xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 6906598f1ce93761716d780b6e3f171e13f0f4ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kstrtox.h>
19 #include <linux/memremap.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/once.h>
24 #include <linux/pci.h>
25 #include <linux/suspend.h>
26 #include <linux/t10-pi.h>
27 #include <linux/types.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 #include <linux/sed-opal.h>
31 #include <linux/pci-p2pdma.h>
32 
33 #include "trace.h"
34 #include "nvme.h"
35 
36 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
37 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
38 
39 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ	4096
46 #define NVME_MAX_SEGS	127
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	dma_addr_t host_mem_descs_dma;
157 	struct nvme_host_mem_buf_desc *host_mem_descs;
158 	void **host_mem_desc_bufs;
159 	unsigned int nr_allocated_queues;
160 	unsigned int nr_write_queues;
161 	unsigned int nr_poll_queues;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226 	struct nvme_request req;
227 	struct nvme_command cmd;
228 	bool use_sgl;
229 	bool aborted;
230 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
231 				   pool in use */
232 	unsigned int dma_len;	/* length of single DMA segment mapping */
233 	dma_addr_t first_dma;
234 	dma_addr_t meta_dma;
235 	struct sg_table sgt;
236 };
237 
238 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
239 {
240 	return dev->nr_allocated_queues * 8 * dev->db_stride;
241 }
242 
243 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
244 {
245 	unsigned int mem_size = nvme_dbbuf_size(dev);
246 
247 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
248 		return;
249 
250 	if (dev->dbbuf_dbs) {
251 		/*
252 		 * Clear the dbbuf memory so the driver doesn't observe stale
253 		 * values from the previous instantiation.
254 		 */
255 		memset(dev->dbbuf_dbs, 0, mem_size);
256 		memset(dev->dbbuf_eis, 0, mem_size);
257 		return;
258 	}
259 
260 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
261 					    &dev->dbbuf_dbs_dma_addr,
262 					    GFP_KERNEL);
263 	if (!dev->dbbuf_dbs)
264 		goto fail;
265 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
266 					    &dev->dbbuf_eis_dma_addr,
267 					    GFP_KERNEL);
268 	if (!dev->dbbuf_eis)
269 		goto fail_free_dbbuf_dbs;
270 	return;
271 
272 fail_free_dbbuf_dbs:
273 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
274 			  dev->dbbuf_dbs_dma_addr);
275 	dev->dbbuf_dbs = NULL;
276 fail:
277 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
278 }
279 
280 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
281 {
282 	unsigned int mem_size = nvme_dbbuf_size(dev);
283 
284 	if (dev->dbbuf_dbs) {
285 		dma_free_coherent(dev->dev, mem_size,
286 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
287 		dev->dbbuf_dbs = NULL;
288 	}
289 	if (dev->dbbuf_eis) {
290 		dma_free_coherent(dev->dev, mem_size,
291 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
292 		dev->dbbuf_eis = NULL;
293 	}
294 }
295 
296 static void nvme_dbbuf_init(struct nvme_dev *dev,
297 			    struct nvme_queue *nvmeq, int qid)
298 {
299 	if (!dev->dbbuf_dbs || !qid)
300 		return;
301 
302 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
303 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
304 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
305 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
306 }
307 
308 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
309 {
310 	if (!nvmeq->qid)
311 		return;
312 
313 	nvmeq->dbbuf_sq_db = NULL;
314 	nvmeq->dbbuf_cq_db = NULL;
315 	nvmeq->dbbuf_sq_ei = NULL;
316 	nvmeq->dbbuf_cq_ei = NULL;
317 }
318 
319 static void nvme_dbbuf_set(struct nvme_dev *dev)
320 {
321 	struct nvme_command c = { };
322 	unsigned int i;
323 
324 	if (!dev->dbbuf_dbs)
325 		return;
326 
327 	c.dbbuf.opcode = nvme_admin_dbbuf;
328 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
329 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
330 
331 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
332 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
333 		/* Free memory and continue on */
334 		nvme_dbbuf_dma_free(dev);
335 
336 		for (i = 1; i <= dev->online_queues; i++)
337 			nvme_dbbuf_free(&dev->queues[i]);
338 	}
339 }
340 
341 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
342 {
343 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
344 }
345 
346 /* Update dbbuf and return true if an MMIO is required */
347 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
348 					      volatile __le32 *dbbuf_ei)
349 {
350 	if (dbbuf_db) {
351 		u16 old_value, event_idx;
352 
353 		/*
354 		 * Ensure that the queue is written before updating
355 		 * the doorbell in memory
356 		 */
357 		wmb();
358 
359 		old_value = le32_to_cpu(*dbbuf_db);
360 		*dbbuf_db = cpu_to_le32(value);
361 
362 		/*
363 		 * Ensure that the doorbell is updated before reading the event
364 		 * index from memory.  The controller needs to provide similar
365 		 * ordering to ensure the envent index is updated before reading
366 		 * the doorbell.
367 		 */
368 		mb();
369 
370 		event_idx = le32_to_cpu(*dbbuf_ei);
371 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
372 			return false;
373 	}
374 
375 	return true;
376 }
377 
378 /*
379  * Will slightly overestimate the number of pages needed.  This is OK
380  * as it only leads to a small amount of wasted memory for the lifetime of
381  * the I/O.
382  */
383 static int nvme_pci_npages_prp(void)
384 {
385 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
386 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
387 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
388 }
389 
390 /*
391  * Calculates the number of pages needed for the SGL segments. For example a 4k
392  * page can accommodate 256 SGL descriptors.
393  */
394 static int nvme_pci_npages_sgl(void)
395 {
396 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
397 			NVME_CTRL_PAGE_SIZE);
398 }
399 
400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 				unsigned int hctx_idx)
402 {
403 	struct nvme_dev *dev = to_nvme_dev(data);
404 	struct nvme_queue *nvmeq = &dev->queues[0];
405 
406 	WARN_ON(hctx_idx != 0);
407 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
408 
409 	hctx->driver_data = nvmeq;
410 	return 0;
411 }
412 
413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
414 			  unsigned int hctx_idx)
415 {
416 	struct nvme_dev *dev = to_nvme_dev(data);
417 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
418 
419 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
420 	hctx->driver_data = nvmeq;
421 	return 0;
422 }
423 
424 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
425 		struct request *req, unsigned int hctx_idx,
426 		unsigned int numa_node)
427 {
428 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
429 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
430 
431 	nvme_req(req)->ctrl = &dev->ctrl;
432 	nvme_req(req)->cmd = &iod->cmd;
433 	return 0;
434 }
435 
436 static int queue_irq_offset(struct nvme_dev *dev)
437 {
438 	/* if we have more than 1 vec, admin queue offsets us by 1 */
439 	if (dev->num_vecs > 1)
440 		return 1;
441 
442 	return 0;
443 }
444 
445 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
446 {
447 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
448 	int i, qoff, offset;
449 
450 	offset = queue_irq_offset(dev);
451 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
452 		struct blk_mq_queue_map *map = &set->map[i];
453 
454 		map->nr_queues = dev->io_queues[i];
455 		if (!map->nr_queues) {
456 			BUG_ON(i == HCTX_TYPE_DEFAULT);
457 			continue;
458 		}
459 
460 		/*
461 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
462 		 * affinity), so use the regular blk-mq cpu mapping
463 		 */
464 		map->queue_offset = qoff;
465 		if (i != HCTX_TYPE_POLL && offset)
466 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
467 		else
468 			blk_mq_map_queues(map);
469 		qoff += map->nr_queues;
470 		offset += map->nr_queues;
471 	}
472 }
473 
474 /*
475  * Write sq tail if we are asked to, or if the next command would wrap.
476  */
477 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
478 {
479 	if (!write_sq) {
480 		u16 next_tail = nvmeq->sq_tail + 1;
481 
482 		if (next_tail == nvmeq->q_depth)
483 			next_tail = 0;
484 		if (next_tail != nvmeq->last_sq_tail)
485 			return;
486 	}
487 
488 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
489 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
490 		writel(nvmeq->sq_tail, nvmeq->q_db);
491 	nvmeq->last_sq_tail = nvmeq->sq_tail;
492 }
493 
494 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
495 				    struct nvme_command *cmd)
496 {
497 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
498 		absolute_pointer(cmd), sizeof(*cmd));
499 	if (++nvmeq->sq_tail == nvmeq->q_depth)
500 		nvmeq->sq_tail = 0;
501 }
502 
503 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
504 {
505 	struct nvme_queue *nvmeq = hctx->driver_data;
506 
507 	spin_lock(&nvmeq->sq_lock);
508 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
509 		nvme_write_sq_db(nvmeq, true);
510 	spin_unlock(&nvmeq->sq_lock);
511 }
512 
513 static void **nvme_pci_iod_list(struct request *req)
514 {
515 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
516 	return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
517 }
518 
519 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
520 {
521 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
522 	int nseg = blk_rq_nr_phys_segments(req);
523 	unsigned int avg_seg_size;
524 
525 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
526 
527 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
528 		return false;
529 	if (!nvmeq->qid)
530 		return false;
531 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
532 		return false;
533 	return true;
534 }
535 
536 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
537 {
538 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
539 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
540 	dma_addr_t dma_addr = iod->first_dma;
541 	int i;
542 
543 	for (i = 0; i < iod->nr_allocations; i++) {
544 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
545 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
546 
547 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
548 		dma_addr = next_dma_addr;
549 	}
550 }
551 
552 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
553 {
554 	const int last_sg = SGES_PER_PAGE - 1;
555 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
556 	dma_addr_t dma_addr = iod->first_dma;
557 	int i;
558 
559 	for (i = 0; i < iod->nr_allocations; i++) {
560 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
561 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
562 
563 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
564 		dma_addr = next_dma_addr;
565 	}
566 }
567 
568 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
569 {
570 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
571 
572 	if (iod->dma_len) {
573 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
574 			       rq_dma_dir(req));
575 		return;
576 	}
577 
578 	WARN_ON_ONCE(!iod->sgt.nents);
579 
580 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
581 
582 	if (iod->nr_allocations == 0)
583 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
584 			      iod->first_dma);
585 	else if (iod->use_sgl)
586 		nvme_free_sgls(dev, req);
587 	else
588 		nvme_free_prps(dev, req);
589 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
590 }
591 
592 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
593 {
594 	int i;
595 	struct scatterlist *sg;
596 
597 	for_each_sg(sgl, sg, nents, i) {
598 		dma_addr_t phys = sg_phys(sg);
599 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
600 			"dma_address:%pad dma_length:%d\n",
601 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
602 			sg_dma_len(sg));
603 	}
604 }
605 
606 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
607 		struct request *req, struct nvme_rw_command *cmnd)
608 {
609 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
610 	struct dma_pool *pool;
611 	int length = blk_rq_payload_bytes(req);
612 	struct scatterlist *sg = iod->sgt.sgl;
613 	int dma_len = sg_dma_len(sg);
614 	u64 dma_addr = sg_dma_address(sg);
615 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
616 	__le64 *prp_list;
617 	void **list = nvme_pci_iod_list(req);
618 	dma_addr_t prp_dma;
619 	int nprps, i;
620 
621 	length -= (NVME_CTRL_PAGE_SIZE - offset);
622 	if (length <= 0) {
623 		iod->first_dma = 0;
624 		goto done;
625 	}
626 
627 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
628 	if (dma_len) {
629 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
630 	} else {
631 		sg = sg_next(sg);
632 		dma_addr = sg_dma_address(sg);
633 		dma_len = sg_dma_len(sg);
634 	}
635 
636 	if (length <= NVME_CTRL_PAGE_SIZE) {
637 		iod->first_dma = dma_addr;
638 		goto done;
639 	}
640 
641 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
