xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 };
21 
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23 
24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26 	if (!val)
27 		return -EINVAL;
28 	if (!strncmp(val, "numa", 4))
29 		iopolicy = NVME_IOPOLICY_NUMA;
30 	else if (!strncmp(val, "round-robin", 11))
31 		iopolicy = NVME_IOPOLICY_RR;
32 	else
33 		return -EINVAL;
34 
35 	return 0;
36 }
37 
38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42 
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 	&iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46 	"Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47 
48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50 	subsys->iopolicy = iopolicy;
51 }
52 
53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55 	struct nvme_ns_head *h;
56 
57 	lockdep_assert_held(&subsys->lock);
58 	list_for_each_entry(h, &subsys->nsheads, entry)
59 		if (h->disk)
60 			blk_mq_unfreeze_queue(h->disk->queue);
61 }
62 
63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65 	struct nvme_ns_head *h;
66 
67 	lockdep_assert_held(&subsys->lock);
68 	list_for_each_entry(h, &subsys->nsheads, entry)
69 		if (h->disk)
70 			blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72 
73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75 	struct nvme_ns_head *h;
76 
77 	lockdep_assert_held(&subsys->lock);
78 	list_for_each_entry(h, &subsys->nsheads, entry)
79 		if (h->disk)
80 			blk_freeze_queue_start(h->disk->queue);
81 }
82 
83 void nvme_failover_req(struct request *req)
84 {
85 	struct nvme_ns *ns = req->q->queuedata;
86 	u16 status = nvme_req(req)->status & 0x7ff;
87 	unsigned long flags;
88 	struct bio *bio;
89 
90 	nvme_mpath_clear_current_path(ns);
91 
92 	/*
93 	 * If we got back an ANA error, we know the controller is alive but not
94 	 * ready to serve this namespace.  Kick of a re-read of the ANA
95 	 * information page, and just try any other available path for now.
96 	 */
97 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 		queue_work(nvme_wq, &ns->ctrl->ana_work);
100 	}
101 
102 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 	for (bio = req->bio; bio; bio = bio->bi_next) {
104 		bio_set_dev(bio, ns->head->disk->part0);
105 		if (bio->bi_opf & REQ_POLLED) {
106 			bio->bi_opf &= ~REQ_POLLED;
107 			bio->bi_cookie = BLK_QC_T_NONE;
108 		}
109 	}
110 	blk_steal_bios(&ns->head->requeue_list, req);
111 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
112 
113 	blk_mq_end_request(req, 0);
114 	kblockd_schedule_work(&ns->head->requeue_work);
115 }
116 
117 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
118 {
119 	struct nvme_ns *ns;
120 
121 	down_read(&ctrl->namespaces_rwsem);
122 	list_for_each_entry(ns, &ctrl->namespaces, list) {
123 		if (!ns->head->disk)
124 			continue;
125 		kblockd_schedule_work(&ns->head->requeue_work);
126 		if (ctrl->state == NVME_CTRL_LIVE)
127 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
128 	}
129 	up_read(&ctrl->namespaces_rwsem);
130 }
131 
132 static const char *nvme_ana_state_names[] = {
133 	[0]				= "invalid state",
134 	[NVME_ANA_OPTIMIZED]		= "optimized",
135 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
136 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
137 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
138 	[NVME_ANA_CHANGE]		= "change",
139 };
140 
141 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
142 {
143 	struct nvme_ns_head *head = ns->head;
144 	bool changed = false;
145 	int node;
146 
147 	if (!head)
148 		goto out;
149 
150 	for_each_node(node) {
151 		if (ns == rcu_access_pointer(head->current_path[node])) {
152 			rcu_assign_pointer(head->current_path[node], NULL);
153 			changed = true;
154 		}
155 	}
156 out:
157 	return changed;
158 }
159 
160 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
161 {
162 	struct nvme_ns *ns;
163 
164 	down_read(&ctrl->namespaces_rwsem);
165 	list_for_each_entry(ns, &ctrl->namespaces, list) {
166 		nvme_mpath_clear_current_path(ns);
167 		kblockd_schedule_work(&ns->head->requeue_work);
168 	}
169 	up_read(&ctrl->namespaces_rwsem);
170 }
171 
172 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
173 {
174 	struct nvme_ns_head *head = ns->head;
175 	sector_t capacity = get_capacity(head->disk);
176 	int node;
177 
178 	list_for_each_entry_rcu(ns, &head->list, siblings) {
179 		if (capacity != get_capacity(ns->disk))
180 			clear_bit(NVME_NS_READY, &ns->flags);
181 	}
182 
183 	for_each_node(node)
184 		rcu_assign_pointer(head->current_path[node], NULL);
185 }
186 
187 static bool nvme_path_is_disabled(struct nvme_ns *ns)
188 {
189 	/*
190 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
191 	 * still be able to complete assuming that the controller is connected.
