1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/slab.h> 17 #include <linux/types.h> 18 #include <linux/pr.h> 19 #include <linux/ptrace.h> 20 #include <linux/nvme_ioctl.h> 21 #include <linux/pm_qos.h> 22 #include <asm/unaligned.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 #define NVME_MINORS (1U << MINORBITS) 31 32 unsigned int admin_timeout = 60; 33 module_param(admin_timeout, uint, 0644); 34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 35 EXPORT_SYMBOL_GPL(admin_timeout); 36 37 unsigned int nvme_io_timeout = 30; 38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 40 EXPORT_SYMBOL_GPL(nvme_io_timeout); 41 42 static unsigned char shutdown_timeout = 5; 43 module_param(shutdown_timeout, byte, 0644); 44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 45 46 static u8 nvme_max_retries = 5; 47 module_param_named(max_retries, nvme_max_retries, byte, 0644); 48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 49 50 static unsigned long default_ps_max_latency_us = 100000; 51 module_param(default_ps_max_latency_us, ulong, 0644); 52 MODULE_PARM_DESC(default_ps_max_latency_us, 53 "max power saving latency for new devices; use PM QOS to change per device"); 54 55 static bool force_apst; 56 module_param(force_apst, bool, 0644); 57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 58 59 static unsigned long apst_primary_timeout_ms = 100; 60 module_param(apst_primary_timeout_ms, ulong, 0644); 61 MODULE_PARM_DESC(apst_primary_timeout_ms, 62 "primary APST timeout in ms"); 63 64 static unsigned long apst_secondary_timeout_ms = 2000; 65 module_param(apst_secondary_timeout_ms, ulong, 0644); 66 MODULE_PARM_DESC(apst_secondary_timeout_ms, 67 "secondary APST timeout in ms"); 68 69 static unsigned long apst_primary_latency_tol_us = 15000; 70 module_param(apst_primary_latency_tol_us, ulong, 0644); 71 MODULE_PARM_DESC(apst_primary_latency_tol_us, 72 "primary APST latency tolerance in us"); 73 74 static unsigned long apst_secondary_latency_tol_us = 100000; 75 module_param(apst_secondary_latency_tol_us, ulong, 0644); 76 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 77 "secondary APST latency tolerance in us"); 78 79 static bool streams; 80 module_param(streams, bool, 0644); 81 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 82 83 /* 84 * nvme_wq - hosts nvme related works that are not reset or delete 85 * nvme_reset_wq - hosts nvme reset works 86 * nvme_delete_wq - hosts nvme delete works 87 * 88 * nvme_wq will host works such as scan, aen handling, fw activation, 89 * keep-alive, periodic reconnects etc. nvme_reset_wq 90 * runs reset works which also flush works hosted on nvme_wq for 91 * serialization purposes. nvme_delete_wq host controller deletion 92 * works which flush reset works for serialization. 93 */ 94 struct workqueue_struct *nvme_wq; 95 EXPORT_SYMBOL_GPL(nvme_wq); 96 97 struct workqueue_struct *nvme_reset_wq; 98 EXPORT_SYMBOL_GPL(nvme_reset_wq); 99 100 struct workqueue_struct *nvme_delete_wq; 101 EXPORT_SYMBOL_GPL(nvme_delete_wq); 102 103 static LIST_HEAD(nvme_subsystems); 104 static DEFINE_MUTEX(nvme_subsystems_lock); 105 106 static DEFINE_IDA(nvme_instance_ida); 107 static dev_t nvme_ctrl_base_chr_devt; 108 static struct class *nvme_class; 109 static struct class *nvme_subsys_class; 110 111 static DEFINE_IDA(nvme_ns_chr_minor_ida); 112 static dev_t nvme_ns_chr_devt; 113 static struct class *nvme_ns_chr_class; 114 115 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 116 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 117 unsigned nsid); 118 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 119 struct nvme_command *cmd); 120 121 /* 122 * Prepare a queue for teardown. 123 * 124 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 125 * the capacity to 0 after that to avoid blocking dispatchers that may be 126 * holding bd_butex. This will end buffered writers dirtying pages that can't 127 * be synced. 128 */ 129 static void nvme_set_queue_dying(struct nvme_ns *ns) 130 { 131 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 132 return; 133 134 blk_set_queue_dying(ns->queue); 135 blk_mq_unquiesce_queue(ns->queue); 136 137 set_capacity_and_notify(ns->disk, 0); 138 } 139 140 void nvme_queue_scan(struct nvme_ctrl *ctrl) 141 { 142 /* 143 * Only new queue scan work when admin and IO queues are both alive 144 */ 145 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 146 queue_work(nvme_wq, &ctrl->scan_work); 147 } 148 149 /* 150 * Use this function to proceed with scheduling reset_work for a controller 151 * that had previously been set to the resetting state. This is intended for 152 * code paths that can't be interrupted by other reset attempts. A hot removal 153 * may prevent this from succeeding. 154 */ 155 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 156 { 157 if (ctrl->state != NVME_CTRL_RESETTING) 158 return -EBUSY; 159 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 160 return -EBUSY; 161 return 0; 162 } 163 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 164 165 static void nvme_failfast_work(struct work_struct *work) 166 { 167 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 168 struct nvme_ctrl, failfast_work); 169 170 if (ctrl->state != NVME_CTRL_CONNECTING) 171 return; 172 173 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 174 dev_info(ctrl->device, "failfast expired\n"); 175 nvme_kick_requeue_lists(ctrl); 176 } 177 178 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 179 { 180 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 181 return; 182 183 schedule_delayed_work(&ctrl->failfast_work, 184 ctrl->opts->fast_io_fail_tmo * HZ); 185 } 186 187 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 188 { 189 if (!ctrl->opts) 190 return; 191 192 cancel_delayed_work_sync(&ctrl->failfast_work); 193 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 194 } 195 196 197 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 198 { 199 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 200 return -EBUSY; 201 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 202 return -EBUSY; 203 return 0; 204 } 205 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 206 207 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 208 { 209 int ret; 210 211 ret = nvme_reset_ctrl(ctrl); 212 if (!ret) { 213 flush_work(&ctrl->reset_work); 214 if (ctrl->state != NVME_CTRL_LIVE) 215 ret = -ENETRESET; 216 } 217 218 return ret; 219 } 220 221 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 222 { 223 dev_info(ctrl->device, 224 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 225 226 flush_work(&ctrl->reset_work); 227 nvme_stop_ctrl(ctrl); 228 nvme_remove_namespaces(ctrl); 229 ctrl->ops->delete_ctrl(ctrl); 230 nvme_uninit_ctrl(ctrl); 231 } 232 233 static void nvme_delete_ctrl_work(struct work_struct *work) 234 { 235 struct nvme_ctrl *ctrl = 236 container_of(work, struct nvme_ctrl, delete_work); 237 238 nvme_do_delete_ctrl(ctrl); 239 } 240 241 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 242 { 243 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 244 return -EBUSY; 245 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 246 return -EBUSY; 247 return 0; 248 } 249 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 250 251 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 252 { 253 /* 254 * Keep a reference until nvme_do_delete_ctrl() complete, 255 * since ->delete_ctrl can free the controller. 256 */ 257 nvme_get_ctrl(ctrl); 258 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 259 nvme_do_delete_ctrl(ctrl); 260 nvme_put_ctrl(ctrl); 261 } 262 263 static blk_status_t nvme_error_status(u16 status) 264 { 265 switch (status & 0x7ff) { 266 case NVME_SC_SUCCESS: 267 return BLK_STS_OK; 268 case NVME_SC_CAP_EXCEEDED: 269 return BLK_STS_NOSPC; 270 case NVME_SC_LBA_RANGE: 271 case NVME_SC_CMD_INTERRUPTED: 272 case NVME_SC_NS_NOT_READY: 273 return BLK_STS_TARGET; 274 case NVME_SC_BAD_ATTRIBUTES: 275 case NVME_SC_ONCS_NOT_SUPPORTED: 276 case NVME_SC_INVALID_OPCODE: 277 case NVME_SC_INVALID_FIELD: 278 case NVME_SC_INVALID_NS: 279 return BLK_STS_NOTSUPP; 280 case NVME_SC_WRITE_FAULT: 281 case NVME_SC_READ_ERROR: 282 case NVME_SC_UNWRITTEN_BLOCK: 283 case NVME_SC_ACCESS_DENIED: 284 case NVME_SC_READ_ONLY: 285 case NVME_SC_COMPARE_FAILED: 286 return BLK_STS_MEDIUM; 287 case NVME_SC_GUARD_CHECK: 288 case NVME_SC_APPTAG_CHECK: 289 case NVME_SC_REFTAG_CHECK: 290 case NVME_SC_INVALID_PI: 291 return BLK_STS_PROTECTION; 292 case NVME_SC_RESERVATION_CONFLICT: 293 return BLK_STS_NEXUS; 294 case NVME_SC_HOST_PATH_ERROR: 295 return BLK_STS_TRANSPORT; 296 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 297 return BLK_STS_ZONE_ACTIVE_RESOURCE; 298 case NVME_SC_ZONE_TOO_MANY_OPEN: 299 return BLK_STS_ZONE_OPEN_RESOURCE; 300 default: 301 return BLK_STS_IOERR; 302 } 303 } 304 305 static void nvme_retry_req(struct request *req) 306 { 307 unsigned long delay = 0; 308 u16 crd; 309 310 /* The mask and shift result must be <= 3 */ 311 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 312 if (crd) 313 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 314 315 nvme_req(req)->retries++; 316 blk_mq_requeue_request(req, false); 317 blk_mq_delay_kick_requeue_list(req->q, delay); 318 } 319 320 enum nvme_disposition { 321 COMPLETE, 322 RETRY, 323 FAILOVER, 324 }; 325 326 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 327 { 328 if (likely(nvme_req(req)->status == 0)) 329 return COMPLETE; 330 331 if (blk_noretry_request(req) || 332 (nvme_req(req)->status & NVME_SC_DNR) || 333 nvme_req(req)->retries >= nvme_max_retries) 334 return COMPLETE; 335 336 if (req->cmd_flags & REQ_NVME_MPATH) { 337 if (nvme_is_path_error(nvme_req(req)->status) || 338 blk_queue_dying(req->q)) 339 return FAILOVER; 340 } else { 341 if (blk_queue_dying(req->q)) 342 return COMPLETE; 343 } 344 345 return RETRY; 346 } 347 348 static inline void nvme_end_req(struct request *req) 349 { 350 blk_status_t status = nvme_error_status(nvme_req(req)->status); 351 352 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 353 req_op(req) == REQ_OP_ZONE_APPEND) 354 req->__sector = nvme_lba_to_sect(req->q->queuedata, 355 le64_to_cpu(nvme_req(req)->result.u64)); 356 357 nvme_trace_bio_complete(req); 358 blk_mq_end_request(req, status); 359 } 360 361 void nvme_complete_rq(struct request *req) 362 { 363 trace_nvme_complete_rq(req); 364 nvme_cleanup_cmd(req); 365 366 if (nvme_req(req)->ctrl->kas) 367 nvme_req(req)->ctrl->comp_seen = true; 368 369 switch (nvme_decide_disposition(req)) { 370 case COMPLETE: 371 nvme_end_req(req); 372 return; 373 case RETRY: 374 nvme_retry_req(req); 375 return; 376 case FAILOVER: 377 nvme_failover_req(req); 378 return; 379 } 380 } 381 EXPORT_SYMBOL_GPL(nvme_complete_rq); 382 383 /* 384 * Called to unwind from ->queue_rq on a failed command submission so that the 385 * multipathing code gets called to potentially failover to another path. 386 * The caller needs to unwind all transport specific resource allocations and 387 * must return propagate the return value. 388 */ 389 blk_status_t nvme_host_path_error(struct request *req) 390 { 391 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 392 blk_mq_set_request_complete(req); 393 nvme_complete_rq(req); 394 return BLK_STS_OK; 395 } 396 EXPORT_SYMBOL_GPL(nvme_host_path_error); 397 398 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 399 { 400 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 401 "Cancelling I/O %d", req->tag); 402 403 /* don't abort one completed request */ 404 if (blk_mq_request_completed(req)) 405 return true; 406 407 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 408 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 409 blk_mq_complete_request(req); 410 return true; 411 } 412 EXPORT_SYMBOL_GPL(nvme_cancel_request); 413 414 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 415 { 416 if (ctrl->tagset) { 417 blk_mq_tagset_busy_iter(ctrl->tagset, 418 nvme_cancel_request, ctrl); 419 blk_mq_tagset_wait_completed_request(ctrl->tagset); 420 } 421 } 422 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 423 424 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 425 { 426 if (ctrl->admin_tagset) { 427 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 428 nvme_cancel_request, ctrl); 429 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 430 } 431 } 432 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 433 434 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 435 enum nvme_ctrl_state new_state) 436 { 437 enum nvme_ctrl_state old_state; 438 unsigned long flags; 439 bool changed = false; 440 441 spin_lock_irqsave(&ctrl->lock, flags); 442 443 old_state = ctrl->state; 444 switch (new_state) { 445 case NVME_CTRL_LIVE: 446 switch (old_state) { 447 case NVME_CTRL_NEW: 448 case NVME_CTRL_RESETTING: 449 case NVME_CTRL_CONNECTING: 450 changed = true; 451 fallthrough; 452 default: 453 break; 454 } 455 break; 456 case NVME_CTRL_RESETTING: 457 switch (old_state) { 458 case NVME_CTRL_NEW: 459 case NVME_CTRL_LIVE: 460 changed = true; 461 fallthrough; 462 default: 463 break; 464 } 465 break; 466 case NVME_CTRL_CONNECTING: 467 switch (old_state) { 468 case NVME_CTRL_NEW: 469 case NVME_CTRL_RESETTING: 470 changed = true; 471 fallthrough; 472 default: 473 break; 474 } 475 break; 476 case NVME_CTRL_DELETING: 477 switch (old_state) { 478 case NVME_CTRL_LIVE: 479 case NVME_CTRL_RESETTING: 480 case NVME_CTRL_CONNECTING: 481 changed = true; 482 fallthrough; 483 default: 484 break; 485 } 486 break; 487 case NVME_CTRL_DELETING_NOIO: 488 switch (old_state) { 489 case NVME_CTRL_DELETING: 490 case NVME_CTRL_DEAD: 491 changed = true; 492 fallthrough; 493 default: 494 break; 495 } 496 break; 497 case NVME_CTRL_DEAD: 498 switch (old_state) { 499 case NVME_CTRL_DELETING: 500 changed = true; 501 fallthrough; 502 default: 503 break; 504 } 505 break; 506 default: 507 break; 508 } 509 510 if (changed) { 511 ctrl->state = new_state; 512 wake_up_all(&ctrl->state_wq); 513 } 514 515 spin_unlock_irqrestore(&ctrl->lock, flags); 516 if (!changed) 517 return false; 518 519 if (ctrl->state == NVME_CTRL_LIVE) { 520 if (old_state == NVME_CTRL_CONNECTING) 521 nvme_stop_failfast_work(ctrl); 522 nvme_kick_requeue_lists(ctrl); 523 } else if (ctrl->state == NVME_CTRL_CONNECTING && 524 old_state == NVME_CTRL_RESETTING) { 525 nvme_start_failfast_work(ctrl); 526 } 527 return changed; 528 } 529 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 530 531 /* 532 * Returns true for sink states that can't ever transition back to live. 533 */ 534 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 535 { 536 switch (ctrl->state) { 537 case NVME_CTRL_NEW: 538 case NVME_CTRL_LIVE: 539 case NVME_CTRL_RESETTING: 540 case NVME_CTRL_CONNECTING: 541 return false; 542 case NVME_CTRL_DELETING: 543 case NVME_CTRL_DELETING_NOIO: 544 case NVME_CTRL_DEAD: 545 return true; 546 default: 547 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 548 return true; 549 } 550 } 551 552 /* 553 * Waits for the controller state to be resetting, or returns false if it is 554 * not possible to ever transition to that state. 555 */ 556 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 557 { 558 wait_event(ctrl->state_wq, 559 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 560 nvme_state_terminal(ctrl)); 561 return ctrl->state == NVME_CTRL_RESETTING; 562 } 563 EXPORT_SYMBOL_GPL(nvme_wait_reset); 564 565 static void nvme_free_ns_head(struct kref *ref) 566 { 567 struct nvme_ns_head *head = 568 container_of(ref, struct nvme_ns_head, ref); 569 570 nvme_mpath_remove_disk(head); 571 ida_simple_remove(&head->subsys->ns_ida, head->instance); 572 cleanup_srcu_struct(&head->srcu); 573 nvme_put_subsystem(head->subsys); 574 kfree(head); 575 } 576 577 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 578 { 579 return kref_get_unless_zero(&head->ref); 580 } 581 582 void nvme_put_ns_head(struct nvme_ns_head *head) 583 { 584 kref_put(&head->ref, nvme_free_ns_head); 585 } 586 587 static void nvme_free_ns(struct kref *kref) 588 { 589 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 590 591 put_disk(ns->disk); 592 nvme_put_ns_head(ns->head); 593 nvme_put_ctrl(ns->ctrl); 594 kfree(ns); 595 } 596 597 static inline bool nvme_get_ns(struct nvme_ns *ns) 598 { 599 return kref_get_unless_zero(&ns->kref); 600 } 601 602 void nvme_put_ns(struct nvme_ns *ns) 603 { 604 kref_put(&ns->kref, nvme_free_ns); 605 } 606 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 607 608 static inline void nvme_clear_nvme_request(struct request *req) 609 { 610 nvme_req(req)->status = 0; 611 nvme_req(req)->retries = 0; 612 nvme_req(req)->flags = 0; 613 req->rq_flags |= RQF_DONTPREP; 614 } 615 616 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 617 { 618 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 619 } 620 621 static inline void nvme_init_request(struct request *req, 622 struct nvme_command *cmd) 623 { 624 if (req->q->queuedata) 625 req->timeout = NVME_IO_TIMEOUT; 626 else /* no queuedata implies admin queue */ 627 req->timeout = NVME_ADMIN_TIMEOUT; 628 629 /* passthru commands should let the driver set the SGL flags */ 630 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 631 632 req->cmd_flags |= REQ_FAILFAST_DRIVER; 633 if (req->mq_hctx->type == HCTX_TYPE_POLL) 634 req->cmd_flags |= REQ_HIPRI; 635 nvme_clear_nvme_request(req); 636 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 637 } 638 639 struct request *nvme_alloc_request(struct request_queue *q, 640 struct nvme_command *cmd, blk_mq_req_flags_t flags) 641 { 642 struct request *req; 643 644 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 645 if (!IS_ERR(req)) 646 nvme_init_request(req, cmd); 647 return req; 648 } 649 EXPORT_SYMBOL_GPL(nvme_alloc_request); 650 651 static struct request *nvme_alloc_request_qid(struct request_queue *q, 652 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 653 { 654 struct request *req; 655 656 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 657 qid ? qid - 1 : 0); 658 if (!IS_ERR(req)) 659 nvme_init_request(req, cmd); 660 return req; 661 } 662 663 /* 664 * For something we're not in a state to send to the device the default action 665 * is to busy it and retry it after the controller state is recovered. However, 666 * if the controller is deleting or if anything is marked for failfast or 667 * nvme multipath it is immediately failed. 