl);
3208 }
3209 
3210 #ifdef CONFIG_PM_SLEEP
3211 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3212 {
3213 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3214 }
3215 
3216 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3217 {
3218 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3219 }
3220 
3221 static int nvme_resume(struct device *dev)
3222 {
3223 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3224 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3225 
3226 	if (ndev->last_ps == U32_MAX ||
3227 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3228 		goto reset;
3229 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3230 		goto reset;
3231 
3232 	return 0;
3233 reset:
3234 	return nvme_try_sched_reset(ctrl);
3235 }
3236 
3237 static int nvme_suspend(struct device *dev)
3238 {
3239 	struct pci_dev *pdev = to_pci_dev(dev);
3240 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3241 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3242 	int ret = -EBUSY;
3243 
3244 	ndev->last_ps = U32_MAX;
3245 
3246 	/*
3247 	 * The platform does not remove power for a kernel managed suspend so
3248 	 * use host managed nvme power settings for lowest idle power if
3249 	 * possible. This should have quicker resume latency than a full device
3250 	 * shutdown.  But if the firmware is involved after the suspend or the
3251 	 * device does not support any non-default power states, shut down the
3252 	 * device fully.
3253 	 *
3254 	 * If ASPM is not enabled for the device, shut down the device and allow
3255 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3256 	 * down, so as to allow the platform to achieve its minimum low-power
3257 	 * state (which may not be possible if the link is up).
3258 	 */
3259 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3260 	    !pcie_aspm_enabled(pdev) ||
3261 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3262 		return nvme_disable_prepare_reset(ndev, true);
3263 
3264 	nvme_start_freeze(ctrl);
3265 	nvme_wait_freeze(ctrl);
3266 	nvme_sync_queues(ctrl);
3267 
3268 	if (ctrl->state != NVME_CTRL_LIVE)
3269 		goto unfreeze;
3270 
3271 	/*
3272 	 * Host memory access may not be successful in a system suspend state,
3273 	 * but the specification allows the controller to access memory in a
3274 	 * non-operational power state.
3275 	 */
3276 	if (ndev->hmb) {
3277 		ret = nvme_set_host_mem(ndev, 0);
3278 		if (ret < 0)
3279 			goto unfreeze;
3280 	}
3281 
3282 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3283 	if (ret < 0)
3284 		goto unfreeze;
3285 
3286 	/*
3287 	 * A saved state prevents pci pm from generically controlling the
3288 	 * device's power. If we're using protocol specific settings, we don't
3289 	 * want pci interfering.
3290 	 */
3291 	pci_save_state(pdev);
3292 
3293 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3294 	if (ret < 0)
3295 		goto unfreeze;
3296 
3297 	if (ret) {
3298 		/* discard the saved state */
3299 		pci_load_saved_state(pdev, NULL);
3300 
3301 		/*
3302 		 * Clearing npss forces a controller reset on resume. The
3303 		 * correct value will be rediscovered then.
3304 		 */
3305 		ret = nvme_disable_prepare_reset(ndev, true);
3306 		ctrl->npss = 0;
3307 	}
3308 unfreeze:
3309 	nvme_unfreeze(ctrl);
3310 	return ret;
3311 }
3312 
3313 static int nvme_simple_suspend(struct device *dev)
3314 {
3315 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3316 
3317 	return nvme_disable_prepare_reset(ndev, true);
3318 }
3319 
3320 static int nvme_simple_resume(struct device *dev)
3321 {
3322 	struct pci_dev *pdev = to_pci_dev(dev);
3323 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3324 
3325 	return nvme_try_sched_reset(&ndev->ctrl);
3326 }
3327 
3328 static const struct dev_pm_ops nvme_dev_pm_ops = {
3329 	.suspend	= nvme_suspend,
3330 	.resume		= nvme_resume,
3331 	.freeze		= nvme_simple_suspend,
3332 	.thaw		= nvme_simple_resume,
3333 	.poweroff	= nvme_simple_suspend,
3334 	.restore	= nvme_simple_resume,
3335 };
3336 #endif /* CONFIG_PM_SLEEP */
3337 
3338 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3339 						pci_channel_state_t state)
3340 {
3341 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3342 
3343 	/*
3344 	 * A frozen channel requires a reset. When detected, this method will
3345 	 * shutdown the controller to quiesce. The controller will be restarted
3346 	 * after the slot reset through driver's slot_reset callback.