192 	 * Otherwise it will fail immediately and return to the requeue list.
193 	 */
194 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
195 	    ns->ctrl->state != NVME_CTRL_DELETING)
196 		return true;
197 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
198 	    !test_bit(NVME_NS_READY, &ns->flags))
199 		return true;
200 	return false;
201 }
202 
203 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
204 {
205 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
206 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
207 
208 	list_for_each_entry_rcu(ns, &head->list, siblings) {
209 		if (nvme_path_is_disabled(ns))
210 			continue;
211 
212 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
213 			distance = node_distance(node, ns->ctrl->numa_node);
214 		else
215 			distance = LOCAL_DISTANCE;
216 
217 		switch (ns->ana_state) {
218 		case NVME_ANA_OPTIMIZED:
219 			if (distance < found_distance) {
220 				found_distance = distance;
221 				found = ns;
222 			}
223 			break;
224 		case NVME_ANA_NONOPTIMIZED:
225 			if (distance < fallback_distance) {
226 				fallback_distance = distance;
227 				fallback = ns;
228 			}
229 			break;
230 		default:
231 			break;
232 		}
233 	}
234 
235 	if (!found)
236 		found = fallback;
237 	if (found)
238 		rcu_assign_pointer(head->current_path[node], found);
239 	return found;
240 }
241 
242 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
243 		struct nvme_ns *ns)
244 {
245 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
246 			siblings);
247 	if (ns)
248 		return ns;
249 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
250 }
251 
252 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
253 		int node, struct nvme_ns *old)
254 {
255 	struct nvme_ns *ns, *found = NULL;
256 
257 	if (list_is_singular(&head->list)) {
258 		if (nvme_path_is_disabled(old))
259 			return NULL;
260 		return old;
261 	}
262 
263 	for (ns = nvme_next_ns(head, old);
264 	     ns && ns != old;
265 	     ns = nvme_next_ns(head, ns)) {
266 		if (nvme_path_is_disabled(ns))
267 			continue;
268 
269 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
270 			found = ns;
271 			goto out;
272 		}
273 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
274 			found = ns;
275 	}
276 
277 	/*
278 	 * The loop above skips the current path for round-robin semantics.
279 	 * Fall back to the current path if either:
280 	 *  - no other optimized path found and current is optimized,
281 	 *  - no other usable path found and current is usable.
282 	 */
283 	if (!nvme_path_is_disabled(old) &&
284 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
285 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
286 		return old;
287 
288 	if (!found)
289 		return NULL;
290 out:
291 	rcu_assign_pointer(head->current_path[node], found);
292 	return found;
293 }
294 
295 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
296 {
297 	return ns->ctrl->state == NVME_CTRL_LIVE &&
298 		ns->ana_state == NVME_ANA_OPTIMIZED;
299 }
300 
301 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
302 {
303 	int node = numa_node_id();
304 	struct nvme_ns *ns;
305 
306 	ns = srcu_dereference(head->current_path[node], &head->srcu);
307 	if (unlikely(!ns))
308 		return __nvme_find_path(head, node);
309 
310 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
311 		return nvme_round_robin_path(head, node, ns);
312 	if (unlikely(!nvme_path_is_optimized(ns)))
313 		return __nvme_find_path(head, node);
314 	return ns;
315 }
316 
317 static bool nvme_available_path(struct nvme_ns_head *head)
318 {
319 	struct nvme_ns *ns;
320 
321 	list_for_each_entry_rcu(ns, &head->list, siblings) {
322 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
323 			continue;
324 		switch (ns->ctrl->state) {
325 		case NVME_CTRL_LIVE:
326 		case NVME_CTRL_RESETTING:
327 		case NVME_CTRL_CONNECTING:
328 			/* fallthru */
329 			return true;
330 		default:
331 			break;
332 		}
333 	}
334 	return false;
335 }
336 
337 static void nvme_ns_head_submit_bio(struct bio *bio)
338 {
339 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
340 	struct device *dev = disk_to_dev(head->disk);
341 	struct nvme_ns *ns;
342 	int srcu_idx;
343 
344 	/*
345 	 * The namespace might be going away and the bio might be moved to a
346 	 * different queue via blk_steal_bios(), so we need to use the bio_split
347 	 * pool from the original queue to allocate the bvecs from.