642 	if (nprps <= (256 / 8)) {
643 		pool = dev->prp_small_pool;
644 		iod->nr_allocations = 0;
645 	} else {
646 		pool = dev->prp_page_pool;
647 		iod->nr_allocations = 1;
648 	}
649 
650 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
651 	if (!prp_list) {
652 		iod->nr_allocations = -1;
653 		return BLK_STS_RESOURCE;
654 	}
655 	list[0] = prp_list;
656 	iod->first_dma = prp_dma;
657 	i = 0;
658 	for (;;) {
659 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
660 			__le64 *old_prp_list = prp_list;
661 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
662 			if (!prp_list)
663 				goto free_prps;
664 			list[iod->nr_allocations++] = prp_list;
665 			prp_list[0] = old_prp_list[i - 1];
666 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
667 			i = 1;
668 		}
669 		prp_list[i++] = cpu_to_le64(dma_addr);
670 		dma_len -= NVME_CTRL_PAGE_SIZE;
671 		dma_addr += NVME_CTRL_PAGE_SIZE;
672 		length -= NVME_CTRL_PAGE_SIZE;
673 		if (length <= 0)
674 			break;
675 		if (dma_len > 0)
676 			continue;
677 		if (unlikely(dma_len < 0))
678 			goto bad_sgl;
679 		sg = sg_next(sg);
680 		dma_addr = sg_dma_address(sg);
681 		dma_len = sg_dma_len(sg);
682 	}
683 done:
684 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
685 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
686 	return BLK_STS_OK;
687 free_prps:
688 	nvme_free_prps(dev, req);
689 	return BLK_STS_RESOURCE;
690 bad_sgl:
691 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
692 			"Invalid SGL for payload:%d nents:%d\n",
693 			blk_rq_payload_bytes(req), iod->sgt.nents);
694 	return BLK_STS_IOERR;
695 }
696 
697 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
698 		struct scatterlist *sg)
699 {
700 	sge->addr = cpu_to_le64(sg_dma_address(sg));
701 	sge->length = cpu_to_le32(sg_dma_len(sg));
702 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
703 }
704 
705 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
706 		dma_addr_t dma_addr, int entries)
707 {
708 	sge->addr = cpu_to_le64(dma_addr);
709 	if (entries < SGES_PER_PAGE) {
710 		sge->length = cpu_to_le32(entries * sizeof(*sge));
711 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
712 	} else {
713 		sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
714 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
715 	}
716 }
717 
718 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
719 		struct request *req, struct nvme_rw_command *cmd)
720 {
721 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
722 	struct dma_pool *pool;
723 	struct nvme_sgl_desc *sg_list;
724 	struct scatterlist *sg = iod->sgt.sgl;
725 	unsigned int entries = iod->sgt.nents;
726 	dma_addr_t sgl_dma;
727 	int i = 0;
728 
729 	/* setting the transfer type as SGL */
730 	cmd->flags = NVME_CMD_SGL_METABUF;
731 
732 	if (entries == 1) {
733 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
734 		return BLK_STS_OK;
735 	}
736 
737 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
738 		pool = dev->prp_small_pool;
739 		iod->nr_allocations = 0;
740 	} else {
741 		pool = dev->prp_page_pool;
742 		iod->nr_allocations = 1;
743 	}
744 
745 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
746 	if (!sg_list) {
747 		iod->nr_allocations = -1;
748 		return BLK_STS_RESOURCE;
749 	}
750 
751 	nvme_pci_iod_list(req)[0] = sg_list;
752 	iod->first_dma = sgl_dma;
753 
754 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
755 
756 	do {
757 		if (i == SGES_PER_PAGE) {
758 			struct nvme_sgl_desc *old_sg_desc = sg_list;
759 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
760 
761 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
762 			if (!sg_list)
763 				goto free_sgls;
764 
765 			i = 0;
766 			nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
767 			sg_list[i++] = *link;
768 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
769 		}
770 
771 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
772 		sg = sg_next(sg);
773 	} while (--entries > 0);
774 
775 	return BLK_STS_OK;
776 free_sgls:
777 	nvme_free_sgls(dev, req);
778 	return BLK_STS_RESOURCE;
779 }
780 
781 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
782 		struct request *req, struct nvme_rw_command *cmnd,
783 		struct bio_vec *bv)
784 {
785 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
786 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
787 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
788 
789 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
790 	if (dma_mapping_error(dev->dev, iod->first_dma))
791 		return BLK_STS_RESOURCE;
792 	iod->dma_len = bv->bv_len;
793 
794 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
795 	if (bv->bv_len > first_prp_len)
796 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
797 	else
798 		cmnd->dptr.prp2 = 0;
799 	return BLK_STS_OK;
800 }
801 
802 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
803 		struct request *req, struct nvme_rw_command *cmnd,
804 		struct bio_vec *bv)
805 {
806 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807 
808 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
809 	if (dma_mapping_error(dev->dev, iod->first_dma))
810 		return BLK_STS_RESOURCE;
811 	iod->dma_len = bv->bv_len;
812 
813 	cmnd->flags = NVME_CMD_SGL_METABUF;
814 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
815 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
816 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
817 	return BLK_STS_OK;
818 }
819 
820 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
821 		struct nvme_command *cmnd)
822 {
823 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
824 	blk_status_t ret = BLK_STS_RESOURCE;
825 	int rc;
826 
827 	if (blk_rq_nr_phys_segments(req) == 1) {
828 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
829 		struct bio_vec bv = req_bvec(req);
830 
831 		if (!is_pci_p2pdma_page(bv.bv_page)) {
832 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
833 				return nvme_setup_prp_simple(dev, req,
834 							     &cmnd->rw, &bv);
835 
836 			if (nvmeq->qid && sgl_threshold &&
837 			    nvme_ctrl_sgl_supported(&dev->ctrl))
838 				return nvme_setup_sgl_simple(dev, req,
839 							     &cmnd->rw, &bv);
840 		}
841 	}
842 
843 	iod->dma_len = 0;
844 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
845 	if (!iod->sgt.sgl)
846 		return BLK_STS_RESOURCE;
847 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
848 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
849 	if (!iod->sgt.orig_nents)
850 		goto out_free_sg;
851 
852 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
853 			     DMA_ATTR_NO_WARN);
854 	if (rc) {
855 		if (rc == -EREMOTEIO)
856 			ret = BLK_STS_TARGET;
857 		goto out_free_sg;
858 	}
859 
860 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
861 	if (iod->use_sgl)
862 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
863 	else
864 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
865 	if (ret != BLK_STS_OK)
866 		goto out_unmap_sg;
867 	return BLK_STS_OK;
868 
869 out_unmap_sg:
870 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
871 out_free_sg:
872 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
873 	return ret;
874 }
875 
876 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
877 		struct nvme_command *cmnd)
878 {
879 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
880 
881 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
882 			rq_dma_dir(req), 0);
883 	if (dma_mapping_error(dev->dev, iod->meta_dma))
884 		return BLK_STS_IOERR;
885 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
886 	return BLK_STS_OK;
887 }
888 
889 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
890 {
891 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
892 	blk_status_t ret;
893 
894 	iod->aborted = false;
895 	iod->nr_allocations = -1;
896 	iod->sgt.nents = 0;
897 
898 	ret = nvme_setup_cmd(req->q->queuedata, req);
899 	if (ret)
900 		return ret;
901 
902 	if (blk_rq_nr_phys_segments(req)) {
903 		ret = nvme_map_data(dev, req, &iod->cmd);
904 		if (ret)
905 			goto out_free_cmd;
906 	}
907 
908 	if (blk_integrity_rq(req)) {
909 		ret = nvme_map_metadata(dev, req, &iod->cmd);
910 		if (ret)
911 			goto out_unmap_data;
912 	}
913 
914 	nvme_start_request(req);
915 	return BLK_STS_OK;
916 out_unmap_data:
917 	nvme_unmap_data(dev, req);
918 out_free_cmd:
919 	nvme_cleanup_cmd(req);
920 	return ret;
921 }
922 
923 /*
924  * NOTE: ns is NULL when called on the admin queue.
925  */
926 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
927 			 const struct blk_mq_queue_data *bd)
928 {
929 	struct nvme_queue *nvmeq = hctx->driver_data;
930 	struct nvme_dev *dev = nvmeq->dev;
931 	struct request *req = bd->rq;
932 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
933 	blk_status_t ret;
934 
935 	/*
936 	 * We should not need to do this, but we're still using this to
937 	 * ensure we can drain requests on a dying queue.
938 	 */
939 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
940 		return BLK_STS_IOERR;
941 
942 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
943 		return nvme_fail_nonready_command(&dev->ctrl, req);
944 
945 	ret = nvme_prep_rq(dev, req);
946 	if (unlikely(ret))
947 		return ret;
948 	spin_lock(&nvmeq->sq_lock);
949 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
950 	nvme_write_sq_db(nvmeq, bd->last);
951 	spin_unlock(&nvmeq->sq_lock);
952 	return BLK_STS_OK;
953 }
954 
955 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
956 {
957 	spin_lock(&nvmeq->sq_lock);
958 	while (!rq_list_empty(*rqlist)) {
959 		struct request *req = rq_list_pop(rqlist);
960 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
961 
962 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
963 	}
964 	nvme_write_sq_db(nvmeq, true);
965 	spin_unlock(&nvmeq->sq_lock);
966 }
967 
968 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
969 {
970 	/*
971 	 * We should not need to do this, but we're still using this to
972 	 * ensure we can drain requests on a dying queue.
973 	 */
974 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
975 		return false;
976 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
977 		return false;
978 
979 	req->mq_hctx->tags->rqs[req->tag] = req;
980 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
981 }
982 
983 static void nvme_queue_rqs(struct request **rqlist)
984 {
985 	struct request *req, *next, *prev = NULL;
986 	struct request *requeue_list = NULL;
987 
988 	rq_list_for_each_safe(rqlist, req, next) {
989 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
990 
991 		if (!nvme_prep_rq_batch(nvmeq, req)) {
992 			/* detach 'req' and add to remainder list */
993 			rq_list_move(rqlist, &requeue_list, req, prev);
994 
995 			req = prev;
996 			if (!req)
997 				continue;
998 		}
999 
1000 		if (!next || req->mq_hctx != next->mq_hctx) {
1001 			/* detach rest of list, and submit */
1002 			req->rq_next = NULL;
1003 			nvme_submit_cmds(nvmeq, rqlist);
1004 			*rqlist = next;
1005 			prev = NULL;
1006 		} else
1007 			prev = req;
1008 	}
1009 
1010 	*rqlist = requeue_list;
1011 }
1012 
1013 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1014 {
1015 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1016 	struct nvme_dev *dev = nvmeq->dev;
1017 
1018 	if (blk_integrity_rq(req)) {
1019 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1020 
1021 		dma_unmap_page(dev->dev, iod->meta_dma,
1022 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1023 	}
1024 
1025 	if (blk_rq_nr_phys_segments(req))
1026 		nvme_unmap_data(dev, req);
1027 }
1028 
1029 static void nvme_pci_complete_rq(struct request *req)
1030 {
1031 	nvme_pci_unmap_rq(req);
1032 	nvme_complete_rq(req);
1033 }
1034 
1035 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1036 {
1037 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1038 }
1039 
1040 /* We read the CQE phase first to check if the rest of the entry is valid */
1041 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1042 {
1043 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1044 
1045 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1046 }
1047 
1048 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1049 {
1050 	u16 head = nvmeq->cq_head;
1051 
1052 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1053 					      nvmeq->dbbuf_cq_ei))
1054 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1055 }
1056 
1057 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1058 {
1059 	if (!nvmeq->qid)
1060 		return nvmeq->dev->admin_tagset.tags[0];
1061 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1062 }
1063 
1064 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1065 				   struct io_comp_batch *iob, u16 idx)
1066 {
1067 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1068 	__u16 command_id = READ_ONCE(cqe->command_id);
1069 	struct request *req;
1070 
1071 	/*
1072 	 * AEN requests are special as they don't time out and can
1073 	 * survive any kind of queue freeze and often don't respond to
1074 	 * aborts.  We don't even bother to allocate a struct request
1075 	 * for them but rather special case them here.