668 * 669 * Note: commands used to initialize the controller will be marked for failfast. 670 * Note: nvme cli/ioctl commands are marked for failfast. 671 */ 672 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 673 struct request *rq) 674 { 675 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 676 ctrl->state != NVME_CTRL_DEAD && 677 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 678 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 679 return BLK_STS_RESOURCE; 680 return nvme_host_path_error(rq); 681 } 682 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 683 684 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 685 bool queue_live) 686 { 687 struct nvme_request *req = nvme_req(rq); 688 689 /* 690 * currently we have a problem sending passthru commands 691 * on the admin_q if the controller is not LIVE because we can't 692 * make sure that they are going out after the admin connect, 693 * controller enable and/or other commands in the initialization 694 * sequence. until the controller will be LIVE, fail with 695 * BLK_STS_RESOURCE so that they will be rescheduled. 696 */ 697 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 698 return false; 699 700 if (ctrl->ops->flags & NVME_F_FABRICS) { 701 /* 702 * Only allow commands on a live queue, except for the connect 703 * command, which is require to set the queue live in the 704 * appropinquate states. 705 */ 706 switch (ctrl->state) { 707 case NVME_CTRL_CONNECTING: 708 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 709 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 710 return true; 711 break; 712 default: 713 break; 714 case NVME_CTRL_DEAD: 715 return false; 716 } 717 } 718 719 return queue_live; 720 } 721 EXPORT_SYMBOL_GPL(__nvme_check_ready); 722 723 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 724 { 725 struct nvme_command c = { }; 726 727 c.directive.opcode = nvme_admin_directive_send; 728 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 729 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 730 c.directive.dtype = NVME_DIR_IDENTIFY; 731 c.directive.tdtype = NVME_DIR_STREAMS; 732 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 733 734 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 735 } 736 737 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 738 { 739 return nvme_toggle_streams(ctrl, false); 740 } 741 742 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 743 { 744 return nvme_toggle_streams(ctrl, true); 745 } 746 747 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 748 struct streams_directive_params *s, u32 nsid) 749 { 750 struct nvme_command c = { }; 751 752 memset(s, 0, sizeof(*s)); 753 754 c.directive.opcode = nvme_admin_directive_recv; 755 c.directive.nsid = cpu_to_le32(nsid); 756 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 757 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 758 c.directive.dtype = NVME_DIR_STREAMS; 759 760 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 761 } 762 763 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 764 { 765 struct streams_directive_params s; 766 int ret; 767 768 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 769 return 0; 770 if (!streams) 771 return 0; 772 773 ret = nvme_enable_streams(ctrl); 774 if (ret) 775 return ret; 776 777 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 778 if (ret) 779 goto out_disable_stream; 780 781 ctrl->nssa = le16_to_cpu(s.nssa); 782 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 783 dev_info(ctrl->device, "too few streams (%u) available\n", 784 ctrl->nssa); 785 goto out_disable_stream; 786 } 787 788 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 789 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 790 return 0; 791 792 out_disable_stream: 793 nvme_disable_streams(ctrl); 794 return ret; 795 } 796 797 /* 798 * Check if 'req' has a write hint associated with it. If it does, assign 799 * a valid namespace stream to the write. 800 */ 801 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 802 struct request *req, u16 *control, 803 u32 *dsmgmt) 804 { 805 enum rw_hint streamid = req->write_hint; 806 807 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 808 streamid = 0; 809 else { 810 streamid--; 811 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 812 return; 813 814 *control |= NVME_RW_DTYPE_STREAMS; 815 *dsmgmt |= streamid << 16; 816 } 817 818 if (streamid < ARRAY_SIZE(req->q->write_hints)) 819 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 820 } 821 822 static inline void nvme_setup_flush(struct nvme_ns *ns, 823 struct nvme_command *cmnd) 824 { 825 cmnd->common.opcode = nvme_cmd_flush; 826 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 827 } 828 829 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 830 struct nvme_command *cmnd) 831 { 832 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 833 struct nvme_dsm_range *range; 834 struct bio *bio; 835 836 /* 837 * Some devices do not consider the DSM 'Number of Ranges' field when 838 * determining how much data to DMA. Always allocate memory for maximum 839 * number of segments to prevent device reading beyond end of buffer. 840 */ 841 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 842 843 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 844 if (!range) { 845 /* 846 * If we fail allocation our range, fallback to the controller 847 * discard page. If that's also busy, it's safe to return 848 * busy, as we know we can make progress once that's freed. 849 */ 850 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 851 return BLK_STS_RESOURCE; 852 853 range = page_address(ns->ctrl->discard_page); 854 } 855 856 __rq_for_each_bio(bio, req) { 857 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 858 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 859 860 if (n < segments) { 861 range[n].cattr = cpu_to_le32(0); 862 range[n].nlb = cpu_to_le32(nlb); 863 range[n].slba = cpu_to_le64(slba); 864 } 865 n++; 866 } 867 868 if (WARN_ON_ONCE(n != segments)) { 869 if (virt_to_page(range) == ns->ctrl->discard_page) 870 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 871 else 872 kfree(range); 873 return BLK_STS_IOERR; 874 } 875 876 cmnd->dsm.opcode = nvme_cmd_dsm; 877 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 878 cmnd->dsm.nr = cpu_to_le32(segments - 1); 879 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 880 881 req->special_vec.bv_page = virt_to_page(range); 882 req->special_vec.bv_offset = offset_in_page(range); 883 req->special_vec.bv_len = alloc_size; 884 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 885 886 return BLK_STS_OK; 887 } 888 889 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 890 struct request *req, struct nvme_command *cmnd) 891 { 892 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 893 return nvme_setup_discard(ns, req, cmnd); 894 895 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 896 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 897 cmnd->write_zeroes.slba = 898 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 899 cmnd->write_zeroes.length = 900 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 901 if (nvme_ns_has_pi(ns)) 902 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 903 else 904 cmnd->write_zeroes.control = 0; 905 return BLK_STS_OK; 906 } 907 908 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 909 struct request *req, struct nvme_command *cmnd, 910 enum nvme_opcode op) 911 { 912 struct nvme_ctrl *ctrl = ns->ctrl; 913 u16 control = 0; 914 u32 dsmgmt = 0; 915 916 if (req->cmd_flags & REQ_FUA) 917 control |= NVME_RW_FUA; 918 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 919 control |= NVME_RW_LR; 920 921 if (req->cmd_flags & REQ_RAHEAD) 922 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 923 924 cmnd->rw.opcode = op; 925 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 926 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 927 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 928 929 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 930 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 931 932 if (ns->ms) { 933 /* 934 * If formated with metadata, the block layer always provides a 935 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 936 * we enable the PRACT bit for protection information or set the 937 * namespace capacity to zero to prevent any I/O. 938 */ 939 if (!blk_integrity_rq(req)) { 940 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 941 return BLK_STS_NOTSUPP; 942 control |= NVME_RW_PRINFO_PRACT; 943 } 944 945 switch (ns->pi_type) { 946 case NVME_NS_DPS_PI_TYPE3: 947 control |= NVME_RW_PRINFO_PRCHK_GUARD; 948 break; 949 case NVME_NS_DPS_PI_TYPE1: 950 case NVME_NS_DPS_PI_TYPE2: 951 control |= NVME_RW_PRINFO_PRCHK_GUARD | 952 NVME_RW_PRINFO_PRCHK_REF; 953 if (op == nvme_cmd_zone_append) 954 control |= NVME_RW_APPEND_PIREMAP; 955 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 956 break; 957 } 958 } 959 960 cmnd->rw.control = cpu_to_le16(control); 961 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 962 return 0; 963 } 964 965 void nvme_cleanup_cmd(struct request *req) 966 { 967 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 968 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 969 970 if (req->special_vec.bv_page == ctrl->discard_page) 971 clear_bit_unlock(0, &ctrl->discard_page_busy); 972 else 973 kfree(bvec_virt(&req->special_vec)); 974 } 975 } 976 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 977 978 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 979 { 980 struct nvme_command *cmd = nvme_req(req)->cmd; 981 blk_status_t ret = BLK_STS_OK; 982 983 if (!(req->rq_flags & RQF_DONTPREP)) { 984 nvme_clear_nvme_request(req); 985 memset(cmd, 0, sizeof(*cmd)); 986 } 987 988 switch (req_op(req)) { 989 case REQ_OP_DRV_IN: 990 case REQ_OP_DRV_OUT: 991 /* these are setup prior to execution in nvme_init_request() */ 992 break; 993 case REQ_OP_FLUSH: 994 nvme_setup_flush(ns, cmd); 995 break; 996 case REQ_OP_ZONE_RESET_ALL: 997 case REQ_OP_ZONE_RESET: 998 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 999 break; 1000 case REQ_OP_ZONE_OPEN: 1001 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1002 break; 1003 case REQ_OP_ZONE_CLOSE: 1004 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1005 break; 1006 case REQ_OP_ZONE_FINISH: 1007 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1008 break; 1009 case REQ_OP_WRITE_ZEROES: 1010 ret = nvme_setup_write_zeroes(ns, req, cmd); 1011 break; 1012 case REQ_OP_DISCARD: 1013 ret = nvme_setup_discard(ns, req, cmd); 1014 break; 1015 case REQ_OP_READ: 1016 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1017 break; 1018 case REQ_OP_WRITE: 1019 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1020 break; 1021 case REQ_OP_ZONE_APPEND: 1022 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1023 break; 1024 default: 1025 WARN_ON_ONCE(1); 1026 return BLK_STS_IOERR; 1027 } 1028 1029 nvme_req(req)->genctr++; 1030 cmd->common.command_id = nvme_cid(req); 1031 trace_nvme_setup_cmd(req, cmd); 1032 return ret; 1033 } 1034 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1035 1036 /* 1037 * Return values: 1038 * 0: success 1039 * >0: nvme controller's cqe status response 1040 * <0: kernel error in lieu of controller response 1041 */ 1042 static int nvme_execute_rq(struct gendisk *disk, struct request *rq, 1043 bool at_head) 1044 { 1045 blk_status_t status; 1046 1047 status = blk_execute_rq(disk, rq, at_head); 1048 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1049 return -EINTR; 1050 if (nvme_req(rq)->status) 1051 return nvme_req(rq)->status; 1052 return blk_status_to_errno(status); 1053 } 1054 1055 /* 1056 * Returns 0 on success. If the result is negative, it's a Linux error code; 1057 * if the result is positive, it's an NVM Express status code 1058 */ 1059 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1060 union nvme_result *result, void *buffer, unsigned bufflen, 1061 unsigned timeout, int qid, int at_head, 1062 blk_mq_req_flags_t flags) 1063 { 1064 struct request *req; 1065 int ret; 1066 1067 if (qid == NVME_QID_ANY) 1068 req = nvme_alloc_request(q, cmd, flags); 1069 else 1070 req = nvme_alloc_request_qid(q, cmd, flags, qid); 1071 if (IS_ERR(req)) 1072 return PTR_ERR(req); 1073 1074 if (timeout) 1075 req->timeout = timeout; 1076 1077 if (buffer && bufflen) { 1078 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1079 if (ret) 1080 goto out; 1081 } 1082 1083 ret = nvme_execute_rq(NULL, req, at_head); 1084 if (result && ret >= 0) 1085 *result = nvme_req(req)->result; 1086 out: 1087 blk_mq_free_request(req); 1088 return ret; 1089 } 1090 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1091 1092 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1093 void *buffer, unsigned bufflen) 1094 { 1095 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1096 NVME_QID_ANY, 0, 0); 1097 } 1098 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1099 1100 static u32 nvme_known_admin_effects(u8 opcode) 1101 { 1102 switch (opcode) { 1103 case nvme_admin_format_nvm: 1104 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1105 NVME_CMD_EFFECTS_CSE_MASK; 1106 case nvme_admin_sanitize_nvm: 1107 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1108 default: 1109 break; 1110 } 1111 return 0; 1112 } 1113 1114 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1115 { 1116 u32 effects = 0; 1117 1118 if (ns) { 1119 if (ns->head->effects) 1120 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1121 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1122 dev_warn_once(ctrl->device, 1123 "IO command:%02x has unhandled effects:%08x\n", 1124 opcode, effects); 1125 return 0; 1126 } 1127 1128 if (ctrl->effects) 1129 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1130 effects |= nvme_known_admin_effects(opcode); 1131 1132 return effects; 1133 } 1134 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1135 1136 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1137 u8 opcode) 1138 { 1139 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1140 1141 /* 1142 * For simplicity, IO to all namespaces is quiesced even if the command 1143 * effects say only one namespace is affected. 1144 */ 1145 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1146 mutex_lock(&ctrl->scan_lock); 1147 mutex_lock(&ctrl->subsys->lock); 1148 nvme_mpath_start_freeze(ctrl->subsys); 1149 nvme_mpath_wait_freeze(ctrl->subsys); 1150 nvme_start_freeze(ctrl); 1151 nvme_wait_freeze(ctrl); 1152 } 1153 return effects; 1154 } 1155 1156 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1157 struct nvme_command *cmd, int status) 1158 { 1159 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1160 nvme_unfreeze(ctrl); 1161 nvme_mpath_unfreeze(ctrl->subsys); 1162 mutex_unlock(&ctrl->subsys->lock); 1163 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1164 mutex_unlock(&ctrl->scan_lock); 1165 } 1166 if (effects & NVME_CMD_EFFECTS_CCC) 1167 nvme_init_ctrl_finish(ctrl); 1168 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1169 nvme_queue_scan(ctrl); 1170 flush_work(&ctrl->scan_work); 1171 } 1172 1173 switch (cmd->common.opcode) { 1174 case nvme_admin_set_features: 1175 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1176 case NVME_FEAT_KATO: 1177 /* 1178 * Keep alive commands interval on the host should be 1179 * updated when KATO is modified by Set Features 1180 * commands. 1181 */ 1182 if (!status) 1183 nvme_update_keep_alive(ctrl, cmd); 1184 break; 1185 default: 1186 break; 1187 } 1188 break; 1189 default: 1190 break; 1191 } 1192 } 1193 1194 int nvme_execute_passthru_rq(struct request *rq) 1195 { 1196 struct nvme_command *cmd = nvme_req(rq)->cmd; 1197 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1198 struct nvme_ns *ns = rq->q->queuedata; 1199 struct gendisk *disk = ns ? ns->disk : NULL; 1200 u32 effects; 1201 int ret; 1202 1203 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1204 ret = nvme_execute_rq(disk, rq, false); 1205 if (effects) /* nothing to be done for zero cmd effects */ 1206 nvme_passthru_end(ctrl, effects, cmd, ret); 1207 1208 return ret; 1209 } 1210 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1211 1212 /* 1213 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1214 * 1215 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1216 * accounting for transport roundtrip times [..]