xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 6887fc6495f2dfd55e088c982e983815278ee453)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kstrtox.h>
19 #include <linux/memremap.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/once.h>
24 #include <linux/pci.h>
25 #include <linux/suspend.h>
26 #include <linux/t10-pi.h>
27 #include <linux/types.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 #include <linux/sed-opal.h>
31 #include <linux/pci-p2pdma.h>
32 
33 #include "trace.h"
34 #include "nvme.h"
35 
36 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
37 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
38 
39 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ	4096
46 #define NVME_MAX_SEGS	127
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
113 
114 /*
115  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
116  */
117 struct nvme_dev {
118 	struct nvme_queue *queues;
119 	struct blk_mq_tag_set tagset;
120 	struct blk_mq_tag_set admin_tagset;
121 	u32 __iomem *dbs;
122 	struct device *dev;
123 	struct dma_pool *prp_page_pool;
124 	struct dma_pool *prp_small_pool;
125 	unsigned online_queues;
126 	unsigned max_qid;
127 	unsigned io_queues[HCTX_MAX_TYPES];
128 	unsigned int num_vecs;
129 	u32 q_depth;
130 	int io_sqes;
131 	u32 db_stride;
132 	void __iomem *bar;
133 	unsigned long bar_mapped_size;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 };
162 
163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164 {
165 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166 			NVME_PCI_MAX_QUEUE_SIZE);
167 }
168 
169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 	return qid * 2 * stride;
172 }
173 
174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 	return (qid * 2 + 1) * stride;
177 }
178 
179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183 
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189 	struct nvme_dev *dev;
190 	spinlock_t sq_lock;
191 	void *sq_cmds;
192 	 /* only used for poll queues: */
193 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 	struct nvme_completion *cqes;
195 	dma_addr_t sq_dma_addr;
196 	dma_addr_t cq_dma_addr;
197 	u32 __iomem *q_db;
198 	u32 q_depth;
199 	u16 cq_vector;
200 	u16 sq_tail;
201 	u16 last_sq_tail;
202 	u16 cq_head;
203 	u16 qid;
204 	u8 cq_phase;
205 	u8 sqes;
206 	unsigned long flags;
207 #define NVMEQ_ENABLED		0
208 #define NVMEQ_SQ_CMB		1
209 #define NVMEQ_DELETE_ERROR	2
210 #define NVMEQ_POLLED		3
211 	u32 *dbbuf_sq_db;
212 	u32 *dbbuf_cq_db;
213 	u32 *dbbuf_sq_ei;
214 	u32 *dbbuf_cq_ei;
215 	struct completion delete_done;
216 };
217 
218 /*
219  * The nvme_iod describes the data in an I/O.
220  *
221  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222  * to the actual struct scatterlist.
223  */
224 struct nvme_iod {
225 	struct nvme_request req;
226 	struct nvme_command cmd;
227 	bool use_sgl;
228 	bool aborted;
229 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
230 				   pool in use */
231 	unsigned int dma_len;	/* length of single DMA segment mapping */
232 	dma_addr_t first_dma;
233 	dma_addr_t meta_dma;
234 	struct sg_table sgt;
235 };
236 
237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
238 {
239 	return dev->nr_allocated_queues * 8 * dev->db_stride;
240 }
241 
242 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243 {
244 	unsigned int mem_size = nvme_dbbuf_size(dev);
245 
246 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
247 		return;
248 
249 	if (dev->dbbuf_dbs) {
250 		/*
251 		 * Clear the dbbuf memory so the driver doesn't observe stale
252 		 * values from the previous instantiation.
253 		 */
254 		memset(dev->dbbuf_dbs, 0, mem_size);
255 		memset(dev->dbbuf_eis, 0, mem_size);
256 		return;
257 	}
258 
259 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 					    &dev->dbbuf_dbs_dma_addr,
261 					    GFP_KERNEL);
262 	if (!dev->dbbuf_dbs)
263 		goto fail;
264 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 					    &dev->dbbuf_eis_dma_addr,
266 					    GFP_KERNEL);
267 	if (!dev->dbbuf_eis)
268 		goto fail_free_dbbuf_dbs;
269 	return;
270 
271 fail_free_dbbuf_dbs:
272 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
273 			  dev->dbbuf_dbs_dma_addr);
274 	dev->dbbuf_dbs = NULL;
275 fail:
276 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
277 }
278 
279 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
280 {
281 	unsigned int mem_size = nvme_dbbuf_size(dev);
282 
283 	if (dev->dbbuf_dbs) {
284 		dma_free_coherent(dev->dev, mem_size,
285 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
286 		dev->dbbuf_dbs = NULL;
287 	}
288 	if (dev->dbbuf_eis) {
289 		dma_free_coherent(dev->dev, mem_size,
290 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
291 		dev->dbbuf_eis = NULL;
292 	}
293 }
294 
295 static void nvme_dbbuf_init(struct nvme_dev *dev,
296 			    struct nvme_queue *nvmeq, int qid)
297 {
298 	if (!dev->dbbuf_dbs || !qid)
299 		return;
300 
301 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
302 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
303 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
304 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
305 }
306 
307 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
308 {
309 	if (!nvmeq->qid)
310 		return;
311 
312 	nvmeq->dbbuf_sq_db = NULL;
313 	nvmeq->dbbuf_cq_db = NULL;
314 	nvmeq->dbbuf_sq_ei = NULL;
315 	nvmeq->dbbuf_cq_ei = NULL;
316 }
317 
318 static void nvme_dbbuf_set(struct nvme_dev *dev)
319 {
320 	struct nvme_command c = { };
321 	unsigned int i;
322 
323 	if (!dev->dbbuf_dbs)
324 		return;
325 
326 	c.dbbuf.opcode = nvme_admin_dbbuf;
327 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
328 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
329 
330 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
331 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
332 		/* Free memory and continue on */
333 		nvme_dbbuf_dma_free(dev);
334 
335 		for (i = 1; i <= dev->online_queues; i++)
336 			nvme_dbbuf_free(&dev->queues[i]);
337 	}
338 }
339 
340 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
341 {
342 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
343 }
344 
345 /* Update dbbuf and return true if an MMIO is required */
346 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
347 					      volatile u32 *dbbuf_ei)
348 {
349 	if (dbbuf_db) {
350 		u16 old_value;
351 
352 		/*
353 		 * Ensure that the queue is written before updating
354 		 * the doorbell in memory
355 		 */
356 		wmb();
357 
358 		old_value = *dbbuf_db;
359 		*dbbuf_db = value;
360 
361 		/*
362 		 * Ensure that the doorbell is updated before reading the event
363 		 * index from memory.  The controller needs to provide similar
364 		 * ordering to ensure the envent index is updated before reading
365 		 * the doorbell.
366 		 */
367 		mb();
368 
369 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
370 			return false;
371 	}
372 
373 	return true;
374 }
375 
376 /*
377  * Will slightly overestimate the number of pages needed.  This is OK
378  * as it only leads to a small amount of wasted memory for the lifetime of
379  * the I/O.
380  */
381 static int nvme_pci_npages_prp(void)
382 {
383 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
384 				      NVME_CTRL_PAGE_SIZE);
385 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
386 }
387 
388 /*
389  * Calculates the number of pages needed for the SGL segments. For example a 4k
390  * page can accommodate 256 SGL descriptors.
391  */
392 static int nvme_pci_npages_sgl(void)
393 {
394 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
395 			PAGE_SIZE);
396 }
397 
398 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
399 				unsigned int hctx_idx)
400 {
401 	struct nvme_dev *dev = data;
402 	struct nvme_queue *nvmeq = &dev->queues[0];
403 
404 	WARN_ON(hctx_idx != 0);
405 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
406 
407 	hctx->driver_data = nvmeq;
408 	return 0;
409 }
410 
411 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
412 			  unsigned int hctx_idx)
413 {
414 	struct nvme_dev *dev = data;
415 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
416 
417 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
418 	hctx->driver_data = nvmeq;
419 	return 0;
420 }
421 
422 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
423 		struct request *req, unsigned int hctx_idx,
424 		unsigned int numa_node)
425 {
426 	struct nvme_dev *dev = set->driver_data;
427 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428 
429 	nvme_req(req)->ctrl = &dev->ctrl;
430 	nvme_req(req)->cmd = &iod->cmd;
431 	return 0;
432 }
433 
434 static int queue_irq_offset(struct nvme_dev *dev)
435 {
436 	/* if we have more than 1 vec, admin queue offsets us by 1 */
437 	if (dev->num_vecs > 1)
438 		return 1;
439 
440 	return 0;
441 }
442 
443 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
444 {
445 	struct nvme_dev *dev = set->driver_data;
446 	int i, qoff, offset;
447 
448 	offset = queue_irq_offset(dev);
449 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
450 		struct blk_mq_queue_map *map = &set->map[i];
451 
452 		map->nr_queues = dev->io_queues[i];
453 		if (!map->nr_queues) {
454 			BUG_ON(i == HCTX_TYPE_DEFAULT);
455 			continue;
456 		}
457 
458 		/*
459 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
460 		 * affinity), so use the regular blk-mq cpu mapping
461 		 */
462 		map->queue_offset = qoff;
463 		if (i != HCTX_TYPE_POLL && offset)
464 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
465 		else
466 			blk_mq_map_queues(map);
467 		qoff += map->nr_queues;
468 		offset += map->nr_queues;
469 	}
470 }
471 
472 /*
473  * Write sq tail if we are asked to, or if the next command would wrap.
