xref: /openbmc/linux/drivers/nvme/host/core.c (revision 5b1ed7df01335ecf686edf490948054078d5766d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 					   unsigned nsid);
95 
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107 		return;
108 
109 	blk_set_queue_dying(ns->queue);
110 	blk_mq_unquiesce_queue(ns->queue);
111 
112 	set_capacity_and_notify(ns->disk, 0);
113 }
114 
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117 	/*
118 	 * Only new queue scan work when admin and IO queues are both alive
119 	 */
120 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121 		queue_work(nvme_wq, &ctrl->scan_work);
122 }
123 
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132 	if (ctrl->state != NVME_CTRL_RESETTING)
133 		return -EBUSY;
134 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 		return -EBUSY;
136 	return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139 
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143 			struct nvme_ctrl, failfast_work);
144 
145 	if (ctrl->state != NVME_CTRL_CONNECTING)
146 		return;
147 
148 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149 	dev_info(ctrl->device, "failfast expired\n");
150 	nvme_kick_requeue_lists(ctrl);
151 }
152 
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156 		return;
157 
158 	schedule_delayed_work(&ctrl->failfast_work,
159 			      ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161 
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164 	if (!ctrl->opts)
165 		return;
166 
167 	cancel_delayed_work_sync(&ctrl->failfast_work);
168 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170 
171 
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175 		return -EBUSY;
176 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177 		return -EBUSY;
178 	return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181 
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184 	int ret;
185 
186 	ret = nvme_reset_ctrl(ctrl);
187 	if (!ret) {
188 		flush_work(&ctrl->reset_work);
189 		if (ctrl->state != NVME_CTRL_LIVE)
190 			ret = -ENETRESET;
191 	}
192 
193 	return ret;
194 }
195 
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	dev_info(ctrl->device,
199 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200 
201 	flush_work(&ctrl->reset_work);
202 	nvme_stop_ctrl(ctrl);
203 	nvme_remove_namespaces(ctrl);
204 	ctrl->ops->delete_ctrl(ctrl);
205 	nvme_uninit_ctrl(ctrl);
206 }
207 
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210 	struct nvme_ctrl *ctrl =
211 		container_of(work, struct nvme_ctrl, delete_work);
212 
213 	nvme_do_delete_ctrl(ctrl);
214 }
215 
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219 		return -EBUSY;
220 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221 		return -EBUSY;
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225 
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228 	/*
229 	 * Keep a reference until nvme_do_delete_ctrl() complete,
230 	 * since ->delete_ctrl can free the controller.
231 	 */
232 	nvme_get_ctrl(ctrl);
233 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 		nvme_do_delete_ctrl(ctrl);
235 	nvme_put_ctrl(ctrl);
236 }
237 
238 static blk_status_t nvme_error_status(u16 status)
239 {
240 	switch (status & 0x7ff) {
241 	case NVME_SC_SUCCESS:
242 		return BLK_STS_OK;
243 	case NVME_SC_CAP_EXCEEDED:
244 		return BLK_STS_NOSPC;
245 	case NVME_SC_LBA_RANGE:
246 	case NVME_SC_CMD_INTERRUPTED:
247 	case NVME_SC_NS_NOT_READY:
248 		return BLK_STS_TARGET;
249 	case NVME_SC_BAD_ATTRIBUTES:
250 	case NVME_SC_ONCS_NOT_SUPPORTED:
251 	case NVME_SC_INVALID_OPCODE:
252 	case NVME_SC_INVALID_FIELD:
253 	case NVME_SC_INVALID_NS:
254 		return BLK_STS_NOTSUPP;
255 	case NVME_SC_WRITE_FAULT:
256 	case NVME_SC_READ_ERROR:
257 	case NVME_SC_UNWRITTEN_BLOCK:
258 	case NVME_SC_ACCESS_DENIED:
259 	case NVME_SC_READ_ONLY:
260 	case NVME_SC_COMPARE_FAILED:
261 		return BLK_STS_MEDIUM;
262 	case NVME_SC_GUARD_CHECK:
263 	case NVME_SC_APPTAG_CHECK:
264 	case NVME_SC_REFTAG_CHECK:
265 	case NVME_SC_INVALID_PI:
266 		return BLK_STS_PROTECTION;
267 	case NVME_SC_RESERVATION_CONFLICT:
268 		return BLK_STS_NEXUS;
269 	case NVME_SC_HOST_PATH_ERROR:
270 		return BLK_STS_TRANSPORT;
271 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
273 	case NVME_SC_ZONE_TOO_MANY_OPEN:
274 		return BLK_STS_ZONE_OPEN_RESOURCE;
275 	default:
276 		return BLK_STS_IOERR;
277 	}
278 }
279 
280 static void nvme_retry_req(struct request *req)
281 {
282 	unsigned long delay = 0;
283 	u16 crd;
284 
285 	/* The mask and shift result must be <= 3 */
286 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
287 	if (crd)
288 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
289 
290 	nvme_req(req)->retries++;
291 	blk_mq_requeue_request(req, false);
292 	blk_mq_delay_kick_requeue_list(req->q, delay);
293 }
294 
295 enum nvme_disposition {
296 	COMPLETE,
297 	RETRY,
298 	FAILOVER,
299 };
300 
301 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
302 {
303 	if (likely(nvme_req(req)->status == 0))
304 		return COMPLETE;
305 
306 	if (blk_noretry_request(req) ||
307 	    (nvme_req(req)->status & NVME_SC_DNR) ||
308 	    nvme_req(req)->retries >= nvme_max_retries)
309 		return COMPLETE;
310 
311 	if (req->cmd_flags & REQ_NVME_MPATH) {
312 		if (nvme_is_path_error(nvme_req(req)->status) ||
313 		    blk_queue_dying(req->q))
314 			return FAILOVER;
315 	} else {
316 		if (blk_queue_dying(req->q))
317 			return COMPLETE;
318 	}
319 
320 	return RETRY;
321 }
322 
323 static inline void nvme_end_req(struct request *req)
324 {
325 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
326 
327 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
328 	    req_op(req) == REQ_OP_ZONE_APPEND)
329 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
330 			le64_to_cpu(nvme_req(req)->result.u64));
331 
332 	nvme_trace_bio_complete(req);
333 	blk_mq_end_request(req, status);
334 }
335 
336 void nvme_complete_rq(struct request *req)
337 {
338 	trace_nvme_complete_rq(req);
339 	nvme_cleanup_cmd(req);
340 
341 	if (nvme_req(req)->ctrl->kas)
342 		nvme_req(req)->ctrl->comp_seen = true;
343 
344 	switch (nvme_decide_disposition(req)) {
345 	case COMPLETE:
346 		nvme_end_req(req);
347 		return;
348 	case RETRY:
349 		nvme_retry_req(req);
350 		return;
351 	case FAILOVER:
352 		nvme_failover_req(req);
353 		return;
354 	}
355 }
356 EXPORT_SYMBOL_GPL(nvme_complete_rq);
357 
358 /*
359  * Called to unwind from ->queue_rq on a failed command submission so that the
360  * multipathing code gets called to potentially failover to another path.
361  * The caller needs to unwind all transport specific resource allocations and
362  * must return propagate the return value.
363  */
364 blk_status_t nvme_host_path_error(struct request *req)
365 {
366 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
367 	blk_mq_set_request_complete(req);
368 	nvme_complete_rq(req);
369 	return BLK_STS_OK;
370 }
371 EXPORT_SYMBOL_GPL(nvme_host_path_error);
372 
373 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
374 {
375 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
376 				"Cancelling I/O %d", req->tag);
377 
378 	/* don't abort one completed request */
379 	if (blk_mq_request_completed(req))
380 		return true;
381 
382 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
383 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
384 	blk_mq_complete_request(req);
385 	return true;
386 }
387 EXPORT_SYMBOL_GPL(nvme_cancel_request);
388 
389 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
390 {
391 	if (ctrl->tagset) {
392 		blk_mq_tagset_busy_iter(ctrl->tagset,
393 				nvme_cancel_request, ctrl);
394 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
395 	}
396 }
397 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
398 
399 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
400 {
401 	if (ctrl->admin_tagset) {
402 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
403 				nvme_cancel_request, ctrl);
404 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
405 	}
406 }
407 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
408 
409 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
410 		enum nvme_ctrl_state new_state)
411 {
412 	enum nvme_ctrl_state old_state;
413 	unsigned long flags;
414 	bool changed = false;
415 
416 	spin_lock_irqsave(&ctrl->lock, flags);
417 
418 	old_state = ctrl->state;
419 	switch (new_state) {
420 	case NVME_CTRL_LIVE:
421 		switch (old_state) {
422 		case NVME_CTRL_NEW:
423 		case NVME_CTRL_RESETTING:
424 		case NVME_CTRL_CONNECTING:
425 			changed = true;
426 			fallthrough;
427 		default:
428 			break;
429 		}
430 		break;
431 	case NVME_CTRL_RESETTING:
432 		switch (old_state) {
433 		case NVME_CTRL_NEW:
434 		case NVME_CTRL_LIVE:
435 			changed = true;
436 			fallthrough;
437 		default:
438 			break;
439 		}
440 		break;
441 	case NVME_CTRL_CONNECTING:
442 		switch (old_state) {
443 		case NVME_CTRL_NEW:
444 		case NVME_CTRL_RESETTING:
445 			changed = true;
446 			fallthrough;
447 		default:
448 			break;
449 		}
450 		break;
451 	case NVME_CTRL_DELETING:
452 		switch (old_state) {
453 		case NVME_CTRL_LIVE:
454 		case NVME_CTRL_RESETTING:
455 		case NVME_CTRL_CONNECTING:
456 			changed = true;
457 			fallthrough;
458 		default:
459 			break;
460 		}
461 		break;
462 	case NVME_CTRL_DELETING_NOIO:
463 		switch (old_state) {
464 		case NVME_CTRL_DELETING:
465 		case NVME_CTRL_DEAD:
466 			changed = true;
467 			fallthrough;
468 		default:
469 			break;
470 		}
471 		break;
472 	case NVME_CTRL_DEAD:
473 		switch (old_state) {
474 		case NVME_CTRL_DELETING:
475 			changed = true;
476 			fallthrough;
477 		default:
478 			break;
479 		}
480 		break;
481 	default:
482 		break;
483 	}
484 
485 	if (changed) {
486 		ctrl->state = new_state;
487 		wake_up_all(&ctrl->state_wq);
488 	}
489 
490 	spin_unlock_irqrestore(&ctrl->lock, flags);
491 	if (!changed)
492 		return false;
493 
494 	if (ctrl->state == NVME_CTRL_LIVE) {
495 		if (old_state == NVME_CTRL_CONNECTING)
496 			nvme_stop_failfast_work(ctrl);
497 		nvme_kick_requeue_lists(ctrl);
498 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
499 		old_state == NVME_CTRL_RESETTING) {
500 		nvme_start_failfast_work(ctrl);
501 	}
502 	return changed;
503 }
504 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
505 
506 /*
507  * Returns true for sink states that can't ever transition back to live.