. 1217 */ 1218 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1219 { 1220 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1221 } 1222 1223 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1224 { 1225 struct nvme_ctrl *ctrl = rq->end_io_data; 1226 unsigned long flags; 1227 bool startka = false; 1228 1229 blk_mq_free_request(rq); 1230 1231 if (status) { 1232 dev_err(ctrl->device, 1233 "failed nvme_keep_alive_end_io error=%d\n", 1234 status); 1235 return; 1236 } 1237 1238 ctrl->comp_seen = false; 1239 spin_lock_irqsave(&ctrl->lock, flags); 1240 if (ctrl->state == NVME_CTRL_LIVE || 1241 ctrl->state == NVME_CTRL_CONNECTING) 1242 startka = true; 1243 spin_unlock_irqrestore(&ctrl->lock, flags); 1244 if (startka) 1245 nvme_queue_keep_alive_work(ctrl); 1246 } 1247 1248 static void nvme_keep_alive_work(struct work_struct *work) 1249 { 1250 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1251 struct nvme_ctrl, ka_work); 1252 bool comp_seen = ctrl->comp_seen; 1253 struct request *rq; 1254 1255 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1256 dev_dbg(ctrl->device, 1257 "reschedule traffic based keep-alive timer\n"); 1258 ctrl->comp_seen = false; 1259 nvme_queue_keep_alive_work(ctrl); 1260 return; 1261 } 1262 1263 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1264 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1265 if (IS_ERR(rq)) { 1266 /* allocation failure, reset the controller */ 1267 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1268 nvme_reset_ctrl(ctrl); 1269 return; 1270 } 1271 1272 rq->timeout = ctrl->kato * HZ; 1273 rq->end_io_data = ctrl; 1274 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io); 1275 } 1276 1277 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1278 { 1279 if (unlikely(ctrl->kato == 0)) 1280 return; 1281 1282 nvme_queue_keep_alive_work(ctrl); 1283 } 1284 1285 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1286 { 1287 if (unlikely(ctrl->kato == 0)) 1288 return; 1289 1290 cancel_delayed_work_sync(&ctrl->ka_work); 1291 } 1292 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1293 1294 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1295 struct nvme_command *cmd) 1296 { 1297 unsigned int new_kato = 1298 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1299 1300 dev_info(ctrl->device, 1301 "keep alive interval updated from %u ms to %u ms\n", 1302 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1303 1304 nvme_stop_keep_alive(ctrl); 1305 ctrl->kato = new_kato; 1306 nvme_start_keep_alive(ctrl); 1307 } 1308 1309 /* 1310 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1311 * flag, thus sending any new CNS opcodes has a big chance of not working. 1312 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1313 * (but not for any later version). 1314 */ 1315 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1316 { 1317 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1318 return ctrl->vs < NVME_VS(1, 2, 0); 1319 return ctrl->vs < NVME_VS(1, 1, 0); 1320 } 1321 1322 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1323 { 1324 struct nvme_command c = { }; 1325 int error; 1326 1327 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1328 c.identify.opcode = nvme_admin_identify; 1329 c.identify.cns = NVME_ID_CNS_CTRL; 1330 1331 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1332 if (!*id) 1333 return -ENOMEM; 1334 1335 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1336 sizeof(struct nvme_id_ctrl)); 1337 if (error) 1338 kfree(*id); 1339 return error; 1340 } 1341 1342 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1343 struct nvme_ns_id_desc *cur, bool *csi_seen) 1344 { 1345 const char *warn_str = "ctrl returned bogus length:"; 1346 void *data = cur; 1347 1348 switch (cur->nidt) { 1349 case NVME_NIDT_EUI64: 1350 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1351 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1352 warn_str, cur->nidl); 1353 return -1; 1354 } 1355 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1356 return NVME_NIDT_EUI64_LEN; 1357 case NVME_NIDT_NGUID: 1358 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1359 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1360 warn_str, cur->nidl); 1361 return -1; 1362 } 1363 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1364 return NVME_NIDT_NGUID_LEN; 1365 case NVME_NIDT_UUID: 1366 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1367 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1368 warn_str, cur->nidl); 1369 return -1; 1370 } 1371 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1372 return NVME_NIDT_UUID_LEN; 1373 case NVME_NIDT_CSI: 1374 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1375 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1376 warn_str, cur->nidl); 1377 return -1; 1378 } 1379 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1380 *csi_seen = true; 1381 return NVME_NIDT_CSI_LEN; 1382 default: 1383 /* Skip unknown types */ 1384 return cur->nidl; 1385 } 1386 } 1387 1388 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1389 struct nvme_ns_ids *ids) 1390 { 1391 struct nvme_command c = { }; 1392 bool csi_seen = false; 1393 int status, pos, len; 1394 void *data; 1395 1396 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1397 return 0; 1398 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1399 return 0; 1400 1401 c.identify.opcode = nvme_admin_identify; 1402 c.identify.nsid = cpu_to_le32(nsid); 1403 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1404 1405 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1406 if (!data) 1407 return -ENOMEM; 1408 1409 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1410 NVME_IDENTIFY_DATA_SIZE); 1411 if (status) { 1412 dev_warn(ctrl->device, 1413 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1414 nsid, status); 1415 goto free_data; 1416 } 1417 1418 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1419 struct nvme_ns_id_desc *cur = data + pos; 1420 1421 if (cur->nidl == 0) 1422 break; 1423 1424 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1425 if (len < 0) 1426 break; 1427 1428 len += sizeof(*cur); 1429 } 1430 1431 if (nvme_multi_css(ctrl) && !csi_seen) { 1432 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1433 nsid); 1434 status = -EINVAL; 1435 } 1436 1437 free_data: 1438 kfree(data); 1439 return status; 1440 } 1441 1442 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1443 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1444 { 1445 struct nvme_command c = { }; 1446 int error; 1447 1448 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1449 c.identify.opcode = nvme_admin_identify; 1450 c.identify.nsid = cpu_to_le32(nsid); 1451 c.identify.cns = NVME_ID_CNS_NS; 1452 1453 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1454 if (!*id) 1455 return -ENOMEM; 1456 1457 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1458 if (error) { 1459 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1460 goto out_free_id; 1461 } 1462 1463 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1464 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1465 goto out_free_id; 1466 1467 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1468 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1469 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1470 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1471 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1472 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1473 1474 return 0; 1475 1476 out_free_id: 1477 kfree(*id); 1478 return error; 1479 } 1480 1481 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1482 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1483 { 1484 union nvme_result res = { 0 }; 1485 struct nvme_command c = { }; 1486 int ret; 1487 1488 c.features.opcode = op; 1489 c.features.fid = cpu_to_le32(fid); 1490 c.features.dword11 = cpu_to_le32(dword11); 1491 1492 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1493 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1494 if (ret >= 0 && result) 1495 *result = le32_to_cpu(res.u32); 1496 return ret; 1497 } 1498 1499 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1500 unsigned int dword11, void *buffer, size_t buflen, 1501 u32 *result) 1502 { 1503 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1504 buflen, result); 1505 } 1506 EXPORT_SYMBOL_GPL(nvme_set_features); 1507 1508 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1509 unsigned int dword11, void *buffer, size_t buflen, 1510 u32 *result) 1511 { 1512 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1513 buflen, result); 1514 } 1515 EXPORT_SYMBOL_GPL(nvme_get_features); 1516 1517 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1518 { 1519 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1520 u32 result; 1521 int status, nr_io_queues; 1522 1523 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1524 &result); 1525 if (status < 0) 1526 return status; 1527 1528 /* 1529 * Degraded controllers might return an error when setting the queue 1530 * count. We still want to be able to bring them online and offer 1531 * access to the admin queue, as that might be only way to fix them up. 1532 */ 1533 if (status > 0) { 1534 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1535 *count = 0; 1536 } else { 1537 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1538 *count = min(*count, nr_io_queues); 1539 } 1540 1541 return 0; 1542 } 1543 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1544 1545 #define NVME_AEN_SUPPORTED \ 1546 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1547 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1548 1549 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1550 { 1551 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1552 int status; 1553 1554 if (!supported_aens) 1555 return; 1556 1557 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1558 NULL, 0, &result); 1559 if (status) 1560 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1561 supported_aens); 1562 1563 queue_work(nvme_wq, &ctrl->async_event_work); 1564 } 1565 1566 static int nvme_ns_open(struct nvme_ns *ns) 1567 { 1568 1569 /* should never be called due to GENHD_FL_HIDDEN */ 1570 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1571 goto fail; 1572 if (!nvme_get_ns(ns)) 1573 goto fail; 1574 if (!try_module_get(ns->ctrl->ops->module)) 1575 goto fail_put_ns; 1576 1577 return 0; 1578 1579 fail_put_ns: 1580 nvme_put_ns(ns); 1581 fail: 1582 return -ENXIO; 1583 } 1584 1585 static void nvme_ns_release(struct nvme_ns *ns) 1586 { 1587 1588 module_put(ns->ctrl->ops->module); 1589 nvme_put_ns(ns); 1590 } 1591 1592 static int nvme_open(struct block_device *bdev, fmode_t mode) 1593 { 1594 return nvme_ns_open(bdev->bd_disk->private_data); 1595 } 1596 1597 static void nvme_release(struct gendisk *disk, fmode_t mode) 1598 { 1599 nvme_ns_release(disk->private_data); 1600 } 1601 1602 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1603 { 1604 /* some standard values */ 1605 geo->heads = 1 << 6; 1606 geo->sectors = 1 << 5; 1607 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1608 return 0; 1609 } 1610 1611 #ifdef CONFIG_BLK_DEV_INTEGRITY 1612 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1613 u32 max_integrity_segments) 1614 { 1615 struct blk_integrity integrity = { }; 1616 1617 switch (pi_type) { 1618 case NVME_NS_DPS_PI_TYPE3: 1619 integrity.profile = &t10_pi_type3_crc; 1620 integrity.tag_size = sizeof(u16) + sizeof(u32); 1621 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1622 break; 1623 case NVME_NS_DPS_PI_TYPE1: 1624 case NVME_NS_DPS_PI_TYPE2: 1625 integrity.profile = &t10_pi_type1_crc; 1626 integrity.tag_size = sizeof(u16); 1627 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1628 break; 1629 default: 1630 integrity.profile = NULL; 1631 break; 1632 } 1633 integrity.tuple_size = ms; 1634 blk_integrity_register(disk, &integrity); 1635 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1636 } 1637 #else 1638 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1639 u32 max_integrity_segments) 1640 { 1641 } 1642 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1643 1644 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1645 { 1646 struct nvme_ctrl *ctrl = ns->ctrl; 1647 struct request_queue *queue = disk->queue; 1648 u32 size = queue_logical_block_size(queue); 1649 1650 if (ctrl->max_discard_sectors == 0) { 1651 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1652 return; 1653 } 1654 1655 if (ctrl->nr_streams && ns->sws && ns->sgs) 1656 size *= ns->sws * ns->sgs; 1657 1658 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1659 NVME_DSM_MAX_RANGES); 1660 1661 queue->limits.discard_alignment = 0; 1662 queue->limits.discard_granularity = size; 1663 1664 /* If discard is already enabled, don't reset queue limits */ 1665 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1666 return; 1667 1668 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1669 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1670 1671 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1672 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1673 } 1674 1675 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1676 { 1677 return !uuid_is_null(&ids->uuid) || 1678 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1679 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1680 } 1681 1682 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1683 { 1684 return uuid_equal(&a->uuid, &b->uuid) && 1685 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1686 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1687 a->csi == b->csi; 1688 } 1689 1690 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1691 u32 *phys_bs, u32 *io_opt) 1692 { 1693 struct streams_directive_params s; 1694 int ret; 1695 1696 if (!ctrl->nr_streams) 1697 return 0; 1698 1699 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1700 if (ret) 1701 return ret; 1702 1703 ns->sws = le32_to_cpu(s.sws); 1704 ns->sgs = le16_to_cpu(s.sgs); 1705 1706 if (ns->sws) { 1707 *phys_bs = ns->sws * (1 << ns->lba_shift); 1708 if (ns->sgs) 1709 *io_opt = *phys_bs * ns->sgs; 1710 } 1711 1712 return 0; 1713 } 1714 1715 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1716 { 1717 struct nvme_ctrl *ctrl = ns->ctrl; 1718 1719 /* 1720 * The PI implementation requires the metadata size to be equal to the 1721 * t10 pi tuple size. 1722 */ 1723 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1724 if (ns->ms == sizeof(struct t10_pi_tuple)) 1725 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1726 else 1727 ns->pi_type = 0; 1728 1729 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1730 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1731 return 0; 1732 if (ctrl->ops->flags & NVME_F_FABRICS) { 1733 /* 1734 * The NVMe over Fabrics specification only supports metadata as 1735 * part of the extended data LBA. We rely on HCA/HBA support to 1736 * remap the separate metadata buffer from the block layer. 1737 */ 1738 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1739 return -EINVAL; 1740 if (ctrl->max_integrity_segments) 1741 ns->features |= 1742 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1743 } else { 1744 /* 1745 * For PCIe controllers, we can't easily remap the separate 1746 * metadata buffer from the block layer and thus require a 1747 * separate metadata buffer for block layer metadata/PI support. 1748 * We allow extended LBAs for the passthrough interface, though. 1749 */ 1750 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1751 ns->features |= NVME_NS_EXT_LBAS; 1752 else 1753 ns->features |= NVME_NS_METADATA_SUPPORTED; 1754 } 1755 1756 return 0; 1757 } 1758 1759 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1760 struct request_queue *q) 1761 { 1762 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1763 1764 if (ctrl->max_hw_sectors) { 1765 u32 max_segments = 1766 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1767 1768 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1769 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1770 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1771 } 1772 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1773 blk_queue_dma_alignment(q, 7); 1774 blk_queue_write_cache(q, vwc, vwc); 1775 } 1776 1777 static void nvme_update_disk_info(struct gendisk *disk, 1778 struct nvme_ns *ns, struct nvme_id_ns *id) 1779 { 1780 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1781 unsigned short bs = 1 << ns->lba_shift; 1782 u32 atomic_bs, phys_bs, io_opt = 0; 1783 1784 /* 1785 * The block layer can't support LBA sizes larger than the page size 1786 * yet, so catch this early and don't allow block I/O. 1787 */ 1788 if (ns->lba_shift > PAGE_SHIFT) { 1789 capacity = 0; 1790 bs = (1 << 9); 1791 } 1792 1793 blk_integrity_unregister(disk); 1794 1795 atomic_bs = phys_bs = bs; 1796 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1797 if (id->nabo == 0) { 1798 /* 1799 * Bit 1 indicates whether NAWUPF is defined for this namespace 1800 * and whether it should be used instead of AWUPF. If NAWUPF == 1801 * 0 then AWUPF must be used instead. 