348 	 */
349 	bio = bio_split_to_limits(bio);
350 
351 	srcu_idx = srcu_read_lock(&head->srcu);
352 	ns = nvme_find_path(head);
353 	if (likely(ns)) {
354 		bio_set_dev(bio, ns->disk->part0);
355 		bio->bi_opf |= REQ_NVME_MPATH;
356 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
357 				      bio->bi_iter.bi_sector);
358 		submit_bio_noacct(bio);
359 	} else if (nvme_available_path(head)) {
360 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
361 
362 		spin_lock_irq(&head->requeue_lock);
363 		bio_list_add(&head->requeue_list, bio);
364 		spin_unlock_irq(&head->requeue_lock);
365 	} else {
366 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
367 
368 		bio_io_error(bio);
369 	}
370 
371 	srcu_read_unlock(&head->srcu, srcu_idx);
372 }
373 
374 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
375 {
376 	if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
377 		return -ENXIO;
378 	return 0;
379 }
380 
381 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
382 {
383 	nvme_put_ns_head(disk->private_data);
384 }
385 
386 #ifdef CONFIG_BLK_DEV_ZONED
387 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
388 		unsigned int nr_zones, report_zones_cb cb, void *data)
389 {
390 	struct nvme_ns_head *head = disk->private_data;
391 	struct nvme_ns *ns;
392 	int srcu_idx, ret = -EWOULDBLOCK;
393 
394 	srcu_idx = srcu_read_lock(&head->srcu);
395 	ns = nvme_find_path(head);
396 	if (ns)
397 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
398 	srcu_read_unlock(&head->srcu, srcu_idx);
399 	return ret;
400 }
401 #else
402 #define nvme_ns_head_report_zones	NULL
403 #endif /* CONFIG_BLK_DEV_ZONED */
404 
405 const struct block_device_operations nvme_ns_head_ops = {
406 	.owner		= THIS_MODULE,
407 	.submit_bio	= nvme_ns_head_submit_bio,
408 	.open		= nvme_ns_head_open,
409 	.release	= nvme_ns_head_release,
410 	.ioctl		= nvme_ns_head_ioctl,
411 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
412 	.getgeo		= nvme_getgeo,
413 	.report_zones	= nvme_ns_head_report_zones,
414 	.pr_ops		= &nvme_pr_ops,
415 };
416 
417 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
418 {
419 	return container_of(cdev, struct nvme_ns_head, cdev);
420 }
421 
422 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
423 {
424 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
425 		return -ENXIO;
426 	return 0;
427 }
428 
429 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
430 {
431 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
432 	return 0;
433 }
434 
435 static const struct file_operations nvme_ns_head_chr_fops = {
436 	.owner		= THIS_MODULE,
437 	.open		= nvme_ns_head_chr_open,
438 	.release	= nvme_ns_head_chr_release,
439 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
440 	.compat_ioctl	= compat_ptr_ioctl,
441 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
442 };
443 
444 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
445 {
446 	int ret;
447 
448 	head->cdev_device.parent = &head->subsys->dev;
449 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
450 			   head->subsys->instance, head->instance);
451 	if (ret)
452 		return ret;
453 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
454 			    &nvme_ns_head_chr_fops, THIS_MODULE);
455 	return ret;
456 }
457 
458 static void nvme_requeue_work(struct work_struct *work)
459 {
460 	struct nvme_ns_head *head =
461 		container_of(work, struct nvme_ns_head, requeue_work);
462 	struct bio *bio, *next;
463 
464 	spin_lock_irq(&head->requeue_lock);
465 	next = bio_list_get(&head->requeue_list);
466 	spin_unlock_irq(&head->requeue_lock);
467 
468 	while ((bio = next) != NULL) {
469 		next = bio->bi_next;
470 		bio->bi_next = NULL;
471 
472 		submit_bio_noacct(bio);
473 	}
474 }
475 
476 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
477 {
478 	bool vwc = false;
479 
480 	mutex_init(&head->lock);
481 	bio_list_init(&head->requeue_list);
482 	spin_lock_init(&head->requeue_lock);
483 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
484 
485 	/*
486 	 * Add a multipath node if the subsystems supports multiple controllers.