508  */
509 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
510 {
511 	switch (ctrl->state) {
512 	case NVME_CTRL_NEW:
513 	case NVME_CTRL_LIVE:
514 	case NVME_CTRL_RESETTING:
515 	case NVME_CTRL_CONNECTING:
516 		return false;
517 	case NVME_CTRL_DELETING:
518 	case NVME_CTRL_DELETING_NOIO:
519 	case NVME_CTRL_DEAD:
520 		return true;
521 	default:
522 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
523 		return true;
524 	}
525 }
526 
527 /*
528  * Waits for the controller state to be resetting, or returns false if it is
529  * not possible to ever transition to that state.
530  */
531 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
532 {
533 	wait_event(ctrl->state_wq,
534 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
535 		   nvme_state_terminal(ctrl));
536 	return ctrl->state == NVME_CTRL_RESETTING;
537 }
538 EXPORT_SYMBOL_GPL(nvme_wait_reset);
539 
540 static void nvme_free_ns_head(struct kref *ref)
541 {
542 	struct nvme_ns_head *head =
543 		container_of(ref, struct nvme_ns_head, ref);
544 
545 	nvme_mpath_remove_disk(head);
546 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
547 	cleanup_srcu_struct(&head->srcu);
548 	nvme_put_subsystem(head->subsys);
549 	kfree(head);
550 }
551 
552 static void nvme_put_ns_head(struct nvme_ns_head *head)
553 {
554 	kref_put(&head->ref, nvme_free_ns_head);
555 }
556 
557 static void nvme_free_ns(struct kref *kref)
558 {
559 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
560 
561 	if (ns->ndev)
562 		nvme_nvm_unregister(ns);
563 
564 	put_disk(ns->disk);
565 	nvme_put_ns_head(ns->head);
566 	nvme_put_ctrl(ns->ctrl);
567 	kfree(ns);
568 }
569 
570 void nvme_put_ns(struct nvme_ns *ns)
571 {
572 	kref_put(&ns->kref, nvme_free_ns);
573 }
574 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
575 
576 static inline void nvme_clear_nvme_request(struct request *req)
577 {
578 	if (!(req->rq_flags & RQF_DONTPREP)) {
579 		nvme_req(req)->retries = 0;
580 		nvme_req(req)->flags = 0;
581 		req->rq_flags |= RQF_DONTPREP;
582 	}
583 }
584 
585 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
586 {
587 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
588 }
589 
590 static inline void nvme_init_request(struct request *req,
591 		struct nvme_command *cmd)
592 {
593 	if (req->q->queuedata)
594 		req->timeout = NVME_IO_TIMEOUT;
595 	else /* no queuedata implies admin queue */
596 		req->timeout = NVME_ADMIN_TIMEOUT;
597 
598 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
599 	nvme_clear_nvme_request(req);
600 	nvme_req(req)->cmd = cmd;
601 }
602 
603 struct request *nvme_alloc_request(struct request_queue *q,
604 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
605 {
606 	struct request *req;
607 
608 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
609 	if (!IS_ERR(req))
610 		nvme_init_request(req, cmd);
611 	return req;
612 }
613 EXPORT_SYMBOL_GPL(nvme_alloc_request);
614 
615 static struct request *nvme_alloc_request_qid(struct request_queue *q,
616 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
617 {
618 	struct request *req;
619 
620 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
621 			qid ? qid - 1 : 0);
622 	if (!IS_ERR(req))
623 		nvme_init_request(req, cmd);
624 	return req;
625 }
626 
627 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
628 {
629 	struct nvme_command c;
630 
631 	memset(&c, 0, sizeof(c));
632 
633 	c.directive.opcode = nvme_admin_directive_send;
634 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
635 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
636 	c.directive.dtype = NVME_DIR_IDENTIFY;
637 	c.directive.tdtype = NVME_DIR_STREAMS;
638 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
639 
640 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
641 }
642 
643 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
644 {
645 	return nvme_toggle_streams(ctrl, false);
646 }
647 
648 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
649 {
650 	return nvme_toggle_streams(ctrl, true);
651 }
652 
653 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
654 				  struct streams_directive_params *s, u32 nsid)
655 {
656 	struct nvme_command c;
657 
658 	memset(&c, 0, sizeof(c));
659 	memset(s, 0, sizeof(*s));
660 
661 	c.directive.opcode = nvme_admin_directive_recv;
662 	c.directive.nsid = cpu_to_le32(nsid);
663 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
664 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
665 	c.directive.dtype = NVME_DIR_STREAMS;
666 
667 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
668 }
669 
670 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
671 {
672 	struct streams_directive_params s;
673 	int ret;
674 
675 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
676 		return 0;
677 	if (!streams)
678 		return 0;
679 
680 	ret = nvme_enable_streams(ctrl);
681 	if (ret)
682 		return ret;
683 
684 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
685 	if (ret)
686 		goto out_disable_stream;
687 
688 	ctrl->nssa = le16_to_cpu(s.nssa);
689 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
690 		dev_info(ctrl->device, "too few streams (%u) available\n",
691 					ctrl->nssa);
692 		goto out_disable_stream;
693 	}
694 
695 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
696 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
697 	return 0;
698 
699 out_disable_stream:
700 	nvme_disable_streams(ctrl);
701 	return ret;
702 }
703 
704 /*
705  * Check if 'req' has a write hint associated with it. If it does, assign
706  * a valid namespace stream to the write.
707  */
708 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
709 				     struct request *req, u16 *control,
710 				     u32 *dsmgmt)
711 {
712 	enum rw_hint streamid = req->write_hint;
713 
714 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
715 		streamid = 0;
716 	else {
717 		streamid--;
718 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
719 			return;
720 
721 		*control |= NVME_RW_DTYPE_STREAMS;
722 		*dsmgmt |= streamid << 16;
723 	}
724 
725 	if (streamid < ARRAY_SIZE(req->q->write_hints))
726 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
727 }
728 
729 static void nvme_setup_passthrough(struct request *req,
730 		struct nvme_command *cmd)
731 {
732 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
733 	/* passthru commands should let the driver set the SGL flags */
734 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
735 }
736 
737 static inline void nvme_setup_flush(struct nvme_ns *ns,
738 		struct nvme_command *cmnd)
739 {
740 	cmnd->common.opcode = nvme_cmd_flush;
741 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
742 }
743 
744 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
745 		struct nvme_command *cmnd)
746 {
747 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
748 	struct nvme_dsm_range *range;
749 	struct bio *bio;
750 
751 	/*
752 	 * Some devices do not consider the DSM 'Number of Ranges' field when
753 	 * determining how much data to DMA. Always allocate memory for maximum
754 	 * number of segments to prevent device reading beyond end of buffer.
755 	 */
756 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
757 
758 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
759 	if (!range) {
760 		/*
761 		 * If we fail allocation our range, fallback to the controller
762 		 * discard page. If that's also busy, it's safe to return
763 		 * busy, as we know we can make progress once that's freed.
764 		 */
765 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
766 			return BLK_STS_RESOURCE;
767 
768 		range = page_address(ns->ctrl->discard_page);
769 	}
770 
771 	__rq_for_each_bio(bio, req) {
772 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
773 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
774 
775 		if (n < segments) {
776 			range[n].cattr = cpu_to_le32(0);
777 			range[n].nlb = cpu_to_le32(nlb);
778 			range[n].slba = cpu_to_le64(slba);
779 		}
780 		n++;
781 	}
782 
783 	if (WARN_ON_ONCE(n != segments)) {
784 		if (virt_to_page(range) == ns->ctrl->discard_page)
785 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
786 		else
787 			kfree(range);
788 		return BLK_STS_IOERR;
789 	}
790 
791 	cmnd->dsm.opcode = nvme_cmd_dsm;
792 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
793 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
794 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
795 
796 	req->special_vec.bv_page = virt_to_page(range);
797 	req->special_vec.bv_offset = offset_in_page(range);
798 	req->special_vec.bv_len = alloc_size;
799 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
800 
801 	return BLK_STS_OK;
802 }
803 
804 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
805 		struct request *req, struct nvme_command *cmnd)
806 {
807 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
808 		return nvme_setup_discard(ns, req, cmnd);
809 
810 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
811 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
812 	cmnd->write_zeroes.slba =
813 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
814 	cmnd->write_zeroes.length =
815 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
816 	cmnd->write_zeroes.control = 0;
817 	return BLK_STS_OK;
818 }
819 
820 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
821 		struct request *req, struct nvme_command *cmnd,
822 		enum nvme_opcode op)
823 {
824 	struct nvme_ctrl *ctrl = ns->ctrl;
825 	u16 control = 0;
826 	u32 dsmgmt = 0;
827 
828 	if (req->cmd_flags & REQ_FUA)
829 		control |= NVME_RW_FUA;
830 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
831 		control |= NVME_RW_LR;
832 
833 	if (req->cmd_flags & REQ_RAHEAD)
834 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
835 
836 	cmnd->rw.opcode = op;
837 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
838 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
839 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
840 
841 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
842 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
843 
844 	if (ns->ms) {
845 		/*
846 		 * If formated with metadata, the block layer always provides a
847 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
848 		 * we enable the PRACT bit for protection information or set the
849 		 * namespace capacity to zero to prevent any I/O.