1802 */ 1803 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1804 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1805 else 1806 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1807 } 1808 1809 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1810 /* NPWG = Namespace Preferred Write Granularity */ 1811 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1812 /* NOWS = Namespace Optimal Write Size */ 1813 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1814 } 1815 1816 blk_queue_logical_block_size(disk->queue, bs); 1817 /* 1818 * Linux filesystems assume writing a single physical block is 1819 * an atomic operation. Hence limit the physical block size to the 1820 * value of the Atomic Write Unit Power Fail parameter. 1821 */ 1822 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1823 blk_queue_io_min(disk->queue, phys_bs); 1824 blk_queue_io_opt(disk->queue, io_opt); 1825 1826 /* 1827 * Register a metadata profile for PI, or the plain non-integrity NVMe 1828 * metadata masquerading as Type 0 if supported, otherwise reject block 1829 * I/O to namespaces with metadata except when the namespace supports 1830 * PI, as it can strip/insert in that case. 1831 */ 1832 if (ns->ms) { 1833 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1834 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1835 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1836 ns->ctrl->max_integrity_segments); 1837 else if (!nvme_ns_has_pi(ns)) 1838 capacity = 0; 1839 } 1840 1841 set_capacity_and_notify(disk, capacity); 1842 1843 nvme_config_discard(disk, ns); 1844 blk_queue_max_write_zeroes_sectors(disk->queue, 1845 ns->ctrl->max_zeroes_sectors); 1846 1847 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1848 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1849 } 1850 1851 static inline bool nvme_first_scan(struct gendisk *disk) 1852 { 1853 /* nvme_alloc_ns() scans the disk prior to adding it */ 1854 return !disk_live(disk); 1855 } 1856 1857 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1858 { 1859 struct nvme_ctrl *ctrl = ns->ctrl; 1860 u32 iob; 1861 1862 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1863 is_power_of_2(ctrl->max_hw_sectors)) 1864 iob = ctrl->max_hw_sectors; 1865 else 1866 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1867 1868 if (!iob) 1869 return; 1870 1871 if (!is_power_of_2(iob)) { 1872 if (nvme_first_scan(ns->disk)) 1873 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1874 ns->disk->disk_name, iob); 1875 return; 1876 } 1877 1878 if (blk_queue_is_zoned(ns->disk->queue)) { 1879 if (nvme_first_scan(ns->disk)) 1880 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1881 ns->disk->disk_name); 1882 return; 1883 } 1884 1885 blk_queue_chunk_sectors(ns->queue, iob); 1886 } 1887 1888 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1889 { 1890 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1891 int ret; 1892 1893 blk_mq_freeze_queue(ns->disk->queue); 1894 ns->lba_shift = id->lbaf[lbaf].ds; 1895 nvme_set_queue_limits(ns->ctrl, ns->queue); 1896 1897 ret = nvme_configure_metadata(ns, id); 1898 if (ret) 1899 goto out_unfreeze; 1900 nvme_set_chunk_sectors(ns, id); 1901 nvme_update_disk_info(ns->disk, ns, id); 1902 1903 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1904 ret = nvme_update_zone_info(ns, lbaf); 1905 if (ret) 1906 goto out_unfreeze; 1907 } 1908 1909 set_bit(NVME_NS_READY, &ns->flags); 1910 blk_mq_unfreeze_queue(ns->disk->queue); 1911 1912 if (blk_queue_is_zoned(ns->queue)) { 1913 ret = nvme_revalidate_zones(ns); 1914 if (ret && !nvme_first_scan(ns->disk)) 1915 goto out; 1916 } 1917 1918 if (nvme_ns_head_multipath(ns->head)) { 1919 blk_mq_freeze_queue(ns->head->disk->queue); 1920 nvme_update_disk_info(ns->head->disk, ns, id); 1921 nvme_mpath_revalidate_paths(ns); 1922 blk_stack_limits(&ns->head->disk->queue->limits, 1923 &ns->queue->limits, 0); 1924 disk_update_readahead(ns->head->disk); 1925 blk_mq_unfreeze_queue(ns->head->disk->queue); 1926 } 1927 return 0; 1928 1929 out_unfreeze: 1930 blk_mq_unfreeze_queue(ns->disk->queue); 1931 out: 1932 /* 1933 * If probing fails due an unsupported feature, hide the block device, 1934 * but still allow other access. 1935 */ 1936 if (ret == -ENODEV) { 1937 ns->disk->flags |= GENHD_FL_HIDDEN; 1938 ret = 0; 1939 } 1940 return ret; 1941 } 1942 1943 static char nvme_pr_type(enum pr_type type) 1944 { 1945 switch (type) { 1946 case PR_WRITE_EXCLUSIVE: 1947 return 1; 1948 case PR_EXCLUSIVE_ACCESS: 1949 return 2; 1950 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1951 return 3; 1952 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1953 return 4; 1954 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1955 return 5; 1956 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1957 return 6; 1958 default: 1959 return 0; 1960 } 1961 }; 1962 1963 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1964 struct nvme_command *c, u8 data[16]) 1965 { 1966 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1967 int srcu_idx = srcu_read_lock(&head->srcu); 1968 struct nvme_ns *ns = nvme_find_path(head); 1969 int ret = -EWOULDBLOCK; 1970 1971 if (ns) { 1972 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1973 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1974 } 1975 srcu_read_unlock(&head->srcu, srcu_idx); 1976 return ret; 1977 } 1978 1979 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 1980 u8 data[16]) 1981 { 1982 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1983 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 1984 } 1985 1986 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1987 u64 key, u64 sa_key, u8 op) 1988 { 1989 struct nvme_command c = { }; 1990 u8 data[16] = { 0, }; 1991 1992 put_unaligned_le64(key, &data[0]); 1993 put_unaligned_le64(sa_key, &data[8]); 1994 1995 c.common.opcode = op; 1996 c.common.cdw10 = cpu_to_le32(cdw10); 1997 1998 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 1999 bdev->bd_disk->fops == &nvme_ns_head_ops) 2000 return nvme_send_ns_head_pr_command(bdev, &c, data); 2001 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2002 } 2003 2004 static int nvme_pr_register(struct block_device *bdev, u64 old, 2005 u64 new, unsigned flags) 2006 { 2007 u32 cdw10; 2008 2009 if (flags & ~PR_FL_IGNORE_KEY) 2010 return -EOPNOTSUPP; 2011 2012 cdw10 = old ? 2 : 0; 2013 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2014 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2015 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2016 } 2017 2018 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2019 enum pr_type type, unsigned flags) 2020 { 2021 u32 cdw10; 2022 2023 if (flags & ~PR_FL_IGNORE_KEY) 2024 return -EOPNOTSUPP; 2025 2026 cdw10 = nvme_pr_type(type) << 8; 2027 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2028 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2029 } 2030 2031 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2032 enum pr_type type, bool abort) 2033 { 2034 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2035 2036 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2037 } 2038 2039 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2040 { 2041 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2042 2043 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2044 } 2045 2046 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2047 { 2048 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2049 2050 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2051 } 2052 2053 const struct pr_ops nvme_pr_ops = { 2054 .pr_register = nvme_pr_register, 2055 .pr_reserve = nvme_pr_reserve, 2056 .pr_release = nvme_pr_release, 2057 .pr_preempt = nvme_pr_preempt, 2058 .pr_clear = nvme_pr_clear, 2059 }; 2060 2061 #ifdef CONFIG_BLK_SED_OPAL 2062 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2063 bool send) 2064 { 2065 struct nvme_ctrl *ctrl = data; 2066 struct nvme_command cmd = { }; 2067 2068 if (send) 2069 cmd.common.opcode = nvme_admin_security_send; 2070 else 2071 cmd.common.opcode = nvme_admin_security_recv; 2072 cmd.common.nsid = 0; 2073 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2074 cmd.common.cdw11 = cpu_to_le32(len); 2075 2076 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2077 NVME_QID_ANY, 1, 0); 2078 } 2079 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2080 #endif /* CONFIG_BLK_SED_OPAL */ 2081 2082 #ifdef CONFIG_BLK_DEV_ZONED 2083 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2084 unsigned int nr_zones, report_zones_cb cb, void *data) 2085 { 2086 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2087 data); 2088 } 2089 #else 2090 #define nvme_report_zones NULL 2091 #endif /* CONFIG_BLK_DEV_ZONED */ 2092 2093 static const struct block_device_operations nvme_bdev_ops = { 2094 .owner = THIS_MODULE, 2095 .ioctl = nvme_ioctl, 2096 .open = nvme_open, 2097 .release = nvme_release, 2098 .getgeo = nvme_getgeo, 2099 .report_zones = nvme_report_zones, 2100 .pr_ops = &nvme_pr_ops, 2101 }; 2102 2103 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2104 { 2105 unsigned long timeout = 2106 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2107 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2108 int ret; 2109 2110 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2111 if (csts == ~0) 2112 return -ENODEV; 2113 if ((csts & NVME_CSTS_RDY) == bit) 2114 break; 2115 2116 usleep_range(1000, 2000); 2117 if (fatal_signal_pending(current)) 2118 return -EINTR; 2119 if (time_after(jiffies, timeout)) { 2120 dev_err(ctrl->device, 2121 "Device not ready; aborting %s, CSTS=0x%x\n", 2122 enabled ? "initialisation" : "reset", csts); 2123 return -ENODEV; 2124 } 2125 } 2126 2127 return ret; 2128 } 2129 2130 /* 2131 * If the device has been passed off to us in an enabled state, just clear 2132 * the enabled bit. The spec says we should set the 'shutdown notification 2133 * bits', but doing so may cause the device to complete commands to the 2134 * admin queue ... and we don't know what memory that might be pointing at! 2135 */ 2136 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2137 { 2138 int ret; 2139 2140 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2141 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2142 2143 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2144 if (ret) 2145 return ret; 2146 2147 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2148 msleep(NVME_QUIRK_DELAY_AMOUNT); 2149 2150 return nvme_wait_ready(ctrl, ctrl->cap, false); 2151 } 2152 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2153 2154 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2155 { 2156 unsigned dev_page_min; 2157 int ret; 2158 2159 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2160 if (ret) { 2161 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2162 return ret; 2163 } 2164 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2165 2166 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2167 dev_err(ctrl->device, 2168 "Minimum device page size %u too large for host (%u)\n", 2169 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2170 return -ENODEV; 2171 } 2172 2173 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2174 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2175 else 2176 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2177 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2178 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2179 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2180 ctrl->ctrl_config |= NVME_CC_ENABLE; 2181 2182 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2183 if (ret) 2184 return ret; 2185 return nvme_wait_ready(ctrl, ctrl->cap, true); 2186 } 2187 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2188 2189 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2190 { 2191 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2192 u32 csts; 2193 int ret; 2194 2195 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2196 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2197 2198 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2199 if (ret) 2200 return ret; 2201 2202 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2203 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2204 break; 2205 2206 msleep(100); 2207 if (fatal_signal_pending(current)) 2208 return -EINTR; 2209 if (time_after(jiffies, timeout)) { 2210 dev_err(ctrl->device, 2211 "Device shutdown incomplete; abort shutdown\n"); 2212 return -ENODEV; 2213 } 2214 } 2215 2216 return ret; 2217 } 2218 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2219 2220 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2221 { 2222 __le64 ts; 2223 int ret; 2224 2225 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2226 return 0; 2227 2228 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2229 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2230 NULL); 2231 if (ret) 2232 dev_warn_once(ctrl->device, 2233 "could not set timestamp (%d)\n", ret); 2234 return ret; 2235 } 2236 2237 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2238 { 2239 struct nvme_feat_host_behavior *host; 2240 int ret; 2241 2242 /* Don't bother enabling the feature if retry delay is not reported */ 2243 if (!ctrl->crdt[0]) 2244 return 0; 2245 2246 host = kzalloc(sizeof(*host), GFP_KERNEL); 2247 if (!host) 2248 return 0; 2249 2250 host->acre = NVME_ENABLE_ACRE; 2251 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2252 host, sizeof(*host), NULL); 2253 kfree(host); 2254 return ret; 2255 } 2256 2257 /* 2258 * The function checks whether the given total (exlat + enlat) latency of 2259 * a power state allows the latter to be used as an APST transition target. 2260 * It does so by comparing the latency to the primary and secondary latency 2261 * tolerances defined by module params. If there's a match, the corresponding 2262 * timeout value is returned and the matching tolerance index (1 or 2) is 2263 * reported. 2264 */ 2265 static bool nvme_apst_get_transition_time(u64 total_latency, 2266 u64 *transition_time, unsigned *last_index) 2267 { 2268 if (total_latency <= apst_primary_latency_tol_us) { 2269 if (*last_index == 1) 2270 return false; 2271 *last_index = 1; 2272 *transition_time = apst_primary_timeout_ms; 2273 return true; 2274 } 2275 if (apst_secondary_timeout_ms && 2276 total_latency <= apst_secondary_latency_tol_us) { 2277 if (*last_index <= 2) 2278 return false; 2279 *last_index = 2; 2280 *transition_time = apst_secondary_timeout_ms; 2281 return true; 2282 } 2283 return false; 2284 } 2285 2286 /* 2287 * APST (Autonomous Power State Transition) lets us program a table of power 2288 * state transitions that the controller will perform automatically. 2289 * 2290 * Depending on module params, one of the two supported techniques will be used: 2291 * 2292 * - If the parameters provide explicit timeouts and tolerances, they will be 2293 * used to build a table with up to 2 non-operational states to transition to. 2294 * The default parameter values were selected based on the values used by 2295 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2296 * regeneration of the APST table in the event of switching between external 2297 * and battery power, the timeouts and tolerances reflect a compromise 2298 * between values used by Microsoft for AC and battery scenarios. 2299 * - If not, we'll configure the table with a simple heuristic: we are willing 2300 * to spend at most 2% of the time transitioning between power states. 2301 * Therefore, when running in any given state, we will enter the next 2302 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2303 * microseconds, as long as that state's exit latency is under the requested 2304 * maximum latency. 2305 * 2306 * We will not autonomously enter any non-operational state for which the total 2307 * latency exceeds ps_max_latency_us. 2308 * 2309 * Users can set ps_max_latency_us to zero to turn off APST. 2310 */ 2311 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2312 { 2313 struct nvme_feat_auto_pst *table; 2314 unsigned apste = 0; 2315 u64 max_lat_us = 0; 2316 __le64 target = 0; 2317 int max_ps = -1; 2318 int state; 2319 int ret; 2320 unsigned last_lt_index = UINT_MAX; 2321 2322 /* 2323 * If APST isn't supported or if we haven't been initialized yet, 2324 * then don't do anything. 2325 */ 2326 if (!ctrl->apsta) 2327 return 0; 2328 2329 if (ctrl->npss > 31) { 2330 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2331 return 0; 2332 } 2333 2334 table = kzalloc(sizeof(*table), GFP_KERNEL); 2335 if (!table) 2336 return 0; 2337 2338 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2339 /* Turn off APST. */ 2340 dev_dbg(ctrl->device, "APST disabled\n"); 2341 goto done; 2342 } 2343 2344 /* 2345 * Walk through all states from lowest- to highest-power. 