1076 	 */
1077 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1078 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1079 				cqe->status, &cqe->result);
1080 		return;
1081 	}
1082 
1083 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1084 	if (unlikely(!req)) {
1085 		dev_warn(nvmeq->dev->ctrl.device,
1086 			"invalid id %d completed on queue %d\n",
1087 			command_id, le16_to_cpu(cqe->sq_id));
1088 		return;
1089 	}
1090 
1091 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1092 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1093 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1094 					nvme_pci_complete_batch))
1095 		nvme_pci_complete_rq(req);
1096 }
1097 
1098 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1099 {
1100 	u32 tmp = nvmeq->cq_head + 1;
1101 
1102 	if (tmp == nvmeq->q_depth) {
1103 		nvmeq->cq_head = 0;
1104 		nvmeq->cq_phase ^= 1;
1105 	} else {
1106 		nvmeq->cq_head = tmp;
1107 	}
1108 }
1109 
1110 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1111 			       struct io_comp_batch *iob)
1112 {
1113 	int found = 0;
1114 
1115 	while (nvme_cqe_pending(nvmeq)) {
1116 		found++;
1117 		/*
1118 		 * load-load control dependency between phase and the rest of
1119 		 * the cqe requires a full read memory barrier
1120 		 */
1121 		dma_rmb();
1122 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1123 		nvme_update_cq_head(nvmeq);
1124 	}
1125 
1126 	if (found)
1127 		nvme_ring_cq_doorbell(nvmeq);
1128 	return found;
1129 }
1130 
1131 static irqreturn_t nvme_irq(int irq, void *data)
1132 {
1133 	struct nvme_queue *nvmeq = data;
1134 	DEFINE_IO_COMP_BATCH(iob);
1135 
1136 	if (nvme_poll_cq(nvmeq, &iob)) {
1137 		if (!rq_list_empty(iob.req_list))
1138 			nvme_pci_complete_batch(&iob);
1139 		return IRQ_HANDLED;
1140 	}
1141 	return IRQ_NONE;
1142 }
1143 
1144 static irqreturn_t nvme_irq_check(int irq, void *data)
1145 {
1146 	struct nvme_queue *nvmeq = data;
1147 
1148 	if (nvme_cqe_pending(nvmeq))
1149 		return IRQ_WAKE_THREAD;
1150 	return IRQ_NONE;
1151 }
1152 
1153 /*
1154  * Poll for completions for any interrupt driven queue
1155  * Can be called from any context.
1156  */
1157 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1158 {
1159 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1160 
1161 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1162 
1163 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1164 	nvme_poll_cq(nvmeq, NULL);
1165 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1166 }
1167 
1168 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1169 {
1170 	struct nvme_queue *nvmeq = hctx->driver_data;
1171 	bool found;
1172 
1173 	if (!nvme_cqe_pending(nvmeq))
1174 		return 0;
1175 
1176 	spin_lock(&nvmeq->cq_poll_lock);
1177 	found = nvme_poll_cq(nvmeq, iob);
1178 	spin_unlock(&nvmeq->cq_poll_lock);
1179 
1180 	return found;
1181 }
1182 
1183 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1184 {
1185 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1186 	struct nvme_queue *nvmeq = &dev->queues[0];
1187 	struct nvme_command c = { };
1188 
1189 	c.common.opcode = nvme_admin_async_event;
1190 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1191 
1192 	spin_lock(&nvmeq->sq_lock);
1193 	nvme_sq_copy_cmd(nvmeq, &c);
1194 	nvme_write_sq_db(nvmeq, true);
1195 	spin_unlock(&nvmeq->sq_lock);
1196 }
1197 
1198 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1199 {
1200 	struct nvme_command c = { };
1201 
1202 	c.delete_queue.opcode = opcode;
1203 	c.delete_queue.qid = cpu_to_le16(id);
1204 
1205 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207 
1208 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1209 		struct nvme_queue *nvmeq, s16 vector)
1210 {
1211 	struct nvme_command c = { };
1212 	int flags = NVME_QUEUE_PHYS_CONTIG;
1213 
1214 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1215 		flags |= NVME_CQ_IRQ_ENABLED;
1216 
1217 	/*
1218 	 * Note: we (ab)use the fact that the prp fields survive if no data
1219 	 * is attached to the request.
1220 	 */
1221 	c.create_cq.opcode = nvme_admin_create_cq;
1222 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1223 	c.create_cq.cqid = cpu_to_le16(qid);
1224 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1225 	c.create_cq.cq_flags = cpu_to_le16(flags);
1226 	c.create_cq.irq_vector = cpu_to_le16(vector);
1227 
1228 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1229 }
1230 
1231 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1232 						struct nvme_queue *nvmeq)
1233 {
1234 	struct nvme_ctrl *ctrl = &dev->ctrl;
1235 	struct nvme_command c = { };
1236 	int flags = NVME_QUEUE_PHYS_CONTIG;
1237 
1238 	/*
1239 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1240 	 * set. Since URGENT priority is zeroes, it makes all queues
1241 	 * URGENT.
1242 	 */
1243 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1244 		flags |= NVME_SQ_PRIO_MEDIUM;
1245 
1246 	/*
1247 	 * Note: we (ab)use the fact that the prp fields survive if no data
1248 	 * is attached to the request.
1249 	 */
1250 	c.create_sq.opcode = nvme_admin_create_sq;
1251 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1252 	c.create_sq.sqid = cpu_to_le16(qid);
1253 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1254 	c.create_sq.sq_flags = cpu_to_le16(flags);
1255 	c.create_sq.cqid = cpu_to_le16(qid);
1256 
1257 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1258 }
1259 
1260 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1261 {
1262 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1263 }
1264 
1265 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1266 {
1267 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1268 }
1269 
1270 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1271 {
1272 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1273 
1274 	dev_warn(nvmeq->dev->ctrl.device,
1275 		 "Abort status: 0x%x", nvme_req(req)->status);
1276 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1277 	blk_mq_free_request(req);
1278 	return RQ_END_IO_NONE;
1279 }
1280 
1281 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1282 {
1283 	/* If true, indicates loss of adapter communication, possibly by a
1284 	 * NVMe Subsystem reset.
1285 	 */
1286 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1287 
1288 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1289 	switch (dev->ctrl.state) {
1290 	case NVME_CTRL_RESETTING:
1291 	case NVME_CTRL_CONNECTING:
1292 		return false;
1293 	default:
1294 		break;
1295 	}
1296 
1297 	/* We shouldn't reset unless the controller is on fatal error state
1298 	 * _or_ if we lost the communication with it.
1299 	 */
1300 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1301 		return false;
1302 
1303 	return true;
1304 }
1305 
1306 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1307 {
1308 	/* Read a config register to help see what died. */
1309 	u16 pci_status;
1310 	int result;
1311 
1312 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1313 				      &pci_status);
1314 	if (result == PCIBIOS_SUCCESSFUL)
1315 		dev_warn(dev->ctrl.device,
1316 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1317 			 csts, pci_status);
1318 	else
1319 		dev_warn(dev->ctrl.device,
1320 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1321 			 csts, result);
1322 
1323 	if (csts != ~0)
1324 		return;
1325 
1326 	dev_warn(dev->ctrl.device,
1327 		 "Does your device have a faulty power saving mode enabled?\n");
1328 	dev_warn(dev->ctrl.device,
1329 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1330 }
1331 
1332 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1333 {
1334 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1335 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1336 	struct nvme_dev *dev = nvmeq->dev;
1337 	struct request *abort_req;
1338 	struct nvme_command cmd = { };
1339 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1340 
1341 	/* If PCI error recovery process is happening, we cannot reset or
1342 	 * the recovery mechanism will surely fail.
1343 	 */
1344 	mb();
1345 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1346 		return BLK_EH_RESET_TIMER;
1347 
1348 	/*
1349 	 * Reset immediately if the controller is failed
1350 	 */
1351 	if (nvme_should_reset(dev, csts)) {
1352 		nvme_warn_reset(dev, csts);
1353 		nvme_dev_disable(dev, false);
1354 		nvme_reset_ctrl(&dev->ctrl);
1355 		return BLK_EH_DONE;
1356 	}
1357 
1358 	/*
1359 	 * Did we miss an interrupt?
1360 	 */
1361 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1362 		nvme_poll(req->mq_hctx, NULL);
1363 	else
1364 		nvme_poll_irqdisable(nvmeq);
1365 
1366 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1367 		dev_warn(dev->ctrl.device,
1368 			 "I/O %d QID %d timeout, completion polled\n",
1369 			 req->tag, nvmeq->qid);
1370 		return BLK_EH_DONE;
1371 	}
1372 
1373 	/*
1374 	 * Shutdown immediately if controller times out while starting. The
1375 	 * reset work will see the pci device disabled when it gets the forced
1376 	 * cancellation error. All outstanding requests are completed on
1377 	 * shutdown, so we return BLK_EH_DONE.
1378 	 */
1379 	switch (dev->ctrl.state) {
1380 	case NVME_CTRL_CONNECTING:
1381 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1382 		fallthrough;
1383 	case NVME_CTRL_DELETING:
1384 		dev_warn_ratelimited(dev->ctrl.device,
1385 			 "I/O %d QID %d timeout, disable controller\n",
1386 			 req->tag, nvmeq->qid);
1387 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1388 		nvme_dev_disable(dev, true);
1389 		return BLK_EH_DONE;
1390 	case NVME_CTRL_RESETTING:
1391 		return BLK_EH_RESET_TIMER;
1392 	default:
1393 		break;
1394 	}
1395 
1396 	/*
1397 	 * Shutdown the controller immediately and schedule a reset if the
1398 	 * command was already aborted once before and still hasn't been
1399 	 * returned to the driver, or if this is the admin queue.
1400 	 */
1401 	if (!nvmeq->qid || iod->aborted) {
1402 		dev_warn(dev->ctrl.device,
1403 			 "I/O %d QID %d timeout, reset controller\n",
1404 			 req->tag, nvmeq->qid);
1405 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1406 		nvme_dev_disable(dev, false);
1407 		nvme_reset_ctrl(&dev->ctrl);
1408 
1409 		return BLK_EH_DONE;
1410 	}
1411 
1412 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1413 		atomic_inc(&dev->ctrl.abort_limit);
1414 		return BLK_EH_RESET_TIMER;
1415 	}
1416 	iod->aborted = true;
1417 
1418 	cmd.abort.opcode = nvme_admin_abort_cmd;
1419 	cmd.abort.cid = nvme_cid(req);
1420 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1421 
1422 	dev_warn(nvmeq->dev->ctrl.device,
1423 		"I/O %d (%s) QID %d timeout, aborting\n",
1424 		 req->tag,
1425 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1426 		 nvmeq->qid);
1427 
1428 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1429 					 BLK_MQ_REQ_NOWAIT);
1430 	if (IS_ERR(abort_req)) {
1431 		atomic_inc(&dev->ctrl.abort_limit);
1432 		return BLK_EH_RESET_TIMER;
1433 	}
1434 	nvme_init_request(abort_req, &cmd);
1435 
1436 	abort_req->end_io = abort_endio;
1437 	abort_req->end_io_data = NULL;
1438 	blk_execute_rq_nowait(abort_req, false);
1439 
1440 	/*
1441 	 * The aborted req will be completed on receiving the abort req.