850 		 */
851 		if (!blk_integrity_rq(req)) {
852 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
853 				return BLK_STS_NOTSUPP;
854 			control |= NVME_RW_PRINFO_PRACT;
855 		}
856 
857 		switch (ns->pi_type) {
858 		case NVME_NS_DPS_PI_TYPE3:
859 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
860 			break;
861 		case NVME_NS_DPS_PI_TYPE1:
862 		case NVME_NS_DPS_PI_TYPE2:
863 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
864 					NVME_RW_PRINFO_PRCHK_REF;
865 			if (op == nvme_cmd_zone_append)
866 				control |= NVME_RW_APPEND_PIREMAP;
867 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
868 			break;
869 		}
870 	}
871 
872 	cmnd->rw.control = cpu_to_le16(control);
873 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
874 	return 0;
875 }
876 
877 void nvme_cleanup_cmd(struct request *req)
878 {
879 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
880 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
881 		struct page *page = req->special_vec.bv_page;
882 
883 		if (page == ctrl->discard_page)
884 			clear_bit_unlock(0, &ctrl->discard_page_busy);
885 		else
886 			kfree(page_address(page) + req->special_vec.bv_offset);
887 	}
888 }
889 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
890 
891 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
892 		struct nvme_command *cmd)
893 {
894 	blk_status_t ret = BLK_STS_OK;
895 
896 	nvme_clear_nvme_request(req);
897 
898 	memset(cmd, 0, sizeof(*cmd));
899 	switch (req_op(req)) {
900 	case REQ_OP_DRV_IN:
901 	case REQ_OP_DRV_OUT:
902 		nvme_setup_passthrough(req, cmd);
903 		break;
904 	case REQ_OP_FLUSH:
905 		nvme_setup_flush(ns, cmd);
906 		break;
907 	case REQ_OP_ZONE_RESET_ALL:
908 	case REQ_OP_ZONE_RESET:
909 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
910 		break;
911 	case REQ_OP_ZONE_OPEN:
912 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
913 		break;
914 	case REQ_OP_ZONE_CLOSE:
915 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
916 		break;
917 	case REQ_OP_ZONE_FINISH:
918 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
919 		break;
920 	case REQ_OP_WRITE_ZEROES:
921 		ret = nvme_setup_write_zeroes(ns, req, cmd);
922 		break;
923 	case REQ_OP_DISCARD:
924 		ret = nvme_setup_discard(ns, req, cmd);
925 		break;
926 	case REQ_OP_READ:
927 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
928 		break;
929 	case REQ_OP_WRITE:
930 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
931 		break;
932 	case REQ_OP_ZONE_APPEND:
933 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
934 		break;
935 	default:
936 		WARN_ON_ONCE(1);
937 		return BLK_STS_IOERR;
938 	}
939 
940 	cmd->common.command_id = req->tag;
941 	trace_nvme_setup_cmd(req, cmd);
942 	return ret;
943 }
944 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
945 
946 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
947 {
948 	struct completion *waiting = rq->end_io_data;
949 
950 	rq->end_io_data = NULL;
951 	complete(waiting);
952 }
953 
954 static void nvme_execute_rq_polled(struct request_queue *q,
955 		struct gendisk *bd_disk, struct request *rq, int at_head)
956 {
957 	DECLARE_COMPLETION_ONSTACK(wait);
958 
959 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
960 
961 	rq->cmd_flags |= REQ_HIPRI;
962 	rq->end_io_data = &wait;
963 	blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
964 
965 	while (!completion_done(&wait)) {
966 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
967 		cond_resched();
968 	}
969 }
970 
971 /*
972  * Returns 0 on success.  If the result is negative, it's a Linux error code;
973  * if the result is positive, it's an NVM Express status code
974  */
975 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
976 		union nvme_result *result, void *buffer, unsigned bufflen,
977 		unsigned timeout, int qid, int at_head,
978 		blk_mq_req_flags_t flags, bool poll)
979 {
980 	struct request *req;
981 	int ret;
982 
983 	if (qid == NVME_QID_ANY)
984 		req = nvme_alloc_request(q, cmd, flags);
985 	else
986 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
987 	if (IS_ERR(req))
988 		return PTR_ERR(req);
989 
990 	if (timeout)
991 		req->timeout = timeout;
992 
993 	if (buffer && bufflen) {
994 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
995 		if (ret)
996 			goto out;
997 	}
998 
999 	if (poll)
1000 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
1001 	else
1002 		blk_execute_rq(NULL, req, at_head);
1003 	if (result)
1004 		*result = nvme_req(req)->result;
1005 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1006 		ret = -EINTR;
1007 	else
1008 		ret = nvme_req(req)->status;
1009  out:
1010 	blk_mq_free_request(req);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1014 
1015 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1016 		void *buffer, unsigned bufflen)
1017 {
1018 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1019 			NVME_QID_ANY, 0, 0, false);
1020 }
1021 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1022 
1023 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
1024 		unsigned len, u32 seed, bool write)
1025 {
1026 	struct bio_integrity_payload *bip;
1027 	int ret = -ENOMEM;
1028 	void *buf;
1029 
1030 	buf = kmalloc(len, GFP_KERNEL);
1031 	if (!buf)
1032 		goto out;
1033 
1034 	ret = -EFAULT;
1035 	if (write && copy_from_user(buf, ubuf, len))
1036 		goto out_free_meta;
1037 
1038 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1039 	if (IS_ERR(bip)) {
1040 		ret = PTR_ERR(bip);
1041 		goto out_free_meta;
1042 	}
1043 
1044 	bip->bip_iter.bi_size = len;
1045 	bip->bip_iter.bi_sector = seed;
1046 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1047 			offset_in_page(buf));
1048 	if (ret == len)
1049 		return buf;
1050 	ret = -ENOMEM;
1051 out_free_meta:
1052 	kfree(buf);
1053 out:
1054 	return ERR_PTR(ret);
1055 }
1056 
1057 static u32 nvme_known_admin_effects(u8 opcode)
1058 {
1059 	switch (opcode) {
1060 	case nvme_admin_format_nvm:
1061 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1062 			NVME_CMD_EFFECTS_CSE_MASK;
1063 	case nvme_admin_sanitize_nvm:
1064 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1065 	default:
1066 		break;
1067 	}
1068 	return 0;
1069 }
1070 
1071 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1072 {
1073 	u32 effects = 0;
1074 
1075 	if (ns) {
1076 		if (ns->head->effects)
1077 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1078 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1079 			dev_warn(ctrl->device,
1080 				 "IO command:%02x has unhandled effects:%08x\n",
1081 				 opcode, effects);
1082 		return 0;
1083 	}
1084 
1085 	if (ctrl->effects)
1086 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1087 	effects |= nvme_known_admin_effects(opcode);
1088 
1089 	return effects;
1090 }
1091 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1092 
1093 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1094 			       u8 opcode)
1095 {
1096 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1097 
1098 	/*
1099 	 * For simplicity, IO to all namespaces is quiesced even if the command
1100 	 * effects say only one namespace is affected.
1101 	 */
1102 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1103 		mutex_lock(&ctrl->scan_lock);
1104 		mutex_lock(&ctrl->subsys->lock);
1105 		nvme_mpath_start_freeze(ctrl->subsys);
1106 		nvme_mpath_wait_freeze(ctrl->subsys);
1107 		nvme_start_freeze(ctrl);
1108 		nvme_wait_freeze(ctrl);
1109 	}
1110 	return effects;
1111 }
1112 
1113 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1114 {
1115 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116 		nvme_unfreeze(ctrl);
1117 		nvme_mpath_unfreeze(ctrl->subsys);
1118 		mutex_unlock(&ctrl->subsys->lock);
1119 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1120 		mutex_unlock(&ctrl->scan_lock);
1121 	}
1122 	if (effects & NVME_CMD_EFFECTS_CCC)
1123 		nvme_init_identify(ctrl);
1124 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1125 		nvme_queue_scan(ctrl);
1126 		flush_work(&ctrl->scan_work);
1127 	}
1128 }
1129 
1130 void nvme_execute_passthru_rq(struct request *rq)
1131 {
1132 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1133 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1134 	struct nvme_ns *ns = rq->q->queuedata;
1135 	struct gendisk *disk = ns ? ns->disk : NULL;
1136 	u32 effects;
1137 
1138 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1139 	blk_execute_rq(disk, rq, 0);
1140 	nvme_passthru_end(ctrl, effects);
1141 }
1142 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1143 
1144 static int nvme_submit_user_cmd(struct request_queue *q,
1145 		struct nvme_command *cmd, void __user *ubuffer,
1146 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1147 		u32 meta_seed, u64 *result, unsigned timeout)
1148 {
1149 	bool write = nvme_is_write(cmd);
1150 	struct nvme_ns *ns = q->queuedata;
1151 	struct block_device *bdev = ns ? ns->disk->part0 : NULL;
1152 	struct request *req;
1153 	struct bio *bio = NULL;
1154 	void *meta = NULL;
1155 	int ret;
1156 
1157 	req = nvme_alloc_request(q, cmd, 0);
1158 	if (IS_ERR(req))
1159 		return PTR_ERR(req);
1160 
1161 	if (timeout)
1162 		req->timeout = timeout;
1163 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1164 
1165 	if (ubuffer && bufflen) {
1166 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1167 				GFP_KERNEL);
1168 		if (ret)
1169 			goto out;
1170 		bio = req->bio;
1171 		if (bdev)
1172 			bio_set_dev(bio, bdev);
1173 		if (bdev && meta_buffer && meta_len) {
1174 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1175 					meta_seed, write);
1176 			if (IS_ERR(meta)) {
1177 				ret = PTR_ERR(meta);
1178 				goto out_unmap;
1179 			}
1180 			req->cmd_flags |= REQ_INTEGRITY;
1181 		}
1182 	}
1183 
1184 	nvme_execute_passthru_rq(req);
1185 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1186 		ret = -EINTR;
1187 	else
1188 		ret = nvme_req(req)->status;
1189 	if (result)
1190 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1191 	if (meta && !ret && !write) {
1192 		if (copy_to_user(meta_buffer, meta, meta_len))
1193 			ret = -EFAULT;
1194 	}
1195 	kfree(meta);
1196  out_unmap:
1197 	if (bio)
1198 		blk_rq_unmap_user(bio);
1199  out:
1200 	blk_mq_free_request(req);
1201 	return ret;
1202 }
1203 
1204 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1205 {
1206 	struct nvme_ctrl *ctrl = rq->end_io_data;
1207 	unsigned long flags;
1208 	bool startka = false;
1209 
1210 	blk_mq_free_request(rq);
1211 
1212 	if (status) {
1213 		dev_err(ctrl->device,
1214 			"failed nvme_keep_alive_end_io error=%d\n",
1215 				status);
1216 		return;
1217 	}
1218 
1219 	ctrl->comp_seen = false;
1220 	spin_lock_irqsave(&ctrl->lock, flags);
1221 	if (ctrl->state == NVME_CTRL_LIVE ||
1222 	    ctrl->state == NVME_CTRL_CONNECTING)
1223 		startka = true;
1224 	spin_unlock_irqrestore(&ctrl->lock, flags);
1225 	if (startka)
1226 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1227 }
1228 
1229 static void nvme_keep_alive_work(struct work_struct *work)
1230 {
1231 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1232 			struct nvme_ctrl, ka_work);
1233 	bool comp_seen = ctrl->comp_seen;
1234 	struct request *rq;
1235 
1236 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1237 		dev_dbg(ctrl->device,
1238 			"reschedule traffic based keep-alive timer\n");
1239 		ctrl->comp_seen = false;
1240 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1241 		return;
1242 	}
1243 
1244 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1245 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1246 	if (IS_ERR(rq)) {
1247 		/* allocation failure, reset the controller */
1248 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1249 		nvme_reset_ctrl(ctrl);
1250 		return;
1251 	}
1252 
1253 	rq->timeout = ctrl->kato * HZ;
1254 	rq->end_io_data = ctrl;
1255 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1256 }
1257 
1258 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1259 {
1260 	if (unlikely(ctrl->kato == 0))
1261 		return;
1262 
1263 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1264 }
1265 
1266 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1267 {
1268 	if (unlikely(ctrl->kato == 0))
1269 		return;
1270 
1271 	cancel_delayed_work_sync(&ctrl->ka_work);
1272 }
1273 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1274 
1275 /*
1276  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1277  * flag, thus sending any new CNS opcodes has a big chance of not working.
1278  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1279  * (but not for any later version).