474  */
475 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
476 {
477 	if (!write_sq) {
478 		u16 next_tail = nvmeq->sq_tail + 1;
479 
480 		if (next_tail == nvmeq->q_depth)
481 			next_tail = 0;
482 		if (next_tail != nvmeq->last_sq_tail)
483 			return;
484 	}
485 
486 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
487 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
488 		writel(nvmeq->sq_tail, nvmeq->q_db);
489 	nvmeq->last_sq_tail = nvmeq->sq_tail;
490 }
491 
492 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
493 				    struct nvme_command *cmd)
494 {
495 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
496 		absolute_pointer(cmd), sizeof(*cmd));
497 	if (++nvmeq->sq_tail == nvmeq->q_depth)
498 		nvmeq->sq_tail = 0;
499 }
500 
501 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
502 {
503 	struct nvme_queue *nvmeq = hctx->driver_data;
504 
505 	spin_lock(&nvmeq->sq_lock);
506 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
507 		nvme_write_sq_db(nvmeq, true);
508 	spin_unlock(&nvmeq->sq_lock);
509 }
510 
511 static void **nvme_pci_iod_list(struct request *req)
512 {
513 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
514 	return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
515 }
516 
517 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
518 {
519 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
520 	int nseg = blk_rq_nr_phys_segments(req);
521 	unsigned int avg_seg_size;
522 
523 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
524 
525 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
526 		return false;
527 	if (!nvmeq->qid)
528 		return false;
529 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
530 		return false;
531 	return true;
532 }
533 
534 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
535 {
536 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
537 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
538 	dma_addr_t dma_addr = iod->first_dma;
539 	int i;
540 
541 	for (i = 0; i < iod->nr_allocations; i++) {
542 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
543 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
544 
545 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
546 		dma_addr = next_dma_addr;
547 	}
548 }
549 
550 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
551 {
552 	const int last_sg = SGES_PER_PAGE - 1;
553 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
554 	dma_addr_t dma_addr = iod->first_dma;
555 	int i;
556 
557 	for (i = 0; i < iod->nr_allocations; i++) {
558 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
559 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
560 
561 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
562 		dma_addr = next_dma_addr;
563 	}
564 }
565 
566 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
567 {
568 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569 
570 	if (iod->dma_len) {
571 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
572 			       rq_dma_dir(req));
573 		return;
574 	}
575 
576 	WARN_ON_ONCE(!iod->sgt.nents);
577 
578 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
579 
580 	if (iod->nr_allocations == 0)
581 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
582 			      iod->first_dma);
583 	else if (iod->use_sgl)
584 		nvme_free_sgls(dev, req);
585 	else
586 		nvme_free_prps(dev, req);
587 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
588 }
589 
590 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
591 {
592 	int i;
593 	struct scatterlist *sg;
594 
595 	for_each_sg(sgl, sg, nents, i) {
596 		dma_addr_t phys = sg_phys(sg);
597 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
598 			"dma_address:%pad dma_length:%d\n",
599 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
600 			sg_dma_len(sg));
601 	}
602 }
603 
604 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
605 		struct request *req, struct nvme_rw_command *cmnd)
606 {
607 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
608 	struct dma_pool *pool;
609 	int length = blk_rq_payload_bytes(req);
610 	struct scatterlist *sg = iod->sgt.sgl;
611 	int dma_len = sg_dma_len(sg);
612 	u64 dma_addr = sg_dma_address(sg);
613 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
614 	__le64 *prp_list;
615 	void **list = nvme_pci_iod_list(req);
616 	dma_addr_t prp_dma;
617 	int nprps, i;
618 
619 	length -= (NVME_CTRL_PAGE_SIZE - offset);
620 	if (length <= 0) {
621 		iod->first_dma = 0;
622 		goto done;
623 	}
624 
625 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
626 	if (dma_len) {
627 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
628 	} else {
629 		sg = sg_next(sg);
630 		dma_addr = sg_dma_address(sg);
631 		dma_len = sg_dma_len(sg);
632 	}
633 
634 	if (length <= NVME_CTRL_PAGE_SIZE) {
635 		iod->first_dma = dma_addr;
636 		goto done;
637 	}
638 
639 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
640 	if (nprps <= (256 / 8)) {
641 		pool = dev->prp_small_pool;
642 		iod->nr_allocations = 0;
643 	} else {
644 		pool = dev->prp_page_pool;
645 		iod->nr_allocations = 1;
646 	}
647 
648 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
649 	if (!prp_list) {
650 		iod->nr_allocations = -1;
651 		return BLK_STS_RESOURCE;
652 	}
653 	list[0] = prp_list;
654 	iod->first_dma = prp_dma;
655 	i = 0;
656 	for (;;) {
657 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
658 			__le64 *old_prp_list = prp_list;
659 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
660 			if (!prp_list)
661 				goto free_prps;
662 			list[iod->nr_allocations++] = prp_list;
663 			prp_list[0] = old_prp_list[i - 1];
664 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
665 			i = 1;
666 		}
667 		prp_list[i++] = cpu_to_le64(dma_addr);
668 		dma_len -= NVME_CTRL_PAGE_SIZE;
669 		dma_addr += NVME_CTRL_PAGE_SIZE;
670 		length -= NVME_CTRL_PAGE_SIZE;
671 		if (length <= 0)
672 			break;
673 		if (dma_len > 0)
674 			continue;
675 		if (unlikely(dma_len < 0))
676 			goto bad_sgl;
677 		sg = sg_next(sg);
678 		dma_addr = sg_dma_address(sg);
679 		dma_len = sg_dma_len(sg);
680 	}
681 done:
682 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
683 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
684 	return BLK_STS_OK;
685 free_prps:
686 	nvme_free_prps(dev, req);
687 	return BLK_STS_RESOURCE;
688 bad_sgl:
689 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
690 			"Invalid SGL for payload:%d nents:%d\n",
691 			blk_rq_payload_bytes(req), iod->sgt.nents);
692 	return BLK_STS_IOERR;
693 }
694 
695 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
696 		struct scatterlist *sg)
697 {
698 	sge->addr = cpu_to_le64(sg_dma_address(sg));
699 	sge->length = cpu_to_le32(sg_dma_len(sg));
700 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
701 }
702 
703 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
704 		dma_addr_t dma_addr, int entries)
705 {
706 	sge->addr = cpu_to_le64(dma_addr);
707 	if (entries < SGES_PER_PAGE) {
708 		sge->length = cpu_to_le32(entries * sizeof(*sge));
709 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
710 	} else {
711 		sge->length = cpu_to_le32(PAGE_SIZE);
712 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
713 	}
714 }
715 
716 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
717 		struct request *req, struct nvme_rw_command *cmd)
718 {
719 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
720 	struct dma_pool *pool;
721 	struct nvme_sgl_desc *sg_list;
722 	struct scatterlist *sg = iod->sgt.sgl;
723 	unsigned int entries = iod->sgt.nents;
724 	dma_addr_t sgl_dma;
725 	int i = 0;
726 
727 	/* setting the transfer type as SGL */
728 	cmd->flags = NVME_CMD_SGL_METABUF;
729 
730 	if (entries == 1) {
731 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
732 		return BLK_STS_OK;
733 	}
734 
735 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
736 		pool = dev->prp_small_pool;
737 		iod->nr_allocations = 0;
738 	} else {
739 		pool = dev->prp_page_pool;
740 		iod->nr_allocations = 1;
741 	}
742 
743 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
744 	if (!sg_list) {
745 		iod->nr_allocations = -1;
746 		return BLK_STS_RESOURCE;
747 	}
748 
749 	nvme_pci_iod_list(req)[0] = sg_list;
750 	iod->first_dma = sgl_dma;
751 
752 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
753 
754 	do {
755 		if (i == SGES_PER_PAGE) {
756 			struct nvme_sgl_desc *old_sg_desc = sg_list;
757 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
758 
759 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
760 			if (!sg_list)
761 				goto free_sgls;
762 
763 			i = 0;
764 			nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
765 			sg_list[i++] = *link;
766 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
767 		}
768 
769 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
770 		sg = sg_next(sg);
771 	} while (--entries > 0);
772 
773 	return BLK_STS_OK;
774 free_sgls:
775 	nvme_free_sgls(dev, req);
776 	return BLK_STS_RESOURCE;
777 }
778 
779 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
780 		struct request *req, struct nvme_rw_command *cmnd,
781 		struct bio_vec *bv)
782 {
783 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
784 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
785 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
786 
787 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
788 	if (dma_mapping_error(dev->dev, iod->first_dma))
789 		return BLK_STS_RESOURCE;
790 	iod->dma_len = bv->bv_len;
791 
792 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
793 	if (bv->bv_len > first_prp_len)
794 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
795 	return BLK_STS_OK;
796 }
797 
798 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
799 		struct request *req, struct nvme_rw_command *cmnd,
800 		struct bio_vec *bv)
801 {
802 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
803 
804 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
805 	if (dma_mapping_error(dev->dev, iod->first_dma))
806 		return BLK_STS_RESOURCE;
807 	iod->dma_len = bv->bv_len;
808 
809 	cmnd->flags = NVME_CMD_SGL_METABUF;
810 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
811 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
812 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
813 	return BLK_STS_OK;
814 }
815 
816 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
817 		struct nvme_command *cmnd)
818 {
819 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
820 	blk_status_t ret = BLK_STS_RESOURCE;
821 	int rc;
822 
823 	if (blk_rq_nr_phys_segments(req) == 1) {
824 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
825 		struct bio_vec bv = req_bvec(req);
826 
827 		if (!is_pci_p2pdma_page(bv.bv_page)) {
828 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
829 				return nvme_setup_prp_simple(dev, req,
830 							     &cmnd->rw, &bv);
831 
832 			if (nvmeq->qid && sgl_threshold &&
833 			    nvme_ctrl_sgl_supported(&dev->ctrl))
834 				return nvme_setup_sgl_simple(dev, req,
835 							     &cmnd->rw, &bv);
836 		}
837 	}
838 
839 	iod->dma_len = 0;
840 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
841 	if (!iod->sgt.sgl)
842 		return BLK_STS_RESOURCE;
843 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
844 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
845 	if (!iod->sgt.orig_nents)
846 		goto out_free_sg;
847 
848 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
849 			     DMA_ATTR_NO_WARN);
850 	if (rc) {
851 		if (rc == -EREMOTEIO)
852 			ret = BLK_STS_TARGET;
853 		goto out_free_sg;
854 	}
855 
856 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
857 	if (iod->use_sgl)
858 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
859 	else
860 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
861 	if (ret != BLK_STS_OK)
862 		goto out_unmap_sg;
863 	return BLK_STS_OK;
864 
865 out_unmap_sg:
866 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
867 out_free_sg:
868 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
869 	return ret;
870 }
871 
872 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
873 		struct nvme_command *cmnd)
874 {
875 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
876 
877 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
878 			rq_dma_dir(req), 0);
879 	if (dma_mapping_error(dev->dev, iod->meta_dma))
880 		return BLK_STS_IOERR;
881 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
882 	return BLK_STS_OK;
883 }
884 
885 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
886 {
887 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
888 	blk_status_t ret;
889 
890 	iod->aborted = false;
891 	iod->nr_allocations = -1;
892 	iod->sgt.nents = 0;
893 
894 	ret = nvme_setup_cmd(req->q->queuedata, req);
895 	if (ret)
896 		return ret;
897 
898 	if (blk_rq_nr_phys_segments(req)) {
899 		ret = nvme_map_data(dev, req, &iod->cmd);
900 		if (ret)
901 			goto out_free_cmd;
902 	}
903 
904 	if (blk_integrity_rq(req)) {
905 		ret = nvme_map_metadata(dev, req, &iod->cmd);
906 		if (ret)
907 			goto out_unmap_data;
908 	}
909 
910 	nvme_start_request(req);
911 	return BLK_STS_OK;
912 out_unmap_data:
913 	nvme_unmap_data(dev, req);
914 out_free_cmd:
915 	nvme_cleanup_cmd(req);
916 	return ret;
917 }
918 
919 /*
920  * NOTE: ns is NULL when called on the admin queue.
921  */
922 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
923 			 const struct blk_mq_queue_data *bd)
924 {
925 	struct nvme_queue *nvmeq = hctx->driver_data;
926 	struct nvme_dev *dev = nvmeq->dev;
927 	struct request *req = bd->rq;
928 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
929 	blk_status_t ret;
930 
931 	/*
932 	 * We should not need to do this, but we're still using this to
933 	 * ensure we can drain requests on a dying queue.
934 	 */
935 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
936 		return BLK_STS_IOERR;
937 
938 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
939 		return nvme_fail_nonready_command(&dev->ctrl, req);
940 
941 	ret = nvme_prep_rq(dev, req);
942 	if (unlikely(ret))
943 		return ret;
944 	spin_lock(&nvmeq->sq_lock);
945 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
946 	nvme_write_sq_db(nvmeq, bd->last);
947 	spin_unlock(&nvmeq->sq_lock);
948 	return BLK_STS_OK;
949 }
950 
951 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
952 {
953 	spin_lock(&nvmeq->sq_lock);
954 	while (!rq_list_empty(*rqlist)) {
955 		struct request *req = rq_list_pop(rqlist);
956 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
957 
958 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
959 	}
960 	nvme_write_sq_db(nvmeq, true);
961 	spin_unlock(&nvmeq->sq_lock);
962 }
963 
964 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
965 {
966 	/*
967 	 * We should not need to do this, but we're still using this to
968 	 * ensure we can drain requests on a dying queue.
969 	 */
970 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
971 		return false;
972 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
973 		return false;
974 
975 	req->mq_hctx->tags->rqs[req->tag] = req;
976 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
977 }
978 
979 static void nvme_queue_rqs(struct request **rqlist)
980 {
981 	struct request *req, *next, *prev = NULL;
982 	struct request *requeue_list = NULL;
983 
984 	rq_list_for_each_safe(rqlist, req, next) {
985 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
986 
987 		if (!nvme_prep_rq_batch(nvmeq, req)) {
988 			/* detach 'req' and add to remainder list */
989 			rq_list_move(rqlist, &requeue_list, req, prev);
990 
991 			req = prev;
992 			if (!req)
993 				continue;
994 		}
995 
996 		if (!next || req->mq_hctx != next->mq_hctx) {
997 			/* detach rest of list, and submit */
998 			req->rq_next = NULL;
999 			nvme_submit_cmds(nvmeq, rqlist);
1000 			*rqlist = next;
1001 			prev = NULL;
1002 		} else
1003 			prev = req;
1004 	}
1005 
1006 	*rqlist = requeue_list;
1007 }
1008 
1009 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1010 {
1011 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1012 	struct nvme_dev *dev = nvmeq->dev;
1013 
1014 	if (blk_integrity_rq(req)) {
1015 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1016 
1017 		dma_unmap_page(dev->dev, iod->meta_dma,
1018 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1019 	}
1020 
1021 	if (blk_rq_nr_phys_segments(req))
1022 		nvme_unmap_data(dev, req);
1023 }
1024 
1025 static void nvme_pci_complete_rq(struct request *req)
1026 {
1027 	nvme_pci_unmap_rq(req);
1028 	nvme_complete_rq(req);
1029 }
1030 
1031 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1032 {
1033 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1034 }
1035 
1036 /* We read the CQE phase first to check if the rest of the entry is valid */
1037 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1038 {
1039 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1040 
1041 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1042 }
1043 
1044 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1045 {
1046 	u16 head = nvmeq->cq_head;
1047 
1048 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1049 					      nvmeq->dbbuf_cq_ei))
1050 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1051 }
1052 
1053 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1054 {
1055 	if (!nvmeq->qid)
1056 		return nvmeq->dev->admin_tagset.tags[0];
1057 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1058 }
1059 
1060 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1061 				   struct io_comp_batch *iob, u16 idx)
1062 {
1063 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1064 	__u16 command_id = READ_ONCE(cqe->command_id);
1065 	struct request *req;
1066 
1067 	/*
1068 	 * AEN requests are special as they don't time out and can
1069 	 * survive any kind of queue freeze and often don't respond to
1070 	 * aborts.  We don't even bother to allocate a struct request
1071 	 * for them but rather special case them here.