1442 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1443 	 * as the device then is in a faulty state.
1444 	 */
1445 	return BLK_EH_RESET_TIMER;
1446 }
1447 
1448 static void nvme_free_queue(struct nvme_queue *nvmeq)
1449 {
1450 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1451 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1452 	if (!nvmeq->sq_cmds)
1453 		return;
1454 
1455 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1456 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1457 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1458 	} else {
1459 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1460 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1461 	}
1462 }
1463 
1464 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1465 {
1466 	int i;
1467 
1468 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1469 		dev->ctrl.queue_count--;
1470 		nvme_free_queue(&dev->queues[i]);
1471 	}
1472 }
1473 
1474 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1475 {
1476 	struct nvme_queue *nvmeq = &dev->queues[qid];
1477 
1478 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1479 		return;
1480 
1481 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1482 	mb();
1483 
1484 	nvmeq->dev->online_queues--;
1485 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1486 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1487 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1488 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1489 }
1490 
1491 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1492 {
1493 	int i;
1494 
1495 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1496 		nvme_suspend_queue(dev, i);
1497 }
1498 
1499 /*
1500  * Called only on a device that has been disabled and after all other threads
1501  * that can check this device's completion queues have synced, except
1502  * nvme_poll(). This is the last chance for the driver to see a natural
1503  * completion before nvme_cancel_request() terminates all incomplete requests.
1504  */
1505 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1506 {
1507 	int i;
1508 
1509 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1510 		spin_lock(&dev->queues[i].cq_poll_lock);
1511 		nvme_poll_cq(&dev->queues[i], NULL);
1512 		spin_unlock(&dev->queues[i].cq_poll_lock);
1513 	}
1514 }
1515 
1516 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1517 				int entry_size)
1518 {
1519 	int q_depth = dev->q_depth;
1520 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1521 					  NVME_CTRL_PAGE_SIZE);
1522 
1523 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1524 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1525 
1526 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1527 		q_depth = div_u64(mem_per_q, entry_size);
1528 
1529 		/*
1530 		 * Ensure the reduced q_depth is above some threshold where it
1531 		 * would be better to map queues in system memory with the
1532 		 * original depth
1533 		 */
1534 		if (q_depth < 64)
1535 			return -ENOMEM;
1536 	}
1537 
1538 	return q_depth;
1539 }
1540 
1541 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1542 				int qid)
1543 {
1544 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1545 
1546 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1547 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1548 		if (nvmeq->sq_cmds) {
1549 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1550 							nvmeq->sq_cmds);
1551 			if (nvmeq->sq_dma_addr) {
1552 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1553 				return 0;
1554 			}
1555 
1556 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1557 		}
1558 	}
1559 
1560 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1561 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1562 	if (!nvmeq->sq_cmds)
1563 		return -ENOMEM;
1564 	return 0;
1565 }
1566 
1567 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1568 {
1569 	struct nvme_queue *nvmeq = &dev->queues[qid];
1570 
1571 	if (dev->ctrl.queue_count > qid)
1572 		return 0;
1573 
1574 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1575 	nvmeq->q_depth = depth;
1576 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1577 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1578 	if (!nvmeq->cqes)
1579 		goto free_nvmeq;
1580 
1581 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1582 		goto free_cqdma;
1583 
1584 	nvmeq->dev = dev;
1585 	spin_lock_init(&nvmeq->sq_lock);
1586 	spin_lock_init(&nvmeq->cq_poll_lock);
1587 	nvmeq->cq_head = 0;
1588 	nvmeq->cq_phase = 1;
1589 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1590 	nvmeq->qid = qid;
1591 	dev->ctrl.queue_count++;
1592 
1593 	return 0;
1594 
1595  free_cqdma:
1596 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1597 			  nvmeq->cq_dma_addr);
1598  free_nvmeq:
1599 	return -ENOMEM;
1600 }
1601 
1602 static int queue_request_irq(struct nvme_queue *nvmeq)
1603 {
1604 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1605 	int nr = nvmeq->dev->ctrl.instance;
1606 
1607 	if (use_threaded_interrupts) {
1608 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1609 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1610 	} else {
1611 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1612 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1613 	}
1614 }
1615 
1616 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1617 {
1618 	struct nvme_dev *dev = nvmeq->dev;
1619 
1620 	nvmeq->sq_tail = 0;
1621 	nvmeq->last_sq_tail = 0;
1622 	nvmeq->cq_head = 0;
1623 	nvmeq->cq_phase = 1;
1624 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1625 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1626 	nvme_dbbuf_init(dev, nvmeq, qid);
1627 	dev->online_queues++;
1628 	wmb(); /* ensure the first interrupt sees the initialization */
1629 }
1630 
1631 /*
1632  * Try getting shutdown_lock while setting up IO queues.
1633  */
1634 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1635 {
1636 	/*
1637 	 * Give up if the lock is being held by nvme_dev_disable.
1638 	 */
1639 	if (!mutex_trylock(&dev->shutdown_lock))
1640 		return -ENODEV;
1641 
1642 	/*
1643 	 * Controller is in wrong state, fail early.
1644 	 */
1645 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1646 		mutex_unlock(&dev->shutdown_lock);
1647 		return -ENODEV;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1654 {
1655 	struct nvme_dev *dev = nvmeq->dev;
1656 	int result;
1657 	u16 vector = 0;
1658 
1659 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1660 
1661 	/*
1662 	 * A queue's vector matches the queue identifier unless the controller
1663 	 * has only one vector available.
1664 	 */
1665 	if (!polled)
1666 		vector = dev->num_vecs == 1 ? 0 : qid;
1667 	else
1668 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1669 
1670 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1671 	if (result)
1672 		return result;
1673 
1674 	result = adapter_alloc_sq(dev, qid, nvmeq);
1675 	if (result < 0)
1676 		return result;
1677 	if (result)
1678 		goto release_cq;
1679 
1680 	nvmeq->cq_vector = vector;
1681 
1682 	result = nvme_setup_io_queues_trylock(dev);
1683 	if (result)
1684 		return result;
1685 	nvme_init_queue(nvmeq, qid);
1686 	if (!polled) {
1687 		result = queue_request_irq(nvmeq);
1688 		if (result < 0)
1689 			goto release_sq;
1690 	}
1691 
1692 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1693 	mutex_unlock(&dev->shutdown_lock);
1694 	return result;
1695 
1696 release_sq:
1697 	dev->online_queues--;
1698 	mutex_unlock(&dev->shutdown_lock);
1699 	adapter_delete_sq(dev, qid);
1700 release_cq:
1701 	adapter_delete_cq(dev, qid);
1702 	return result;
1703 }
1704 
1705 static const struct blk_mq_ops nvme_mq_admin_ops = {
1706 	.queue_rq	= nvme_queue_rq,
1707 	.complete	= nvme_pci_complete_rq,
1708 	.init_hctx	= nvme_admin_init_hctx,
1709 	.init_request	= nvme_pci_init_request,
1710 	.timeout	= nvme_timeout,
1711 };
1712 
1713 static const struct blk_mq_ops nvme_mq_ops = {
1714 	.queue_rq	= nvme_queue_rq,
1715 	.queue_rqs	= nvme_queue_rqs,
1716 	.complete	= nvme_pci_complete_rq,
1717 	.commit_rqs	= nvme_commit_rqs,
1718 	.init_hctx	= nvme_init_hctx,
1719 	.init_request	= nvme_pci_init_request,
1720 	.map_queues	= nvme_pci_map_queues,
1721 	.timeout	= nvme_timeout,
1722 	.poll		= nvme_poll,
1723 };
1724 
1725 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1726 {
1727 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1728 		/*
1729 		 * If the controller was reset during removal, it's possible
1730 		 * user requests may be waiting on a stopped queue. Start the
1731 		 * queue to flush these to completion.
1732 		 */
1733 		nvme_unquiesce_admin_queue(&dev->ctrl);
1734 		nvme_remove_admin_tag_set(&dev->ctrl);
1735 	}
1736 }
1737 
1738 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1739 {
1740 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1741 }
1742 
1743 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1744 {
1745 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1746 
1747 	if (size <= dev->bar_mapped_size)
1748 		return 0;
1749 	if (size > pci_resource_len(pdev, 0))
1750 		return -ENOMEM;
1751 	if (dev->bar)
1752 		iounmap(dev->bar);
1753 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1754 	if (!dev->bar) {
1755 		dev->bar_mapped_size = 0;
1756 		return -ENOMEM;
1757 	}
1758 	dev->bar_mapped_size = size;
1759 	dev->dbs = dev->bar + NVME_REG_DBS;
1760 
1761 	return 0;
1762 }
1763 
1764 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1765 {
1766 	int result;
1767 	u32 aqa;
1768 	struct nvme_queue *nvmeq;
1769 
1770 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1771 	if (result < 0)
1772 		return result;
1773 
1774 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1775 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1776 
1777 	if (dev->subsystem &&
1778 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1779 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1780 
1781 	/*
1782 	 * If the device has been passed off to us in an enabled state, just
1783 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1784 	 * notification bits', but doing so may cause the device to complete
1785 	 * commands to the admin queue ... and we don't know what memory that
1786 	 * might be pointing at!
1787 	 */
1788 	result = nvme_disable_ctrl(&dev->ctrl, false);
1789 	if (result < 0)
1790 		return result;
1791 
1792 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1793 	if (result)
1794 		return result;
1795 
1796 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1797 
1798 	nvmeq = &dev->queues[0];
1799 	aqa = nvmeq->q_depth - 1;
1800 	aqa |= aqa << 16;
1801 
1802 	writel(aqa, dev->bar + NVME_REG_AQA);
1803 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1804 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1805 
1806 	result = nvme_enable_ctrl(&dev->ctrl);
1807 	if (result)
1808 		return result;
1809 
1810 	nvmeq->cq_vector = 0;
1811 	nvme_init_queue(nvmeq, 0);
1812 	result = queue_request_irq(nvmeq);
1813 	if (result) {
1814 		dev->online_queues--;
1815 		return result;
1816 	}
1817 
1818 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1819 	return result;
1820 }
1821 
1822 static int nvme_create_io_queues(struct nvme_dev *dev)
1823 {
1824 	unsigned i, max, rw_queues;
1825 	int ret = 0;
1826 
1827 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1828 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1829 			ret = -ENOMEM;
1830 			break;
1831 		}
1832 	}
1833 
1834 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1835 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1836 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1837 				dev->io_queues[HCTX_TYPE_READ];
1838 	} else {
1839 		rw_queues = max;
1840 	}
1841 
1842 	for (i = dev->online_queues; i <= max; i++) {
1843 		bool polled = i > rw_queues;
1844 
1845 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1846 		if (ret)
1847 			break;
1848 	}
1849 
1850 	/*
1851 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1852 	 * than the desired amount of queues, and even a controller without
1853 	 * I/O queues can still be used to issue admin commands.  This might
1854 	 * be useful to upgrade a buggy firmware for example.