1280  */
1281 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1282 {
1283 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1284 		return ctrl->vs < NVME_VS(1, 2, 0);
1285 	return ctrl->vs < NVME_VS(1, 1, 0);
1286 }
1287 
1288 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1289 {
1290 	struct nvme_command c = { };
1291 	int error;
1292 
1293 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1294 	c.identify.opcode = nvme_admin_identify;
1295 	c.identify.cns = NVME_ID_CNS_CTRL;
1296 
1297 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1298 	if (!*id)
1299 		return -ENOMEM;
1300 
1301 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1302 			sizeof(struct nvme_id_ctrl));
1303 	if (error)
1304 		kfree(*id);
1305 	return error;
1306 }
1307 
1308 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1309 {
1310 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1311 }
1312 
1313 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1314 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1315 {
1316 	const char *warn_str = "ctrl returned bogus length:";
1317 	void *data = cur;
1318 
1319 	switch (cur->nidt) {
1320 	case NVME_NIDT_EUI64:
1321 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1322 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1323 				 warn_str, cur->nidl);
1324 			return -1;
1325 		}
1326 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1327 		return NVME_NIDT_EUI64_LEN;
1328 	case NVME_NIDT_NGUID:
1329 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1330 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1331 				 warn_str, cur->nidl);
1332 			return -1;
1333 		}
1334 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1335 		return NVME_NIDT_NGUID_LEN;
1336 	case NVME_NIDT_UUID:
1337 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1338 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1339 				 warn_str, cur->nidl);
1340 			return -1;
1341 		}
1342 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1343 		return NVME_NIDT_UUID_LEN;
1344 	case NVME_NIDT_CSI:
1345 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1346 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1347 				 warn_str, cur->nidl);
1348 			return -1;
1349 		}
1350 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1351 		*csi_seen = true;
1352 		return NVME_NIDT_CSI_LEN;
1353 	default:
1354 		/* Skip unknown types */
1355 		return cur->nidl;
1356 	}
1357 }
1358 
1359 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1360 		struct nvme_ns_ids *ids)
1361 {
1362 	struct nvme_command c = { };
1363 	bool csi_seen = false;
1364 	int status, pos, len;
1365 	void *data;
1366 
1367 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1368 		return 0;
1369 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1370 		return 0;
1371 
1372 	c.identify.opcode = nvme_admin_identify;
1373 	c.identify.nsid = cpu_to_le32(nsid);
1374 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1375 
1376 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1377 	if (!data)
1378 		return -ENOMEM;
1379 
1380 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1381 				      NVME_IDENTIFY_DATA_SIZE);
1382 	if (status) {
1383 		dev_warn(ctrl->device,
1384 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1385 			nsid, status);
1386 		goto free_data;
1387 	}
1388 
1389 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1390 		struct nvme_ns_id_desc *cur = data + pos;
1391 
1392 		if (cur->nidl == 0)
1393 			break;
1394 
1395 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1396 		if (len < 0)
1397 			break;
1398 
1399 		len += sizeof(*cur);
1400 	}
1401 
1402 	if (nvme_multi_css(ctrl) && !csi_seen) {
1403 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1404 			 nsid);
1405 		status = -EINVAL;
1406 	}
1407 
1408 free_data:
1409 	kfree(data);
1410 	return status;
1411 }
1412 
1413 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1414 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1415 {
1416 	struct nvme_command c = { };
1417 	int error;
1418 
1419 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1420 	c.identify.opcode = nvme_admin_identify;
1421 	c.identify.nsid = cpu_to_le32(nsid);
1422 	c.identify.cns = NVME_ID_CNS_NS;
1423 
1424 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1425 	if (!*id)
1426 		return -ENOMEM;
1427 
1428 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1429 	if (error) {
1430 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1431 		goto out_free_id;
1432 	}
1433 
1434 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1435 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1436 		goto out_free_id;
1437 
1438 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1439 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1440 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1441 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1442 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1443 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1444 
1445 	return 0;
1446 
1447 out_free_id:
1448 	kfree(*id);
1449 	return error;
1450 }
1451 
1452 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1453 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1454 {
1455 	union nvme_result res = { 0 };
1456 	struct nvme_command c;
1457 	int ret;
1458 
1459 	memset(&c, 0, sizeof(c));
1460 	c.features.opcode = op;
1461 	c.features.fid = cpu_to_le32(fid);
1462 	c.features.dword11 = cpu_to_le32(dword11);
1463 
1464 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1465 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1466 	if (ret >= 0 && result)
1467 		*result = le32_to_cpu(res.u32);
1468 	return ret;
1469 }
1470 
1471 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1472 		      unsigned int dword11, void *buffer, size_t buflen,
1473 		      u32 *result)
1474 {
1475 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1476 			     buflen, result);
1477 }
1478 EXPORT_SYMBOL_GPL(nvme_set_features);
1479 
1480 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1481 		      unsigned int dword11, void *buffer, size_t buflen,
1482 		      u32 *result)
1483 {
1484 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1485 			     buflen, result);
1486 }
1487 EXPORT_SYMBOL_GPL(nvme_get_features);
1488 
1489 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1490 {
1491 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1492 	u32 result;
1493 	int status, nr_io_queues;
1494 
1495 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1496 			&result);
1497 	if (status < 0)
1498 		return status;
1499 
1500 	/*
1501 	 * Degraded controllers might return an error when setting the queue
1502 	 * count.  We still want to be able to bring them online and offer
1503 	 * access to the admin queue, as that might be only way to fix them up.
1504 	 */
1505 	if (status > 0) {
1506 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1507 		*count = 0;
1508 	} else {
1509 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1510 		*count = min(*count, nr_io_queues);
1511 	}
1512 
1513 	return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1516 
1517 #define NVME_AEN_SUPPORTED \
1518 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1519 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1520 
1521 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1522 {
1523 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1524 	int status;
1525 
1526 	if (!supported_aens)
1527 		return;
1528 
1529 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1530 			NULL, 0, &result);
1531 	if (status)
1532 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1533 			 supported_aens);
1534 
1535 	queue_work(nvme_wq, &ctrl->async_event_work);
1536 }
1537 
1538 /*
1539  * Convert integer values from ioctl structures to user pointers, silently
1540  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1541  * kernels.
1542  */
1543 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1544 {
1545 	if (in_compat_syscall())
1546 		ptrval = (compat_uptr_t)ptrval;
1547 	return (void __user *)ptrval;
1548 }
1549 
1550 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1551 {
1552 	struct nvme_user_io io;
1553 	struct nvme_command c;
1554 	unsigned length, meta_len;
1555 	void __user *metadata;
1556 
1557 	if (copy_from_user(&io, uio, sizeof(io)))
1558 		return -EFAULT;
1559 	if (io.flags)
1560 		return -EINVAL;
1561 
1562 	switch (io.opcode) {
1563 	case nvme_cmd_write:
1564 	case nvme_cmd_read:
1565 	case nvme_cmd_compare:
1566 		break;
1567 	default:
1568 		return -EINVAL;
1569 	}
1570 
1571 	length = (io.nblocks + 1) << ns->lba_shift;
1572 
1573 	if ((io.control & NVME_RW_PRINFO_PRACT) &&
1574 	    ns->ms == sizeof(struct t10_pi_tuple)) {
1575 		/*
1576 		 * Protection information is stripped/inserted by the
1577 		 * controller.
1578 		 */
1579 		if (nvme_to_user_ptr(io.metadata))
1580 			return -EINVAL;
1581 		meta_len = 0;
1582 		metadata = NULL;
1583 	} else {
1584 		meta_len = (io.nblocks + 1) * ns->ms;
1585 		metadata = nvme_to_user_ptr(io.metadata);
1586 	}
1587 
1588 	if (ns->features & NVME_NS_EXT_LBAS) {
1589 		length += meta_len;
1590 		meta_len = 0;
1591 	} else if (meta_len) {
1592 		if ((io.metadata & 3) || !io.metadata)
1593 			return -EINVAL;
1594 	}
1595 
1596 	memset(&c, 0, sizeof(c));
1597 	c.rw.opcode = io.opcode;
1598 	c.rw.flags = io.flags;
1599 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1600 	c.rw.slba = cpu_to_le64(io.slba);
1601 	c.rw.length = cpu_to_le16(io.nblocks);
1602 	c.rw.control = cpu_to_le16(io.control);
1603 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1604 	c.rw.reftag = cpu_to_le32(io.reftag);
1605 	c.rw.apptag = cpu_to_le16(io.apptag);
1606 	c.rw.appmask = cpu_to_le16(io.appmask);
1607 
1608 	return nvme_submit_user_cmd(ns->queue, &c,
1609 			nvme_to_user_ptr(io.addr), length,
1610 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1611 }
1612 
1613 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1614 			struct nvme_passthru_cmd __user *ucmd)
1615 {
1616 	struct nvme_passthru_cmd cmd;
1617 	struct nvme_command c;
1618 	unsigned timeout = 0;
1619 	u64 result;
1620 	int status;
1621 
1622 	if (!capable(CAP_SYS_ADMIN))
1623 		return -EACCES;
1624 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1625 		return -EFAULT;
1626 	if (cmd.flags)
1627 		return -EINVAL;
1628 
1629 	memset(&c, 0, sizeof(c));
1630 	c.common.opcode = cmd.opcode;
1631 	c.common.flags = cmd.flags;
1632 	c.common.nsid = cpu_to_le32(cmd.nsid);
1633 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1634 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1635 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1636 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1637 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1638 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1639 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1640 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1641 
1642 	if (cmd.timeout_ms)
1643 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1644 
1645 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1646 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1647 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1648 			0, &result, timeout);
1649 
1650 	if (status >= 0) {
1651 		if (put_user(result, &ucmd->result))
1652 			return -EFAULT;
1653 	}
1654 
1655 	return status;
1656 }
1657 
1658 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1659 			struct nvme_passthru_cmd64 __user *ucmd)
1660 {
1661 	struct nvme_passthru_cmd64 cmd;
1662 	struct nvme_command c;
1663 	unsigned timeout = 0;
1664 	int status;
1665 
1666 	if (!capable(CAP_SYS_ADMIN))
1667 		return -EACCES;
1668 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1669 		return -EFAULT;
1670 	if (cmd.flags)
1671 		return -EINVAL;
1672 
1673 	memset(&c, 0, sizeof(c));
1674 	c.common.opcode = cmd.opcode;
1675 	c.common.flags = cmd.flags;
1676 	c.common.nsid = cpu_to_le32(cmd.nsid);
1677 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1678 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1679 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1680 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1681 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1682 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1683 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1684 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1685 
1686 	if (cmd.timeout_ms)
1687 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1688 
1689 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1690 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1691 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1692 			0, &cmd.result, timeout);
1693 
1694 	if (status >= 0) {
1695 		if (put_user(cmd.result, &ucmd->result))
1696 			return -EFAULT;
1697 	}
1698 
1699 	return status;
1700 }
1701 
1702 /*
1703  * Issue ioctl requests on the first available path.  Note that unlike normal
1704  * block layer requests we will not retry failed request on another controller.