2346 * According to the spec, lower-numbered states use more power. NPSS, 2347 * despite the name, is the index of the lowest-power state, not the 2348 * number of states. 2349 */ 2350 for (state = (int)ctrl->npss; state >= 0; state--) { 2351 u64 total_latency_us, exit_latency_us, transition_ms; 2352 2353 if (target) 2354 table->entries[state] = target; 2355 2356 /* 2357 * Don't allow transitions to the deepest state if it's quirked 2358 * off. 2359 */ 2360 if (state == ctrl->npss && 2361 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2362 continue; 2363 2364 /* 2365 * Is this state a useful non-operational state for higher-power 2366 * states to autonomously transition to? 2367 */ 2368 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2369 continue; 2370 2371 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2372 if (exit_latency_us > ctrl->ps_max_latency_us) 2373 continue; 2374 2375 total_latency_us = exit_latency_us + 2376 le32_to_cpu(ctrl->psd[state].entry_lat); 2377 2378 /* 2379 * This state is good. It can be used as the APST idle target 2380 * for higher power states. 2381 */ 2382 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2383 if (!nvme_apst_get_transition_time(total_latency_us, 2384 &transition_ms, &last_lt_index)) 2385 continue; 2386 } else { 2387 transition_ms = total_latency_us + 19; 2388 do_div(transition_ms, 20); 2389 if (transition_ms > (1 << 24) - 1) 2390 transition_ms = (1 << 24) - 1; 2391 } 2392 2393 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2394 if (max_ps == -1) 2395 max_ps = state; 2396 if (total_latency_us > max_lat_us) 2397 max_lat_us = total_latency_us; 2398 } 2399 2400 if (max_ps == -1) 2401 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2402 else 2403 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2404 max_ps, max_lat_us, (int)sizeof(*table), table); 2405 apste = 1; 2406 2407 done: 2408 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2409 table, sizeof(*table), NULL); 2410 if (ret) 2411 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2412 kfree(table); 2413 return ret; 2414 } 2415 2416 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2417 { 2418 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2419 u64 latency; 2420 2421 switch (val) { 2422 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2423 case PM_QOS_LATENCY_ANY: 2424 latency = U64_MAX; 2425 break; 2426 2427 default: 2428 latency = val; 2429 } 2430 2431 if (ctrl->ps_max_latency_us != latency) { 2432 ctrl->ps_max_latency_us = latency; 2433 if (ctrl->state == NVME_CTRL_LIVE) 2434 nvme_configure_apst(ctrl); 2435 } 2436 } 2437 2438 struct nvme_core_quirk_entry { 2439 /* 2440 * NVMe model and firmware strings are padded with spaces. For 2441 * simplicity, strings in the quirk table are padded with NULLs 2442 * instead. 2443 */ 2444 u16 vid; 2445 const char *mn; 2446 const char *fr; 2447 unsigned long quirks; 2448 }; 2449 2450 static const struct nvme_core_quirk_entry core_quirks[] = { 2451 { 2452 /* 2453 * This Toshiba device seems to die using any APST states. See: 2454 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2455 */ 2456 .vid = 0x1179, 2457 .mn = "THNSF5256GPUK TOSHIBA", 2458 .quirks = NVME_QUIRK_NO_APST, 2459 }, 2460 { 2461 /* 2462 * This LiteON CL1-3D*-Q11 firmware version has a race 2463 * condition associated with actions related to suspend to idle 2464 * LiteON has resolved the problem in future firmware 2465 */ 2466 .vid = 0x14a4, 2467 .fr = "22301111", 2468 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2469 } 2470 }; 2471 2472 /* match is null-terminated but idstr is space-padded. */ 2473 static bool string_matches(const char *idstr, const char *match, size_t len) 2474 { 2475 size_t matchlen; 2476 2477 if (!match) 2478 return true; 2479 2480 matchlen = strlen(match); 2481 WARN_ON_ONCE(matchlen > len); 2482 2483 if (memcmp(idstr, match, matchlen)) 2484 return false; 2485 2486 for (; matchlen < len; matchlen++) 2487 if (idstr[matchlen] != ' ') 2488 return false; 2489 2490 return true; 2491 } 2492 2493 static bool quirk_matches(const struct nvme_id_ctrl *id, 2494 const struct nvme_core_quirk_entry *q) 2495 { 2496 return q->vid == le16_to_cpu(id->vid) && 2497 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2498 string_matches(id->fr, q->fr, sizeof(id->fr)); 2499 } 2500 2501 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2502 struct nvme_id_ctrl *id) 2503 { 2504 size_t nqnlen; 2505 int off; 2506 2507 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2508 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2509 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2510 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2511 return; 2512 } 2513 2514 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2515 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2516 } 2517 2518 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2519 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2520 "nqn.2014.08.org.nvmexpress:%04x%04x", 2521 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2522 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2523 off += sizeof(id->sn); 2524 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2525 off += sizeof(id->mn); 2526 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2527 } 2528 2529 static void nvme_release_subsystem(struct device *dev) 2530 { 2531 struct nvme_subsystem *subsys = 2532 container_of(dev, struct nvme_subsystem, dev); 2533 2534 if (subsys->instance >= 0) 2535 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2536 kfree(subsys); 2537 } 2538 2539 static void nvme_destroy_subsystem(struct kref *ref) 2540 { 2541 struct nvme_subsystem *subsys = 2542 container_of(ref, struct nvme_subsystem, ref); 2543 2544 mutex_lock(&nvme_subsystems_lock); 2545 list_del(&subsys->entry); 2546 mutex_unlock(&nvme_subsystems_lock); 2547 2548 ida_destroy(&subsys->ns_ida); 2549 device_del(&subsys->dev); 2550 put_device(&subsys->dev); 2551 } 2552 2553 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2554 { 2555 kref_put(&subsys->ref, nvme_destroy_subsystem); 2556 } 2557 2558 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2559 { 2560 struct nvme_subsystem *subsys; 2561 2562 lockdep_assert_held(&nvme_subsystems_lock); 2563 2564 /* 2565 * Fail matches for discovery subsystems. This results 2566 * in each discovery controller bound to a unique subsystem. 2567 * This avoids issues with validating controller values 2568 * that can only be true when there is a single unique subsystem. 2569 * There may be multiple and completely independent entities 2570 * that provide discovery controllers. 2571 */ 2572 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2573 return NULL; 2574 2575 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2576 if (strcmp(subsys->subnqn, subsysnqn)) 2577 continue; 2578 if (!kref_get_unless_zero(&subsys->ref)) 2579 continue; 2580 return subsys; 2581 } 2582 2583 return NULL; 2584 } 2585 2586 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2587 struct device_attribute subsys_attr_##_name = \ 2588 __ATTR(_name, _mode, _show, NULL) 2589 2590 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2591 struct device_attribute *attr, 2592 char *buf) 2593 { 2594 struct nvme_subsystem *subsys = 2595 container_of(dev, struct nvme_subsystem, dev); 2596 2597 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2598 } 2599 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2600 2601 #define nvme_subsys_show_str_function(field) \ 2602 static ssize_t subsys_##field##_show(struct device *dev, \ 2603 struct device_attribute *attr, char *buf) \ 2604 { \ 2605 struct nvme_subsystem *subsys = \ 2606 container_of(dev, struct nvme_subsystem, dev); \ 2607 return sysfs_emit(buf, "%.*s\n", \ 2608 (int)sizeof(subsys->field), subsys->field); \ 2609 } \ 2610 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2611 2612 nvme_subsys_show_str_function(model); 2613 nvme_subsys_show_str_function(serial); 2614 nvme_subsys_show_str_function(firmware_rev); 2615 2616 static struct attribute *nvme_subsys_attrs[] = { 2617 &subsys_attr_model.attr, 2618 &subsys_attr_serial.attr, 2619 &subsys_attr_firmware_rev.attr, 2620 &subsys_attr_subsysnqn.attr, 2621 #ifdef CONFIG_NVME_MULTIPATH 2622 &subsys_attr_iopolicy.attr, 2623 #endif 2624 NULL, 2625 }; 2626 2627 static const struct attribute_group nvme_subsys_attrs_group = { 2628 .attrs = nvme_subsys_attrs, 2629 }; 2630 2631 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2632 &nvme_subsys_attrs_group, 2633 NULL, 2634 }; 2635 2636 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2637 { 2638 return ctrl->opts && ctrl->opts->discovery_nqn; 2639 } 2640 2641 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2642 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2643 { 2644 struct nvme_ctrl *tmp; 2645 2646 lockdep_assert_held(&nvme_subsystems_lock); 2647 2648 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2649 if (nvme_state_terminal(tmp)) 2650 continue; 2651 2652 if (tmp->cntlid == ctrl->cntlid) { 2653 dev_err(ctrl->device, 2654 "Duplicate cntlid %u with %s, rejecting\n", 2655 ctrl->cntlid, dev_name(tmp->device)); 2656 return false; 2657 } 2658 2659 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2660 nvme_discovery_ctrl(ctrl)) 2661 continue; 2662 2663 dev_err(ctrl->device, 2664 "Subsystem does not support multiple controllers\n"); 2665 return false; 2666 } 2667 2668 return true; 2669 } 2670 2671 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2672 { 2673 struct nvme_subsystem *subsys, *found; 2674 int ret; 2675 2676 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2677 if (!subsys) 2678 return -ENOMEM; 2679 2680 subsys->instance = -1; 2681 mutex_init(&subsys->lock); 2682 kref_init(&subsys->ref); 2683 INIT_LIST_HEAD(&subsys->ctrls); 2684 INIT_LIST_HEAD(&subsys->nsheads); 2685 nvme_init_subnqn(subsys, ctrl, id); 2686 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2687 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2688 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2689 subsys->vendor_id = le16_to_cpu(id->vid); 2690 subsys->cmic = id->cmic; 2691 subsys->awupf = le16_to_cpu(id->awupf); 2692 #ifdef CONFIG_NVME_MULTIPATH 2693 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2694 #endif 2695 2696 subsys->dev.class = nvme_subsys_class; 2697 subsys->dev.release = nvme_release_subsystem; 2698 subsys->dev.groups = nvme_subsys_attrs_groups; 2699 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2700 device_initialize(&subsys->dev); 2701 2702 mutex_lock(&nvme_subsystems_lock); 2703 found = __nvme_find_get_subsystem(subsys->subnqn); 2704 if (found) { 2705 put_device(&subsys->dev); 2706 subsys = found; 2707 2708 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2709 ret = -EINVAL; 2710 goto out_put_subsystem; 2711 } 2712 } else { 2713 ret = device_add(&subsys->dev); 2714 if (ret) { 2715 dev_err(ctrl->device, 2716 "failed to register subsystem device.\n"); 2717 put_device(&subsys->dev); 2718 goto out_unlock; 2719 } 2720 ida_init(&subsys->ns_ida); 2721 list_add_tail(&subsys->entry, &nvme_subsystems); 2722 } 2723 2724 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2725 dev_name(ctrl->device)); 2726 if (ret) { 2727 dev_err(ctrl->device, 2728 "failed to create sysfs link from subsystem.\n"); 2729 goto out_put_subsystem; 2730 } 2731 2732 if (!found) 2733 subsys->instance = ctrl->instance; 2734 ctrl->subsys = subsys; 2735 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2736 mutex_unlock(&nvme_subsystems_lock); 2737 return 0; 2738 2739 out_put_subsystem: 2740 nvme_put_subsystem(subsys); 2741 out_unlock: 2742 mutex_unlock(&nvme_subsystems_lock); 2743 return ret; 2744 } 2745 2746 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2747 void *log, size_t size, u64 offset) 2748 { 2749 struct nvme_command c = { }; 2750 u32 dwlen = nvme_bytes_to_numd(size); 2751 2752 c.get_log_page.opcode = nvme_admin_get_log_page; 2753 c.get_log_page.nsid = cpu_to_le32(nsid); 2754 c.get_log_page.lid = log_page; 2755 c.get_log_page.lsp = lsp; 2756 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2757 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2758 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2759 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2760 c.get_log_page.csi = csi; 2761 2762 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2763 } 2764 2765 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2766 struct nvme_effects_log **log) 2767 { 2768 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2769 int ret; 2770 2771 if (cel) 2772 goto out; 2773 2774 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2775 if (!cel) 2776 return -ENOMEM; 2777 2778 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2779 cel, sizeof(*cel), 0); 2780 if (ret) { 2781 kfree(cel); 2782 return ret; 2783 } 2784 2785 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2786 out: 2787 *log = cel; 2788 return 0; 2789 } 2790 2791 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2792 { 2793 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2794 2795 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2796 return UINT_MAX; 2797 return val; 2798 } 2799 2800 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2801 { 2802 struct nvme_command c = { }; 2803 struct nvme_id_ctrl_nvm *id; 2804 int ret; 2805 2806 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2807 ctrl->max_discard_sectors = UINT_MAX; 2808 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2809 } else { 2810 ctrl->max_discard_sectors = 0; 2811 ctrl->max_discard_segments = 0; 2812 } 2813 2814 /* 2815 * Even though NVMe spec explicitly states that MDTS is not applicable 2816 * to the write-zeroes, we are cautious and limit the size to the 2817 * controllers max_hw_sectors value, which is based on the MDTS field 2818 * and possibly other limiting factors. 2819 */ 2820 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2821 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2822 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2823 else 2824 ctrl->max_zeroes_sectors = 0; 2825 2826 if (nvme_ctrl_limited_cns(ctrl)) 2827 return 0; 2828 2829 id = kzalloc(sizeof(*id), GFP_KERNEL); 2830 if (!id) 2831 return 0; 2832 2833 c.identify.opcode = nvme_admin_identify; 2834 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2835 c.identify.csi = NVME_CSI_NVM; 2836 2837 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2838 if (ret) 2839 goto free_data; 2840 2841 if (id->dmrl) 2842 ctrl->max_discard_segments = id->dmrl; 2843 if (id->dmrsl) 2844 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2845 if (id->wzsl) 2846 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2847 2848 free_data: 2849 kfree(id); 2850 return ret; 2851 } 2852 2853 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2854 { 2855 struct nvme_id_ctrl *id; 2856 u32 max_hw_sectors; 2857 bool prev_apst_enabled; 2858 int ret; 2859 2860 ret = nvme_identify_ctrl(ctrl, &id); 2861 if (ret) { 2862 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2863 return -EIO; 2864 } 2865 2866 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2867 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2868 if (ret < 0) 2869 goto out_free; 2870 } 2871 2872 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2873 ctrl->cntlid = le16_to_cpu(id->cntlid); 2874 2875 if (!ctrl->identified) { 2876 unsigned int i; 2877 2878 ret = nvme_init_subsystem(ctrl, id); 2879 if (ret) 2880 goto out_free; 2881 2882 /* 2883 * Check for quirks. Quirk can depend on firmware version, 2884 * so, in principle, the set of quirks present can change 2885 * across a reset. As a possible future enhancement, we 2886 * could re-scan for quirks every time we reinitialize 2887 * the device, but we'd have to make sure that the driver 2888 * behaves intelligently if the quirks change. 