1855 	 */
1856 	return ret >= 0 ? 0 : ret;
1857 }
1858 
1859 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1860 {
1861 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1862 
1863 	return 1ULL << (12 + 4 * szu);
1864 }
1865 
1866 static u32 nvme_cmb_size(struct nvme_dev *dev)
1867 {
1868 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1869 }
1870 
1871 static void nvme_map_cmb(struct nvme_dev *dev)
1872 {
1873 	u64 size, offset;
1874 	resource_size_t bar_size;
1875 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1876 	int bar;
1877 
1878 	if (dev->cmb_size)
1879 		return;
1880 
1881 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1882 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1883 
1884 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1885 	if (!dev->cmbsz)
1886 		return;
1887 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1888 
1889 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1890 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1891 	bar = NVME_CMB_BIR(dev->cmbloc);
1892 	bar_size = pci_resource_len(pdev, bar);
1893 
1894 	if (offset > bar_size)
1895 		return;
1896 
1897 	/*
1898 	 * Tell the controller about the host side address mapping the CMB,
1899 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1900 	 */
1901 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1902 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1903 			     (pci_bus_address(pdev, bar) + offset),
1904 			     dev->bar + NVME_REG_CMBMSC);
1905 	}
1906 
1907 	/*
1908 	 * Controllers may support a CMB size larger than their BAR,
1909 	 * for example, due to being behind a bridge. Reduce the CMB to
1910 	 * the reported size of the BAR
1911 	 */
1912 	if (size > bar_size - offset)
1913 		size = bar_size - offset;
1914 
1915 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1916 		dev_warn(dev->ctrl.device,
1917 			 "failed to register the CMB\n");
1918 		return;
1919 	}
1920 
1921 	dev->cmb_size = size;
1922 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1923 
1924 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1925 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1926 		pci_p2pmem_publish(pdev, true);
1927 
1928 	nvme_update_attrs(dev);
1929 }
1930 
1931 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1932 {
1933 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1934 	u64 dma_addr = dev->host_mem_descs_dma;
1935 	struct nvme_command c = { };
1936 	int ret;
1937 
1938 	c.features.opcode	= nvme_admin_set_features;
1939 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1940 	c.features.dword11	= cpu_to_le32(bits);
1941 	c.features.dword12	= cpu_to_le32(host_mem_size);
1942 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1943 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1944 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1945 
1946 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1947 	if (ret) {
1948 		dev_warn(dev->ctrl.device,
1949 			 "failed to set host mem (err %d, flags %#x).\n",
1950 			 ret, bits);
1951 	} else
1952 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1953 
1954 	return ret;
1955 }
1956 
1957 static void nvme_free_host_mem(struct nvme_dev *dev)
1958 {
1959 	int i;
1960 
1961 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1962 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1963 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1964 
1965 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1966 			       le64_to_cpu(desc->addr),
1967 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1968 	}
1969 
1970 	kfree(dev->host_mem_desc_bufs);
1971 	dev->host_mem_desc_bufs = NULL;
1972 	dma_free_coherent(dev->dev,
1973 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1974 			dev->host_mem_descs, dev->host_mem_descs_dma);
1975 	dev->host_mem_descs = NULL;
1976 	dev->nr_host_mem_descs = 0;
1977 }
1978 
1979 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1980 		u32 chunk_size)
1981 {
1982 	struct nvme_host_mem_buf_desc *descs;
1983 	u32 max_entries, len;
1984 	dma_addr_t descs_dma;
1985 	int i = 0;
1986 	void **bufs;
1987 	u64 size, tmp;
1988 
1989 	tmp = (preferred + chunk_size - 1);
1990 	do_div(tmp, chunk_size);
1991 	max_entries = tmp;
1992 
1993 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1994 		max_entries = dev->ctrl.hmmaxd;
1995 
1996 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1997 				   &descs_dma, GFP_KERNEL);
1998 	if (!descs)
1999 		goto out;
2000 
2001 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2002 	if (!bufs)
2003 		goto out_free_descs;
2004 
2005 	for (size = 0; size < preferred && i < max_entries; size += len) {
2006 		dma_addr_t dma_addr;
2007 
2008 		len = min_t(u64, chunk_size, preferred - size);
2009 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2010 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2011 		if (!bufs[i])
2012 			break;
2013 
2014 		descs[i].addr = cpu_to_le64(dma_addr);
2015 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2016 		i++;
2017 	}
2018 
2019 	if (!size)
2020 		goto out_free_bufs;
2021 
2022 	dev->nr_host_mem_descs = i;
2023 	dev->host_mem_size = size;
2024 	dev->host_mem_descs = descs;
2025 	dev->host_mem_descs_dma = descs_dma;
2026 	dev->host_mem_desc_bufs = bufs;
2027 	return 0;
2028 
2029 out_free_bufs:
2030 	while (--i >= 0) {
2031 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2032 
2033 		dma_free_attrs(dev->dev, size, bufs[i],
2034 			       le64_to_cpu(descs[i].addr),
2035 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2036 	}
2037 
2038 	kfree(bufs);
2039 out_free_descs:
2040 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2041 			descs_dma);
2042 out:
2043 	dev->host_mem_descs = NULL;
2044 	return -ENOMEM;
2045 }
2046 
2047 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2048 {
2049 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2050 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2051 	u64 chunk_size;
2052 
2053 	/* start big and work our way down */
2054 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2055 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2056 			if (!min || dev->host_mem_size >= min)
2057 				return 0;
2058 			nvme_free_host_mem(dev);
2059 		}
2060 	}
2061 
2062 	return -ENOMEM;
2063 }
2064 
2065 static int nvme_setup_host_mem(struct nvme_dev *dev)
2066 {
2067 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2068 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2069 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2070 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2071 	int ret;
2072 
2073 	if (!dev->ctrl.hmpre)
2074 		return 0;
2075 
2076 	preferred = min(preferred, max);
2077 	if (min > max) {
2078 		dev_warn(dev->ctrl.device,
2079 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2080 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2081 		nvme_free_host_mem(dev);
2082 		return 0;
2083 	}
2084 
2085 	/*
2086 	 * If we already have a buffer allocated check if we can reuse it.
2087 	 */
2088 	if (dev->host_mem_descs) {
2089 		if (dev->host_mem_size >= min)
2090 			enable_bits |= NVME_HOST_MEM_RETURN;
2091 		else
2092 			nvme_free_host_mem(dev);
2093 	}
2094 
2095 	if (!dev->host_mem_descs) {
2096 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2097 			dev_warn(dev->ctrl.device,
2098 				"failed to allocate host memory buffer.\n");
2099 			return 0; /* controller must work without HMB */
2100 		}
2101 
2102 		dev_info(dev->ctrl.device,
2103 			"allocated %lld MiB host memory buffer.\n",
2104 			dev->host_mem_size >> ilog2(SZ_1M));
2105 	}
2106 
2107 	ret = nvme_set_host_mem(dev, enable_bits);
2108 	if (ret)
2109 		nvme_free_host_mem(dev);
2110 	return ret;
2111 }
2112 
2113 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2114 		char *buf)
2115 {
2116 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2117 
2118 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2119 		       ndev->cmbloc, ndev->cmbsz);
2120 }
2121 static DEVICE_ATTR_RO(cmb);
2122 
2123 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2124 		char *buf)
2125 {
2126 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2127 
2128 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2129 }
2130 static DEVICE_ATTR_RO(cmbloc);
2131 
2132 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2133 		char *buf)
2134 {
2135 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2136 
2137 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2138 }
2139 static DEVICE_ATTR_RO(cmbsz);
2140 
2141 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2142 			char *buf)
2143 {
2144 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2145 
2146 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2147 }
2148 
2149 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2150 			 const char *buf, size_t count)
2151 {
2152 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2153 	bool new;
2154 	int ret;
2155 
2156 	if (kstrtobool(buf, &new) < 0)
2157 		return -EINVAL;
2158 
2159 	if (new == ndev->hmb)
2160 		return count;
2161 
2162 	if (new) {
2163 		ret = nvme_setup_host_mem(ndev);
2164 	} else {
2165 		ret = nvme_set_host_mem(ndev, 0);
2166 		if (!ret)
2167 			nvme_free_host_mem(ndev);
2168 	}
2169 
2170 	if (ret < 0)
2171 		return ret;
2172 
2173 	return count;
2174 }
2175 static DEVICE_ATTR_RW(hmb);
2176 
2177 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2178 		struct attribute *a, int n)
2179 {
2180 	struct nvme_ctrl *ctrl =
2181 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2182 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2183 
2184 	if (a == &dev_attr_cmb.attr ||
2185 	    a == &dev_attr_cmbloc.attr ||
2186 	    a == &dev_attr_cmbsz.attr) {
2187 	    	if (!dev->cmbsz)
2188 			return 0;
2189 	}
2190 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2191 		return 0;
2192 
2193 	return a->mode;
2194 }
2195 
2196 static struct attribute *nvme_pci_attrs[] = {
2197 	&dev_attr_cmb.attr,
2198 	&dev_attr_cmbloc.attr,
2199 	&dev_attr_cmbsz.attr,
2200 	&dev_attr_hmb.attr,
2201 	NULL,
2202 };
2203 
2204 static const struct attribute_group nvme_pci_dev_attrs_group = {
2205 	.attrs		= nvme_pci_attrs,
2206 	.is_visible	= nvme_pci_attrs_are_visible,
2207 };
2208 
2209 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2210 	&nvme_dev_attrs_group,
2211 	&nvme_pci_dev_attrs_group,
2212 	NULL,
2213 };
2214 
2215 static void nvme_update_attrs(struct nvme_dev *dev)
2216 {
2217 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2218 }
2219 
2220 /*
2221  * nirqs is the number of interrupts available for write and read
2222  * queues. The core already reserved an interrupt for the admin queue.
2223  */
2224 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2225 {
2226 	struct nvme_dev *dev = affd->priv;
2227 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2228 
2229 	/*
2230 	 * If there is no interrupt available for queues, ensure that
2231 	 * the default queue is set to 1. The affinity set size is
2232 	 * also set to one, but the irq core ignores it for this case.
2233 	 *
2234 	 * If only one interrupt is available or 'write_queue' == 0, combine
2235 	 * write and read queues.
2236 	 *
2237 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2238 	 * queue.
2239 	 */
2240 	if (!nrirqs) {
2241 		nrirqs = 1;
2242 		nr_read_queues = 0;
2243 	} else if (nrirqs == 1 || !nr_write_queues) {
2244 		nr_read_queues = 0;
2245 	} else if (nr_write_queues >= nrirqs) {
2246 		nr_read_queues = 1;
2247 	} else {
2248 		nr_read_queues = nrirqs - nr_write_queues;
2249 	}
2250 
2251 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2252 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2253 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2254 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2255 	affd->nr_sets = nr_read_queues ? 2 : 1;
2256 }
2257 
2258 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2259 {
2260 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2261 	struct irq_affinity affd = {
2262 		.pre_vectors	= 1,
2263 		.calc_sets	= nvme_calc_irq_sets,
2264 		.priv		= dev,
2265 	};
2266 	unsigned int irq_queues, poll_queues;
2267 
2268 	/*
2269 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2270 	 * left over for non-polled I/O.
2271 	 */
2272 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2273 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2274 
2275 	/*
2276 	 * Initialize for the single interrupt case, will be updated in
2277 	 * nvme_calc_irq_sets().
2278 	 */
2279 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2280 	dev->io_queues[HCTX_TYPE_READ] = 0;
2281 
2282 	/*
2283 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2284 	 * but some Apple controllers require all queues to use the first
2285 	 * vector.
2286 	 */
2287 	irq_queues = 1;
2288 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2289 		irq_queues += (nr_io_queues - poll_queues);
2290 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2291 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2292 }
2293 
2294 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2295 {
2296 	/*
2297 	 * If tags are shared with admin queue (Apple bug), then
2298 	 * make sure we only use one IO queue.
2299 	 */
2300 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2301 		return 1;
2302 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2303 }
2304 
2305 static int nvme_setup_io_queues(struct nvme_dev *dev)
2306 {
2307 	struct nvme_queue *adminq = &dev->queues[0];
2308 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2309 	unsigned int nr_io_queues;
2310 	unsigned long size;
2311 	int result;
2312 
2313 	/*
2314 	 * Sample the module parameters once at reset time so that we have
2315 	 * stable values to work with.