1705  */
1706 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1707 		struct nvme_ns_head **head, int *srcu_idx)
1708 {
1709 #ifdef CONFIG_NVME_MULTIPATH
1710 	if (disk->fops == &nvme_ns_head_ops) {
1711 		struct nvme_ns *ns;
1712 
1713 		*head = disk->private_data;
1714 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1715 		ns = nvme_find_path(*head);
1716 		if (!ns)
1717 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1718 		return ns;
1719 	}
1720 #endif
1721 	*head = NULL;
1722 	*srcu_idx = -1;
1723 	return disk->private_data;
1724 }
1725 
1726 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1727 {
1728 	if (head)
1729 		srcu_read_unlock(&head->srcu, idx);
1730 }
1731 
1732 static bool is_ctrl_ioctl(unsigned int cmd)
1733 {
1734 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1735 		return true;
1736 	if (is_sed_ioctl(cmd))
1737 		return true;
1738 	return false;
1739 }
1740 
1741 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1742 				  void __user *argp,
1743 				  struct nvme_ns_head *head,
1744 				  int srcu_idx)
1745 {
1746 	struct nvme_ctrl *ctrl = ns->ctrl;
1747 	int ret;
1748 
1749 	nvme_get_ctrl(ns->ctrl);
1750 	nvme_put_ns_from_disk(head, srcu_idx);
1751 
1752 	switch (cmd) {
1753 	case NVME_IOCTL_ADMIN_CMD:
1754 		ret = nvme_user_cmd(ctrl, NULL, argp);
1755 		break;
1756 	case NVME_IOCTL_ADMIN64_CMD:
1757 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1758 		break;
1759 	default:
1760 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1761 		break;
1762 	}
1763 	nvme_put_ctrl(ctrl);
1764 	return ret;
1765 }
1766 
1767 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1768 		unsigned int cmd, unsigned long arg)
1769 {
1770 	struct nvme_ns_head *head = NULL;
1771 	void __user *argp = (void __user *)arg;
1772 	struct nvme_ns *ns;
1773 	int srcu_idx, ret;
1774 
1775 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1776 	if (unlikely(!ns))
1777 		return -EWOULDBLOCK;
1778 
1779 	/*
1780 	 * Handle ioctls that apply to the controller instead of the namespace
1781 	 * seperately and drop the ns SRCU reference early.  This avoids a
1782 	 * deadlock when deleting namespaces using the passthrough interface.
1783 	 */
1784 	if (is_ctrl_ioctl(cmd))
1785 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1786 
1787 	switch (cmd) {
1788 	case NVME_IOCTL_ID:
1789 		force_successful_syscall_return();
1790 		ret = ns->head->ns_id;
1791 		break;
1792 	case NVME_IOCTL_IO_CMD:
1793 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1794 		break;
1795 	case NVME_IOCTL_SUBMIT_IO:
1796 		ret = nvme_submit_io(ns, argp);
1797 		break;
1798 	case NVME_IOCTL_IO64_CMD:
1799 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1800 		break;
1801 	default:
1802 		if (ns->ndev)
1803 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1804 		else
1805 			ret = -ENOTTY;
1806 	}
1807 
1808 	nvme_put_ns_from_disk(head, srcu_idx);
1809 	return ret;
1810 }
1811 
1812 #ifdef CONFIG_COMPAT
1813 struct nvme_user_io32 {
1814 	__u8	opcode;
1815 	__u8	flags;
1816 	__u16	control;
1817 	__u16	nblocks;
1818 	__u16	rsvd;
1819 	__u64	metadata;
1820 	__u64	addr;
1821 	__u64	slba;
1822 	__u32	dsmgmt;
1823 	__u32	reftag;
1824 	__u16	apptag;
1825 	__u16	appmask;
1826 } __attribute__((__packed__));
1827 
1828 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1829 
1830 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1831 		unsigned int cmd, unsigned long arg)
1832 {
1833 	/*
1834 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1835 	 * between 32 bit programs and 64 bit kernel.
1836 	 * The cause is that the results of sizeof(struct nvme_user_io),
1837 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1838 	 * are not same between 32 bit compiler and 64 bit compiler.
1839 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1840 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1841 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1842 	 * So there is nothing to do regarding to other IOCTL numbers.
1843 	 */
1844 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1845 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1846 
1847 	return nvme_ioctl(bdev, mode, cmd, arg);
1848 }
1849 #else
1850 #define nvme_compat_ioctl	NULL
1851 #endif /* CONFIG_COMPAT */
1852 
1853 static int nvme_open(struct block_device *bdev, fmode_t mode)
1854 {
1855 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1856 
1857 #ifdef CONFIG_NVME_MULTIPATH
1858 	/* should never be called due to GENHD_FL_HIDDEN */
1859 	if (WARN_ON_ONCE(ns->head->disk))
1860 		goto fail;
1861 #endif
1862 	if (!kref_get_unless_zero(&ns->kref))
1863 		goto fail;
1864 	if (!try_module_get(ns->ctrl->ops->module))
1865 		goto fail_put_ns;
1866 
1867 	return 0;
1868 
1869 fail_put_ns:
1870 	nvme_put_ns(ns);
1871 fail:
1872 	return -ENXIO;
1873 }
1874 
1875 static void nvme_release(struct gendisk *disk, fmode_t mode)
1876 {
1877 	struct nvme_ns *ns = disk->private_data;
1878 
1879 	module_put(ns->ctrl->ops->module);
1880 	nvme_put_ns(ns);
1881 }
1882 
1883 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1884 {
1885 	/* some standard values */
1886 	geo->heads = 1 << 6;
1887 	geo->sectors = 1 << 5;
1888 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1889 	return 0;
1890 }
1891 
1892 #ifdef CONFIG_BLK_DEV_INTEGRITY
1893 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1894 				u32 max_integrity_segments)
1895 {
1896 	struct blk_integrity integrity;
1897 
1898 	memset(&integrity, 0, sizeof(integrity));
1899 	switch (pi_type) {
1900 	case NVME_NS_DPS_PI_TYPE3:
1901 		integrity.profile = &t10_pi_type3_crc;
1902 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1903 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1904 		break;
1905 	case NVME_NS_DPS_PI_TYPE1:
1906 	case NVME_NS_DPS_PI_TYPE2:
1907 		integrity.profile = &t10_pi_type1_crc;
1908 		integrity.tag_size = sizeof(u16);
1909 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1910 		break;
1911 	default:
1912 		integrity.profile = NULL;
1913 		break;
1914 	}
1915 	integrity.tuple_size = ms;
1916 	blk_integrity_register(disk, &integrity);
1917 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1918 }
1919 #else
1920 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1921 				u32 max_integrity_segments)
1922 {
1923 }
1924 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1925 
1926 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1927 {
1928 	struct nvme_ctrl *ctrl = ns->ctrl;
1929 	struct request_queue *queue = disk->queue;
1930 	u32 size = queue_logical_block_size(queue);
1931 
1932 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1933 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1934 		return;
1935 	}
1936 
1937 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1938 		size *= ns->sws * ns->sgs;
1939 
1940 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1941 			NVME_DSM_MAX_RANGES);
1942 
1943 	queue->limits.discard_alignment = 0;
1944 	queue->limits.discard_granularity = size;
1945 
1946 	/* If discard is already enabled, don't reset queue limits */
1947 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1948 		return;
1949 
1950 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1951 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1952 
1953 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1954 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1955 }
1956 
1957 /*
1958  * Even though NVMe spec explicitly states that MDTS is not applicable to the
1959  * write-zeroes, we are cautious and limit the size to the controllers
1960  * max_hw_sectors value, which is based on the MDTS field and possibly other
1961  * limiting factors.
1962  */
1963 static void nvme_config_write_zeroes(struct request_queue *q,
1964 		struct nvme_ctrl *ctrl)
1965 {
1966 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
1967 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1968 		blk_queue_max_write_zeroes_sectors(q, ctrl->max_hw_sectors);
1969 }
1970 
1971 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1972 {
1973 	return !uuid_is_null(&ids->uuid) ||
1974 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1975 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1976 }
1977 
1978 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1979 {
1980 	return uuid_equal(&a->uuid, &b->uuid) &&
1981 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1982 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1983 		a->csi == b->csi;
1984 }
1985 
1986 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1987 				 u32 *phys_bs, u32 *io_opt)
1988 {
1989 	struct streams_directive_params s;
1990 	int ret;
1991 
1992 	if (!ctrl->nr_streams)
1993 		return 0;
1994 
1995 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1996 	if (ret)
1997 		return ret;
1998 
1999 	ns->sws = le32_to_cpu(s.sws);
2000 	ns->sgs = le16_to_cpu(s.sgs);
2001 
2002 	if (ns->sws) {
2003 		*phys_bs = ns->sws * (1 << ns->lba_shift);
2004 		if (ns->sgs)
2005 			*io_opt = *phys_bs * ns->sgs;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
2012 {
2013 	struct nvme_ctrl *ctrl = ns->ctrl;
2014 
2015 	/*
2016 	 * The PI implementation requires the metadata size to be equal to the
2017 	 * t10 pi tuple size.
2018 	 */
2019 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
2020 	if (ns->ms == sizeof(struct t10_pi_tuple))
2021 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2022 	else
2023 		ns->pi_type = 0;
2024 
2025 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2026 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2027 		return 0;
2028 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2029 		/*
2030 		 * The NVMe over Fabrics specification only supports metadata as
2031 		 * part of the extended data LBA.  We rely on HCA/HBA support to
2032 		 * remap the separate metadata buffer from the block layer.
2033 		 */
2034 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2035 			return -EINVAL;
2036 		if (ctrl->max_integrity_segments)
2037 			ns->features |=
2038 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2039 	} else {
2040 		/*
2041 		 * For PCIe controllers, we can't easily remap the separate
2042 		 * metadata buffer from the block layer and thus require a
2043 		 * separate metadata buffer for block layer metadata/PI support.
2044 		 * We allow extended LBAs for the passthrough interface, though.
2045 		 */
2046 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2047 			ns->features |= NVME_NS_EXT_LBAS;
2048 		else
2049 			ns->features |= NVME_NS_METADATA_SUPPORTED;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2056 		struct request_queue *q)
2057 {
2058 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2059 
2060 	if (ctrl->max_hw_sectors) {
2061 		u32 max_segments =
2062 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2063 
2064 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2065 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2066 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2067 	}
2068 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2069 	blk_queue_dma_alignment(q, 7);
2070 	blk_queue_write_cache(q, vwc, vwc);
2071 }
2072 
2073 static void nvme_update_disk_info(struct gendisk *disk,
2074 		struct nvme_ns *ns, struct nvme_id_ns *id)
2075 {
2076 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2077 	unsigned short bs = 1 << ns->lba_shift;
2078 	u32 atomic_bs, phys_bs, io_opt = 0;
2079 
2080 	/*
2081 	 * The block layer can't support LBA sizes larger than the page size
2082 	 * yet, so catch this early and don't allow block I/O.