487 	 * We also do this for private namespaces as the namespace sharing flag
488 	 * could change after a rescan.
489 	 */
490 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
491 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
492 		return 0;
493 
494 	head->disk = blk_alloc_disk(ctrl->numa_node);
495 	if (!head->disk)
496 		return -ENOMEM;
497 	head->disk->fops = &nvme_ns_head_ops;
498 	head->disk->private_data = head;
499 	sprintf(head->disk->disk_name, "nvme%dn%d",
500 			ctrl->subsys->instance, head->instance);
501 
502 	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
503 	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
504 	/*
505 	 * This assumes all controllers that refer to a namespace either
506 	 * support poll queues or not.  That is not a strict guarantee,
507 	 * but if the assumption is wrong the effect is only suboptimal
508 	 * performance but not correctness problem.
509 	 */
510 	if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
511 	    ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
512 		blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
513 
514 	/* set to a default value of 512 until the disk is validated */
515 	blk_queue_logical_block_size(head->disk->queue, 512);
516 	blk_set_stacking_limits(&head->disk->queue->limits);
517 
518 	/* we need to propagate up the VMC settings */
519 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
520 		vwc = true;
521 	blk_queue_write_cache(head->disk->queue, vwc, vwc);
522 	return 0;
523 }
524 
525 static void nvme_mpath_set_live(struct nvme_ns *ns)
526 {
527 	struct nvme_ns_head *head = ns->head;
528 	int rc;
529 
530 	if (!head->disk)
531 		return;
532 
533 	/*
534 	 * test_and_set_bit() is used because it is protecting against two nvme
535 	 * paths simultaneously calling device_add_disk() on the same namespace
536 	 * head.
537 	 */
538 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
539 		rc = device_add_disk(&head->subsys->dev, head->disk,
540 				     nvme_ns_id_attr_groups);
541 		if (rc) {
542 			clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
543 			return;
544 		}
545 		nvme_add_ns_head_cdev(head);
546 	}
547 
548 	mutex_lock(&head->lock);
549 	if (nvme_path_is_optimized(ns)) {
550 		int node, srcu_idx;
551 
552 		srcu_idx = srcu_read_lock(&head->srcu);
553 		for_each_node(node)
554 			__nvme_find_path(head, node);
555 		srcu_read_unlock(&head->srcu, srcu_idx);
556 	}
557 	mutex_unlock(&head->lock);
558 
559 	synchronize_srcu(&head->srcu);
560 	kblockd_schedule_work(&head->requeue_work);
561 }
562 
563 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
564 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
565 			void *))
566 {
567 	void *base = ctrl->ana_log_buf;
568 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
569 	int error, i;
570 
571 	lockdep_assert_held(&ctrl->ana_lock);
572 
573 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
574 		struct nvme_ana_group_desc *desc = base + offset;
575 		u32 nr_nsids;
576 		size_t nsid_buf_size;
577 
578 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
579 			return -EINVAL;
580 
581 		nr_nsids = le32_to_cpu(desc->nnsids);
582 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
583 
584 		if (WARN_ON_ONCE(desc->grpid == 0))
585 			return -EINVAL;
586 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
587 			return -EINVAL;
588 		if (WARN_ON_ONCE(desc->state == 0))
589 			return -EINVAL;
590 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
591 			return -EINVAL;
592 
593 		offset += sizeof(*desc);
594 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
595 			return -EINVAL;
596 
597 		error = cb(ctrl, desc, data);
598 		if (error)
599 			return error;
600 
601 		offset += nsid_buf_size;
602 	}
603 
604 	return 0;
605 }
606 
607 static inline bool nvme_state_is_live(enum nvme_ana_state state)
608 {
609 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
610 }
611 
612 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
613 		struct nvme_ns *ns)
614 {
615 	ns->ana_grpid = le32_to_cpu(desc->grpid);
616 	ns->ana_state = desc->state;
617 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
618 	/*
619 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
620 	 * and in turn to this path device.  However we cannot accept this I/O
621 	 * if the controller is not live.  This may deadlock if called from
622 	 * nvme_mpath_init_identify() and the ctrl will never complete
623 	 * initialization, preventing I/O from completing.  For this case we
624 	 * will reprocess the ANA log page in nvme_mpath_update() once the
625 	 * controller is ready.