1072 	 */
1073 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1074 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1075 				cqe->status, &cqe->result);
1076 		return;
1077 	}
1078 
1079 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1080 	if (unlikely(!req)) {
1081 		dev_warn(nvmeq->dev->ctrl.device,
1082 			"invalid id %d completed on queue %d\n",
1083 			command_id, le16_to_cpu(cqe->sq_id));
1084 		return;
1085 	}
1086 
1087 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1088 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1089 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1090 					nvme_pci_complete_batch))
1091 		nvme_pci_complete_rq(req);
1092 }
1093 
1094 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1095 {
1096 	u32 tmp = nvmeq->cq_head + 1;
1097 
1098 	if (tmp == nvmeq->q_depth) {
1099 		nvmeq->cq_head = 0;
1100 		nvmeq->cq_phase ^= 1;
1101 	} else {
1102 		nvmeq->cq_head = tmp;
1103 	}
1104 }
1105 
1106 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1107 			       struct io_comp_batch *iob)
1108 {
1109 	int found = 0;
1110 
1111 	while (nvme_cqe_pending(nvmeq)) {
1112 		found++;
1113 		/*
1114 		 * load-load control dependency between phase and the rest of
1115 		 * the cqe requires a full read memory barrier
1116 		 */
1117 		dma_rmb();
1118 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1119 		nvme_update_cq_head(nvmeq);
1120 	}
1121 
1122 	if (found)
1123 		nvme_ring_cq_doorbell(nvmeq);
1124 	return found;
1125 }
1126 
1127 static irqreturn_t nvme_irq(int irq, void *data)
1128 {
1129 	struct nvme_queue *nvmeq = data;
1130 	DEFINE_IO_COMP_BATCH(iob);
1131 
1132 	if (nvme_poll_cq(nvmeq, &iob)) {
1133 		if (!rq_list_empty(iob.req_list))
1134 			nvme_pci_complete_batch(&iob);
1135 		return IRQ_HANDLED;
1136 	}
1137 	return IRQ_NONE;
1138 }
1139 
1140 static irqreturn_t nvme_irq_check(int irq, void *data)
1141 {
1142 	struct nvme_queue *nvmeq = data;
1143 
1144 	if (nvme_cqe_pending(nvmeq))
1145 		return IRQ_WAKE_THREAD;
1146 	return IRQ_NONE;
1147 }
1148 
1149 /*
1150  * Poll for completions for any interrupt driven queue
1151  * Can be called from any context.
1152  */
1153 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1154 {
1155 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1156 
1157 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1158 
1159 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1160 	nvme_poll_cq(nvmeq, NULL);
1161 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1162 }
1163 
1164 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1165 {
1166 	struct nvme_queue *nvmeq = hctx->driver_data;
1167 	bool found;
1168 
1169 	if (!nvme_cqe_pending(nvmeq))
1170 		return 0;
1171 
1172 	spin_lock(&nvmeq->cq_poll_lock);
1173 	found = nvme_poll_cq(nvmeq, iob);
1174 	spin_unlock(&nvmeq->cq_poll_lock);
1175 
1176 	return found;
1177 }
1178 
1179 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1180 {
1181 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1182 	struct nvme_queue *nvmeq = &dev->queues[0];
1183 	struct nvme_command c = { };
1184 
1185 	c.common.opcode = nvme_admin_async_event;
1186 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1187 
1188 	spin_lock(&nvmeq->sq_lock);
1189 	nvme_sq_copy_cmd(nvmeq, &c);
1190 	nvme_write_sq_db(nvmeq, true);
1191 	spin_unlock(&nvmeq->sq_lock);
1192 }
1193 
1194 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1195 {
1196 	struct nvme_command c = { };
1197 
1198 	c.delete_queue.opcode = opcode;
1199 	c.delete_queue.qid = cpu_to_le16(id);
1200 
1201 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1202 }
1203 
1204 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1205 		struct nvme_queue *nvmeq, s16 vector)
1206 {
1207 	struct nvme_command c = { };
1208 	int flags = NVME_QUEUE_PHYS_CONTIG;
1209 
1210 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1211 		flags |= NVME_CQ_IRQ_ENABLED;
1212 
1213 	/*
1214 	 * Note: we (ab)use the fact that the prp fields survive if no data
1215 	 * is attached to the request.
1216 	 */
1217 	c.create_cq.opcode = nvme_admin_create_cq;
1218 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1219 	c.create_cq.cqid = cpu_to_le16(qid);
1220 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1221 	c.create_cq.cq_flags = cpu_to_le16(flags);
1222 	c.create_cq.irq_vector = cpu_to_le16(vector);
1223 
1224 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1225 }
1226 
1227 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1228 						struct nvme_queue *nvmeq)
1229 {
1230 	struct nvme_ctrl *ctrl = &dev->ctrl;
1231 	struct nvme_command c = { };
1232 	int flags = NVME_QUEUE_PHYS_CONTIG;
1233 
1234 	/*
1235 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1236 	 * set. Since URGENT priority is zeroes, it makes all queues
1237 	 * URGENT.
1238 	 */
1239 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1240 		flags |= NVME_SQ_PRIO_MEDIUM;
1241 
1242 	/*
1243 	 * Note: we (ab)use the fact that the prp fields survive if no data
1244 	 * is attached to the request.
1245 	 */
1246 	c.create_sq.opcode = nvme_admin_create_sq;
1247 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1248 	c.create_sq.sqid = cpu_to_le16(qid);
1249 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1250 	c.create_sq.sq_flags = cpu_to_le16(flags);
1251 	c.create_sq.cqid = cpu_to_le16(qid);
1252 
1253 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1254 }
1255 
1256 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1257 {
1258 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1259 }
1260 
1261 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1262 {
1263 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1264 }
1265 
1266 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1267 {
1268 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1269 
1270 	dev_warn(nvmeq->dev->ctrl.device,
1271 		 "Abort status: 0x%x", nvme_req(req)->status);
1272 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1273 	blk_mq_free_request(req);
1274 	return RQ_END_IO_NONE;
1275 }
1276 
1277 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1278 {
1279 	/* If true, indicates loss of adapter communication, possibly by a
1280 	 * NVMe Subsystem reset.
1281 	 */
1282 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1283 
1284 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1285 	switch (dev->ctrl.state) {
1286 	case NVME_CTRL_RESETTING:
1287 	case NVME_CTRL_CONNECTING:
1288 		return false;
1289 	default:
1290 		break;
1291 	}
1292 
1293 	/* We shouldn't reset unless the controller is on fatal error state
1294 	 * _or_ if we lost the communication with it.
1295 	 */
1296 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1297 		return false;
1298 
1299 	return true;
1300 }
1301 
1302 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1303 {
1304 	/* Read a config register to help see what died. */
1305 	u16 pci_status;
1306 	int result;
1307 
1308 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1309 				      &pci_status);
1310 	if (result == PCIBIOS_SUCCESSFUL)
1311 		dev_warn(dev->ctrl.device,
1312 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1313 			 csts, pci_status);
1314 	else
1315 		dev_warn(dev->ctrl.device,
1316 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1317 			 csts, result);
1318 
1319 	if (csts != ~0)
1320 		return;
1321 
1322 	dev_warn(dev->ctrl.device,
1323 		 "Does your device have a faulty power saving mode enabled?\n");
1324 	dev_warn(dev->ctrl.device,
1325 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1326 }
1327 
1328 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1329 {
1330 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1331 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1332 	struct nvme_dev *dev = nvmeq->dev;
1333 	struct request *abort_req;
1334 	struct nvme_command cmd = { };
1335 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1336 
1337 	/* If PCI error recovery process is happening, we cannot reset or
1338 	 * the recovery mechanism will surely fail.
1339 	 */
1340 	mb();
1341 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1342 		return BLK_EH_RESET_TIMER;
1343 
1344 	/*
1345 	 * Reset immediately if the controller is failed
1346 	 */
1347 	if (nvme_should_reset(dev, csts)) {
1348 		nvme_warn_reset(dev, csts);
1349 		nvme_dev_disable(dev, false);
1350 		nvme_reset_ctrl(&dev->ctrl);
1351 		return BLK_EH_DONE;
1352 	}
1353 
1354 	/*
1355 	 * Did we miss an interrupt?
1356 	 */
1357 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1358 		nvme_poll(req->mq_hctx, NULL);
1359 	else
1360 		nvme_poll_irqdisable(nvmeq);
1361 
1362 	if (blk_mq_request_completed(req)) {
1363 		dev_warn(dev->ctrl.device,
1364 			 "I/O %d QID %d timeout, completion polled\n",
1365 			 req->tag, nvmeq->qid);
1366 		return BLK_EH_DONE;
1367 	}
1368 
1369 	/*
1370 	 * Shutdown immediately if controller times out while starting. The
1371 	 * reset work will see the pci device disabled when it gets the forced
1372 	 * cancellation error. All outstanding requests are completed on
1373 	 * shutdown, so we return BLK_EH_DONE.
1374 	 */
1375 	switch (dev->ctrl.state) {
1376 	case NVME_CTRL_CONNECTING:
1377 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1378 		fallthrough;
1379 	case NVME_CTRL_DELETING:
1380 		dev_warn_ratelimited(dev->ctrl.device,
1381 			 "I/O %d QID %d timeout, disable controller\n",
1382 			 req->tag, nvmeq->qid);
1383 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1384 		nvme_dev_disable(dev, true);
1385 		return BLK_EH_DONE;
1386 	case NVME_CTRL_RESETTING:
1387 		return BLK_EH_RESET_TIMER;
1388 	default:
1389 		break;
1390 	}
1391 
1392 	/*
1393 	 * Shutdown the controller immediately and schedule a reset if the
1394 	 * command was already aborted once before and still hasn't been
1395 	 * returned to the driver, or if this is the admin queue.
1396 	 */
1397 	if (!nvmeq->qid || iod->aborted) {
1398 		dev_warn(dev->ctrl.device,
1399 			 "I/O %d QID %d timeout, reset controller\n",
1400 			 req->tag, nvmeq->qid);
1401 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1402 		nvme_dev_disable(dev, false);
1403 		nvme_reset_ctrl(&dev->ctrl);
1404 
1405 		return BLK_EH_DONE;
1406 	}
1407 
1408 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1409 		atomic_inc(&dev->ctrl.abort_limit);
1410 		return BLK_EH_RESET_TIMER;
1411 	}
1412 	iod->aborted = true;
1413 
1414 	cmd.abort.opcode = nvme_admin_abort_cmd;
1415 	cmd.abort.cid = nvme_cid(req);
1416 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1417 
1418 	dev_warn(nvmeq->dev->ctrl.device,
1419 		"I/O %d (%s) QID %d timeout, aborting\n",
1420 		 req->tag,
1421 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1422 		 nvmeq->qid);
1423 
1424 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1425 					 BLK_MQ_REQ_NOWAIT);
1426 	if (IS_ERR(abort_req)) {
1427 		atomic_inc(&dev->ctrl.abort_limit);
1428 		return BLK_EH_RESET_TIMER;
1429 	}
1430 	nvme_init_request(abort_req, &cmd);
1431 
1432 	abort_req->end_io = abort_endio;
1433 	abort_req->end_io_data = NULL;
1434 	abort_req->rq_flags |= RQF_QUIET;
1435 	blk_execute_rq_nowait(abort_req, false);
1436 
1437 	/*
1438 	 * The aborted req will be completed on receiving the abort req.