2889 */ 2890 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2891 if (quirk_matches(id, &core_quirks[i])) 2892 ctrl->quirks |= core_quirks[i].quirks; 2893 } 2894 } 2895 2896 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2897 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2898 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2899 } 2900 2901 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2902 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2903 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2904 2905 ctrl->oacs = le16_to_cpu(id->oacs); 2906 ctrl->oncs = le16_to_cpu(id->oncs); 2907 ctrl->mtfa = le16_to_cpu(id->mtfa); 2908 ctrl->oaes = le32_to_cpu(id->oaes); 2909 ctrl->wctemp = le16_to_cpu(id->wctemp); 2910 ctrl->cctemp = le16_to_cpu(id->cctemp); 2911 2912 atomic_set(&ctrl->abort_limit, id->acl + 1); 2913 ctrl->vwc = id->vwc; 2914 if (id->mdts) 2915 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2916 else 2917 max_hw_sectors = UINT_MAX; 2918 ctrl->max_hw_sectors = 2919 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2920 2921 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2922 ctrl->sgls = le32_to_cpu(id->sgls); 2923 ctrl->kas = le16_to_cpu(id->kas); 2924 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2925 ctrl->ctratt = le32_to_cpu(id->ctratt); 2926 2927 if (id->rtd3e) { 2928 /* us -> s */ 2929 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2930 2931 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2932 shutdown_timeout, 60); 2933 2934 if (ctrl->shutdown_timeout != shutdown_timeout) 2935 dev_info(ctrl->device, 2936 "Shutdown timeout set to %u seconds\n", 2937 ctrl->shutdown_timeout); 2938 } else 2939 ctrl->shutdown_timeout = shutdown_timeout; 2940 2941 ctrl->npss = id->npss; 2942 ctrl->apsta = id->apsta; 2943 prev_apst_enabled = ctrl->apst_enabled; 2944 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2945 if (force_apst && id->apsta) { 2946 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2947 ctrl->apst_enabled = true; 2948 } else { 2949 ctrl->apst_enabled = false; 2950 } 2951 } else { 2952 ctrl->apst_enabled = id->apsta; 2953 } 2954 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2955 2956 if (ctrl->ops->flags & NVME_F_FABRICS) { 2957 ctrl->icdoff = le16_to_cpu(id->icdoff); 2958 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2959 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2960 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2961 2962 /* 2963 * In fabrics we need to verify the cntlid matches the 2964 * admin connect 2965 */ 2966 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2967 dev_err(ctrl->device, 2968 "Mismatching cntlid: Connect %u vs Identify " 2969 "%u, rejecting\n", 2970 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2971 ret = -EINVAL; 2972 goto out_free; 2973 } 2974 2975 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 2976 dev_err(ctrl->device, 2977 "keep-alive support is mandatory for fabrics\n"); 2978 ret = -EINVAL; 2979 goto out_free; 2980 } 2981 } else { 2982 ctrl->hmpre = le32_to_cpu(id->hmpre); 2983 ctrl->hmmin = le32_to_cpu(id->hmmin); 2984 ctrl->hmminds = le32_to_cpu(id->hmminds); 2985 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2986 } 2987 2988 ret = nvme_mpath_init_identify(ctrl, id); 2989 if (ret < 0) 2990 goto out_free; 2991 2992 if (ctrl->apst_enabled && !prev_apst_enabled) 2993 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2994 else if (!ctrl->apst_enabled && prev_apst_enabled) 2995 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2996 2997 out_free: 2998 kfree(id); 2999 return ret; 3000 } 3001 3002 /* 3003 * Initialize the cached copies of the Identify data and various controller 3004 * register in our nvme_ctrl structure. This should be called as soon as 3005 * the admin queue is fully up and running. 3006 */ 3007 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3008 { 3009 int ret; 3010 3011 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3012 if (ret) { 3013 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3014 return ret; 3015 } 3016 3017 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3018 3019 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3020 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3021 3022 ret = nvme_init_identify(ctrl); 3023 if (ret) 3024 return ret; 3025 3026 ret = nvme_init_non_mdts_limits(ctrl); 3027 if (ret < 0) 3028 return ret; 3029 3030 ret = nvme_configure_apst(ctrl); 3031 if (ret < 0) 3032 return ret; 3033 3034 ret = nvme_configure_timestamp(ctrl); 3035 if (ret < 0) 3036 return ret; 3037 3038 ret = nvme_configure_directives(ctrl); 3039 if (ret < 0) 3040 return ret; 3041 3042 ret = nvme_configure_acre(ctrl); 3043 if (ret < 0) 3044 return ret; 3045 3046 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3047 ret = nvme_hwmon_init(ctrl); 3048 if (ret < 0) 3049 return ret; 3050 } 3051 3052 ctrl->identified = true; 3053 3054 return 0; 3055 } 3056 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3057 3058 static int nvme_dev_open(struct inode *inode, struct file *file) 3059 { 3060 struct nvme_ctrl *ctrl = 3061 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3062 3063 switch (ctrl->state) { 3064 case NVME_CTRL_LIVE: 3065 break; 3066 default: 3067 return -EWOULDBLOCK; 3068 } 3069 3070 nvme_get_ctrl(ctrl); 3071 if (!try_module_get(ctrl->ops->module)) { 3072 nvme_put_ctrl(ctrl); 3073 return -EINVAL; 3074 } 3075 3076 file->private_data = ctrl; 3077 return 0; 3078 } 3079 3080 static int nvme_dev_release(struct inode *inode, struct file *file) 3081 { 3082 struct nvme_ctrl *ctrl = 3083 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3084 3085 module_put(ctrl->ops->module); 3086 nvme_put_ctrl(ctrl); 3087 return 0; 3088 } 3089 3090 static const struct file_operations nvme_dev_fops = { 3091 .owner = THIS_MODULE, 3092 .open = nvme_dev_open, 3093 .release = nvme_dev_release, 3094 .unlocked_ioctl = nvme_dev_ioctl, 3095 .compat_ioctl = compat_ptr_ioctl, 3096 }; 3097 3098 static ssize_t nvme_sysfs_reset(struct device *dev, 3099 struct device_attribute *attr, const char *buf, 3100 size_t count) 3101 { 3102 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3103 int ret; 3104 3105 ret = nvme_reset_ctrl_sync(ctrl); 3106 if (ret < 0) 3107 return ret; 3108 return count; 3109 } 3110 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3111 3112 static ssize_t nvme_sysfs_rescan(struct device *dev, 3113 struct device_attribute *attr, const char *buf, 3114 size_t count) 3115 { 3116 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3117 3118 nvme_queue_scan(ctrl); 3119 return count; 3120 } 3121 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3122 3123 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3124 { 3125 struct gendisk *disk = dev_to_disk(dev); 3126 3127 if (disk->fops == &nvme_bdev_ops) 3128 return nvme_get_ns_from_dev(dev)->head; 3129 else 3130 return disk->private_data; 3131 } 3132 3133 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3134 char *buf) 3135 { 3136 struct nvme_ns_head *head = dev_to_ns_head(dev); 3137 struct nvme_ns_ids *ids = &head->ids; 3138 struct nvme_subsystem *subsys = head->subsys; 3139 int serial_len = sizeof(subsys->serial); 3140 int model_len = sizeof(subsys->model); 3141 3142 if (!uuid_is_null(&ids->uuid)) 3143 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3144 3145 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3146 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3147 3148 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3149 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3150 3151 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3152 subsys->serial[serial_len - 1] == '\0')) 3153 serial_len--; 3154 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3155 subsys->model[model_len - 1] == '\0')) 3156 model_len--; 3157 3158 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3159 serial_len, subsys->serial, model_len, subsys->model, 3160 head->ns_id); 3161 } 3162 static DEVICE_ATTR_RO(wwid); 3163 3164 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3165 char *buf) 3166 { 3167 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3168 } 3169 static DEVICE_ATTR_RO(nguid); 3170 3171 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3172 char *buf) 3173 { 3174 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3175 3176 /* For backward compatibility expose the NGUID to userspace if 3177 * we have no UUID set 3178 */ 3179 if (uuid_is_null(&ids->uuid)) { 3180 printk_ratelimited(KERN_WARNING 3181 "No UUID available providing old NGUID\n"); 3182 return sysfs_emit(buf, "%pU\n", ids->nguid); 3183 } 3184 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3185 } 3186 static DEVICE_ATTR_RO(uuid); 3187 3188 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3189 char *buf) 3190 { 3191 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3192 } 3193 static DEVICE_ATTR_RO(eui); 3194 3195 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3196 char *buf) 3197 { 3198 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3199 } 3200 static DEVICE_ATTR_RO(nsid); 3201 3202 static struct attribute *nvme_ns_id_attrs[] = { 3203 &dev_attr_wwid.attr, 3204 &dev_attr_uuid.attr, 3205 &dev_attr_nguid.attr, 3206 &dev_attr_eui.attr, 3207 &dev_attr_nsid.attr, 3208 #ifdef CONFIG_NVME_MULTIPATH 3209 &dev_attr_ana_grpid.attr, 3210 &dev_attr_ana_state.attr, 3211 #endif 3212 NULL, 3213 }; 3214 3215 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3216 struct attribute *a, int n) 3217 { 3218 struct device *dev = container_of(kobj, struct device, kobj); 3219 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3220 3221 if (a == &dev_attr_uuid.attr) { 3222 if (uuid_is_null(&ids->uuid) && 3223 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3224 return 0; 3225 } 3226 if (a == &dev_attr_nguid.attr) { 3227 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3228 return 0; 3229 } 3230 if (a == &dev_attr_eui.attr) { 3231 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3232 return 0; 3233 } 3234 #ifdef CONFIG_NVME_MULTIPATH 3235 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3236 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3237 return 0; 3238 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3239 return 0; 3240 } 3241 #endif 3242 return a->mode; 3243 } 3244 3245 static const struct attribute_group nvme_ns_id_attr_group = { 3246 .attrs = nvme_ns_id_attrs, 3247 .is_visible = nvme_ns_id_attrs_are_visible, 3248 }; 3249 3250 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3251 &nvme_ns_id_attr_group, 3252 NULL, 3253 }; 3254 3255 #define nvme_show_str_function(field) \ 3256 static ssize_t field##_show(struct device *dev, \ 3257 struct device_attribute *attr, char *buf) \ 3258 { \ 3259 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3260 return sysfs_emit(buf, "%.*s\n", \ 3261 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3262 } \ 3263 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3264 3265 nvme_show_str_function(model); 3266 nvme_show_str_function(serial); 3267 nvme_show_str_function(firmware_rev); 3268 3269 #define nvme_show_int_function(field) \ 3270 static ssize_t field##_show(struct device *dev, \ 3271 struct device_attribute *attr, char *buf) \ 3272 { \ 3273 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3274 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3275 } \ 3276 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3277 3278 nvme_show_int_function(cntlid); 3279 nvme_show_int_function(numa_node); 3280 nvme_show_int_function(queue_count); 3281 nvme_show_int_function(sqsize); 3282 nvme_show_int_function(kato); 3283 3284 static ssize_t nvme_sysfs_delete(struct device *dev, 3285 struct device_attribute *attr, const char *buf, 3286 size_t count) 3287 { 3288 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3289 3290 if (device_remove_file_self(dev, attr)) 3291 nvme_delete_ctrl_sync(ctrl); 3292 return count; 3293 } 3294 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3295 3296 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3297 struct device_attribute *attr, 3298 char *buf) 3299 { 3300 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3301 3302 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3303 } 3304 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3305 3306 static ssize_t nvme_sysfs_show_state(struct device *dev, 3307 struct device_attribute *attr, 3308 char *buf) 3309 { 3310 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3311 static const char *const state_name[] = { 3312 [NVME_CTRL_NEW] = "new", 3313 [NVME_CTRL_LIVE] = "live", 3314 [NVME_CTRL_RESETTING] = "resetting", 3315 [NVME_CTRL_CONNECTING] = "connecting", 3316 [NVME_CTRL_DELETING] = "deleting", 3317 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3318 [NVME_CTRL_DEAD] = "dead", 3319 }; 3320 3321 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3322 state_name[ctrl->state]) 3323 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3324 3325 return sysfs_emit(buf, "unknown state\n"); 3326 } 3327 3328 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3329 3330 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3331 struct device_attribute *attr, 3332 char *buf) 3333 { 3334 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3335 3336 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3337 } 3338 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3339 3340 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3341 struct device_attribute *attr, 3342 char *buf) 3343 { 3344 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3345 3346 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3347 } 3348 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3349 3350 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3351 struct device_attribute *attr, 3352 char *buf) 3353 { 3354 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3355 3356 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3357 } 3358 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3359 3360 static ssize_t nvme_sysfs_show_address(struct device *dev, 3361 struct device_attribute *attr, 3362 char *buf) 3363 { 3364 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3365 3366 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3367 } 3368 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3369 3370 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3371 struct device_attribute *attr, char *buf) 3372 { 3373 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3374 struct nvmf_ctrl_options *opts = ctrl->opts; 3375 3376 if (ctrl->opts->max_reconnects == -1) 3377 return sysfs_emit(buf, "off\n"); 3378 return sysfs_emit(buf, "%d\n", 3379 opts->max_reconnects * opts->reconnect_delay); 3380 } 3381 3382 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3383 struct device_attribute *attr, const char *buf, size_t count) 3384 { 3385 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3386 struct nvmf_ctrl_options *opts = ctrl->opts; 3387 int ctrl_loss_tmo, err; 3388 3389 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3390 if (err) 3391 return -EINVAL; 3392 3393 if (ctrl_loss_tmo < 0) 3394 opts->max_reconnects = -1; 3395 else 3396 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3397 opts->reconnect_delay); 3398 return count; 3399 } 3400 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3401 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3402 3403 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3404 struct device_attribute *attr, char *buf) 3405 { 3406 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3407 3408 if (ctrl->opts->reconnect_delay == -1) 3409 return sysfs_emit(buf, "off\n"); 3410 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3411 } 3412 3413 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3414 struct device_attribute *attr, const char *buf, size_t count) 3415 { 3416 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3417 unsigned int v; 3418 int err; 3419 3420 err = kstrtou32(buf, 10, &v); 3421 if (err) 3422 return err; 3423 3424 ctrl->opts->reconnect_delay = v; 3425 return count; 3426 } 3427 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3428 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3429 3430 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3431 struct device_attribute *attr, char *buf) 3432 { 3433 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3434 3435 if (ctrl->opts->fast_io_fail_tmo == -1) 3436 return sysfs_emit(buf, "off\n"); 3437 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3438 } 3439 3440 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3441 struct device_attribute *attr, const char *buf, size_t count) 3442 { 3443 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3444 struct nvmf_ctrl_options *opts = ctrl->opts; 3445 int fast_io_fail_tmo, err; 3446 3447 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3448 if (err) 3449 return -EINVAL; 3450 3451 if (fast_io_fail_tmo < 0) 3452 opts->fast_io_fail_tmo = -1; 3453 else 3454 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3455 return count; 3456 } 3457 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3458 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3459 3460 static struct attribute *nvme_dev_attrs[] = { 3461 &dev_attr_reset_controller.attr, 3462 &dev_attr_rescan_controller.attr, 3463 &dev_attr_model.attr, 3464 &dev_attr_serial.attr, 3465 &dev_attr_firmware_rev.attr, 3466 &dev_attr_cntlid.attr, 3467 &dev_attr_delete_controller.attr, 3468 &dev_attr_transport.attr, 3469 &dev_attr_subsysnqn.attr, 3470 &dev_attr_address.attr, 3471 &dev_attr_state.attr, 3472 &dev_attr_numa_node.attr, 3473 &dev_attr_queue_count.attr, 3474 &dev_attr_sqsize.attr, 3475 &dev_attr_hostnqn.attr, 3476 &dev_attr_hostid.attr, 3477 &dev_attr_ctrl_loss_tmo.attr, 3478 &dev_attr_reconnect_delay.attr, 3479 &dev_attr_fast_io_fail_tmo.attr, 3480 &dev_attr_kato.attr, 3481 NULL 3482 }; 3483 3484 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3485 struct attribute *a, int n) 3486 { 3487 struct device *dev = container_of(kobj, struct device, kobj); 3488 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3489 3490 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3491 return 0; 3492 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3493 return 0; 3494 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3495 return 0; 3496 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3497 return 0; 3498 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3499 return 0; 3500 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3501 return 