626 	 */
627 	if (nvme_state_is_live(ns->ana_state) &&
628 	    ns->ctrl->state == NVME_CTRL_LIVE)
629 		nvme_mpath_set_live(ns);
630 }
631 
632 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
633 		struct nvme_ana_group_desc *desc, void *data)
634 {
635 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
636 	unsigned *nr_change_groups = data;
637 	struct nvme_ns *ns;
638 
639 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
640 			le32_to_cpu(desc->grpid),
641 			nvme_ana_state_names[desc->state]);
642 
643 	if (desc->state == NVME_ANA_CHANGE)
644 		(*nr_change_groups)++;
645 
646 	if (!nr_nsids)
647 		return 0;
648 
649 	down_read(&ctrl->namespaces_rwsem);
650 	list_for_each_entry(ns, &ctrl->namespaces, list) {
651 		unsigned nsid;
652 again:
653 		nsid = le32_to_cpu(desc->nsids[n]);
654 		if (ns->head->ns_id < nsid)
655 			continue;
656 		if (ns->head->ns_id == nsid)
657 			nvme_update_ns_ana_state(desc, ns);
658 		if (++n == nr_nsids)
659 			break;
660 		if (ns->head->ns_id > nsid)
661 			goto again;
662 	}
663 	up_read(&ctrl->namespaces_rwsem);
664 	return 0;
665 }
666 
667 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
668 {
669 	u32 nr_change_groups = 0;
670 	int error;
671 
672 	mutex_lock(&ctrl->ana_lock);
673 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
674 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
675 	if (error) {
676 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
677 		goto out_unlock;
678 	}
679 
680 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
681 			nvme_update_ana_state);
682 	if (error)
683 		goto out_unlock;
684 
685 	/*
686 	 * In theory we should have an ANATT timer per group as they might enter
687 	 * the change state at different times.  But that is a lot of overhead
688 	 * just to protect against a target that keeps entering new changes
689 	 * states while never finishing previous ones.  But we'll still
690 	 * eventually time out once all groups are in change state, so this
691 	 * isn't a big deal.
692 	 *
693 	 * We also double the ANATT value to provide some slack for transports
694 	 * or AEN processing overhead.
695 	 */
696 	if (nr_change_groups)
697 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
698 	else
699 		del_timer_sync(&ctrl->anatt_timer);
700 out_unlock:
701 	mutex_unlock(&ctrl->ana_lock);
702 	return error;
703 }
704 
705 static void nvme_ana_work(struct work_struct *work)
706 {
707 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
708 
709 	if (ctrl->state != NVME_CTRL_LIVE)
710 		return;
711 
712 	nvme_read_ana_log(ctrl);
713 }
714 
715 void nvme_mpath_update(struct nvme_ctrl *ctrl)
716 {
717 	u32 nr_change_groups = 0;
718 
719 	if (!ctrl->ana_log_buf)
720 		return;
721 
722 	mutex_lock(&ctrl->ana_lock);
723 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
724 	mutex_unlock(&ctrl->ana_lock);
725 }
726 
727 static void nvme_anatt_timeout(struct timer_list *t)
728 {
729 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
730 
731 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
732 	nvme_reset_ctrl(ctrl);
733 }
734 
735 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
736 {
737 	if (!nvme_ctrl_use_ana(ctrl))
738 		return;
739 	del_timer_sync(&ctrl->anatt_timer);
740 	cancel_work_sync(&ctrl->ana_work);
741 }
742 
743 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
744 	struct device_attribute subsys_attr_##_name =	\
745 		__ATTR(_name, _mode, _show, _store)
746 
747 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
748 		struct device_attribute *attr, char *buf)
749 {
750 	struct nvme_subsystem *subsys =
751 		container_of(dev, struct nvme_subsystem, dev);
752 
753 	return sysfs_emit(buf, "%s\n",
754 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
755 }
756 
757 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
758 		struct device_attribute *attr, const char *buf, size_t count)
759 {
760 	struct nvme_subsystem *subsys =
761 		container_of(dev, struct nvme_subsystem, dev);
762 	int i;
763 
764 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
765 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
766 			WRITE_ONCE(subsys->iopolicy, i);
767 			return count;
768 		}
769 	}
770 
771 	return -EINVAL;
772 }
773 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
774 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
775 
776 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