1439 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1440 	 * as the device then is in a faulty state.
1441 	 */
1442 	return BLK_EH_RESET_TIMER;
1443 }
1444 
1445 static void nvme_free_queue(struct nvme_queue *nvmeq)
1446 {
1447 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1448 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1449 	if (!nvmeq->sq_cmds)
1450 		return;
1451 
1452 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1453 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1454 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1455 	} else {
1456 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1457 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1458 	}
1459 }
1460 
1461 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1462 {
1463 	int i;
1464 
1465 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1466 		dev->ctrl.queue_count--;
1467 		nvme_free_queue(&dev->queues[i]);
1468 	}
1469 }
1470 
1471 /**
1472  * nvme_suspend_queue - put queue into suspended state
1473  * @nvmeq: queue to suspend
1474  */
1475 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1476 {
1477 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1478 		return 1;
1479 
1480 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1481 	mb();
1482 
1483 	nvmeq->dev->online_queues--;
1484 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1485 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1486 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1487 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1488 	return 0;
1489 }
1490 
1491 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1492 {
1493 	int i;
1494 
1495 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1496 		nvme_suspend_queue(&dev->queues[i]);
1497 }
1498 
1499 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1500 {
1501 	struct nvme_queue *nvmeq = &dev->queues[0];
1502 
1503 	if (shutdown)
1504 		nvme_shutdown_ctrl(&dev->ctrl);
1505 	else
1506 		nvme_disable_ctrl(&dev->ctrl);
1507 
1508 	nvme_poll_irqdisable(nvmeq);
1509 }
1510 
1511 /*
1512  * Called only on a device that has been disabled and after all other threads
1513  * that can check this device's completion queues have synced, except
1514  * nvme_poll(). This is the last chance for the driver to see a natural
1515  * completion before nvme_cancel_request() terminates all incomplete requests.
1516  */
1517 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1518 {
1519 	int i;
1520 
1521 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1522 		spin_lock(&dev->queues[i].cq_poll_lock);
1523 		nvme_poll_cq(&dev->queues[i], NULL);
1524 		spin_unlock(&dev->queues[i].cq_poll_lock);
1525 	}
1526 }
1527 
1528 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1529 				int entry_size)
1530 {
1531 	int q_depth = dev->q_depth;
1532 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1533 					  NVME_CTRL_PAGE_SIZE);
1534 
1535 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1536 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1537 
1538 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1539 		q_depth = div_u64(mem_per_q, entry_size);
1540 
1541 		/*
1542 		 * Ensure the reduced q_depth is above some threshold where it
1543 		 * would be better to map queues in system memory with the
1544 		 * original depth
1545 		 */
1546 		if (q_depth < 64)
1547 			return -ENOMEM;
1548 	}
1549 
1550 	return q_depth;
1551 }
1552 
1553 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1554 				int qid)
1555 {
1556 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1557 
1558 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1559 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1560 		if (nvmeq->sq_cmds) {
1561 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1562 							nvmeq->sq_cmds);
1563 			if (nvmeq->sq_dma_addr) {
1564 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1565 				return 0;
1566 			}
1567 
1568 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1569 		}
1570 	}
1571 
1572 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1573 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1574 	if (!nvmeq->sq_cmds)
1575 		return -ENOMEM;
1576 	return 0;
1577 }
1578 
1579 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1580 {
1581 	struct nvme_queue *nvmeq = &dev->queues[qid];
1582 
1583 	if (dev->ctrl.queue_count > qid)
1584 		return 0;
1585 
1586 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1587 	nvmeq->q_depth = depth;
1588 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1589 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1590 	if (!nvmeq->cqes)
1591 		goto free_nvmeq;
1592 
1593 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1594 		goto free_cqdma;
1595 
1596 	nvmeq->dev = dev;
1597 	spin_lock_init(&nvmeq->sq_lock);
1598 	spin_lock_init(&nvmeq->cq_poll_lock);
1599 	nvmeq->cq_head = 0;
1600 	nvmeq->cq_phase = 1;
1601 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1602 	nvmeq->qid = qid;
1603 	dev->ctrl.queue_count++;
1604 
1605 	return 0;
1606 
1607  free_cqdma:
1608 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1609 			  nvmeq->cq_dma_addr);
1610  free_nvmeq:
1611 	return -ENOMEM;
1612 }
1613 
1614 static int queue_request_irq(struct nvme_queue *nvmeq)
1615 {
1616 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1617 	int nr = nvmeq->dev->ctrl.instance;
1618 
1619 	if (use_threaded_interrupts) {
1620 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1621 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1622 	} else {
1623 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1624 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1625 	}
1626 }
1627 
1628 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1629 {
1630 	struct nvme_dev *dev = nvmeq->dev;
1631 
1632 	nvmeq->sq_tail = 0;
1633 	nvmeq->last_sq_tail = 0;
1634 	nvmeq->cq_head = 0;
1635 	nvmeq->cq_phase = 1;
1636 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1637 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1638 	nvme_dbbuf_init(dev, nvmeq, qid);
1639 	dev->online_queues++;
1640 	wmb(); /* ensure the first interrupt sees the initialization */
1641 }
1642 
1643 /*
1644  * Try getting shutdown_lock while setting up IO queues.
1645  */
1646 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1647 {
1648 	/*
1649 	 * Give up if the lock is being held by nvme_dev_disable.
1650 	 */
1651 	if (!mutex_trylock(&dev->shutdown_lock))
1652 		return -ENODEV;
1653 
1654 	/*
1655 	 * Controller is in wrong state, fail early.
1656 	 */
1657 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1658 		mutex_unlock(&dev->shutdown_lock);
1659 		return -ENODEV;
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1666 {
1667 	struct nvme_dev *dev = nvmeq->dev;
1668 	int result;
1669 	u16 vector = 0;
1670 
1671 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1672 
1673 	/*
1674 	 * A queue's vector matches the queue identifier unless the controller
1675 	 * has only one vector available.
1676 	 */
1677 	if (!polled)
1678 		vector = dev->num_vecs == 1 ? 0 : qid;
1679 	else
1680 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1681 
1682 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1683 	if (result)
1684 		return result;
1685 
1686 	result = adapter_alloc_sq(dev, qid, nvmeq);
1687 	if (result < 0)
1688 		return result;
1689 	if (result)
1690 		goto release_cq;
1691 
1692 	nvmeq->cq_vector = vector;
1693 
1694 	result = nvme_setup_io_queues_trylock(dev);
1695 	if (result)
1696 		return result;
1697 	nvme_init_queue(nvmeq, qid);
1698 	if (!polled) {
1699 		result = queue_request_irq(nvmeq);
1700 		if (result < 0)
1701 			goto release_sq;
1702 	}
1703 
1704 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1705 	mutex_unlock(&dev->shutdown_lock);
1706 	return result;
1707 
1708 release_sq:
1709 	dev->online_queues--;
1710 	mutex_unlock(&dev->shutdown_lock);
1711 	adapter_delete_sq(dev, qid);
1712 release_cq:
1713 	adapter_delete_cq(dev, qid);
1714 	return result;
1715 }
1716 
1717 static const struct blk_mq_ops nvme_mq_admin_ops = {
1718 	.queue_rq	= nvme_queue_rq,
1719 	.complete	= nvme_pci_complete_rq,
1720 	.init_hctx	= nvme_admin_init_hctx,
1721 	.init_request	= nvme_pci_init_request,
1722 	.timeout	= nvme_timeout,
1723 };
1724 
1725 static const struct blk_mq_ops nvme_mq_ops = {
1726 	.queue_rq	= nvme_queue_rq,
1727 	.queue_rqs	= nvme_queue_rqs,
1728 	.complete	= nvme_pci_complete_rq,
1729 	.commit_rqs	= nvme_commit_rqs,
1730 	.init_hctx	= nvme_init_hctx,
1731 	.init_request	= nvme_pci_init_request,
1732 	.map_queues	= nvme_pci_map_queues,
1733 	.timeout	= nvme_timeout,
1734 	.poll		= nvme_poll,
1735 };
1736 
1737 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1738 {
1739 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1740 		/*
1741 		 * If the controller was reset during removal, it's possible
1742 		 * user requests may be waiting on a stopped queue. Start the
1743 		 * queue to flush these to completion.
1744 		 */
1745 		nvme_unquiesce_admin_queue(&dev->ctrl);
1746 		blk_mq_destroy_queue(dev->ctrl.admin_q);
1747 		blk_put_queue(dev->ctrl.admin_q);
1748 		blk_mq_free_tag_set(&dev->admin_tagset);
1749 	}
1750 }
1751 
1752 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1753 {
1754 	struct blk_mq_tag_set *set = &dev->admin_tagset;
1755 
1756 	set->ops = &nvme_mq_admin_ops;
1757 	set->nr_hw_queues = 1;
1758 
1759 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1760 	set->timeout = NVME_ADMIN_TIMEOUT;
1761 	set->numa_node = dev->ctrl.numa_node;
1762 	set->cmd_size = sizeof(struct nvme_iod);
1763 	set->flags = BLK_MQ_F_NO_SCHED;
1764 	set->driver_data = dev;
1765 
1766 	if (blk_mq_alloc_tag_set(set))
1767 		return -ENOMEM;
1768 	dev->ctrl.admin_tagset = set;
1769 
1770 	dev->ctrl.admin_q = blk_mq_init_queue(set);
1771 	if (IS_ERR(dev->ctrl.admin_q)) {
1772 		blk_mq_free_tag_set(set);
1773 		dev->ctrl.admin_q = NULL;
1774 		return -ENOMEM;
1775 	}
1776 	return 0;
1777 }
1778 
1779 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1780 {
1781 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1782 }
1783 
1784 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1785 {
1786 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1787 
1788 	if (size <= dev->bar_mapped_size)
1789 		return 0;
1790 	if (size > pci_resource_len(pdev, 0))
1791 		return -ENOMEM;
1792 	if (dev->bar)
1793 		iounmap(dev->bar);
1794 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1795 	if (!dev->bar) {
1796 		dev->bar_mapped_size = 0;
1797 		return -ENOMEM;
1798 	}
1799 	dev->bar_mapped_size = size;
1800 	dev->dbs = dev->bar + NVME_REG_DBS;
1801 
1802 	return 0;
1803 }
1804 
1805 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1806 {
1807 	int result;
1808 	u32 aqa;
1809 	struct nvme_queue *nvmeq;
1810 
1811 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1812 	if (result < 0)
1813 		return result;
1814 
1815 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1816 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1817 
1818 	if (dev->subsystem &&
1819 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1820 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1821 
1822 	result = nvme_disable_ctrl(&dev->ctrl);
1823 	if (result < 0)
1824 		return result;
1825 
1826 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1827 	if (result)
1828 		return result;
1829 
1830 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1831 
1832 	nvmeq = &dev->queues[0];
1833 	aqa = nvmeq->q_depth - 1;
1834 	aqa |= aqa << 16;
1835 
1836 	writel(aqa, dev->bar + NVME_REG_AQA);
1837 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1838 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1839 
1840 	result = nvme_enable_ctrl(&dev->ctrl);
1841 	if (result)
1842 		return result;
1843 
1844 	nvmeq->cq_vector = 0;
1845 	nvme_init_queue(nvmeq, 0);
1846 	result = queue_request_irq(nvmeq);
1847 	if (result) {
1848 		dev->online_queues--;
1849 		return result;
1850 	}
1851 
1852 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1853 	return result;
1854 }
1855 
1856 static int nvme_create_io_queues(struct nvme_dev *dev)
1857 {
1858 	unsigned i, max, rw_queues;
1859 	int ret = 0;
1860 
1861 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1862 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1863 			ret = -ENOMEM;
1864 			break;
1865 		}
1866 	}
1867 
1868 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1869 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1870 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1871 				dev->io_queues[HCTX_TYPE_READ];
1872 	} else {
1873 		rw_queues = max;
1874 	}
1875 
1876 	for (i = dev->online_queues; i <= max; i++) {
1877 		bool polled = i > rw_queues;
1878 
1879 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1880 		if (ret)
1881 			break;
1882 	}
1883 
1884 	/*
1885 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1886 	 * than the desired amount of queues, and even a controller without
1887 	 * I/O queues can still be used to issue admin commands.  This might
1888 	 * be useful to upgrade a buggy firmware for example.