2083 	 */
2084 	if (ns->lba_shift > PAGE_SHIFT) {
2085 		capacity = 0;
2086 		bs = (1 << 9);
2087 	}
2088 
2089 	blk_integrity_unregister(disk);
2090 
2091 	atomic_bs = phys_bs = bs;
2092 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2093 	if (id->nabo == 0) {
2094 		/*
2095 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2096 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2097 		 * 0 then AWUPF must be used instead.
2098 		 */
2099 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2100 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2101 		else
2102 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2103 	}
2104 
2105 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2106 		/* NPWG = Namespace Preferred Write Granularity */
2107 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2108 		/* NOWS = Namespace Optimal Write Size */
2109 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2110 	}
2111 
2112 	blk_queue_logical_block_size(disk->queue, bs);
2113 	/*
2114 	 * Linux filesystems assume writing a single physical block is
2115 	 * an atomic operation. Hence limit the physical block size to the
2116 	 * value of the Atomic Write Unit Power Fail parameter.
2117 	 */
2118 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2119 	blk_queue_io_min(disk->queue, phys_bs);
2120 	blk_queue_io_opt(disk->queue, io_opt);
2121 
2122 	/*
2123 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2124 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2125 	 * I/O to namespaces with metadata except when the namespace supports
2126 	 * PI, as it can strip/insert in that case.
2127 	 */
2128 	if (ns->ms) {
2129 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2130 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2131 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2132 					    ns->ctrl->max_integrity_segments);
2133 		else if (!nvme_ns_has_pi(ns))
2134 			capacity = 0;
2135 	}
2136 
2137 	set_capacity_and_notify(disk, capacity);
2138 
2139 	nvme_config_discard(disk, ns);
2140 	nvme_config_write_zeroes(disk->queue, ns->ctrl);
2141 
2142 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
2143 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
2144 }
2145 
2146 static inline bool nvme_first_scan(struct gendisk *disk)
2147 {
2148 	/* nvme_alloc_ns() scans the disk prior to adding it */
2149 	return !(disk->flags & GENHD_FL_UP);
2150 }
2151 
2152 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2153 {
2154 	struct nvme_ctrl *ctrl = ns->ctrl;
2155 	u32 iob;
2156 
2157 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2158 	    is_power_of_2(ctrl->max_hw_sectors))
2159 		iob = ctrl->max_hw_sectors;
2160 	else
2161 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2162 
2163 	if (!iob)
2164 		return;
2165 
2166 	if (!is_power_of_2(iob)) {
2167 		if (nvme_first_scan(ns->disk))
2168 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2169 				ns->disk->disk_name, iob);
2170 		return;
2171 	}
2172 
2173 	if (blk_queue_is_zoned(ns->disk->queue)) {
2174 		if (nvme_first_scan(ns->disk))
2175 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2176 				ns->disk->disk_name);
2177 		return;
2178 	}
2179 
2180 	blk_queue_chunk_sectors(ns->queue, iob);
2181 }
2182 
2183 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2184 {
2185 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2186 	int ret;
2187 
2188 	blk_mq_freeze_queue(ns->disk->queue);
2189 	ns->lba_shift = id->lbaf[lbaf].ds;
2190 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2191 
2192 	ret = nvme_configure_metadata(ns, id);
2193 	if (ret)
2194 		goto out_unfreeze;
2195 	nvme_set_chunk_sectors(ns, id);
2196 	nvme_update_disk_info(ns->disk, ns, id);
2197 
2198 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2199 		ret = nvme_update_zone_info(ns, lbaf);
2200 		if (ret)
2201 			goto out_unfreeze;
2202 	}
2203 
2204 	blk_mq_unfreeze_queue(ns->disk->queue);
2205 
2206 	if (blk_queue_is_zoned(ns->queue)) {
2207 		ret = nvme_revalidate_zones(ns);
2208 		if (ret && !nvme_first_scan(ns->disk))
2209 			return ret;
2210 	}
2211 
2212 #ifdef CONFIG_NVME_MULTIPATH
2213 	if (ns->head->disk) {
2214 		blk_mq_freeze_queue(ns->head->disk->queue);
2215 		nvme_update_disk_info(ns->head->disk, ns, id);
2216 		blk_stack_limits(&ns->head->disk->queue->limits,
2217 				 &ns->queue->limits, 0);
2218 		blk_queue_update_readahead(ns->head->disk->queue);
2219 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2220 	}
2221 #endif
2222 	return 0;
2223 
2224 out_unfreeze:
2225 	blk_mq_unfreeze_queue(ns->disk->queue);
2226 	return ret;
2227 }
2228 
2229 static char nvme_pr_type(enum pr_type type)
2230 {
2231 	switch (type) {
2232 	case PR_WRITE_EXCLUSIVE:
2233 		return 1;
2234 	case PR_EXCLUSIVE_ACCESS:
2235 		return 2;
2236 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2237 		return 3;
2238 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2239 		return 4;
2240 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2241 		return 5;
2242 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2243 		return 6;
2244 	default:
2245 		return 0;
2246 	}
2247 };
2248 
2249 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2250 				u64 key, u64 sa_key, u8 op)
2251 {
2252 	struct nvme_ns_head *head = NULL;
2253 	struct nvme_ns *ns;
2254 	struct nvme_command c;
2255 	int srcu_idx, ret;
2256 	u8 data[16] = { 0, };
2257 
2258 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2259 	if (unlikely(!ns))
2260 		return -EWOULDBLOCK;
2261 
2262 	put_unaligned_le64(key, &data[0]);
2263 	put_unaligned_le64(sa_key, &data[8]);
2264 
2265 	memset(&c, 0, sizeof(c));
2266 	c.common.opcode = op;
2267 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2268 	c.common.cdw10 = cpu_to_le32(cdw10);
2269 
2270 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2271 	nvme_put_ns_from_disk(head, srcu_idx);
2272 	return ret;
2273 }
2274 
2275 static int nvme_pr_register(struct block_device *bdev, u64 old,
2276 		u64 new, unsigned flags)
2277 {
2278 	u32 cdw10;
2279 
2280 	if (flags & ~PR_FL_IGNORE_KEY)
2281 		return -EOPNOTSUPP;
2282 
2283 	cdw10 = old ? 2 : 0;
2284 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2285 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2286 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2287 }
2288 
2289 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2290 		enum pr_type type, unsigned flags)
2291 {
2292 	u32 cdw10;
2293 
2294 	if (flags & ~PR_FL_IGNORE_KEY)
2295 		return -EOPNOTSUPP;
2296 
2297 	cdw10 = nvme_pr_type(type) << 8;
2298 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2299 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2300 }
2301 
2302 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2303 		enum pr_type type, bool abort)
2304 {
2305 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2306 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2307 }
2308 
2309 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2310 {
2311 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2312 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2313 }
2314 
2315 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2316 {
2317 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2318 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2319 }
2320 
2321 static const struct pr_ops nvme_pr_ops = {
2322 	.pr_register	= nvme_pr_register,
2323 	.pr_reserve	= nvme_pr_reserve,
2324 	.pr_release	= nvme_pr_release,
2325 	.pr_preempt	= nvme_pr_preempt,
2326 	.pr_clear	= nvme_pr_clear,
2327 };
2328 
2329 #ifdef CONFIG_BLK_SED_OPAL
2330 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2331 		bool send)
2332 {
2333 	struct nvme_ctrl *ctrl = data;
2334 	struct nvme_command cmd;
2335 
2336 	memset(&cmd, 0, sizeof(cmd));
2337 	if (send)
2338 		cmd.common.opcode = nvme_admin_security_send;
2339 	else
2340 		cmd.common.opcode = nvme_admin_security_recv;
2341 	cmd.common.nsid = 0;
2342 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2343 	cmd.common.cdw11 = cpu_to_le32(len);
2344 
2345 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2346 			NVME_QID_ANY, 1, 0, false);
2347 }
2348 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2349 #endif /* CONFIG_BLK_SED_OPAL */
2350 
2351 static const struct block_device_operations nvme_bdev_ops = {
2352 	.owner		= THIS_MODULE,
2353 	.ioctl		= nvme_ioctl,
2354 	.compat_ioctl	= nvme_compat_ioctl,
2355 	.open		= nvme_open,
2356 	.release	= nvme_release,
2357 	.getgeo		= nvme_getgeo,
2358 	.report_zones	= nvme_report_zones,
2359 	.pr_ops		= &nvme_pr_ops,
2360 };
2361 
2362 #ifdef CONFIG_NVME_MULTIPATH
2363 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2364 {
2365 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2366 
2367 	if (!kref_get_unless_zero(&head->ref))
2368 		return -ENXIO;
2369 	return 0;
2370 }
2371 
2372 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2373 {
2374 	nvme_put_ns_head(disk->private_data);
2375 }
2376 
2377 const struct block_device_operations nvme_ns_head_ops = {
2378 	.owner		= THIS_MODULE,
2379 	.submit_bio	= nvme_ns_head_submit_bio,
2380 	.open		= nvme_ns_head_open,
2381 	.release	= nvme_ns_head_release,
2382 	.ioctl		= nvme_ioctl,
2383 	.compat_ioctl	= nvme_compat_ioctl,
2384 	.getgeo		= nvme_getgeo,
2385 	.report_zones	= nvme_report_zones,
2386 	.pr_ops		= &nvme_pr_ops,
2387 };
2388 #endif /* CONFIG_NVME_MULTIPATH */
2389 
2390 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2391 {
2392 	unsigned long timeout =
2393 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2394 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2395 	int ret;
2396 
2397 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2398 		if (csts == ~0)
2399 			return -ENODEV;
2400 		if ((csts & NVME_CSTS_RDY) == bit)
2401 			break;
2402 
2403 		usleep_range(1000, 2000);
2404 		if (fatal_signal_pending(current))
2405 			return -EINTR;
2406 		if (time_after(jiffies, timeout)) {
2407 			dev_err(ctrl->device,
2408 				"Device not ready; aborting %s, CSTS=0x%x\n",
2409 				enabled ? "initialisation" : "reset", csts);
2410 			return -ENODEV;
2411 		}
2412 	}
2413 
2414 	return ret;
2415 }
2416 
2417 /*
2418  * If the device has been passed off to us in an enabled state, just clear
2419  * the enabled bit.  The spec says we should set the 'shutdown notification
2420  * bits', but doing so may cause the device to complete commands to the
2421  * admin queue ... and we don't know what memory that might be pointing at!