777 		char *buf)
778 {
779 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
780 }
781 DEVICE_ATTR_RO(ana_grpid);
782 
783 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
784 		char *buf)
785 {
786 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
787 
788 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
789 }
790 DEVICE_ATTR_RO(ana_state);
791 
792 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
793 		struct nvme_ana_group_desc *desc, void *data)
794 {
795 	struct nvme_ana_group_desc *dst = data;
796 
797 	if (desc->grpid != dst->grpid)
798 		return 0;
799 
800 	*dst = *desc;
801 	return -ENXIO; /* just break out of the loop */
802 }
803 
804 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
805 {
806 	if (nvme_ctrl_use_ana(ns->ctrl)) {
807 		struct nvme_ana_group_desc desc = {
808 			.grpid = anagrpid,
809 			.state = 0,
810 		};
811 
812 		mutex_lock(&ns->ctrl->ana_lock);
813 		ns->ana_grpid = le32_to_cpu(anagrpid);
814 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
815 		mutex_unlock(&ns->ctrl->ana_lock);
816 		if (desc.state) {
817 			/* found the group desc: update */
818 			nvme_update_ns_ana_state(&desc, ns);
819 		} else {
820 			/* group desc not found: trigger a re-read */
821 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
822 			queue_work(nvme_wq, &ns->ctrl->ana_work);
823 		}
824 	} else {
825 		ns->ana_state = NVME_ANA_OPTIMIZED;
826 		nvme_mpath_set_live(ns);
827 	}
828 
829 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
830 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
831 				   ns->head->disk->queue);
832 #ifdef CONFIG_BLK_DEV_ZONED
833 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
834 		ns->head->disk->nr_zones = ns->disk->nr_zones;
835 #endif
836 }
837 
838 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
839 {
840 	if (!head->disk)
841 		return;
842 	kblockd_schedule_work(&head->requeue_work);
843 	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
844 		nvme_cdev_del(&head->cdev, &head->cdev_device);
845 		del_gendisk(head->disk);
846 	}
847 }
848 
849 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
850 {
851 	if (!head->disk)
852 		return;
853 	blk_mark_disk_dead(head->disk);
854 	/* make sure all pending bios are cleaned up */
855 	kblockd_schedule_work(&head->requeue_work);
856 	flush_work(&head->requeue_work);
857 	put_disk(head->disk);
858 }
859 
860 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
861 {
862 	mutex_init(&ctrl->ana_lock);
863 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
864 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
865 }
866 
867 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
868 {
869 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
870 	size_t ana_log_size;
871 	int error = 0;
872 
873 	/* check if multipath is enabled and we have the capability */
874 	if (!multipath || !ctrl->subsys ||
875 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
876 		return 0;
877 
878 	if (!ctrl->max_namespaces ||
879 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
880 		dev_err(ctrl->device,
881 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
882 		return -EINVAL;
883 	}
884 
885 	ctrl->anacap = id->anacap;
886 	ctrl->anatt = id->anatt;
887 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
888 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
889 
890 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
891 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
892 		ctrl->max_namespaces * sizeof(__le32);
893 	if (ana_log_size > max_transfer_size) {
894 		dev_err(ctrl->device,
895 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
896 			ana_log_size, max_transfer_size);
897 		dev_err(ctrl->device, "disabling ANA support.\n");
898 		goto out_uninit;
899 	}
900 	if (ana_log_size > ctrl->ana_log_size) {
901 		nvme_mpath_stop(ctrl);
902 		nvme_mpath_uninit(ctrl);
903 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
904 		if (!ctrl->ana_log_buf)
905 			return -ENOMEM;
906 	}
907 	ctrl->ana_log_size = ana_log_size;
908 	error = nvme_read_ana_log(ctrl);
909 	if (error)
910 		goto out_uninit;
911 	return 0;
912 
913 out_uninit:
914 	nvme_mpath_uninit(ctrl);
915 	return error;
916 }
917 
918 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
919 {
920 	kvfree(ctrl->ana_log_buf);
921 	ctrl->ana_log_buf = NULL;
922 	ctrl->ana_log_size = 0;
923 }
924