1889 	 */
1890 	return ret >= 0 ? 0 : ret;
1891 }
1892 
1893 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1894 {
1895 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1896 
1897 	return 1ULL << (12 + 4 * szu);
1898 }
1899 
1900 static u32 nvme_cmb_size(struct nvme_dev *dev)
1901 {
1902 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1903 }
1904 
1905 static void nvme_map_cmb(struct nvme_dev *dev)
1906 {
1907 	u64 size, offset;
1908 	resource_size_t bar_size;
1909 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1910 	int bar;
1911 
1912 	if (dev->cmb_size)
1913 		return;
1914 
1915 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1916 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1917 
1918 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1919 	if (!dev->cmbsz)
1920 		return;
1921 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1922 
1923 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1924 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1925 	bar = NVME_CMB_BIR(dev->cmbloc);
1926 	bar_size = pci_resource_len(pdev, bar);
1927 
1928 	if (offset > bar_size)
1929 		return;
1930 
1931 	/*
1932 	 * Tell the controller about the host side address mapping the CMB,
1933 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1934 	 */
1935 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1936 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1937 			     (pci_bus_address(pdev, bar) + offset),
1938 			     dev->bar + NVME_REG_CMBMSC);
1939 	}
1940 
1941 	/*
1942 	 * Controllers may support a CMB size larger than their BAR,
1943 	 * for example, due to being behind a bridge. Reduce the CMB to
1944 	 * the reported size of the BAR
1945 	 */
1946 	if (size > bar_size - offset)
1947 		size = bar_size - offset;
1948 
1949 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1950 		dev_warn(dev->ctrl.device,
1951 			 "failed to register the CMB\n");
1952 		return;
1953 	}
1954 
1955 	dev->cmb_size = size;
1956 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1957 
1958 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1959 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1960 		pci_p2pmem_publish(pdev, true);
1961 }
1962 
1963 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1964 {
1965 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1966 	u64 dma_addr = dev->host_mem_descs_dma;
1967 	struct nvme_command c = { };
1968 	int ret;
1969 
1970 	c.features.opcode	= nvme_admin_set_features;
1971 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1972 	c.features.dword11	= cpu_to_le32(bits);
1973 	c.features.dword12	= cpu_to_le32(host_mem_size);
1974 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1975 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1976 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1977 
1978 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1979 	if (ret) {
1980 		dev_warn(dev->ctrl.device,
1981 			 "failed to set host mem (err %d, flags %#x).\n",
1982 			 ret, bits);
1983 	} else
1984 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1985 
1986 	return ret;
1987 }
1988 
1989 static void nvme_free_host_mem(struct nvme_dev *dev)
1990 {
1991 	int i;
1992 
1993 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1994 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1995 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1996 
1997 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1998 			       le64_to_cpu(desc->addr),
1999 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2000 	}
2001 
2002 	kfree(dev->host_mem_desc_bufs);
2003 	dev->host_mem_desc_bufs = NULL;
2004 	dma_free_coherent(dev->dev,
2005 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2006 			dev->host_mem_descs, dev->host_mem_descs_dma);
2007 	dev->host_mem_descs = NULL;
2008 	dev->nr_host_mem_descs = 0;
2009 }
2010 
2011 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2012 		u32 chunk_size)
2013 {
2014 	struct nvme_host_mem_buf_desc *descs;
2015 	u32 max_entries, len;
2016 	dma_addr_t descs_dma;
2017 	int i = 0;
2018 	void **bufs;
2019 	u64 size, tmp;
2020 
2021 	tmp = (preferred + chunk_size - 1);
2022 	do_div(tmp, chunk_size);
2023 	max_entries = tmp;
2024 
2025 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2026 		max_entries = dev->ctrl.hmmaxd;
2027 
2028 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2029 				   &descs_dma, GFP_KERNEL);
2030 	if (!descs)
2031 		goto out;
2032 
2033 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2034 	if (!bufs)
2035 		goto out_free_descs;
2036 
2037 	for (size = 0; size < preferred && i < max_entries; size += len) {
2038 		dma_addr_t dma_addr;
2039 
2040 		len = min_t(u64, chunk_size, preferred - size);
2041 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2042 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2043 		if (!bufs[i])
2044 			break;
2045 
2046 		descs[i].addr = cpu_to_le64(dma_addr);
2047 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2048 		i++;
2049 	}
2050 
2051 	if (!size)
2052 		goto out_free_bufs;
2053 
2054 	dev->nr_host_mem_descs = i;
2055 	dev->host_mem_size = size;
2056 	dev->host_mem_descs = descs;
2057 	dev->host_mem_descs_dma = descs_dma;
2058 	dev->host_mem_desc_bufs = bufs;
2059 	return 0;
2060 
2061 out_free_bufs:
2062 	while (--i >= 0) {
2063 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2064 
2065 		dma_free_attrs(dev->dev, size, bufs[i],
2066 			       le64_to_cpu(descs[i].addr),
2067 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2068 	}
2069 
2070 	kfree(bufs);
2071 out_free_descs:
2072 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2073 			descs_dma);
2074 out:
2075 	dev->host_mem_descs = NULL;
2076 	return -ENOMEM;
2077 }
2078 
2079 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2080 {
2081 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2082 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2083 	u64 chunk_size;
2084 
2085 	/* start big and work our way down */
2086 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2087 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2088 			if (!min || dev->host_mem_size >= min)
2089 				return 0;
2090 			nvme_free_host_mem(dev);
2091 		}
2092 	}
2093 
2094 	return -ENOMEM;
2095 }
2096 
2097 static int nvme_setup_host_mem(struct nvme_dev *dev)
2098 {
2099 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2100 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2101 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2102 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2103 	int ret;
2104 
2105 	if (!dev->ctrl.hmpre)
2106 		return 0;
2107 
2108 	preferred = min(preferred, max);
2109 	if (min > max) {
2110 		dev_warn(dev->ctrl.device,
2111 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2112 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2113 		nvme_free_host_mem(dev);
2114 		return 0;
2115 	}
2116 
2117 	/*
2118 	 * If we already have a buffer allocated check if we can reuse it.
2119 	 */
2120 	if (dev->host_mem_descs) {
2121 		if (dev->host_mem_size >= min)
2122 			enable_bits |= NVME_HOST_MEM_RETURN;
2123 		else
2124 			nvme_free_host_mem(dev);
2125 	}
2126 
2127 	if (!dev->host_mem_descs) {
2128 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2129 			dev_warn(dev->ctrl.device,
2130 				"failed to allocate host memory buffer.\n");
2131 			return 0; /* controller must work without HMB */
2132 		}
2133 
2134 		dev_info(dev->ctrl.device,
2135 			"allocated %lld MiB host memory buffer.\n",
2136 			dev->host_mem_size >> ilog2(SZ_1M));
2137 	}
2138 
2139 	ret = nvme_set_host_mem(dev, enable_bits);
2140 	if (ret)
2141 		nvme_free_host_mem(dev);
2142 	return ret;
2143 }
2144 
2145 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2146 		char *buf)
2147 {
2148 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2149 
2150 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2151 		       ndev->cmbloc, ndev->cmbsz);
2152 }
2153 static DEVICE_ATTR_RO(cmb);
2154 
2155 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2156 		char *buf)
2157 {
2158 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2159 
2160 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2161 }
2162 static DEVICE_ATTR_RO(cmbloc);
2163 
2164 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2165 		char *buf)
2166 {
2167 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2168 
2169 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2170 }
2171 static DEVICE_ATTR_RO(cmbsz);
2172 
2173 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2174 			char *buf)
2175 {
2176 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2177 
2178 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2179 }
2180 
2181 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2182 			 const char *buf, size_t count)
2183 {
2184 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2185 	bool new;
2186 	int ret;
2187 
2188 	if (kstrtobool(buf, &new) < 0)
2189 		return -EINVAL;
2190 
2191 	if (new == ndev->hmb)
2192 		return count;
2193 
2194 	if (new) {
2195 		ret = nvme_setup_host_mem(ndev);
2196 	} else {
2197 		ret = nvme_set_host_mem(ndev, 0);
2198 		if (!ret)
2199 			nvme_free_host_mem(ndev);
2200 	}
2201 
2202 	if (ret < 0)
2203 		return ret;
2204 
2205 	return count;
2206 }
2207 static DEVICE_ATTR_RW(hmb);
2208 
2209 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2210 		struct attribute *a, int n)
2211 {
2212 	struct nvme_ctrl *ctrl =
2213 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2214 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2215 
2216 	if (a == &dev_attr_cmb.attr ||
2217 	    a == &dev_attr_cmbloc.attr ||
2218 	    a == &dev_attr_cmbsz.attr) {
2219 	    	if (!dev->cmbsz)
2220 			return 0;
2221 	}
2222 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2223 		return 0;
2224 
2225 	return a->mode;
2226 }
2227 
2228 static struct attribute *nvme_pci_attrs[] = {
2229 	&dev_attr_cmb.attr,
2230 	&dev_attr_cmbloc.attr,
2231 	&dev_attr_cmbsz.attr,
2232 	&dev_attr_hmb.attr,
2233 	NULL,
2234 };
2235 
2236 static const struct attribute_group nvme_pci_dev_attrs_group = {
2237 	.attrs		= nvme_pci_attrs,
2238 	.is_visible	= nvme_pci_attrs_are_visible,
2239 };
2240 
2241 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2242 	&nvme_dev_attrs_group,
2243 	&nvme_pci_dev_attrs_group,
2244 	NULL,
2245 };
2246 
2247 /*
2248  * nirqs is the number of interrupts available for write and read
2249  * queues. The core already reserved an interrupt for the admin queue.
2250  */
2251 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2252 {
2253 	struct nvme_dev *dev = affd->priv;
2254 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2255 
2256 	/*
2257 	 * If there is no interrupt available for queues, ensure that
2258 	 * the default queue is set to 1. The affinity set size is
2259 	 * also set to one, but the irq core ignores it for this case.
2260 	 *
2261 	 * If only one interrupt is available or 'write_queue' == 0, combine
2262 	 * write and read queues.
2263 	 *
2264 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2265 	 * queue.
2266 	 */
2267 	if (!nrirqs) {
2268 		nrirqs = 1;
2269 		nr_read_queues = 0;
2270 	} else if (nrirqs == 1 || !nr_write_queues) {
2271 		nr_read_queues = 0;
2272 	} else if (nr_write_queues >= nrirqs) {
2273 		nr_read_queues = 1;
2274 	} else {
2275 		nr_read_queues = nrirqs - nr_write_queues;
2276 	}
2277 
2278 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2279 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2280 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2281 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2282 	affd->nr_sets = nr_read_queues ? 2 : 1;
2283 }
2284 
2285 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2286 {
2287 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2288 	struct irq_affinity affd = {
2289 		.pre_vectors	= 1,
2290 		.calc_sets	= nvme_calc_irq_sets,
2291 		.priv		= dev,
2292 	};
2293 	unsigned int irq_queues, poll_queues;
2294 
2295 	/*
2296 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2297 	 * left over for non-polled I/O.
2298 	 */
2299 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2300 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2301 
2302 	/*
2303 	 * Initialize for the single interrupt case, will be updated in
2304 	 * nvme_calc_irq_sets().
2305 	 */
2306 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2307 	dev->io_queues[HCTX_TYPE_READ] = 0;
2308 
2309 	/*
2310 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2311 	 * but some Apple controllers require all queues to use the first
2312 	 * vector.
2313 	 */
2314 	irq_queues = 1;
2315 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2316 		irq_queues += (nr_io_queues - poll_queues);
2317 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2318 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2319 }
2320 
2321 static void nvme_disable_io_queues(struct nvme_dev *dev)
2322 {
2323 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2324 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2325 }
2326 
2327 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2328 {
2329 	/*
2330 	 * If tags are shared with admin queue (Apple bug), then
2331 	 * make sure we only use one IO queue.