2422  */
2423 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2424 {
2425 	int ret;
2426 
2427 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2428 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2429 
2430 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2431 	if (ret)
2432 		return ret;
2433 
2434 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2435 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2436 
2437 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2438 }
2439 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2440 
2441 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2442 {
2443 	unsigned dev_page_min;
2444 	int ret;
2445 
2446 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2447 	if (ret) {
2448 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2449 		return ret;
2450 	}
2451 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2452 
2453 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2454 		dev_err(ctrl->device,
2455 			"Minimum device page size %u too large for host (%u)\n",
2456 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2457 		return -ENODEV;
2458 	}
2459 
2460 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2461 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2462 	else
2463 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2464 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2465 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2466 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2467 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2468 
2469 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2470 	if (ret)
2471 		return ret;
2472 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2473 }
2474 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2475 
2476 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2477 {
2478 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2479 	u32 csts;
2480 	int ret;
2481 
2482 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2483 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2484 
2485 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2486 	if (ret)
2487 		return ret;
2488 
2489 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2490 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2491 			break;
2492 
2493 		msleep(100);
2494 		if (fatal_signal_pending(current))
2495 			return -EINTR;
2496 		if (time_after(jiffies, timeout)) {
2497 			dev_err(ctrl->device,
2498 				"Device shutdown incomplete; abort shutdown\n");
2499 			return -ENODEV;
2500 		}
2501 	}
2502 
2503 	return ret;
2504 }
2505 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2506 
2507 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2508 {
2509 	__le64 ts;
2510 	int ret;
2511 
2512 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2513 		return 0;
2514 
2515 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2516 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2517 			NULL);
2518 	if (ret)
2519 		dev_warn_once(ctrl->device,
2520 			"could not set timestamp (%d)\n", ret);
2521 	return ret;
2522 }
2523 
2524 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2525 {
2526 	struct nvme_feat_host_behavior *host;
2527 	int ret;
2528 
2529 	/* Don't bother enabling the feature if retry delay is not reported */
2530 	if (!ctrl->crdt[0])
2531 		return 0;
2532 
2533 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2534 	if (!host)
2535 		return 0;
2536 
2537 	host->acre = NVME_ENABLE_ACRE;
2538 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2539 				host, sizeof(*host), NULL);
2540 	kfree(host);
2541 	return ret;
2542 }
2543 
2544 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2545 {
2546 	/*
2547 	 * APST (Autonomous Power State Transition) lets us program a
2548 	 * table of power state transitions that the controller will
2549 	 * perform automatically.  We configure it with a simple
2550 	 * heuristic: we are willing to spend at most 2% of the time
2551 	 * transitioning between power states.  Therefore, when running
2552 	 * in any given state, we will enter the next lower-power
2553 	 * non-operational state after waiting 50 * (enlat + exlat)
2554 	 * microseconds, as long as that state's exit latency is under
2555 	 * the requested maximum latency.
2556 	 *
2557 	 * We will not autonomously enter any non-operational state for
2558 	 * which the total latency exceeds ps_max_latency_us.  Users
2559 	 * can set ps_max_latency_us to zero to turn off APST.
2560 	 */
2561 
2562 	unsigned apste;
2563 	struct nvme_feat_auto_pst *table;
2564 	u64 max_lat_us = 0;
2565 	int max_ps = -1;
2566 	int ret;
2567 
2568 	/*
2569 	 * If APST isn't supported or if we haven't been initialized yet,
2570 	 * then don't do anything.
2571 	 */
2572 	if (!ctrl->apsta)
2573 		return 0;
2574 
2575 	if (ctrl->npss > 31) {
2576 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2577 		return 0;
2578 	}
2579 
2580 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2581 	if (!table)
2582 		return 0;
2583 
2584 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2585 		/* Turn off APST. */
2586 		apste = 0;
2587 		dev_dbg(ctrl->device, "APST disabled\n");
2588 	} else {
2589 		__le64 target = cpu_to_le64(0);
2590 		int state;
2591 
2592 		/*
2593 		 * Walk through all states from lowest- to highest-power.
2594 		 * According to the spec, lower-numbered states use more
2595 		 * power.  NPSS, despite the name, is the index of the
2596 		 * lowest-power state, not the number of states.
2597 		 */
2598 		for (state = (int)ctrl->npss; state >= 0; state--) {
2599 			u64 total_latency_us, exit_latency_us, transition_ms;
2600 
2601 			if (target)
2602 				table->entries[state] = target;
2603 
2604 			/*
2605 			 * Don't allow transitions to the deepest state
2606 			 * if it's quirked off.
2607 			 */
2608 			if (state == ctrl->npss &&
2609 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2610 				continue;
2611 
2612 			/*
2613 			 * Is this state a useful non-operational state for
2614 			 * higher-power states to autonomously transition to?
2615 			 */
2616 			if (!(ctrl->psd[state].flags &
2617 			      NVME_PS_FLAGS_NON_OP_STATE))
2618 				continue;
2619 
2620 			exit_latency_us =
2621 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2622 			if (exit_latency_us > ctrl->ps_max_latency_us)
2623 				continue;
2624 
2625 			total_latency_us =
2626 				exit_latency_us +
2627 				le32_to_cpu(ctrl->psd[state].entry_lat);
2628 
2629 			/*
2630 			 * This state is good.  Use it as the APST idle
2631 			 * target for higher power states.
2632 			 */
2633 			transition_ms = total_latency_us + 19;
2634 			do_div(transition_ms, 20);
2635 			if (transition_ms > (1 << 24) - 1)
2636 				transition_ms = (1 << 24) - 1;
2637 
2638 			target = cpu_to_le64((state << 3) |
2639 					     (transition_ms << 8));
2640 
2641 			if (max_ps == -1)
2642 				max_ps = state;
2643 
2644 			if (total_latency_us > max_lat_us)
2645 				max_lat_us = total_latency_us;
2646 		}
2647 
2648 		apste = 1;
2649 
2650 		if (max_ps == -1) {
2651 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2652 		} else {
2653 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2654 				max_ps, max_lat_us, (int)sizeof(*table), table);
2655 		}
2656 	}
2657 
2658 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2659 				table, sizeof(*table), NULL);
2660 	if (ret)
2661 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2662 
2663 	kfree(table);
2664 	return ret;
2665 }
2666 
2667 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2668 {
2669 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2670 	u64 latency;
2671 
2672 	switch (val) {
2673 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2674 	case PM_QOS_LATENCY_ANY:
2675 		latency = U64_MAX;
2676 		break;
2677 
2678 	default:
2679 		latency = val;
2680 	}
2681 
2682 	if (ctrl->ps_max_latency_us != latency) {
2683 		ctrl->ps_max_latency_us = latency;
2684 		nvme_configure_apst(ctrl);
2685 	}
2686 }
2687 
2688 struct nvme_core_quirk_entry {
2689 	/*
2690 	 * NVMe model and firmware strings are padded with spaces.  For
2691 	 * simplicity, strings in the quirk table are padded with NULLs
2692 	 * instead.
2693 	 */
2694 	u16 vid;
2695 	const char *mn;
2696 	const char *fr;
2697 	unsigned long quirks;
2698 };
2699 
2700 static const struct nvme_core_quirk_entry core_quirks[] = {
2701 	{
2702 		/*
2703 		 * This Toshiba device seems to die using any APST states.  See:
2704 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2705 		 */
2706 		.vid = 0x1179,
2707 		.mn = "THNSF5256GPUK TOSHIBA",
2708 		.quirks = NVME_QUIRK_NO_APST,
2709 	},
2710 	{
2711 		/*
2712 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2713 		 * condition associated with actions related to suspend to idle
2714 		 * LiteON has resolved the problem in future firmware
2715 		 */
2716 		.vid = 0x14a4,
2717 		.fr = "22301111",
2718 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2719 	}
2720 };
2721 
2722 /* match is null-terminated but idstr is space-padded. */
2723 static bool string_matches(const char *idstr, const char *match, size_t len)
2724 {
2725 	size_t matchlen;
2726 
2727 	if (!match)
2728 		return true;
2729 
2730 	matchlen = strlen(match);
2731 	WARN_ON_ONCE(matchlen > len);
2732 
2733 	if (memcmp(idstr, match, matchlen))
2734 		return false;
2735 
2736 	for (; matchlen < len; matchlen++)
2737 		if (idstr[matchlen] != ' ')
2738 			return false;
2739 
2740 	return true;
2741 }
2742 
2743 static bool quirk_matches(const struct nvme_id_ctrl *id,
2744 			  const struct nvme_core_quirk_entry *q)
2745 {
2746 	return q->vid == le16_to_cpu(id->vid) &&
2747 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2748 		string_matches(id->fr, q->fr, sizeof(id->fr));
2749 }
2750 
2751 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2752 		struct nvme_id_ctrl *id)
2753 {
2754 	size_t nqnlen;
2755 	int off;
2756 
2757 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2758 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2759 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2760 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2761 			return;
2762 		}
2763 
2764 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2765 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2766 	}
2767 
2768 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2769 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2770 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2771 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2772 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2773 	off += sizeof(id->sn);
2774 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2775 	off += sizeof(id->mn);
2776 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2777 }
2778 
2779 static void nvme_release_subsystem(struct device *dev)
2780 {
2781 	struct nvme_subsystem *subsys =
2782 		container_of(dev, struct nvme_subsystem, dev);
2783 
2784 	if (subsys->instance >= 0)
2785 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2786 	kfree(subsys);
2787 }
2788 
2789 static void nvme_destroy_subsystem(struct kref *ref)
2790 {
2791 	struct nvme_subsystem *subsys =
2792 			container_of(ref, struct nvme_subsystem, ref);
2793 
2794 	mutex_lock(&nvme_subsystems_lock);
2795 	list_del(&subsys->entry);
2796 	mutex_unlock(&nvme_subsystems_lock);
2797 
2798 	ida_destroy(&subsys->ns_ida);
2799 	device_del(&subsys->dev);
2800 	put_device(&subsys->dev);
2801 }
2802 
2803 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2804 {
2805 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2806 }
2807 
2808 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2809 {
2810 	struct nvme_subsystem *subsys;
2811 
2812 	lockdep_assert_held(&nvme_subsystems_lock);
2813 
2814 	/*
2815 	 * Fail matches for discovery subsystems. This results
2816 	 * in each discovery controller bound to a unique subsystem.
2817 	 * This avoids issues with validating controller values
2818 	 * that can only be true when there is a single unique subsystem.
2819 	 * There may be multiple and completely independent entities
2820 	 * that provide discovery controllers.