3347 	 */
3348 	switch (state) {
3349 	case pci_channel_io_normal:
3350 		return PCI_ERS_RESULT_CAN_RECOVER;
3351 	case pci_channel_io_frozen:
3352 		dev_warn(dev->ctrl.device,
3353 			"frozen state error detected, reset controller\n");
3354 		nvme_dev_disable(dev, false);
3355 		return PCI_ERS_RESULT_NEED_RESET;
3356 	case pci_channel_io_perm_failure:
3357 		dev_warn(dev->ctrl.device,
3358 			"failure state error detected, request disconnect\n");
3359 		return PCI_ERS_RESULT_DISCONNECT;
3360 	}
3361 	return PCI_ERS_RESULT_NEED_RESET;
3362 }
3363 
3364 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3365 {
3366 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3367 
3368 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3369 	pci_restore_state(pdev);
3370 	nvme_reset_ctrl(&dev->ctrl);
3371 	return PCI_ERS_RESULT_RECOVERED;
3372 }
3373 
3374 static void nvme_error_resume(struct pci_dev *pdev)
3375 {
3376 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3377 
3378 	flush_work(&dev->ctrl.reset_work);
3379 }
3380 
3381 static const struct pci_error_handlers nvme_err_handler = {
3382 	.error_detected	= nvme_error_detected,
3383 	.slot_reset	= nvme_slot_reset,
3384 	.resume		= nvme_error_resume,
3385 	.reset_prepare	= nvme_reset_prepare,
3386 	.reset_done	= nvme_reset_done,
3387 };
3388 
3389 static const struct pci_device_id nvme_id_table[] = {
3390 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3391 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3392 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3393 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3394 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3395 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3396 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3397 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3398 				NVME_QUIRK_DEALLOCATE_ZEROES |
3399 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3400 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3401 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3402 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3403 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3404 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3405 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3406 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3407 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3408 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3409 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3410 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3411 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3412 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3413 				NVME_QUIRK_BOGUS_NID, },
3414 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3415 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3416 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3417 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3418 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3419 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3420 				NVME_QUIRK_NO_NS_DESC_LIST, },
3421 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3422 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3423 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3424 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3425 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3426 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3427 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3428 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3429 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3430 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3431 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3432 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3433 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3434 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3435 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3436 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3437 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3438 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3439 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3440 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3441 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3442 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3443 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3444 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3445 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3446 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3447 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3448 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3449 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3450 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3451 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3452 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3453 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3454 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3455 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3456 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3457 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3458 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3459 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3460 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3461 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3462 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3463 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3464 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3465 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3466 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3467 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3468 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3469 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3470 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3471 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3472 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3473 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3474 				NVME_QUIRK_128_BYTES_SQES |
3475 				NVME_QUIRK_SHARED_TAGS |
3476 				NVME_QUIRK_SKIP_CID_GEN },
3477 	{ PCI_DEVICE(0x144d, 0xa808),   /* Samsung X5 */
3478 		.driver_data =  NVME_QUIRK_DELAY_BEFORE_CHK_RDY|
3479 				NVME_QUIRK_NO_DEEPEST_PS |
3480 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3481 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3482 	{ 0, }
3483 };
3484 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3485 
3486 static struct pci_driver nvme_driver = {
3487 	.name		= "nvme",
3488 	.id_table	= nvme_id_table,
3489 	.probe		= nvme_probe,
3490 	.remove		= nvme_remove,
3491 	.shutdown	= nvme_shutdown,
3492 #ifdef CONFIG_PM_SLEEP
3493 	.driver		= {
3494 		.pm	= &nvme_dev_pm_ops,
3495 	},
3496 #endif
3497 	.sriov_configure = pci_sriov_configure_simple,
3498 	.err_handler	= &nvme_err_handler,
3499 };
3500 
3501 static int __init nvme_init(void)
3502 {
3503 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3504 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3505 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3506 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3507 
3508 	return pci_register_driver(&nvme_driver);
3509 }
3510 
3511 static void __exit nvme_exit(void)
3512 {
3513 	pci_unregister_driver(&nvme_driver);
3514 	flush_workqueue(nvme_wq);
3515 }
3516 
3517 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3518 MODULE_LICENSE("GPL");
3519 MODULE_VERSION("1.0");
3520 module_init(nvme_init);
3521 module_exit(nvme_exit);
3522