2332 	 */
2333 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2334 		return 1;
2335 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2336 }
2337 
2338 static int nvme_setup_io_queues(struct nvme_dev *dev)
2339 {
2340 	struct nvme_queue *adminq = &dev->queues[0];
2341 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2342 	unsigned int nr_io_queues;
2343 	unsigned long size;
2344 	int result;
2345 
2346 	/*
2347 	 * Sample the module parameters once at reset time so that we have
2348 	 * stable values to work with.
2349 	 */
2350 	dev->nr_write_queues = write_queues;
2351 	dev->nr_poll_queues = poll_queues;
2352 
2353 	nr_io_queues = dev->nr_allocated_queues - 1;
2354 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2355 	if (result < 0)
2356 		return result;
2357 
2358 	if (nr_io_queues == 0)
2359 		return 0;
2360 
2361 	/*
2362 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2363 	 * from set to unset. If there is a window to it is truely freed,
2364 	 * pci_free_irq_vectors() jumping into this window will crash.
2365 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2366 	 * nvme_dev_disable() path.
2367 	 */
2368 	result = nvme_setup_io_queues_trylock(dev);
2369 	if (result)
2370 		return result;
2371 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2372 		pci_free_irq(pdev, 0, adminq);
2373 
2374 	if (dev->cmb_use_sqes) {
2375 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2376 				sizeof(struct nvme_command));
2377 		if (result > 0)
2378 			dev->q_depth = result;
2379 		else
2380 			dev->cmb_use_sqes = false;
2381 	}
2382 
2383 	do {
2384 		size = db_bar_size(dev, nr_io_queues);
2385 		result = nvme_remap_bar(dev, size);
2386 		if (!result)
2387 			break;
2388 		if (!--nr_io_queues) {
2389 			result = -ENOMEM;
2390 			goto out_unlock;
2391 		}
2392 	} while (1);
2393 	adminq->q_db = dev->dbs;
2394 
2395  retry:
2396 	/* Deregister the admin queue's interrupt */
2397 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2398 		pci_free_irq(pdev, 0, adminq);
2399 
2400 	/*
2401 	 * If we enable msix early due to not intx, disable it again before
2402 	 * setting up the full range we need.
2403 	 */
2404 	pci_free_irq_vectors(pdev);
2405 
2406 	result = nvme_setup_irqs(dev, nr_io_queues);
2407 	if (result <= 0) {
2408 		result = -EIO;
2409 		goto out_unlock;
2410 	}
2411 
2412 	dev->num_vecs = result;
2413 	result = max(result - 1, 1);
2414 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2415 
2416 	/*
2417 	 * Should investigate if there's a performance win from allocating
2418 	 * more queues than interrupt vectors; it might allow the submission
2419 	 * path to scale better, even if the receive path is limited by the
2420 	 * number of interrupts.
2421 	 */
2422 	result = queue_request_irq(adminq);
2423 	if (result)
2424 		goto out_unlock;
2425 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2426 	mutex_unlock(&dev->shutdown_lock);
2427 
2428 	result = nvme_create_io_queues(dev);
2429 	if (result || dev->online_queues < 2)
2430 		return result;
2431 
2432 	if (dev->online_queues - 1 < dev->max_qid) {
2433 		nr_io_queues = dev->online_queues - 1;
2434 		nvme_disable_io_queues(dev);
2435 		result = nvme_setup_io_queues_trylock(dev);
2436 		if (result)
2437 			return result;
2438 		nvme_suspend_io_queues(dev);
2439 		goto retry;
2440 	}
2441 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2442 					dev->io_queues[HCTX_TYPE_DEFAULT],
2443 					dev->io_queues[HCTX_TYPE_READ],
2444 					dev->io_queues[HCTX_TYPE_POLL]);
2445 	return 0;
2446 out_unlock:
2447 	mutex_unlock(&dev->shutdown_lock);
2448 	return result;
2449 }
2450 
2451 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2452 					     blk_status_t error)
2453 {
2454 	struct nvme_queue *nvmeq = req->end_io_data;
2455 
2456 	blk_mq_free_request(req);
2457 	complete(&nvmeq->delete_done);
2458 	return RQ_END_IO_NONE;
2459 }
2460 
2461 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2462 					  blk_status_t error)
2463 {
2464 	struct nvme_queue *nvmeq = req->end_io_data;
2465 
2466 	if (error)
2467 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2468 
2469 	return nvme_del_queue_end(req, error);
2470 }
2471 
2472 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2473 {
2474 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2475 	struct request *req;
2476 	struct nvme_command cmd = { };
2477 
2478 	cmd.delete_queue.opcode = opcode;
2479 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2480 
2481 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2482 	if (IS_ERR(req))
2483 		return PTR_ERR(req);
2484 	nvme_init_request(req, &cmd);
2485 
2486 	if (opcode == nvme_admin_delete_cq)
2487 		req->end_io = nvme_del_cq_end;
2488 	else
2489 		req->end_io = nvme_del_queue_end;
2490 	req->end_io_data = nvmeq;
2491 
2492 	init_completion(&nvmeq->delete_done);
2493 	req->rq_flags |= RQF_QUIET;
2494 	blk_execute_rq_nowait(req, false);
2495 	return 0;
2496 }
2497 
2498 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2499 {
2500 	int nr_queues = dev->online_queues - 1, sent = 0;
2501 	unsigned long timeout;
2502 
2503  retry:
2504 	timeout = NVME_ADMIN_TIMEOUT;
2505 	while (nr_queues > 0) {
2506 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2507 			break;
2508 		nr_queues--;
2509 		sent++;
2510 	}
2511 	while (sent) {
2512 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2513 
2514 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2515 				timeout);
2516 		if (timeout == 0)
2517 			return false;
2518 
2519 		sent--;
2520 		if (nr_queues)
2521 			goto retry;
2522 	}
2523 	return true;
2524 }
2525 
2526 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2527 {
2528 	struct blk_mq_tag_set * set = &dev->tagset;
2529 	int ret;
2530 
2531 	set->ops = &nvme_mq_ops;
2532 	set->nr_hw_queues = dev->online_queues - 1;
2533 	set->nr_maps = 1;
2534 	if (dev->io_queues[HCTX_TYPE_READ])
2535 		set->nr_maps = 2;
2536 	if (dev->io_queues[HCTX_TYPE_POLL])
2537 		set->nr_maps = 3;
2538 	set->timeout = NVME_IO_TIMEOUT;
2539 	set->numa_node = dev->ctrl.numa_node;
2540 	set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2541 	set->cmd_size = sizeof(struct nvme_iod);
2542 	set->flags = BLK_MQ_F_SHOULD_MERGE;
2543 	set->driver_data = dev;
2544 
2545 	/*
2546 	 * Some Apple controllers requires tags to be unique
2547 	 * across admin and IO queue, so reserve the first 32
2548 	 * tags of the IO queue.
2549 	 */
2550 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2551 		set->reserved_tags = NVME_AQ_DEPTH;
2552 
2553 	ret = blk_mq_alloc_tag_set(set);
2554 	if (ret) {
2555 		dev_warn(dev->ctrl.device,
2556 			"IO queues tagset allocation failed %d\n", ret);
2557 		return;
2558 	}
2559 	dev->ctrl.tagset = set;
2560 }
2561 
2562 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2563 {
2564 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2565 	/* free previously allocated queues that are no longer usable */
2566 	nvme_free_queues(dev, dev->online_queues);
2567 }
2568 
2569 static int nvme_pci_enable(struct nvme_dev *dev)
2570 {
2571 	int result = -ENOMEM;
2572 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2573 	int dma_address_bits = 64;
2574 
2575 	if (pci_enable_device_mem(pdev))
2576 		return result;
2577 
2578 	pci_set_master(pdev);
2579 
2580 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2581 		dma_address_bits = 48;
2582 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2583 		goto disable;
2584 
2585 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2586 		result = -ENODEV;
2587 		goto disable;
2588 	}
2589 
2590 	/*
2591 	 * Some devices and/or platforms don't advertise or work with INTx
2592 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2593 	 * adjust this later.
2594 	 */
2595 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2596 	if (result < 0)
2597 		return result;
2598 
2599 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2600 
2601 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2602 				io_queue_depth);
2603 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2604 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2605 	dev->dbs = dev->bar + 4096;
2606 
2607 	/*
2608 	 * Some Apple controllers require a non-standard SQE size.
2609 	 * Interestingly they also seem to ignore the CC:IOSQES register
2610 	 * so we don't bother updating it here.
2611 	 */
2612 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2613 		dev->io_sqes = 7;
2614 	else
2615 		dev->io_sqes = NVME_NVM_IOSQES;
2616 
2617 	/*
2618 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2619 	 * some MacBook7,1 to avoid controller resets and data loss.
2620 	 */
2621 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2622 		dev->q_depth = 2;
2623 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2624 			"set queue depth=%u to work around controller resets\n",
2625 			dev->q_depth);
2626 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2627 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2628 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2629 		dev->q_depth = 64;
2630 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2631                         "set queue depth=%u\n", dev->q_depth);
2632 	}
2633 
2634 	/*
2635 	 * Controllers with the shared tags quirk need the IO queue to be
2636 	 * big enough so that we get 32 tags for the admin queue
2637 	 */
2638 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2639 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2640 		dev->q_depth = NVME_AQ_DEPTH + 2;
2641 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2642 			 dev->q_depth);
2643 	}
2644 
2645 
2646 	nvme_map_cmb(dev);
2647 
2648 	pci_enable_pcie_error_reporting(pdev);
2649 	pci_save_state(pdev);
2650 
2651 	return nvme_pci_configure_admin_queue(dev);
2652 
2653  disable:
2654 	pci_disable_device(pdev);
2655 	return result;
2656 }
2657 
2658 static void nvme_dev_unmap(struct nvme_dev *dev)
2659 {
2660 	if (dev->bar)
2661 		iounmap(dev->bar);
2662 	pci_release_mem_regions(to_pci_dev(dev->dev));
2663 }
2664 
2665 static void nvme_pci_disable(struct nvme_dev *dev)
2666 {
2667 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2668 
2669 	pci_free_irq_vectors(pdev);
2670 
2671 	if (pci_is_enabled(pdev)) {
2672 		pci_disable_pcie_error_reporting(pdev);
2673 		pci_disable_device(pdev);
2674 	}
2675 }
2676 
2677 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2678 {
2679 	bool dead = true, freeze = false;
2680 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2681 
2682 	mutex_lock(&dev->shutdown_lock);
2683 	if (pci_is_enabled(pdev)) {
2684 		u32 csts;
2685 
2686 		if (pci_device_is_present(pdev))
2687 			csts = readl(dev->bar + NVME_REG_CSTS);
2688 		else
2689 			csts = ~0;
2690 
2691 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2692 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2693 			freeze = true;
2694 			nvme_start_freeze(&dev->ctrl);
2695 		}
2696 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2697 			pdev->error_state  != pci_channel_io_normal);
2698 	}
2699 
2700 	/*
2701 	 * Give the controller a chance to complete all entered requests if
2702 	 * doing a safe shutdown.
2703 	 */
2704 	if (!dead && shutdown && freeze)
2705 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2706 
2707 	nvme_quiesce_io_queues(&dev->ctrl);
2708 
2709 	if (!dead && dev->ctrl.queue_count > 0) {
2710 		nvme_disable_io_queues(dev);
2711 		nvme_disable_admin_queue(dev, shutdown);
2712 	}
2713 	nvme_suspend_io_queues(dev);
2714 	nvme_suspend_queue(&dev->queues[0]);
2715 	nvme_pci_disable(dev);
2716 	nvme_reap_pending_cqes(dev);
2717 
2718 	nvme_cancel_tagset(&dev->ctrl);
2719 	nvme_cancel_admin_tagset(&dev->ctrl);
2720 
2721 	/*
2722 	 * The driver will not be starting up queues again if shutting down so
2723 	 * must flush all entered requests to their failed completion to avoid
2724 	 * deadlocking blk-mq hot-cpu notifier.