2316 	 */
2317 	dev->nr_write_queues = write_queues;
2318 	dev->nr_poll_queues = poll_queues;
2319 
2320 	nr_io_queues = dev->nr_allocated_queues - 1;
2321 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2322 	if (result < 0)
2323 		return result;
2324 
2325 	if (nr_io_queues == 0)
2326 		return 0;
2327 
2328 	/*
2329 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2330 	 * from set to unset. If there is a window to it is truely freed,
2331 	 * pci_free_irq_vectors() jumping into this window will crash.
2332 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2333 	 * nvme_dev_disable() path.
2334 	 */
2335 	result = nvme_setup_io_queues_trylock(dev);
2336 	if (result)
2337 		return result;
2338 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2339 		pci_free_irq(pdev, 0, adminq);
2340 
2341 	if (dev->cmb_use_sqes) {
2342 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2343 				sizeof(struct nvme_command));
2344 		if (result > 0) {
2345 			dev->q_depth = result;
2346 			dev->ctrl.sqsize = result - 1;
2347 		} else {
2348 			dev->cmb_use_sqes = false;
2349 		}
2350 	}
2351 
2352 	do {
2353 		size = db_bar_size(dev, nr_io_queues);
2354 		result = nvme_remap_bar(dev, size);
2355 		if (!result)
2356 			break;
2357 		if (!--nr_io_queues) {
2358 			result = -ENOMEM;
2359 			goto out_unlock;
2360 		}
2361 	} while (1);
2362 	adminq->q_db = dev->dbs;
2363 
2364  retry:
2365 	/* Deregister the admin queue's interrupt */
2366 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2367 		pci_free_irq(pdev, 0, adminq);
2368 
2369 	/*
2370 	 * If we enable msix early due to not intx, disable it again before
2371 	 * setting up the full range we need.
2372 	 */
2373 	pci_free_irq_vectors(pdev);
2374 
2375 	result = nvme_setup_irqs(dev, nr_io_queues);
2376 	if (result <= 0) {
2377 		result = -EIO;
2378 		goto out_unlock;
2379 	}
2380 
2381 	dev->num_vecs = result;
2382 	result = max(result - 1, 1);
2383 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2384 
2385 	/*
2386 	 * Should investigate if there's a performance win from allocating
2387 	 * more queues than interrupt vectors; it might allow the submission
2388 	 * path to scale better, even if the receive path is limited by the
2389 	 * number of interrupts.
2390 	 */
2391 	result = queue_request_irq(adminq);
2392 	if (result)
2393 		goto out_unlock;
2394 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2395 	mutex_unlock(&dev->shutdown_lock);
2396 
2397 	result = nvme_create_io_queues(dev);
2398 	if (result || dev->online_queues < 2)
2399 		return result;
2400 
2401 	if (dev->online_queues - 1 < dev->max_qid) {
2402 		nr_io_queues = dev->online_queues - 1;
2403 		nvme_delete_io_queues(dev);
2404 		result = nvme_setup_io_queues_trylock(dev);
2405 		if (result)
2406 			return result;
2407 		nvme_suspend_io_queues(dev);
2408 		goto retry;
2409 	}
2410 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2411 					dev->io_queues[HCTX_TYPE_DEFAULT],
2412 					dev->io_queues[HCTX_TYPE_READ],
2413 					dev->io_queues[HCTX_TYPE_POLL]);
2414 	return 0;
2415 out_unlock:
2416 	mutex_unlock(&dev->shutdown_lock);
2417 	return result;
2418 }
2419 
2420 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2421 					     blk_status_t error)
2422 {
2423 	struct nvme_queue *nvmeq = req->end_io_data;
2424 
2425 	blk_mq_free_request(req);
2426 	complete(&nvmeq->delete_done);
2427 	return RQ_END_IO_NONE;
2428 }
2429 
2430 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2431 					  blk_status_t error)
2432 {
2433 	struct nvme_queue *nvmeq = req->end_io_data;
2434 
2435 	if (error)
2436 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2437 
2438 	return nvme_del_queue_end(req, error);
2439 }
2440 
2441 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2442 {
2443 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2444 	struct request *req;
2445 	struct nvme_command cmd = { };
2446 
2447 	cmd.delete_queue.opcode = opcode;
2448 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2449 
2450 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2451 	if (IS_ERR(req))
2452 		return PTR_ERR(req);
2453 	nvme_init_request(req, &cmd);
2454 
2455 	if (opcode == nvme_admin_delete_cq)
2456 		req->end_io = nvme_del_cq_end;
2457 	else
2458 		req->end_io = nvme_del_queue_end;
2459 	req->end_io_data = nvmeq;
2460 
2461 	init_completion(&nvmeq->delete_done);
2462 	blk_execute_rq_nowait(req, false);
2463 	return 0;
2464 }
2465 
2466 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2467 {
2468 	int nr_queues = dev->online_queues - 1, sent = 0;
2469 	unsigned long timeout;
2470 
2471  retry:
2472 	timeout = NVME_ADMIN_TIMEOUT;
2473 	while (nr_queues > 0) {
2474 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2475 			break;
2476 		nr_queues--;
2477 		sent++;
2478 	}
2479 	while (sent) {
2480 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2481 
2482 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2483 				timeout);
2484 		if (timeout == 0)
2485 			return false;
2486 
2487 		sent--;
2488 		if (nr_queues)
2489 			goto retry;
2490 	}
2491 	return true;
2492 }
2493 
2494 static void nvme_delete_io_queues(struct nvme_dev *dev)
2495 {
2496 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2497 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2498 }
2499 
2500 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2501 {
2502 	if (dev->io_queues[HCTX_TYPE_POLL])
2503 		return 3;
2504 	if (dev->io_queues[HCTX_TYPE_READ])
2505 		return 2;
2506 	return 1;
2507 }
2508 
2509 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2510 {
2511 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2512 	/* free previously allocated queues that are no longer usable */
2513 	nvme_free_queues(dev, dev->online_queues);
2514 }
2515 
2516 static int nvme_pci_enable(struct nvme_dev *dev)
2517 {
2518 	int result = -ENOMEM;
2519 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2520 
2521 	if (pci_enable_device_mem(pdev))
2522 		return result;
2523 
2524 	pci_set_master(pdev);
2525 
2526 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2527 		result = -ENODEV;
2528 		goto disable;
2529 	}
2530 
2531 	/*
2532 	 * Some devices and/or platforms don't advertise or work with INTx
2533 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2534 	 * adjust this later.
2535 	 */
2536 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2537 	if (result < 0)
2538 		goto disable;
2539 
2540 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2541 
2542 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2543 				io_queue_depth);
2544 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2545 	dev->dbs = dev->bar + 4096;
2546 
2547 	/*
2548 	 * Some Apple controllers require a non-standard SQE size.
2549 	 * Interestingly they also seem to ignore the CC:IOSQES register
2550 	 * so we don't bother updating it here.
2551 	 */
2552 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2553 		dev->io_sqes = 7;
2554 	else
2555 		dev->io_sqes = NVME_NVM_IOSQES;
2556 
2557 	/*
2558 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2559 	 * some MacBook7,1 to avoid controller resets and data loss.
2560 	 */
2561 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2562 		dev->q_depth = 2;
2563 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2564 			"set queue depth=%u to work around controller resets\n",
2565 			dev->q_depth);
2566 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2567 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2568 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2569 		dev->q_depth = 64;
2570 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2571                         "set queue depth=%u\n", dev->q_depth);
2572 	}
2573 
2574 	/*
2575 	 * Controllers with the shared tags quirk need the IO queue to be
2576 	 * big enough so that we get 32 tags for the admin queue
2577 	 */
2578 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2579 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2580 		dev->q_depth = NVME_AQ_DEPTH + 2;
2581 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2582 			 dev->q_depth);
2583 	}
2584 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2585 
2586 	nvme_map_cmb(dev);
2587 
2588 	pci_enable_pcie_error_reporting(pdev);
2589 	pci_save_state(pdev);
2590 
2591 	result = nvme_pci_configure_admin_queue(dev);
2592 	if (result)
2593 		goto free_irq;
2594 	return result;
2595 
2596  free_irq:
2597 	pci_free_irq_vectors(pdev);
2598  disable:
2599 	pci_disable_device(pdev);
2600 	return result;
2601 }
2602 
2603 static void nvme_dev_unmap(struct nvme_dev *dev)
2604 {
2605 	if (dev->bar)
2606 		iounmap(dev->bar);
2607 	pci_release_mem_regions(to_pci_dev(dev->dev));
2608 }
2609 
2610 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2611 {
2612 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2613 	u32 csts;
2614 
2615 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2616 		return true;
2617 	if (pdev->error_state != pci_channel_io_normal)
2618 		return true;
2619 
2620 	csts = readl(dev->bar + NVME_REG_CSTS);
2621 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2622 }
2623 
2624 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2625 {
2626 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2627 	bool dead;
2628 
2629 	mutex_lock(&dev->shutdown_lock);
2630 	dead = nvme_pci_ctrl_is_dead(dev);
2631 	if (dev->ctrl.state == NVME_CTRL_LIVE ||
2632 	    dev->ctrl.state == NVME_CTRL_RESETTING) {
2633 		if (pci_is_enabled(pdev))
2634 			nvme_start_freeze(&dev->ctrl);
2635 		/*
2636 		 * Give the controller a chance to complete all entered requests
2637 		 * if doing a safe shutdown.
2638 		 */
2639 		if (!dead && shutdown)
2640 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2641 	}
2642 
2643 	nvme_quiesce_io_queues(&dev->ctrl);
2644 
2645 	if (!dead && dev->ctrl.queue_count > 0) {
2646 		nvme_delete_io_queues(dev);
2647 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2648 		nvme_poll_irqdisable(&dev->queues[0]);
2649 	}
2650 	nvme_suspend_io_queues(dev);
2651 	nvme_suspend_queue(dev, 0);
2652 	pci_free_irq_vectors(pdev);
2653 	if (pci_is_enabled(pdev)) {
2654 		pci_disable_pcie_error_reporting(pdev);
2655 		pci_disable_device(pdev);
2656 	}
2657 	nvme_reap_pending_cqes(dev);
2658 
2659 	nvme_cancel_tagset(&dev->ctrl);
2660 	nvme_cancel_admin_tagset(&dev->ctrl);
2661 
2662 	/*
2663 	 * The driver will not be starting up queues again if shutting down so
2664 	 * must flush all entered requests to their failed completion to avoid
2665 	 * deadlocking blk-mq hot-cpu notifier.