0; 3502 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3503 return 0; 3504 3505 return a->mode; 3506 } 3507 3508 static const struct attribute_group nvme_dev_attrs_group = { 3509 .attrs = nvme_dev_attrs, 3510 .is_visible = nvme_dev_attrs_are_visible, 3511 }; 3512 3513 static const struct attribute_group *nvme_dev_attr_groups[] = { 3514 &nvme_dev_attrs_group, 3515 NULL, 3516 }; 3517 3518 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3519 unsigned nsid) 3520 { 3521 struct nvme_ns_head *h; 3522 3523 lockdep_assert_held(&subsys->lock); 3524 3525 list_for_each_entry(h, &subsys->nsheads, entry) { 3526 if (h->ns_id != nsid) 3527 continue; 3528 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3529 return h; 3530 } 3531 3532 return NULL; 3533 } 3534 3535 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3536 struct nvme_ns_head *new) 3537 { 3538 struct nvme_ns_head *h; 3539 3540 lockdep_assert_held(&subsys->lock); 3541 3542 list_for_each_entry(h, &subsys->nsheads, entry) { 3543 if (nvme_ns_ids_valid(&new->ids) && 3544 nvme_ns_ids_equal(&new->ids, &h->ids)) 3545 return -EINVAL; 3546 } 3547 3548 return 0; 3549 } 3550 3551 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3552 { 3553 cdev_device_del(cdev, cdev_device); 3554 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt)); 3555 } 3556 3557 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3558 const struct file_operations *fops, struct module *owner) 3559 { 3560 int minor, ret; 3561 3562 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3563 if (minor < 0) 3564 return minor; 3565 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3566 cdev_device->class = nvme_ns_chr_class; 3567 device_initialize(cdev_device); 3568 cdev_init(cdev, fops); 3569 cdev->owner = owner; 3570 ret = cdev_device_add(cdev, cdev_device); 3571 if (ret) { 3572 put_device(cdev_device); 3573 ida_simple_remove(&nvme_ns_chr_minor_ida, minor); 3574 } 3575 return ret; 3576 } 3577 3578 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3579 { 3580 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3581 } 3582 3583 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3584 { 3585 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3586 return 0; 3587 } 3588 3589 static const struct file_operations nvme_ns_chr_fops = { 3590 .owner = THIS_MODULE, 3591 .open = nvme_ns_chr_open, 3592 .release = nvme_ns_chr_release, 3593 .unlocked_ioctl = nvme_ns_chr_ioctl, 3594 .compat_ioctl = compat_ptr_ioctl, 3595 }; 3596 3597 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3598 { 3599 int ret; 3600 3601 ns->cdev_device.parent = ns->ctrl->device; 3602 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3603 ns->ctrl->instance, ns->head->instance); 3604 if (ret) 3605 return ret; 3606 ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3607 ns->ctrl->ops->module); 3608 if (ret) 3609 kfree_const(ns->cdev_device.kobj.name); 3610 return ret; 3611 } 3612 3613 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3614 unsigned nsid, struct nvme_ns_ids *ids) 3615 { 3616 struct nvme_ns_head *head; 3617 size_t size = sizeof(*head); 3618 int ret = -ENOMEM; 3619 3620 #ifdef CONFIG_NVME_MULTIPATH 3621 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3622 #endif 3623 3624 head = kzalloc(size, GFP_KERNEL); 3625 if (!head) 3626 goto out; 3627 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3628 if (ret < 0) 3629 goto out_free_head; 3630 head->instance = ret; 3631 INIT_LIST_HEAD(&head->list); 3632 ret = init_srcu_struct(&head->srcu); 3633 if (ret) 3634 goto out_ida_remove; 3635 head->subsys = ctrl->subsys; 3636 head->ns_id = nsid; 3637 head->ids = *ids; 3638 kref_init(&head->ref); 3639 3640 ret = __nvme_check_ids(ctrl->subsys, head); 3641 if (ret) { 3642 dev_err(ctrl->device, 3643 "duplicate IDs for nsid %d\n", nsid); 3644 goto out_cleanup_srcu; 3645 } 3646 3647 if (head->ids.csi) { 3648 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3649 if (ret) 3650 goto out_cleanup_srcu; 3651 } else 3652 head->effects = ctrl->effects; 3653 3654 ret = nvme_mpath_alloc_disk(ctrl, head); 3655 if (ret) 3656 goto out_cleanup_srcu; 3657 3658 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3659 3660 kref_get(&ctrl->subsys->ref); 3661 3662 return head; 3663 out_cleanup_srcu: 3664 cleanup_srcu_struct(&head->srcu); 3665 out_ida_remove: 3666 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3667 out_free_head: 3668 kfree(head); 3669 out: 3670 if (ret > 0) 3671 ret = blk_status_to_errno(nvme_error_status(ret)); 3672 return ERR_PTR(ret); 3673 } 3674 3675 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3676 struct nvme_ns_ids *ids, bool is_shared) 3677 { 3678 struct nvme_ctrl *ctrl = ns->ctrl; 3679 struct nvme_ns_head *head = NULL; 3680 int ret = 0; 3681 3682 mutex_lock(&ctrl->subsys->lock); 3683 head = nvme_find_ns_head(ctrl->subsys, nsid); 3684 if (!head) { 3685 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3686 if (IS_ERR(head)) { 3687 ret = PTR_ERR(head); 3688 goto out_unlock; 3689 } 3690 head->shared = is_shared; 3691 } else { 3692 ret = -EINVAL; 3693 if (!is_shared || !head->shared) { 3694 dev_err(ctrl->device, 3695 "Duplicate unshared namespace %d\n", nsid); 3696 goto out_put_ns_head; 3697 } 3698 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3699 dev_err(ctrl->device, 3700 "IDs don't match for shared namespace %d\n", 3701 nsid); 3702 goto out_put_ns_head; 3703 } 3704 } 3705 3706 list_add_tail_rcu(&ns->siblings, &head->list); 3707 ns->head = head; 3708 mutex_unlock(&ctrl->subsys->lock); 3709 return 0; 3710 3711 out_put_ns_head: 3712 nvme_put_ns_head(head); 3713 out_unlock: 3714 mutex_unlock(&ctrl->subsys->lock); 3715 return ret; 3716 } 3717 3718 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3719 { 3720 struct nvme_ns *ns, *ret = NULL; 3721 3722 down_read(&ctrl->namespaces_rwsem); 3723 list_for_each_entry(ns, &ctrl->namespaces, list) { 3724 if (ns->head->ns_id == nsid) { 3725 if (!nvme_get_ns(ns)) 3726 continue; 3727 ret = ns; 3728 break; 3729 } 3730 if (ns->head->ns_id > nsid) 3731 break; 3732 } 3733 up_read(&ctrl->namespaces_rwsem); 3734 return ret; 3735 } 3736 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3737 3738 /* 3739 * Add the namespace to the controller list while keeping the list ordered. 3740 */ 3741 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3742 { 3743 struct nvme_ns *tmp; 3744 3745 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3746 if (tmp->head->ns_id < ns->head->ns_id) { 3747 list_add(&ns->list, &tmp->list); 3748 return; 3749 } 3750 } 3751 list_add(&ns->list, &ns->ctrl->namespaces); 3752 } 3753 3754 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3755 struct nvme_ns_ids *ids) 3756 { 3757 struct nvme_ns *ns; 3758 struct gendisk *disk; 3759 struct nvme_id_ns *id; 3760 int node = ctrl->numa_node; 3761 3762 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3763 return; 3764 3765 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3766 if (!ns) 3767 goto out_free_id; 3768 3769 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3770 if (IS_ERR(disk)) 3771 goto out_free_ns; 3772 disk->fops = &nvme_bdev_ops; 3773 disk->private_data = ns; 3774 3775 ns->disk = disk; 3776 ns->queue = disk->queue; 3777 3778 if (ctrl->opts && ctrl->opts->data_digest) 3779 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3780 3781 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3782 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3783 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3784 3785 ns->ctrl = ctrl; 3786 kref_init(&ns->kref); 3787 3788 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3789 goto out_cleanup_disk; 3790 3791 /* 3792 * Without the multipath code enabled, multiple controller per 3793 * subsystems are visible as devices and thus we cannot use the 3794 * subsystem instance. 3795 */ 3796 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3797 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3798 ns->head->instance); 3799 3800 if (nvme_update_ns_info(ns, id)) 3801 goto out_unlink_ns; 3802 3803 down_write(&ctrl->namespaces_rwsem); 3804 nvme_ns_add_to_ctrl_list(ns); 3805 up_write(&ctrl->namespaces_rwsem); 3806 nvme_get_ctrl(ctrl); 3807 3808 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3809 goto out_cleanup_ns_from_list; 3810 3811 if (!nvme_ns_head_multipath(ns->head)) 3812 nvme_add_ns_cdev(ns); 3813 3814 nvme_mpath_add_disk(ns, id); 3815 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3816 kfree(id); 3817 3818 return; 3819 3820 out_cleanup_ns_from_list: 3821 nvme_put_ctrl(ctrl); 3822 down_write(&ctrl->namespaces_rwsem); 3823 list_del_init(&ns->list); 3824 up_write(&ctrl->namespaces_rwsem); 3825 out_unlink_ns: 3826 mutex_lock(&ctrl->subsys->lock); 3827 list_del_rcu(&ns->siblings); 3828 if (list_empty(&ns->head->list)) 3829 list_del_init(&ns->head->entry); 3830 mutex_unlock(&ctrl->subsys->lock); 3831 nvme_put_ns_head(ns->head); 3832 out_cleanup_disk: 3833 blk_cleanup_disk(disk); 3834 out_free_ns: 3835 kfree(ns); 3836 out_free_id: 3837 kfree(id); 3838 } 3839 3840 static void nvme_ns_remove(struct nvme_ns *ns) 3841 { 3842 bool last_path = false; 3843 3844 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3845 return; 3846 3847 clear_bit(NVME_NS_READY, &ns->flags); 3848 set_capacity(ns->disk, 0); 3849 nvme_fault_inject_fini(&ns->fault_inject); 3850 3851 mutex_lock(&ns->ctrl->subsys->lock); 3852 list_del_rcu(&ns->siblings); 3853 if (list_empty(&ns->head->list)) { 3854 list_del_init(&ns->head->entry); 3855 last_path = true; 3856 } 3857 mutex_unlock(&ns->ctrl->subsys->lock); 3858 3859 /* guarantee not available in head->list */ 3860 synchronize_rcu(); 3861 3862 /* wait for concurrent submissions */ 3863 if (nvme_mpath_clear_current_path(ns)) 3864 synchronize_srcu(&ns->head->srcu); 3865 3866 if (!nvme_ns_head_multipath(ns->head)) 3867 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3868 del_gendisk(ns->disk); 3869 blk_cleanup_queue(ns->queue); 3870 3871 down_write(&ns->ctrl->namespaces_rwsem); 3872 list_del_init(&ns->list); 3873 up_write(&ns->ctrl->namespaces_rwsem); 3874 3875 if (last_path) 3876 nvme_mpath_shutdown_disk(ns->head); 3877 nvme_put_ns(ns); 3878 } 3879 3880 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3881 { 3882 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3883 3884 if (ns) { 3885 nvme_ns_remove(ns); 3886 nvme_put_ns(ns); 3887 } 3888 } 3889 3890 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3891 { 3892 struct nvme_id_ns *id; 3893 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3894 3895 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3896 goto out; 3897 3898 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3899 if (ret) 3900 goto out; 3901 3902 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3903 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3904 dev_err(ns->ctrl->device, 3905 "identifiers changed for nsid %d\n", ns->head->ns_id); 3906 goto out_free_id; 3907 } 3908 3909 ret = nvme_update_ns_info(ns, id); 3910 3911 out_free_id: 3912 kfree(id); 3913 out: 3914 /* 3915 * Only remove the namespace if we got a fatal error back from the 3916 * device, otherwise ignore the error and just move on. 3917 * 3918 * TODO: we should probably schedule a delayed retry here. 3919 */ 3920 if (ret > 0 && (ret & NVME_SC_DNR)) 3921 nvme_ns_remove(ns); 3922 } 3923 3924 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3925 { 3926 struct nvme_ns_ids ids = { }; 3927 struct nvme_ns *ns; 3928 3929 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3930 return; 3931 3932 ns = nvme_find_get_ns(ctrl, nsid); 3933 if (ns) { 3934 nvme_validate_ns(ns, &ids); 3935 nvme_put_ns(ns); 3936 return; 3937 } 3938 3939 switch (ids.csi) { 3940 case NVME_CSI_NVM: 3941 nvme_alloc_ns(ctrl, nsid, &ids); 3942 break; 3943 case NVME_CSI_ZNS: 3944 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 3945 dev_warn(ctrl->device, 3946 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 3947 nsid); 3948 break; 3949 } 3950 if (!nvme_multi_css(ctrl)) { 3951 dev_warn(ctrl->device, 3952 "command set not reported for nsid: %d\n", 3953 nsid); 3954 break; 3955 } 3956 nvme_alloc_ns(ctrl, nsid, &ids); 3957 break; 3958 default: 3959 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 3960 ids.csi, nsid); 3961 break; 3962 } 3963 } 3964 3965 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3966 unsigned nsid) 3967 { 3968 struct nvme_ns *ns, *next; 3969 LIST_HEAD(rm_list); 3970 3971 down_write(&ctrl->namespaces_rwsem); 3972 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3973 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3974 list_move_tail(&ns->list, &rm_list); 3975 } 3976 up_write(&ctrl->namespaces_rwsem); 3977 3978 list_for_each_entry_safe(ns, next, &rm_list, list) 3979 nvme_ns_remove(ns); 3980 3981 } 3982 3983 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3984 { 3985 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3986 __le32 *ns_list; 3987 u32 prev = 0; 3988 int ret = 0, i; 3989 3990 if (nvme_ctrl_limited_cns(ctrl)) 3991 return -EOPNOTSUPP; 3992 3993 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3994 if (!ns_list) 3995 return -ENOMEM; 3996 3997 for (;;) { 3998 struct nvme_command cmd = { 3999 .identify.opcode = nvme_admin_identify, 4000 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4001 .identify.nsid = cpu_to_le32(prev), 4002 }; 4003 4004 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4005 NVME_IDENTIFY_DATA_SIZE); 4006 if (ret) { 4007 dev_warn(ctrl->device, 4008 "Identify NS List failed (status=0x%x)\n", ret); 4009 goto free; 4010 } 4011 4012 for (i = 0; i < nr_entries; i++) { 4013 u32 nsid = le32_to_cpu(ns_list[i]); 4014 4015 if (!nsid) /* end of the list? */ 4016 goto out; 4017 nvme_validate_or_alloc_ns(ctrl, nsid); 4018 while (++prev < nsid) 4019 nvme_ns_remove_by_nsid(ctrl, prev); 4020 } 4021 } 4022 out: 4023 nvme_remove_invalid_namespaces(ctrl, prev); 4024 free: 4025 kfree(ns_list); 4026 return ret; 4027 } 4028 4029 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4030 { 4031 struct nvme_id_ctrl *id; 4032 u32 nn, i; 4033 4034 if (nvme_identify_ctrl(ctrl, &id)) 4035 return; 4036 nn = le32_to_cpu(id->nn); 4037 kfree(id); 4038 4039 for (i = 1; i <= nn; i++) 4040 nvme_validate_or_alloc_ns(ctrl, i); 4041 4042 nvme_remove_invalid_namespaces(ctrl, nn); 4043 } 4044 4045 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4046 { 4047 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4048 __le32 *log; 4049 int error; 4050 4051 log = kzalloc(log_size, GFP_KERNEL); 4052 if (!log) 4053 return; 4054 4055 /* 4056 * We need to read the log to clear the AEN, but we don't want to rely 4057 * on it for the changed namespace information as userspace could have 4058 * raced with us in reading the log page, which could cause us to miss 4059 * updates. 4060 */ 4061 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4062 NVME_CSI_NVM, log, log_size, 0); 4063 if (error) 4064 dev_warn(ctrl->device, 4065 "reading changed ns log failed: %d\n", error); 4066 4067 kfree(log); 4068 } 4069 4070 static void nvme_scan_work(struct work_struct *work) 4071 { 4072 struct nvme_ctrl *ctrl = 4073 container_of(work, struct nvme_ctrl, scan_work); 4074 4075 /* No tagset on a live ctrl means IO queues could not created */ 4076 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4077 return; 4078 4079 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4080 dev_info(ctrl->device, "rescanning namespaces.\n"); 4081 nvme_clear_changed_ns_log(ctrl); 4082 } 4083 4084 mutex_lock(&ctrl->scan_lock); 4085 if (nvme_scan_ns_list(ctrl) != 0) 4086 nvme_scan_ns_sequential(ctrl); 4087 mutex_unlock(&ctrl->scan_lock); 4088 } 4089 4090 /* 4091 * This function iterates the namespace list unlocked to allow recovery from 4092 * controller failure. It is up to the caller to ensure the namespace list is 4093 * not modified by scan work while this function is executing. 4094 */ 4095 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4096 { 4097 struct nvme_ns *ns, *next; 4098 LIST_HEAD(ns_list); 4099 4100 /* 4101 * make sure to requeue I/O to all namespaces as these 4102 * might result from the scan itself and must complete 4103 * for the scan_work to make progress 4104 */ 4105 nvme_mpath_clear_ctrl_paths(ctrl); 4106 4107 /* prevent racing with ns scanning */ 4108 flush_work(&ctrl->scan_work); 4109 4110 /* 4111 * The dead states indicates the controller was not gracefully 4112 * disconnected. In that case, we won't be able to flush any data while 4113 * removing the namespaces' disks; fail all the queues now to avoid 4114 * potentially having to clean up the failed sync later. 