2725 	 */
2726 	if (shutdown) {
2727 		nvme_unquiesce_io_queues(&dev->ctrl);
2728 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2729 			nvme_unquiesce_admin_queue(&dev->ctrl);
2730 	}
2731 	mutex_unlock(&dev->shutdown_lock);
2732 }
2733 
2734 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2735 {
2736 	if (!nvme_wait_reset(&dev->ctrl))
2737 		return -EBUSY;
2738 	nvme_dev_disable(dev, shutdown);
2739 	return 0;
2740 }
2741 
2742 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2743 {
2744 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2745 						NVME_CTRL_PAGE_SIZE,
2746 						NVME_CTRL_PAGE_SIZE, 0);
2747 	if (!dev->prp_page_pool)
2748 		return -ENOMEM;
2749 
2750 	/* Optimisation for I/Os between 4k and 128k */
2751 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2752 						256, 256, 0);
2753 	if (!dev->prp_small_pool) {
2754 		dma_pool_destroy(dev->prp_page_pool);
2755 		return -ENOMEM;
2756 	}
2757 	return 0;
2758 }
2759 
2760 static void nvme_release_prp_pools(struct nvme_dev *dev)
2761 {
2762 	dma_pool_destroy(dev->prp_page_pool);
2763 	dma_pool_destroy(dev->prp_small_pool);
2764 }
2765 
2766 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2767 {
2768 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2769 	size_t alloc_size = sizeof(__le64 *) * npages +
2770 			    sizeof(struct scatterlist) * NVME_MAX_SEGS;
2771 
2772 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2773 	dev->iod_mempool = mempool_create_node(1,
2774 			mempool_kmalloc, mempool_kfree,
2775 			(void *)alloc_size, GFP_KERNEL,
2776 			dev_to_node(dev->dev));
2777 	if (!dev->iod_mempool)
2778 		return -ENOMEM;
2779 	return 0;
2780 }
2781 
2782 static void nvme_free_tagset(struct nvme_dev *dev)
2783 {
2784 	if (dev->tagset.tags)
2785 		blk_mq_free_tag_set(&dev->tagset);
2786 	dev->ctrl.tagset = NULL;
2787 }
2788 
2789 /* pairs with nvme_pci_alloc_dev */
2790 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2791 {
2792 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2793 
2794 	nvme_free_tagset(dev);
2795 	put_device(dev->dev);
2796 	kfree(dev->queues);
2797 	kfree(dev);
2798 }
2799 
2800 static void nvme_reset_work(struct work_struct *work)
2801 {
2802 	struct nvme_dev *dev =
2803 		container_of(work, struct nvme_dev, ctrl.reset_work);
2804 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2805 	int result;
2806 
2807 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2808 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2809 			 dev->ctrl.state);
2810 		result = -ENODEV;
2811 		goto out;
2812 	}
2813 
2814 	/*
2815 	 * If we're called to reset a live controller first shut it down before
2816 	 * moving on.
2817 	 */
2818 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2819 		nvme_dev_disable(dev, false);
2820 	nvme_sync_queues(&dev->ctrl);
2821 
2822 	mutex_lock(&dev->shutdown_lock);
2823 	result = nvme_pci_enable(dev);
2824 	if (result)
2825 		goto out_unlock;
2826 	nvme_unquiesce_admin_queue(&dev->ctrl);
2827 	mutex_unlock(&dev->shutdown_lock);
2828 
2829 	/*
2830 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2831 	 * initializing procedure here.
2832 	 */
2833 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2834 		dev_warn(dev->ctrl.device,
2835 			"failed to mark controller CONNECTING\n");
2836 		result = -EBUSY;
2837 		goto out;
2838 	}
2839 
2840 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2841 	if (result)
2842 		goto out;
2843 
2844 	nvme_dbbuf_dma_alloc(dev);
2845 
2846 	result = nvme_setup_host_mem(dev);
2847 	if (result < 0)
2848 		goto out;
2849 
2850 	result = nvme_setup_io_queues(dev);
2851 	if (result)
2852 		goto out;
2853 
2854 	/*
2855 	 * Freeze and update the number of I/O queues as thos might have
2856 	 * changed.  If there are no I/O queues left after this reset, keep the
2857 	 * controller around but remove all namespaces.
2858 	 */
2859 	if (dev->online_queues > 1) {
2860 		nvme_unquiesce_io_queues(&dev->ctrl);
2861 		nvme_wait_freeze(&dev->ctrl);
2862 		nvme_pci_update_nr_queues(dev);
2863 		nvme_dbbuf_set(dev);
2864 		nvme_unfreeze(&dev->ctrl);
2865 	} else {
2866 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2867 		nvme_mark_namespaces_dead(&dev->ctrl);
2868 		nvme_unquiesce_io_queues(&dev->ctrl);
2869 		nvme_remove_namespaces(&dev->ctrl);
2870 		nvme_free_tagset(dev);
2871 	}
2872 
2873 	/*
2874 	 * If only admin queue live, keep it to do further investigation or
2875 	 * recovery.
2876 	 */
2877 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2878 		dev_warn(dev->ctrl.device,
2879 			"failed to mark controller live state\n");
2880 		result = -ENODEV;
2881 		goto out;
2882 	}
2883 
2884 	nvme_start_ctrl(&dev->ctrl);
2885 	return;
2886 
2887  out_unlock:
2888 	mutex_unlock(&dev->shutdown_lock);
2889  out:
2890 	/*
2891 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2892 	 * may be holding this pci_dev's device lock.
2893 	 */
2894 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2895 		 result);
2896 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2897 	nvme_dev_disable(dev, true);
2898 	nvme_mark_namespaces_dead(&dev->ctrl);
2899 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2900 }
2901 
2902 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2903 {
2904 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2905 	return 0;
2906 }
2907 
2908 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2909 {
2910 	writel(val, to_nvme_dev(ctrl)->bar + off);
2911 	return 0;
2912 }
2913 
2914 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2915 {
2916 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2917 	return 0;
2918 }
2919 
2920 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2921 {
2922 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2923 
2924 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2925 }
2926 
2927 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2928 {
2929 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2930 	struct nvme_subsystem *subsys = ctrl->subsys;
2931 
2932 	dev_err(ctrl->device,
2933 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2934 		pdev->vendor, pdev->device,
2935 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2936 		subsys->model, nvme_strlen(subsys->firmware_rev,
2937 					   sizeof(subsys->firmware_rev)),
2938 		subsys->firmware_rev);
2939 }
2940 
2941 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2942 {
2943 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2944 
2945 	return dma_pci_p2pdma_supported(dev->dev);
2946 }
2947 
2948 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2949 	.name			= "pcie",
2950 	.module			= THIS_MODULE,
2951 	.flags			= NVME_F_METADATA_SUPPORTED,
2952 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2953 	.reg_read32		= nvme_pci_reg_read32,
2954 	.reg_write32		= nvme_pci_reg_write32,
2955 	.reg_read64		= nvme_pci_reg_read64,
2956 	.free_ctrl		= nvme_pci_free_ctrl,
2957 	.submit_async_event	= nvme_pci_submit_async_event,
2958 	.get_address		= nvme_pci_get_address,
2959 	.print_device_info	= nvme_pci_print_device_info,
2960 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2961 };
2962 
2963 static int nvme_dev_map(struct nvme_dev *dev)
2964 {
2965 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2966 
2967 	if (pci_request_mem_regions(pdev, "nvme"))
2968 		return -ENODEV;
2969 
2970 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2971 		goto release;
2972 
2973 	return 0;
2974   release:
2975 	pci_release_mem_regions(pdev);
2976 	return -ENODEV;
2977 }
2978 
2979 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2980 {
2981 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2982 		/*
2983 		 * Several Samsung devices seem to drop off the PCIe bus
2984 		 * randomly when APST is on and uses the deepest sleep state.
2985 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2986 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2987 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2988 		 * laptops.
2989 		 */
2990 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2991 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2992 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2993 			return NVME_QUIRK_NO_DEEPEST_PS;
2994 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2995 		/*
2996 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2997 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2998 		 * within few minutes after bootup on a Coffee Lake board -
2999 		 * ASUS PRIME Z370-A
3000 		 */
3001 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3002 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3003 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3004 			return NVME_QUIRK_NO_APST;
3005 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3006 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3007 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3008 		/*
3009 		 * Forcing to use host managed nvme power settings for
3010 		 * lowest idle power with quick resume latency on
3011 		 * Samsung and Toshiba SSDs based on suspend behavior
3012 		 * on Coffee Lake board for LENOVO C640
3013 		 */
3014 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3015 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3016 			return NVME_QUIRK_SIMPLE_SUSPEND;
3017 	}
3018 
3019 	return 0;
3020 }
3021 
3022 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3023 		const struct pci_device_id *id)
3024 {
3025 	unsigned long quirks = id->driver_data;
3026 	int node = dev_to_node(&pdev->dev);
3027 	struct nvme_dev *dev;
3028 	int ret = -ENOMEM;
3029 
3030 	if (node == NUMA_NO_NODE)
3031 		set_dev_node(&pdev->dev, first_memory_node);
3032 
3033 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3034 	if (!dev)
3035 		return NULL;
3036 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3037 	mutex_init(&dev->shutdown_lock);
3038 
3039 	dev->nr_write_queues = write_queues;
3040 	dev->nr_poll_queues = poll_queues;
3041 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3042 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3043 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3044 	if (!dev->queues)
3045 		goto out_free_dev;
3046 
3047 	dev->dev = get_device(&pdev->dev);
3048 
3049 	quirks |= check_vendor_combination_bug(pdev);
3050 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3051 		/*
3052 		 * Some systems use a bios work around to ask for D3 on
3053 		 * platforms that support kernel managed suspend.
3054 		 */
3055 		dev_info(&pdev->dev,
3056 			 "platform quirk: setting simple suspend\n");
3057 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3058 	}
3059 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3060 			     quirks);
3061 	if (ret)
3062 		goto out_put_device;
3063 
3064 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3065 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3066 
3067 	/*
3068 	 * Limit the max command size to prevent iod->sg allocations going
3069 	 * over a single page.
3070 	 */
3071 	dev->ctrl.max_hw_sectors = min_t(u32,
3072 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
3073 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3074 
3075 	/*
3076 	 * There is no support for SGLs for metadata (yet), so we are limited to
3077 	 * a single integrity segment for the separate metadata pointer.
3078 	 */
3079 	dev->ctrl.max_integrity_segments = 1;
3080 	return dev;
3081 
3082 out_put_device:
3083 	put_device(dev->dev);
3084 	kfree(dev->queues);
3085 out_free_dev:
3086 	kfree(dev);
3087 	return ERR_PTR(ret);
3088 }
3089 
3090 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3091 {
3092 	struct nvme_dev *dev;
3093 	int result = -ENOMEM;
3094 
3095 	dev = nvme_pci_alloc_dev(pdev, id);
3096 	if (!dev)
3097 		return -ENOMEM;
3098 
3099 	result = nvme_dev_map(dev);
3100 	if (result)
3101 		goto out_uninit_ctrl;
3102 
3103 	result = nvme_setup_prp_pools(dev);
3104 	if (result)
3105 		goto out_dev_unmap;
3106 
3107 	result = nvme_pci_alloc_iod_mempool(dev);
3108 	if (result)
3109 		goto out_release_prp_pools;
3110 
3111 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3112 
3113 	result = nvme_pci_enable(dev);
3114 	if (result)
3115 		goto out_release_iod_mempool;
3116 
3117 	result = nvme_pci_alloc_admin_tag_set(dev);
3118 	if (result)
3119 		goto out_disable;
3120 
3121 	/*
3122 	 * Mark the controller as connecting before sending admin commands to
3123 	 * allow the timeout handler to do the right thing.