2666 	 */
2667 	if (shutdown) {
2668 		nvme_unquiesce_io_queues(&dev->ctrl);
2669 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2670 			nvme_unquiesce_admin_queue(&dev->ctrl);
2671 	}
2672 	mutex_unlock(&dev->shutdown_lock);
2673 }
2674 
2675 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2676 {
2677 	if (!nvme_wait_reset(&dev->ctrl))
2678 		return -EBUSY;
2679 	nvme_dev_disable(dev, shutdown);
2680 	return 0;
2681 }
2682 
2683 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2684 {
2685 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2686 						NVME_CTRL_PAGE_SIZE,
2687 						NVME_CTRL_PAGE_SIZE, 0);
2688 	if (!dev->prp_page_pool)
2689 		return -ENOMEM;
2690 
2691 	/* Optimisation for I/Os between 4k and 128k */
2692 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2693 						256, 256, 0);
2694 	if (!dev->prp_small_pool) {
2695 		dma_pool_destroy(dev->prp_page_pool);
2696 		return -ENOMEM;
2697 	}
2698 	return 0;
2699 }
2700 
2701 static void nvme_release_prp_pools(struct nvme_dev *dev)
2702 {
2703 	dma_pool_destroy(dev->prp_page_pool);
2704 	dma_pool_destroy(dev->prp_small_pool);
2705 }
2706 
2707 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2708 {
2709 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2710 	size_t alloc_size = sizeof(__le64 *) * npages +
2711 			    sizeof(struct scatterlist) * NVME_MAX_SEGS;
2712 
2713 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2714 	dev->iod_mempool = mempool_create_node(1,
2715 			mempool_kmalloc, mempool_kfree,
2716 			(void *)alloc_size, GFP_KERNEL,
2717 			dev_to_node(dev->dev));
2718 	if (!dev->iod_mempool)
2719 		return -ENOMEM;
2720 	return 0;
2721 }
2722 
2723 static void nvme_free_tagset(struct nvme_dev *dev)
2724 {
2725 	if (dev->tagset.tags)
2726 		nvme_remove_io_tag_set(&dev->ctrl);
2727 	dev->ctrl.tagset = NULL;
2728 }
2729 
2730 /* pairs with nvme_pci_alloc_dev */
2731 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2732 {
2733 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2734 
2735 	nvme_free_tagset(dev);
2736 	put_device(dev->dev);
2737 	kfree(dev->queues);
2738 	kfree(dev);
2739 }
2740 
2741 static void nvme_reset_work(struct work_struct *work)
2742 {
2743 	struct nvme_dev *dev =
2744 		container_of(work, struct nvme_dev, ctrl.reset_work);
2745 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2746 	int result;
2747 
2748 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2749 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2750 			 dev->ctrl.state);
2751 		return;
2752 	}
2753 
2754 	/*
2755 	 * If we're called to reset a live controller first shut it down before
2756 	 * moving on.
2757 	 */
2758 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2759 		nvme_dev_disable(dev, false);
2760 	nvme_sync_queues(&dev->ctrl);
2761 
2762 	mutex_lock(&dev->shutdown_lock);
2763 	result = nvme_pci_enable(dev);
2764 	if (result)
2765 		goto out_unlock;
2766 	nvme_unquiesce_admin_queue(&dev->ctrl);
2767 	mutex_unlock(&dev->shutdown_lock);
2768 
2769 	/*
2770 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2771 	 * initializing procedure here.
2772 	 */
2773 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2774 		dev_warn(dev->ctrl.device,
2775 			"failed to mark controller CONNECTING\n");
2776 		result = -EBUSY;
2777 		goto out;
2778 	}
2779 
2780 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2781 	if (result)
2782 		goto out;
2783 
2784 	nvme_dbbuf_dma_alloc(dev);
2785 
2786 	result = nvme_setup_host_mem(dev);
2787 	if (result < 0)
2788 		goto out;
2789 
2790 	result = nvme_setup_io_queues(dev);
2791 	if (result)
2792 		goto out;
2793 
2794 	/*
2795 	 * Freeze and update the number of I/O queues as thos might have
2796 	 * changed.  If there are no I/O queues left after this reset, keep the
2797 	 * controller around but remove all namespaces.
2798 	 */
2799 	if (dev->online_queues > 1) {
2800 		nvme_unquiesce_io_queues(&dev->ctrl);
2801 		nvme_wait_freeze(&dev->ctrl);
2802 		nvme_pci_update_nr_queues(dev);
2803 		nvme_dbbuf_set(dev);
2804 		nvme_unfreeze(&dev->ctrl);
2805 	} else {
2806 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2807 		nvme_mark_namespaces_dead(&dev->ctrl);
2808 		nvme_unquiesce_io_queues(&dev->ctrl);
2809 		nvme_remove_namespaces(&dev->ctrl);
2810 		nvme_free_tagset(dev);
2811 	}
2812 
2813 	/*
2814 	 * If only admin queue live, keep it to do further investigation or
2815 	 * recovery.
2816 	 */
2817 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2818 		dev_warn(dev->ctrl.device,
2819 			"failed to mark controller live state\n");
2820 		result = -ENODEV;
2821 		goto out;
2822 	}
2823 
2824 	nvme_start_ctrl(&dev->ctrl);
2825 	return;
2826 
2827  out_unlock:
2828 	mutex_unlock(&dev->shutdown_lock);
2829  out:
2830 	/*
2831 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2832 	 * may be holding this pci_dev's device lock.
2833 	 */
2834 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2835 		 result);
2836 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2837 	nvme_dev_disable(dev, true);
2838 	nvme_mark_namespaces_dead(&dev->ctrl);
2839 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2840 }
2841 
2842 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2843 {
2844 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2845 	return 0;
2846 }
2847 
2848 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2849 {
2850 	writel(val, to_nvme_dev(ctrl)->bar + off);
2851 	return 0;
2852 }
2853 
2854 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2855 {
2856 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2857 	return 0;
2858 }
2859 
2860 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2861 {
2862 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2863 
2864 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2865 }
2866 
2867 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2868 {
2869 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2870 	struct nvme_subsystem *subsys = ctrl->subsys;
2871 
2872 	dev_err(ctrl->device,
2873 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2874 		pdev->vendor, pdev->device,
2875 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2876 		subsys->model, nvme_strlen(subsys->firmware_rev,
2877 					   sizeof(subsys->firmware_rev)),
2878 		subsys->firmware_rev);
2879 }
2880 
2881 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2882 {
2883 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2884 
2885 	return dma_pci_p2pdma_supported(dev->dev);
2886 }
2887 
2888 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2889 	.name			= "pcie",
2890 	.module			= THIS_MODULE,
2891 	.flags			= NVME_F_METADATA_SUPPORTED,
2892 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2893 	.reg_read32		= nvme_pci_reg_read32,
2894 	.reg_write32		= nvme_pci_reg_write32,
2895 	.reg_read64		= nvme_pci_reg_read64,
2896 	.free_ctrl		= nvme_pci_free_ctrl,
2897 	.submit_async_event	= nvme_pci_submit_async_event,
2898 	.get_address		= nvme_pci_get_address,
2899 	.print_device_info	= nvme_pci_print_device_info,
2900 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2901 };
2902 
2903 static int nvme_dev_map(struct nvme_dev *dev)
2904 {
2905 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2906 
2907 	if (pci_request_mem_regions(pdev, "nvme"))
2908 		return -ENODEV;
2909 
2910 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2911 		goto release;
2912 
2913 	return 0;
2914   release:
2915 	pci_release_mem_regions(pdev);
2916 	return -ENODEV;
2917 }
2918 
2919 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2920 {
2921 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2922 		/*
2923 		 * Several Samsung devices seem to drop off the PCIe bus
2924 		 * randomly when APST is on and uses the deepest sleep state.
2925 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2926 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2927 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2928 		 * laptops.
2929 		 */
2930 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2931 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2932 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2933 			return NVME_QUIRK_NO_DEEPEST_PS;
2934 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2935 		/*
2936 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2937 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2938 		 * within few minutes after bootup on a Coffee Lake board -
2939 		 * ASUS PRIME Z370-A
2940 		 */
2941 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2942 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2943 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2944 			return NVME_QUIRK_NO_APST;
2945 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2946 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2947 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2948 		/*
2949 		 * Forcing to use host managed nvme power settings for
2950 		 * lowest idle power with quick resume latency on
2951 		 * Samsung and Toshiba SSDs based on suspend behavior
2952 		 * on Coffee Lake board for LENOVO C640
2953 		 */
2954 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2955 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2956 			return NVME_QUIRK_SIMPLE_SUSPEND;
2957 	}
2958 
2959 	return 0;
2960 }
2961 
2962 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2963 		const struct pci_device_id *id)
2964 {
2965 	unsigned long quirks = id->driver_data;
2966 	int node = dev_to_node(&pdev->dev);
2967 	struct nvme_dev *dev;
2968 	int ret = -ENOMEM;
2969 
2970 	if (node == NUMA_NO_NODE)
2971 		set_dev_node(&pdev->dev, first_memory_node);
2972 
2973 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2974 	if (!dev)
2975 		return ERR_PTR(-ENOMEM);
2976 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2977 	mutex_init(&dev->shutdown_lock);
2978 
2979 	dev->nr_write_queues = write_queues;
2980 	dev->nr_poll_queues = poll_queues;
2981 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2982 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2983 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2984 	if (!dev->queues)
2985 		goto out_free_dev;
2986 
2987 	dev->dev = get_device(&pdev->dev);
2988 
2989 	quirks |= check_vendor_combination_bug(pdev);
2990 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2991 		/*
2992 		 * Some systems use a bios work around to ask for D3 on
2993 		 * platforms that support kernel managed suspend.
2994 		 */
2995 		dev_info(&pdev->dev,
2996 			 "platform quirk: setting simple suspend\n");
2997 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2998 	}
2999 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3000 			     quirks);
3001 	if (ret)
3002 		goto out_put_device;
3003 
3004 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3005 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3006 	else
3007 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3008 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3009 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3010 
3011 	/*
3012 	 * Limit the max command size to prevent iod->sg allocations going
3013 	 * over a single page.
3014 	 */
3015 	dev->ctrl.max_hw_sectors = min_t(u32,
3016 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
3017 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3018 
3019 	/*
3020 	 * There is no support for SGLs for metadata (yet), so we are limited to
3021 	 * a single integrity segment for the separate metadata pointer.
3022 	 */
3023 	dev->ctrl.max_integrity_segments = 1;
3024 	return dev;
3025 
3026 out_put_device:
3027 	put_device(dev->dev);
3028 	kfree(dev->queues);
3029 out_free_dev:
3030 	kfree(dev);
3031 	return ERR_PTR(ret);
3032 }
3033 
3034 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3035 {
3036 	struct nvme_dev *dev;
3037 	int result = -ENOMEM;
3038 
3039 	dev = nvme_pci_alloc_dev(pdev, id);
3040 	if (IS_ERR(dev))
3041 		return PTR_ERR(dev);
3042 
3043 	result = nvme_dev_map(dev);
3044 	if (result)
3045 		goto out_uninit_ctrl;
3046 
3047 	result = nvme_setup_prp_pools(dev);
3048 	if (result)
3049 		goto out_dev_unmap;
3050 
3051 	result = nvme_pci_alloc_iod_mempool(dev);
3052 	if (result)
3053 		goto out_release_prp_pools;
3054 
3055 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3056 
3057 	result = nvme_pci_enable(dev);
3058 	if (result)
3059 		goto out_release_iod_mempool;
3060 
3061 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3062 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3063 	if (result)
3064 		goto out_disable;
3065 
3066 	/*
3067 	 * Mark the controller as connecting before sending admin commands to
3068 	 * allow the timeout handler to do the right thing.
3069 	 */
3070 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3071 		dev_warn(dev->ctrl.device,
3072 			"failed to mark controller CONNECTING\n");
3073 		result = -EBUSY;
3074 		goto out_disable;
3075 	}
3076 
3077 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3078 	if (result)
3079 		goto out_disable;
3080 
3081 	nvme_dbbuf_dma_alloc(dev);
3082 
3083 	result = nvme_setup_host_mem(dev);
3084 	if (result < 0)
3085 		goto out_disable;
3086 
3087 	result = nvme_setup_io_queues(dev);
3088 	if (result)
3089 		goto out_disable;
3090 
3091 	if (dev->online_queues > 1) {
3092 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3093 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3094 		nvme_dbbuf_set(dev);
3095 	}
3096 
3097 	if (!dev->ctrl.tagset)
3098 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3099 
3100 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3101 		dev_warn(dev->ctrl.device,
3102 			"failed to mark controller live state\n");
3103 		result = -ENODEV;
3104 		goto out_disable;
3105 	}
3106 
3107 	pci_set_drvdata(pdev, dev);
3108 
3109 	nvme_start_ctrl(&dev->ctrl);
3110 	nvme_put_ctrl(&dev->ctrl);
3111 	flush_work(&dev->ctrl.scan_work);
3112 	return 0;
3113 
3114 out_disable:
3115 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3116 	nvme_dev_disable(dev, true);
3117 	nvme_free_host_mem(dev);
3118 	nvme_dev_remove_admin(dev);
3119 	nvme_dbbuf_dma_free(dev);
3120 	nvme_free_queues(dev, 0);
3121 out_release_iod_mempool:
3122 	mempool_destroy(dev->iod_mempool);
3123 out_release_prp_pools:
3124 	nvme_release_prp_pools(dev);
3125 out_dev_unmap:
3126 	nvme_dev_unmap(dev);
3127 out_uninit_ctrl:
3128 	nvme_uninit_ctrl(&dev->ctrl);
3129 	return result;
3130 }
3131 
3132 static void nvme_reset_prepare(struct pci_dev *pdev)
3133 {
3134 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3135 
3136 	/*
3137 	 * We don't need to check the return value from waiting for the reset
3138 	 * state as pci_dev device lock is held, making it impossible to race
3139 	 * with ->remove().