4115 */ 4116 if (ctrl->state == NVME_CTRL_DEAD) 4117 nvme_kill_queues(ctrl); 4118 4119 /* this is a no-op when called from the controller reset handler */ 4120 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4121 4122 down_write(&ctrl->namespaces_rwsem); 4123 list_splice_init(&ctrl->namespaces, &ns_list); 4124 up_write(&ctrl->namespaces_rwsem); 4125 4126 list_for_each_entry_safe(ns, next, &ns_list, list) 4127 nvme_ns_remove(ns); 4128 } 4129 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4130 4131 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4132 { 4133 struct nvme_ctrl *ctrl = 4134 container_of(dev, struct nvme_ctrl, ctrl_device); 4135 struct nvmf_ctrl_options *opts = ctrl->opts; 4136 int ret; 4137 4138 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4139 if (ret) 4140 return ret; 4141 4142 if (opts) { 4143 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4144 if (ret) 4145 return ret; 4146 4147 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4148 opts->trsvcid ?: "none"); 4149 if (ret) 4150 return ret; 4151 4152 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4153 opts->host_traddr ?: "none"); 4154 if (ret) 4155 return ret; 4156 4157 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4158 opts->host_iface ?: "none"); 4159 } 4160 return ret; 4161 } 4162 4163 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4164 { 4165 char *envp[2] = { NULL, NULL }; 4166 u32 aen_result = ctrl->aen_result; 4167 4168 ctrl->aen_result = 0; 4169 if (!aen_result) 4170 return; 4171 4172 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4173 if (!envp[0]) 4174 return; 4175 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4176 kfree(envp[0]); 4177 } 4178 4179 static void nvme_async_event_work(struct work_struct *work) 4180 { 4181 struct nvme_ctrl *ctrl = 4182 container_of(work, struct nvme_ctrl, async_event_work); 4183 4184 nvme_aen_uevent(ctrl); 4185 ctrl->ops->submit_async_event(ctrl); 4186 } 4187 4188 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4189 { 4190 4191 u32 csts; 4192 4193 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4194 return false; 4195 4196 if (csts == ~0) 4197 return false; 4198 4199 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4200 } 4201 4202 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4203 { 4204 struct nvme_fw_slot_info_log *log; 4205 4206 log = kmalloc(sizeof(*log), GFP_KERNEL); 4207 if (!log) 4208 return; 4209 4210 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4211 log, sizeof(*log), 0)) 4212 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4213 kfree(log); 4214 } 4215 4216 static void nvme_fw_act_work(struct work_struct *work) 4217 { 4218 struct nvme_ctrl *ctrl = container_of(work, 4219 struct nvme_ctrl, fw_act_work); 4220 unsigned long fw_act_timeout; 4221 4222 if (ctrl->mtfa) 4223 fw_act_timeout = jiffies + 4224 msecs_to_jiffies(ctrl->mtfa * 100); 4225 else 4226 fw_act_timeout = jiffies + 4227 msecs_to_jiffies(admin_timeout * 1000); 4228 4229 nvme_stop_queues(ctrl); 4230 while (nvme_ctrl_pp_status(ctrl)) { 4231 if (time_after(jiffies, fw_act_timeout)) { 4232 dev_warn(ctrl->device, 4233 "Fw activation timeout, reset controller\n"); 4234 nvme_try_sched_reset(ctrl); 4235 return; 4236 } 4237 msleep(100); 4238 } 4239 4240 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4241 return; 4242 4243 nvme_start_queues(ctrl); 4244 /* read FW slot information to clear the AER */ 4245 nvme_get_fw_slot_info(ctrl); 4246 } 4247 4248 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4249 { 4250 u32 aer_notice_type = (result & 0xff00) >> 8; 4251 4252 trace_nvme_async_event(ctrl, aer_notice_type); 4253 4254 switch (aer_notice_type) { 4255 case NVME_AER_NOTICE_NS_CHANGED: 4256 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4257 nvme_queue_scan(ctrl); 4258 break; 4259 case NVME_AER_NOTICE_FW_ACT_STARTING: 4260 /* 4261 * We are (ab)using the RESETTING state to prevent subsequent 4262 * recovery actions from interfering with the controller's 4263 * firmware activation. 4264 */ 4265 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4266 queue_work(nvme_wq, &ctrl->fw_act_work); 4267 break; 4268 #ifdef CONFIG_NVME_MULTIPATH 4269 case NVME_AER_NOTICE_ANA: 4270 if (!ctrl->ana_log_buf) 4271 break; 4272 queue_work(nvme_wq, &ctrl->ana_work); 4273 break; 4274 #endif 4275 case NVME_AER_NOTICE_DISC_CHANGED: 4276 ctrl->aen_result = result; 4277 break; 4278 default: 4279 dev_warn(ctrl->device, "async event result %08x\n", result); 4280 } 4281 } 4282 4283 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4284 volatile union nvme_result *res) 4285 { 4286 u32 result = le32_to_cpu(res->u32); 4287 u32 aer_type = result & 0x07; 4288 4289 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4290 return; 4291 4292 switch (aer_type) { 4293 case NVME_AER_NOTICE: 4294 nvme_handle_aen_notice(ctrl, result); 4295 break; 4296 case NVME_AER_ERROR: 4297 case NVME_AER_SMART: 4298 case NVME_AER_CSS: 4299 case NVME_AER_VS: 4300 trace_nvme_async_event(ctrl, aer_type); 4301 ctrl->aen_result = result; 4302 break; 4303 default: 4304 break; 4305 } 4306 queue_work(nvme_wq, &ctrl->async_event_work); 4307 } 4308 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4309 4310 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4311 { 4312 nvme_mpath_stop(ctrl); 4313 nvme_stop_keep_alive(ctrl); 4314 nvme_stop_failfast_work(ctrl); 4315 flush_work(&ctrl->async_event_work); 4316 cancel_work_sync(&ctrl->fw_act_work); 4317 } 4318 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4319 4320 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4321 { 4322 nvme_start_keep_alive(ctrl); 4323 4324 nvme_enable_aen(ctrl); 4325 4326 if (ctrl->queue_count > 1) { 4327 nvme_queue_scan(ctrl); 4328 nvme_start_queues(ctrl); 4329 } 4330 } 4331 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4332 4333 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4334 { 4335 nvme_hwmon_exit(ctrl); 4336 nvme_fault_inject_fini(&ctrl->fault_inject); 4337 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4338 cdev_device_del(&ctrl->cdev, ctrl->device); 4339 nvme_put_ctrl(ctrl); 4340 } 4341 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4342 4343 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4344 { 4345 struct nvme_effects_log *cel; 4346 unsigned long i; 4347 4348 xa_for_each(&ctrl->cels, i, cel) { 4349 xa_erase(&ctrl->cels, i); 4350 kfree(cel); 4351 } 4352 4353 xa_destroy(&ctrl->cels); 4354 } 4355 4356 static void nvme_free_ctrl(struct device *dev) 4357 { 4358 struct nvme_ctrl *ctrl = 4359 container_of(dev, struct nvme_ctrl, ctrl_device); 4360 struct nvme_subsystem *subsys = ctrl->subsys; 4361 4362 if (!subsys || ctrl->instance != subsys->instance) 4363 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4364 4365 nvme_free_cels(ctrl); 4366 nvme_mpath_uninit(ctrl); 4367 __free_page(ctrl->discard_page); 4368 4369 if (subsys) { 4370 mutex_lock(&nvme_subsystems_lock); 4371 list_del(&ctrl->subsys_entry); 4372 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4373 mutex_unlock(&nvme_subsystems_lock); 4374 } 4375 4376 ctrl->ops->free_ctrl(ctrl); 4377 4378 if (subsys) 4379 nvme_put_subsystem(subsys); 4380 } 4381 4382 /* 4383 * Initialize a NVMe controller structures. This needs to be called during 4384 * earliest initialization so that we have the initialized structured around 4385 * during probing. 4386 */ 4387 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4388 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4389 { 4390 int ret; 4391 4392 ctrl->state = NVME_CTRL_NEW; 4393 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4394 spin_lock_init(&ctrl->lock); 4395 mutex_init(&ctrl->scan_lock); 4396 INIT_LIST_HEAD(&ctrl->namespaces); 4397 xa_init(&ctrl->cels); 4398 init_rwsem(&ctrl->namespaces_rwsem); 4399 ctrl->dev = dev; 4400 ctrl->ops = ops; 4401 ctrl->quirks = quirks; 4402 ctrl->numa_node = NUMA_NO_NODE; 4403 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4404 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4405 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4406 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4407 init_waitqueue_head(&ctrl->state_wq); 4408 4409 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4410 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4411 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4412 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4413 4414 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4415 PAGE_SIZE); 4416 ctrl->discard_page = alloc_page(GFP_KERNEL); 4417 if (!ctrl->discard_page) { 4418 ret = -ENOMEM; 4419 goto out; 4420 } 4421 4422 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4423 if (ret < 0) 4424 goto out; 4425 ctrl->instance = ret; 4426 4427 device_initialize(&ctrl->ctrl_device); 4428 ctrl->device = &ctrl->ctrl_device; 4429 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4430 ctrl->instance); 4431 ctrl->device->class = nvme_class; 4432 ctrl->device->parent = ctrl->dev; 4433 ctrl->device->groups = nvme_dev_attr_groups; 4434 ctrl->device->release = nvme_free_ctrl; 4435 dev_set_drvdata(ctrl->device, ctrl); 4436 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4437 if (ret) 4438 goto out_release_instance; 4439 4440 nvme_get_ctrl(ctrl); 4441 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4442 ctrl->cdev.owner = ops->module; 4443 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4444 if (ret) 4445 goto out_free_name; 4446 4447 /* 4448 * Initialize latency tolerance controls. The sysfs files won't 4449 * be visible to userspace unless the device actually supports APST. 4450 */ 4451 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4452 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4453 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4454 4455 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4456 nvme_mpath_init_ctrl(ctrl); 4457 4458 return 0; 4459 out_free_name: 4460 nvme_put_ctrl(ctrl); 4461 kfree_const(ctrl->device->kobj.name); 4462 out_release_instance: 4463 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4464 out: 4465 if (ctrl->discard_page) 4466 __free_page(ctrl->discard_page); 4467 return ret; 4468 } 4469 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4470 4471 /** 4472 * nvme_kill_queues(): Ends all namespace queues 4473 * @ctrl: the dead controller that needs to end 4474 * 4475 * Call this function when the driver determines it is unable to get the 4476 * controller in a state capable of servicing IO. 4477 */ 4478 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4479 { 4480 struct nvme_ns *ns; 4481 4482 down_read(&ctrl->namespaces_rwsem); 4483 4484 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4485 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4486 blk_mq_unquiesce_queue(ctrl->admin_q); 4487 4488 list_for_each_entry(ns, &ctrl->namespaces, list) 4489 nvme_set_queue_dying(ns); 4490 4491 up_read(&ctrl->namespaces_rwsem); 4492 } 4493 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4494 4495 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4496 { 4497 struct nvme_ns *ns; 4498 4499 down_read(&ctrl->namespaces_rwsem); 4500 list_for_each_entry(ns, &ctrl->namespaces, list) 4501 blk_mq_unfreeze_queue(ns->queue); 4502 up_read(&ctrl->namespaces_rwsem); 4503 } 4504 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4505 4506 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4507 { 4508 struct nvme_ns *ns; 4509 4510 down_read(&ctrl->namespaces_rwsem); 4511 list_for_each_entry(ns, &ctrl->namespaces, list) { 4512 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4513 if (timeout <= 0) 4514 break; 4515 } 4516 up_read(&ctrl->namespaces_rwsem); 4517 return timeout; 4518 } 4519 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4520 4521 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4522 { 4523 struct nvme_ns *ns; 4524 4525 down_read(&ctrl->namespaces_rwsem); 4526 list_for_each_entry(ns, &ctrl->namespaces, list) 4527 blk_mq_freeze_queue_wait(ns->queue); 4528 up_read(&ctrl->namespaces_rwsem); 4529 } 4530 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4531 4532 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4533 { 4534 struct nvme_ns *ns; 4535 4536 down_read(&ctrl->namespaces_rwsem); 4537 list_for_each_entry(ns, &ctrl->namespaces, list) 4538 blk_freeze_queue_start(ns->queue); 4539 up_read(&ctrl->namespaces_rwsem); 4540 } 4541 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4542 4543 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4544 { 4545 struct nvme_ns *ns; 4546 4547 down_read(&ctrl->namespaces_rwsem); 4548 list_for_each_entry(ns, &ctrl->namespaces, list) 4549 blk_mq_quiesce_queue(ns->queue); 4550 up_read(&ctrl->namespaces_rwsem); 4551 } 4552 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4553 4554 void nvme_start_queues(struct nvme_ctrl *ctrl) 4555 { 4556 struct nvme_ns *ns; 4557 4558 down_read(&ctrl->namespaces_rwsem); 4559 list_for_each_entry(ns, &ctrl->namespaces, list) 4560 blk_mq_unquiesce_queue(ns->queue); 4561 up_read(&ctrl->namespaces_rwsem); 4562 } 4563 EXPORT_SYMBOL_GPL(nvme_start_queues); 4564 4565 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4566 { 4567 struct nvme_ns *ns; 4568 4569 down_read(&ctrl->namespaces_rwsem); 4570 list_for_each_entry(ns, &ctrl->namespaces, list) 4571 blk_sync_queue(ns->queue); 4572 up_read(&ctrl->namespaces_rwsem); 4573 } 4574 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4575 4576 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4577 { 4578 nvme_sync_io_queues(ctrl); 4579 if (ctrl->admin_q) 4580 blk_sync_queue(ctrl->admin_q); 4581 } 4582 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4583 4584 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4585 { 4586 if (file->f_op != &nvme_dev_fops) 4587 return NULL; 4588 return file->private_data; 4589 } 4590 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4591 4592 /* 4593 * Check we didn't inadvertently grow the command structure sizes: 4594 */ 4595 static inline void _nvme_check_size(void) 4596 { 4597 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4598 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4599 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4600 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4601 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4602 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4603 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4604 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4605 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4606 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4607 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4608 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4609 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4610 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4611 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4612 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4613 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4614 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4615 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4616 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4617 } 4618 4619 4620 static int __init nvme_core_init(void) 4621 { 4622 int result = -ENOMEM; 4623 4624 _nvme_check_size(); 4625 4626 nvme_wq = alloc_workqueue("nvme-wq", 4627 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4628 if (!nvme_wq) 4629 goto out; 4630 4631 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4632 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4633 if (!nvme_reset_wq) 4634 goto destroy_wq; 4635 4636 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4637 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4638 if (!nvme_delete_wq) 4639 goto destroy_reset_wq; 4640 4641 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4642 NVME_MINORS, "nvme"); 4643 if (result < 0) 4644 goto destroy_delete_wq; 4645 4646 nvme_class = class_create(THIS_MODULE, "nvme"); 4647 if (IS_ERR(nvme_class)) { 4648 result = PTR_ERR(nvme_class); 4649 goto unregister_chrdev; 4650 } 4651 nvme_class->dev_uevent = nvme_class_uevent; 4652 4653 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4654 if (IS_ERR(nvme_subsys_class)) { 4655 result = PTR_ERR(nvme_subsys_class); 4656 goto destroy_class; 4657 } 4658 4659 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4660 "nvme-generic"); 4661 if (result < 0) 4662 goto destroy_subsys_class; 4663 4664 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4665 if (IS_ERR(nvme_ns_chr_class)) { 4666 result = PTR_ERR(nvme_ns_chr_class); 4667 goto unregister_generic_ns; 4668 } 4669 4670 return 0; 4671 4672 unregister_generic_ns: 4673 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4674 destroy_subsys_class: 4675 class_destroy(nvme_subsys_class); 4676 destroy_class: 4677 class_destroy(nvme_class); 4678 unregister_chrdev: 4679 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4680 destroy_delete_wq: 4681 destroy_workqueue(nvme_delete_wq); 4682 destroy_reset_wq: 4683 destroy_workqueue(nvme_reset_wq); 4684 destroy_wq: 4685 destroy_workqueue(nvme_wq); 4686 out: 4687 return result; 4688 } 4689 4690 static void __exit nvme_core_exit(void) 4691 { 4692 class_destroy(nvme_ns_chr_class); 4693 class_destroy(nvme_subsys_class); 4694 class_destroy(nvme_class); 4695 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4696 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4697 destroy_workqueue(nvme_delete_wq); 4698 destroy_workqueue(nvme_reset_wq); 4699 destroy_workqueue(nvme_wq); 4700 ida_destroy(&nvme_ns_chr_minor_ida); 4701 ida_destroy(&nvme_instance_ida); 4702 } 4703 4704 MODULE_LICENSE("GPL"); 4705 MODULE_VERSION("1.0"); 4706 module_init(nvme_core_init); 4707 module_exit(nvme_core_exit); 4708