3124 	 */
3125 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3126 		dev_warn(dev->ctrl.device,
3127 			"failed to mark controller CONNECTING\n");
3128 		result = -EBUSY;
3129 		goto out_disable;
3130 	}
3131 
3132 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3133 	if (result)
3134 		goto out_disable;
3135 
3136 	nvme_dbbuf_dma_alloc(dev);
3137 
3138 	result = nvme_setup_host_mem(dev);
3139 	if (result < 0)
3140 		goto out_disable;
3141 
3142 	result = nvme_setup_io_queues(dev);
3143 	if (result)
3144 		goto out_disable;
3145 
3146 	if (dev->online_queues > 1) {
3147 		nvme_pci_alloc_tag_set(dev);
3148 		nvme_dbbuf_set(dev);
3149 	} else {
3150 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3151 	}
3152 
3153 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3154 		dev_warn(dev->ctrl.device,
3155 			"failed to mark controller live state\n");
3156 		result = -ENODEV;
3157 		goto out_disable;
3158 	}
3159 
3160 	pci_set_drvdata(pdev, dev);
3161 
3162 	nvme_start_ctrl(&dev->ctrl);
3163 	nvme_put_ctrl(&dev->ctrl);
3164 	return 0;
3165 
3166 out_disable:
3167 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3168 	nvme_dev_disable(dev, true);
3169 	nvme_free_host_mem(dev);
3170 	nvme_dev_remove_admin(dev);
3171 	nvme_dbbuf_dma_free(dev);
3172 	nvme_free_queues(dev, 0);
3173 out_release_iod_mempool:
3174 	mempool_destroy(dev->iod_mempool);
3175 out_release_prp_pools:
3176 	nvme_release_prp_pools(dev);
3177 out_dev_unmap:
3178 	nvme_dev_unmap(dev);
3179 out_uninit_ctrl:
3180 	nvme_uninit_ctrl(&dev->ctrl);
3181 	return result;
3182 }
3183 
3184 static void nvme_reset_prepare(struct pci_dev *pdev)
3185 {
3186 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3187 
3188 	/*
3189 	 * We don't need to check the return value from waiting for the reset
3190 	 * state as pci_dev device lock is held, making it impossible to race
3191 	 * with ->remove().
3192 	 */
3193 	nvme_disable_prepare_reset(dev, false);
3194 	nvme_sync_queues(&dev->ctrl);
3195 }
3196 
3197 static void nvme_reset_done(struct pci_dev *pdev)
3198 {
3199 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3200 
3201 	if (!nvme_try_sched_reset(&dev->ctrl))
3202 		flush_work(&dev->ctrl.reset_work);
3203 }
3204 
3205 static void nvme_shutdown(struct pci_dev *pdev)
3206 {
3207 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3208 
3209 	nvme_disable_prepare_reset(dev, true);
3210 }
3211 
3212 /*
3213  * The driver's remove may be called on a device in a partially initialized
3214  * state. This function must not have any dependencies on the device state in
3215  * order to proceed.
3216  */
3217 static void nvme_remove(struct pci_dev *pdev)
3218 {
3219 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3220 
3221 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3222 	pci_set_drvdata(pdev, NULL);
3223 
3224 	if (!pci_device_is_present(pdev)) {
3225 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3226 		nvme_dev_disable(dev, true);
3227 	}
3228 
3229 	flush_work(&dev->ctrl.reset_work);
3230 	nvme_stop_ctrl(&dev->ctrl);
3231 	nvme_remove_namespaces(&dev->ctrl);
3232 	nvme_dev_disable(dev, true);
3233 	nvme_free_host_mem(dev);
3234 	nvme_dev_remove_admin(dev);
3235 	nvme_dbbuf_dma_free(dev);
3236 	nvme_free_queues(dev, 0);
3237 	mempool_destroy(dev->iod_mempool);
3238 	nvme_release_prp_pools(dev);
3239 	nvme_dev_unmap(dev);
3240 	nvme_uninit_ctrl(&dev->ctrl);
3241 }
3242 
3243 #ifdef CONFIG_PM_SLEEP
3244 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3245 {
3246 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3247 }
3248 
3249 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3250 {
3251 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3252 }
3253 
3254 static int nvme_resume(struct device *dev)
3255 {
3256 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3257 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3258 
3259 	if (ndev->last_ps == U32_MAX ||
3260 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3261 		goto reset;
3262 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3263 		goto reset;
3264 
3265 	return 0;
3266 reset:
3267 	return nvme_try_sched_reset(ctrl);
3268 }
3269 
3270 static int nvme_suspend(struct device *dev)
3271 {
3272 	struct pci_dev *pdev = to_pci_dev(dev);
3273 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3274 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3275 	int ret = -EBUSY;
3276 
3277 	ndev->last_ps = U32_MAX;
3278 
3279 	/*
3280 	 * The platform does not remove power for a kernel managed suspend so
3281 	 * use host managed nvme power settings for lowest idle power if
3282 	 * possible. This should have quicker resume latency than a full device
3283 	 * shutdown.  But if the firmware is involved after the suspend or the
3284 	 * device does not support any non-default power states, shut down the
3285 	 * device fully.
3286 	 *
3287 	 * If ASPM is not enabled for the device, shut down the device and allow
3288 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3289 	 * down, so as to allow the platform to achieve its minimum low-power
3290 	 * state (which may not be possible if the link is up).
3291 	 */
3292 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3293 	    !pcie_aspm_enabled(pdev) ||
3294 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3295 		return nvme_disable_prepare_reset(ndev, true);
3296 
3297 	nvme_start_freeze(ctrl);
3298 	nvme_wait_freeze(ctrl);
3299 	nvme_sync_queues(ctrl);
3300 
3301 	if (ctrl->state != NVME_CTRL_LIVE)
3302 		goto unfreeze;
3303 
3304 	/*
3305 	 * Host memory access may not be successful in a system suspend state,
3306 	 * but the specification allows the controller to access memory in a
3307 	 * non-operational power state.
3308 	 */
3309 	if (ndev->hmb) {
3310 		ret = nvme_set_host_mem(ndev, 0);
3311 		if (ret < 0)
3312 			goto unfreeze;
3313 	}
3314 
3315 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3316 	if (ret < 0)
3317 		goto unfreeze;
3318 
3319 	/*
3320 	 * A saved state prevents pci pm from generically controlling the
3321 	 * device's power. If we're using protocol specific settings, we don't
3322 	 * want pci interfering.
3323 	 */
3324 	pci_save_state(pdev);
3325 
3326 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3327 	if (ret < 0)
3328 		goto unfreeze;
3329 
3330 	if (ret) {
3331 		/* discard the saved state */
3332 		pci_load_saved_state(pdev, NULL);
3333 
3334 		/*
3335 		 * Clearing npss forces a controller reset on resume. The
3336 		 * correct value will be rediscovered then.
3337 		 */
3338 		ret = nvme_disable_prepare_reset(ndev, true);
3339 		ctrl->npss = 0;
3340 	}
3341 unfreeze:
3342 	nvme_unfreeze(ctrl);
3343 	return ret;
3344 }
3345 
3346 static int nvme_simple_suspend(struct device *dev)
3347 {
3348 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3349 
3350 	return nvme_disable_prepare_reset(ndev, true);
3351 }
3352 
3353 static int nvme_simple_resume(struct device *dev)
3354 {
3355 	struct pci_dev *pdev = to_pci_dev(dev);
3356 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3357 
3358 	return nvme_try_sched_reset(&ndev->ctrl);
3359 }
3360 
3361 static const struct dev_pm_ops nvme_dev_pm_ops = {
3362 	.suspend	= nvme_suspend,
3363 	.resume		= nvme_resume,
3364 	.freeze		= nvme_simple_suspend,
3365 	.thaw		= nvme_simple_resume,
3366 	.poweroff	= nvme_simple_suspend,
3367 	.restore	= nvme_simple_resume,
3368 };
3369 #endif /* CONFIG_PM_SLEEP */
3370 
3371 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3372 						pci_channel_state_t state)
3373 {
3374 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3375 
3376 	/*
3377 	 * A frozen channel requires a reset. When detected, this method will
3378 	 * shutdown the controller to quiesce. The controller will be restarted
3379 	 * after the slot reset through driver's slot_reset callback.
3380 	 */
3381 	switch (state) {
3382 	case pci_channel_io_normal:
3383 		return PCI_ERS_RESULT_CAN_RECOVER;
3384 	case pci_channel_io_frozen:
3385 		dev_warn(dev->ctrl.device,
3386 			"frozen state error detected, reset controller\n");
3387 		nvme_dev_disable(dev, false);
3388 		return PCI_ERS_RESULT_NEED_RESET;
3389 	case pci_channel_io_perm_failure:
3390 		dev_warn(dev->ctrl.device,
3391 			"failure state error detected, request disconnect\n");
3392 		return PCI_ERS_RESULT_DISCONNECT;
3393 	}
3394 	return PCI_ERS_RESULT_NEED_RESET;
3395 }
3396 
3397 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3398 {
3399 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3400 
3401 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3402 	pci_restore_state(pdev);
3403 	nvme_reset_ctrl(&dev->ctrl);
3404 	return PCI_ERS_RESULT_RECOVERED;
3405 }
3406 
3407 static void nvme_error_resume(struct pci_dev *pdev)
3408 {
3409 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3410 
3411 	flush_work(&dev->ctrl.reset_work);
3412 }
3413 
3414 static const struct pci_error_handlers nvme_err_handler = {
3415 	.error_detected	= nvme_error_detected,
3416 	.slot_reset	= nvme_slot_reset,
3417 	.resume		= nvme_error_resume,
3418 	.reset_prepare	= nvme_reset_prepare,
3419 	.reset_done	= nvme_reset_done,
3420 };
3421 
3422 static const struct pci_device_id nvme_id_table[] = {
3423 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3424 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3425 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3426 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3427 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3428 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3429 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3430 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3431 				NVME_QUIRK_DEALLOCATE_ZEROES |
3432 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3433 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3434 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3435 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3436 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3437 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3438 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3439 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3440 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3441 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3442 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3443 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3444 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3445 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3446 				NVME_QUIRK_BOGUS_NID, },
3447 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3448 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3449 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3450 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3451 				NVME_QUIRK_BOGUS_NID, },
3452 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3453 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3454 				NVME_QUIRK_NO_NS_DESC_LIST, },
3455 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3456 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3457 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3458 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3459 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3460 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3461 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3462 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3463 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3464 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3465 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3466 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3467 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3468 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3469 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3470 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3471 				NVME_QUIRK_BOGUS_NID, },
3472 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3473 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3474 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3475 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3476 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3477 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3478 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3479 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3480 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3481 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3482 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3483 				NVME_QUIRK_BOGUS_NID, },
3484 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3485 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3486 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3487 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3488 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3489 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3490 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3491 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3492 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3493 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3494 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3495 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3496 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3497 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3498 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3499 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3500 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3501 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3502 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3503 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3504 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3505 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3506 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3507 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3508 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3509 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3510 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3511 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3512 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3513 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3514 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3515 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3516 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3517 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3518 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3519 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3520 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3521 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3522 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3523 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3524 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3525 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3526 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3527 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3528 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3529 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3530 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3531 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3532 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3533 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3534 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3535 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3536 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3537 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3538 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3539 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3540 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3541 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3542 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3543 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3544 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3545 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3546 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3547 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3548 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3549 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3550 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3551 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3552 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3553 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3554 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3555 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3556 				NVME_QUIRK_128_BYTES_SQES |
3557 				NVME_QUIRK_SHARED_TAGS |
3558 				NVME_QUIRK_SKIP_CID_GEN },
3559 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3560 	{ 0, }
3561 };
3562 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3563 
3564 static struct pci_driver nvme_driver = {
3565 	.name		= "nvme",
3566 	.id_table	= nvme_id_table,
3567 	.probe		= nvme_probe,
3568 	.remove		= nvme_remove,
3569 	.shutdown	= nvme_shutdown,
3570 	.driver		= {
3571 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3572 #ifdef CONFIG_PM_SLEEP
3573 		.pm		= &nvme_dev_pm_ops,
3574 #endif
3575 	},
3576 	.sriov_configure = pci_sriov_configure_simple,
3577 	.err_handler	= &nvme_err_handler,
3578 };
3579 
3580 static int __init nvme_init(void)
3581 {
3582 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3583 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3584 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3585 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3586 	BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3587 		     S8_MAX);
3588 
3589 	return pci_register_driver(&nvme_driver);
3590 }
3591 
3592 static void __exit nvme_exit(void)
3593 {
3594 	pci_unregister_driver(&nvme_driver);
3595 	flush_workqueue(nvme_wq);
3596 }
3597 
3598 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3599 MODULE_LICENSE("GPL");
3600 MODULE_VERSION("1.0");
3601 module_init(nvme_init);
3602 module_exit(nvme_exit);
3603