3140 	 */
3141 	nvme_disable_prepare_reset(dev, false);
3142 	nvme_sync_queues(&dev->ctrl);
3143 }
3144 
3145 static void nvme_reset_done(struct pci_dev *pdev)
3146 {
3147 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3148 
3149 	if (!nvme_try_sched_reset(&dev->ctrl))
3150 		flush_work(&dev->ctrl.reset_work);
3151 }
3152 
3153 static void nvme_shutdown(struct pci_dev *pdev)
3154 {
3155 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3156 
3157 	nvme_disable_prepare_reset(dev, true);
3158 }
3159 
3160 /*
3161  * The driver's remove may be called on a device in a partially initialized
3162  * state. This function must not have any dependencies on the device state in
3163  * order to proceed.
3164  */
3165 static void nvme_remove(struct pci_dev *pdev)
3166 {
3167 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3168 
3169 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3170 	pci_set_drvdata(pdev, NULL);
3171 
3172 	if (!pci_device_is_present(pdev)) {
3173 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3174 		nvme_dev_disable(dev, true);
3175 	}
3176 
3177 	flush_work(&dev->ctrl.reset_work);
3178 	nvme_stop_ctrl(&dev->ctrl);
3179 	nvme_remove_namespaces(&dev->ctrl);
3180 	nvme_dev_disable(dev, true);
3181 	nvme_free_host_mem(dev);
3182 	nvme_dev_remove_admin(dev);
3183 	nvme_dbbuf_dma_free(dev);
3184 	nvme_free_queues(dev, 0);
3185 	mempool_destroy(dev->iod_mempool);
3186 	nvme_release_prp_pools(dev);
3187 	nvme_dev_unmap(dev);
3188 	nvme_uninit_ctrl(&dev->ctrl);
3189 }
3190 
3191 #ifdef CONFIG_PM_SLEEP
3192 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3193 {
3194 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3195 }
3196 
3197 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3198 {
3199 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3200 }
3201 
3202 static int nvme_resume(struct device *dev)
3203 {
3204 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3205 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3206 
3207 	if (ndev->last_ps == U32_MAX ||
3208 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3209 		goto reset;
3210 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3211 		goto reset;
3212 
3213 	return 0;
3214 reset:
3215 	return nvme_try_sched_reset(ctrl);
3216 }
3217 
3218 static int nvme_suspend(struct device *dev)
3219 {
3220 	struct pci_dev *pdev = to_pci_dev(dev);
3221 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3222 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3223 	int ret = -EBUSY;
3224 
3225 	ndev->last_ps = U32_MAX;
3226 
3227 	/*
3228 	 * The platform does not remove power for a kernel managed suspend so
3229 	 * use host managed nvme power settings for lowest idle power if
3230 	 * possible. This should have quicker resume latency than a full device
3231 	 * shutdown.  But if the firmware is involved after the suspend or the
3232 	 * device does not support any non-default power states, shut down the
3233 	 * device fully.
3234 	 *
3235 	 * If ASPM is not enabled for the device, shut down the device and allow
3236 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3237 	 * down, so as to allow the platform to achieve its minimum low-power
3238 	 * state (which may not be possible if the link is up).
3239 	 */
3240 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3241 	    !pcie_aspm_enabled(pdev) ||
3242 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3243 		return nvme_disable_prepare_reset(ndev, true);
3244 
3245 	nvme_start_freeze(ctrl);
3246 	nvme_wait_freeze(ctrl);
3247 	nvme_sync_queues(ctrl);
3248 
3249 	if (ctrl->state != NVME_CTRL_LIVE)
3250 		goto unfreeze;
3251 
3252 	/*
3253 	 * Host memory access may not be successful in a system suspend state,
3254 	 * but the specification allows the controller to access memory in a
3255 	 * non-operational power state.
3256 	 */
3257 	if (ndev->hmb) {
3258 		ret = nvme_set_host_mem(ndev, 0);
3259 		if (ret < 0)
3260 			goto unfreeze;
3261 	}
3262 
3263 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3264 	if (ret < 0)
3265 		goto unfreeze;
3266 
3267 	/*
3268 	 * A saved state prevents pci pm from generically controlling the
3269 	 * device's power. If we're using protocol specific settings, we don't
3270 	 * want pci interfering.
3271 	 */
3272 	pci_save_state(pdev);
3273 
3274 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3275 	if (ret < 0)
3276 		goto unfreeze;
3277 
3278 	if (ret) {
3279 		/* discard the saved state */
3280 		pci_load_saved_state(pdev, NULL);
3281 
3282 		/*
3283 		 * Clearing npss forces a controller reset on resume. The
3284 		 * correct value will be rediscovered then.
3285 		 */
3286 		ret = nvme_disable_prepare_reset(ndev, true);
3287 		ctrl->npss = 0;
3288 	}
3289 unfreeze:
3290 	nvme_unfreeze(ctrl);
3291 	return ret;
3292 }
3293 
3294 static int nvme_simple_suspend(struct device *dev)
3295 {
3296 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3297 
3298 	return nvme_disable_prepare_reset(ndev, true);
3299 }
3300 
3301 static int nvme_simple_resume(struct device *dev)
3302 {
3303 	struct pci_dev *pdev = to_pci_dev(dev);
3304 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3305 
3306 	return nvme_try_sched_reset(&ndev->ctrl);
3307 }
3308 
3309 static const struct dev_pm_ops nvme_dev_pm_ops = {
3310 	.suspend	= nvme_suspend,
3311 	.resume		= nvme_resume,
3312 	.freeze		= nvme_simple_suspend,
3313 	.thaw		= nvme_simple_resume,
3314 	.poweroff	= nvme_simple_suspend,
3315 	.restore	= nvme_simple_resume,
3316 };
3317 #endif /* CONFIG_PM_SLEEP */
3318 
3319 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3320 						pci_channel_state_t state)
3321 {
3322 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3323 
3324 	/*
3325 	 * A frozen channel requires a reset. When detected, this method will
3326 	 * shutdown the controller to quiesce. The controller will be restarted
3327 	 * after the slot reset through driver's slot_reset callback.
3328 	 */
3329 	switch (state) {
3330 	case pci_channel_io_normal:
3331 		return PCI_ERS_RESULT_CAN_RECOVER;
3332 	case pci_channel_io_frozen:
3333 		dev_warn(dev->ctrl.device,
3334 			"frozen state error detected, reset controller\n");
3335 		nvme_dev_disable(dev, false);
3336 		return PCI_ERS_RESULT_NEED_RESET;
3337 	case pci_channel_io_perm_failure:
3338 		dev_warn(dev->ctrl.device,
3339 			"failure state error detected, request disconnect\n");
3340 		return PCI_ERS_RESULT_DISCONNECT;
3341 	}
3342 	return PCI_ERS_RESULT_NEED_RESET;
3343 }
3344 
3345 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3346 {
3347 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3348 
3349 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3350 	pci_restore_state(pdev);
3351 	nvme_reset_ctrl(&dev->ctrl);
3352 	return PCI_ERS_RESULT_RECOVERED;
3353 }
3354 
3355 static void nvme_error_resume(struct pci_dev *pdev)
3356 {
3357 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3358 
3359 	flush_work(&dev->ctrl.reset_work);
3360 }
3361 
3362 static const struct pci_error_handlers nvme_err_handler = {
3363 	.error_detected	= nvme_error_detected,
3364 	.slot_reset	= nvme_slot_reset,
3365 	.resume		= nvme_error_resume,
3366 	.reset_prepare	= nvme_reset_prepare,
3367 	.reset_done	= nvme_reset_done,
3368 };
3369 
3370 static const struct pci_device_id nvme_id_table[] = {
3371 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3372 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3373 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3374 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3375 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3376 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3377 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3378 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3379 				NVME_QUIRK_DEALLOCATE_ZEROES |
3380 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3381 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3382 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3383 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3384 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3385 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3386 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3387 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3388 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3389 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3390 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3391 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3392 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3393 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3394 				NVME_QUIRK_BOGUS_NID, },
3395 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3396 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3397 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3398 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3399 				NVME_QUIRK_BOGUS_NID, },
3400 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3401 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3402 				NVME_QUIRK_NO_NS_DESC_LIST, },
3403 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3404 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3405 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3406 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3407 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3408 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3409 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3410 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3411 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3412 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3413 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3414 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3415 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3416 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3417 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3418 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3419 				NVME_QUIRK_BOGUS_NID, },
3420 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3421 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3422 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3423 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3424 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3425 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3426 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3427 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3428 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3429 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3430 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3431 				NVME_QUIRK_BOGUS_NID, },
3432 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3433 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3434 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3435 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3436 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3437 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3438 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3439 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3440 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3441 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3442 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3443 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3444 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3445 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3446 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3447 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3448 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3449 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3450 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3451 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3452 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3453 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3454 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3455 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3456 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3457 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3458 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3459 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3460 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3461 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3462 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3463 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3464 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3465 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3466 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3467 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3468 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3469 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3470 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3471 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3472 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3473 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3474 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3475 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3476 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3477 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3478 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3479 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3480 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3481 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3482 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3483 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3484 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3485 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3486 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3487 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3488 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3489 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3490 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3491 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3492 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3493 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3494 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3495 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3496 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3497 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3498 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3499 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3500 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3501 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3502 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3503 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3504 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3505 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3506 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3507 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3508 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3509 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3510 				NVME_QUIRK_128_BYTES_SQES |
3511 				NVME_QUIRK_SHARED_TAGS |
3512 				NVME_QUIRK_SKIP_CID_GEN |
3513 				NVME_QUIRK_IDENTIFY_CNS },
3514 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3515 	{ 0, }
3516 };
3517 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3518 
3519 static struct pci_driver nvme_driver = {
3520 	.name		= "nvme",
3521 	.id_table	= nvme_id_table,
3522 	.probe		= nvme_probe,
3523 	.remove		= nvme_remove,
3524 	.shutdown	= nvme_shutdown,
3525 	.driver		= {
3526 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3527 #ifdef CONFIG_PM_SLEEP
3528 		.pm		= &nvme_dev_pm_ops,
3529 #endif
3530 	},
3531 	.sriov_configure = pci_sriov_configure_simple,
3532 	.err_handler	= &nvme_err_handler,
3533 };
3534 
3535 static int __init nvme_init(void)
3536 {
3537 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3538 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3539 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3540 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3541 	BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3542 		     S8_MAX);
3543 
3544 	return pci_register_driver(&nvme_driver);
3545 }
3546 
3547 static void __exit nvme_exit(void)
3548 {
3549 	pci_unregister_driver(&nvme_driver);
3550 	flush_workqueue(nvme_wq);
3551 }
3552 
3553 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3554 MODULE_LICENSE("GPL");
3555 MODULE_VERSION("1.0");
3556 module_init(nvme_init);
3557 module_exit(nvme_exit);
3558