2821 	 */
2822 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2823 		return NULL;
2824 
2825 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2826 		if (strcmp(subsys->subnqn, subsysnqn))
2827 			continue;
2828 		if (!kref_get_unless_zero(&subsys->ref))
2829 			continue;
2830 		return subsys;
2831 	}
2832 
2833 	return NULL;
2834 }
2835 
2836 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2837 	struct device_attribute subsys_attr_##_name = \
2838 		__ATTR(_name, _mode, _show, NULL)
2839 
2840 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2841 				    struct device_attribute *attr,
2842 				    char *buf)
2843 {
2844 	struct nvme_subsystem *subsys =
2845 		container_of(dev, struct nvme_subsystem, dev);
2846 
2847 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2848 }
2849 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2850 
2851 #define nvme_subsys_show_str_function(field)				\
2852 static ssize_t subsys_##field##_show(struct device *dev,		\
2853 			    struct device_attribute *attr, char *buf)	\
2854 {									\
2855 	struct nvme_subsystem *subsys =					\
2856 		container_of(dev, struct nvme_subsystem, dev);		\
2857 	return sprintf(buf, "%.*s\n",					\
2858 		       (int)sizeof(subsys->field), subsys->field);	\
2859 }									\
2860 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2861 
2862 nvme_subsys_show_str_function(model);
2863 nvme_subsys_show_str_function(serial);
2864 nvme_subsys_show_str_function(firmware_rev);
2865 
2866 static struct attribute *nvme_subsys_attrs[] = {
2867 	&subsys_attr_model.attr,
2868 	&subsys_attr_serial.attr,
2869 	&subsys_attr_firmware_rev.attr,
2870 	&subsys_attr_subsysnqn.attr,
2871 #ifdef CONFIG_NVME_MULTIPATH
2872 	&subsys_attr_iopolicy.attr,
2873 #endif
2874 	NULL,
2875 };
2876 
2877 static const struct attribute_group nvme_subsys_attrs_group = {
2878 	.attrs = nvme_subsys_attrs,
2879 };
2880 
2881 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2882 	&nvme_subsys_attrs_group,
2883 	NULL,
2884 };
2885 
2886 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2887 {
2888 	return ctrl->opts && ctrl->opts->discovery_nqn;
2889 }
2890 
2891 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2892 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2893 {
2894 	struct nvme_ctrl *tmp;
2895 
2896 	lockdep_assert_held(&nvme_subsystems_lock);
2897 
2898 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2899 		if (nvme_state_terminal(tmp))
2900 			continue;
2901 
2902 		if (tmp->cntlid == ctrl->cntlid) {
2903 			dev_err(ctrl->device,
2904 				"Duplicate cntlid %u with %s, rejecting\n",
2905 				ctrl->cntlid, dev_name(tmp->device));
2906 			return false;
2907 		}
2908 
2909 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2910 		    nvme_discovery_ctrl(ctrl))
2911 			continue;
2912 
2913 		dev_err(ctrl->device,
2914 			"Subsystem does not support multiple controllers\n");
2915 		return false;
2916 	}
2917 
2918 	return true;
2919 }
2920 
2921 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2922 {
2923 	struct nvme_subsystem *subsys, *found;
2924 	int ret;
2925 
2926 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2927 	if (!subsys)
2928 		return -ENOMEM;
2929 
2930 	subsys->instance = -1;
2931 	mutex_init(&subsys->lock);
2932 	kref_init(&subsys->ref);
2933 	INIT_LIST_HEAD(&subsys->ctrls);
2934 	INIT_LIST_HEAD(&subsys->nsheads);
2935 	nvme_init_subnqn(subsys, ctrl, id);
2936 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2937 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2938 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2939 	subsys->vendor_id = le16_to_cpu(id->vid);
2940 	subsys->cmic = id->cmic;
2941 	subsys->awupf = le16_to_cpu(id->awupf);
2942 #ifdef CONFIG_NVME_MULTIPATH
2943 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2944 #endif
2945 
2946 	subsys->dev.class = nvme_subsys_class;
2947 	subsys->dev.release = nvme_release_subsystem;
2948 	subsys->dev.groups = nvme_subsys_attrs_groups;
2949 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2950 	device_initialize(&subsys->dev);
2951 
2952 	mutex_lock(&nvme_subsystems_lock);
2953 	found = __nvme_find_get_subsystem(subsys->subnqn);
2954 	if (found) {
2955 		put_device(&subsys->dev);
2956 		subsys = found;
2957 
2958 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2959 			ret = -EINVAL;
2960 			goto out_put_subsystem;
2961 		}
2962 	} else {
2963 		ret = device_add(&subsys->dev);
2964 		if (ret) {
2965 			dev_err(ctrl->device,
2966 				"failed to register subsystem device.\n");
2967 			put_device(&subsys->dev);
2968 			goto out_unlock;
2969 		}
2970 		ida_init(&subsys->ns_ida);
2971 		list_add_tail(&subsys->entry, &nvme_subsystems);
2972 	}
2973 
2974 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2975 				dev_name(ctrl->device));
2976 	if (ret) {
2977 		dev_err(ctrl->device,
2978 			"failed to create sysfs link from subsystem.\n");
2979 		goto out_put_subsystem;
2980 	}
2981 
2982 	if (!found)
2983 		subsys->instance = ctrl->instance;
2984 	ctrl->subsys = subsys;
2985 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2986 	mutex_unlock(&nvme_subsystems_lock);
2987 	return 0;
2988 
2989 out_put_subsystem:
2990 	nvme_put_subsystem(subsys);
2991 out_unlock:
2992 	mutex_unlock(&nvme_subsystems_lock);
2993 	return ret;
2994 }
2995 
2996 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2997 		void *log, size_t size, u64 offset)
2998 {
2999 	struct nvme_command c = { };
3000 	u32 dwlen = nvme_bytes_to_numd(size);
3001 
3002 	c.get_log_page.opcode = nvme_admin_get_log_page;
3003 	c.get_log_page.nsid = cpu_to_le32(nsid);
3004 	c.get_log_page.lid = log_page;
3005 	c.get_log_page.lsp = lsp;
3006 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3007 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3008 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3009 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3010 	c.get_log_page.csi = csi;
3011 
3012 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3013 }
3014 
3015 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3016 				struct nvme_effects_log **log)
3017 {
3018 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3019 	int ret;
3020 
3021 	if (cel)
3022 		goto out;
3023 
3024 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3025 	if (!cel)
3026 		return -ENOMEM;
3027 
3028 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3029 			cel, sizeof(*cel), 0);
3030 	if (ret) {
3031 		kfree(cel);
3032 		return ret;
3033 	}
3034 
3035 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3036 out:
3037 	*log = cel;
3038 	return 0;
3039 }
3040 
3041 /*
3042  * Initialize the cached copies of the Identify data and various controller
3043  * register in our nvme_ctrl structure.  This should be called as soon as
3044  * the admin queue is fully up and running.
3045  */
3046 int nvme_init_identify(struct nvme_ctrl *ctrl)
3047 {
3048 	struct nvme_id_ctrl *id;
3049 	int ret, page_shift;
3050 	u32 max_hw_sectors;
3051 	bool prev_apst_enabled;
3052 
3053 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3054 	if (ret) {
3055 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3056 		return ret;
3057 	}
3058 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3059 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3060 
3061 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3062 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3063 
3064 	ret = nvme_identify_ctrl(ctrl, &id);
3065 	if (ret) {
3066 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3067 		return -EIO;
3068 	}
3069 
3070 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3071 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3072 		if (ret < 0)
3073 			goto out_free;
3074 	}
3075 
3076 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3077 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3078 
3079 	if (!ctrl->identified) {
3080 		int i;
3081 
3082 		ret = nvme_init_subsystem(ctrl, id);
3083 		if (ret)
3084 			goto out_free;
3085 
3086 		/*
3087 		 * Check for quirks.  Quirk can depend on firmware version,
3088 		 * so, in principle, the set of quirks present can change
3089 		 * across a reset.  As a possible future enhancement, we
3090 		 * could re-scan for quirks every time we reinitialize
3091 		 * the device, but we'd have to make sure that the driver
3092 		 * behaves intelligently if the quirks change.
3093 		 */
3094 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3095 			if (quirk_matches(id, &core_quirks[i]))
3096 				ctrl->quirks |= core_quirks[i].quirks;
3097 		}
3098 	}
3099 
3100 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3101 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3102 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3103 	}
3104 
3105 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3106 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3107 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3108 
3109 	ctrl->oacs = le16_to_cpu(id->oacs);
3110 	ctrl->oncs = le16_to_cpu(id->oncs);
3111 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3112 	ctrl->oaes = le32_to_cpu(id->oaes);
3113 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3114 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3115 
3116 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3117 	ctrl->vwc = id->vwc;
3118 	if (id->mdts)
3119 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3120 	else
3121 		max_hw_sectors = UINT_MAX;
3122 	ctrl->max_hw_sectors =
3123 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3124 
3125 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3126 	ctrl->sgls = le32_to_cpu(id->sgls);
3127 	ctrl->kas = le16_to_cpu(id->kas);
3128 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3129 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3130 
3131 	if (id->rtd3e) {
3132 		/* us -> s */
3133 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3134 
3135 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3136 						 shutdown_timeout, 60);
3137 
3138 		if (ctrl->shutdown_timeout != shutdown_timeout)
3139 			dev_info(ctrl->device,
3140 				 "Shutdown timeout set to %u seconds\n",
3141 				 ctrl->shutdown_timeout);
3142 	} else
3143 		ctrl->shutdown_timeout = shutdown_timeout;
3144 
3145 	ctrl->npss = id->npss;
3146 	ctrl->apsta = id->apsta;
3147 	prev_apst_enabled = ctrl->apst_enabled;
3148 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3149 		if (force_apst && id->apsta) {
3150 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3151 			ctrl->apst_enabled = true;
3152 		} else {
3153 			ctrl->apst_enabled = false;
3154 		}
3155 	} else {
3156 		ctrl->apst_enabled = id->apsta;
3157 	}
3158 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3159 
3160 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3161 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3162 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3163 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3164 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3165 
3166 		/*
3167 		 * In fabrics we need to verify the cntlid matches the
3168 		 * admin connect
3169 		 */
3170 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3171 			dev_err(ctrl->device,
3172 				"Mismatching cntlid: Connect %u vs Identify "
3173 				"%u, rejecting\n",
3174 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3175 			ret = -EINVAL;
3176 			goto out_free;
3177 		}
3178 
3179 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3180 			dev_err(ctrl->device,
3181 				"keep-alive support is mandatory for fabrics\n");
3182 			ret = -EINVAL;
3183 			goto out_free;
3184 		}
3185 	} else {
3186 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3187 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3188 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3189 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3190 	}
3191 
3192 	ret = nvme_mpath_init(ctrl, id);
3193 	kfree(id);
3194 
3195 	if (ret < 0)
3196 		return ret;
3197 
3198 	if (ctrl->apst_enabled && !prev_apst_enabled)
3199 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3200 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3201 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3202 
3203 	ret = nvme_configure_apst(ctrl);
3204 	if (ret < 0)
3205 		return ret;
3206 
3207 	ret = nvme_configure_timestamp(ctrl);
3208 	if (ret < 0)
3209 		return ret;
3210 
3211 	ret = nvme_configure_directives(ctrl);
3212 	if (ret < 0)
3213 		return ret;
3214 
3215 	ret = nvme_configure_acre(ctrl);
3216 	if (ret < 0)
3217 		return ret;
3218 
3219 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3220 		ret = nvme_hwmon_init(ctrl);
3221 		if (ret < 0)
3222 			return ret;
3223 	}
3224 
3225 	ctrl->identified = true;
3226 
3227 	return 0;
3228 
3229 out_free:
3230 	kfree(id);
3231 	return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(nvme_init_identify);
3234 
3235 static int nvme_dev_open(struct inode *inode, struct file *file)
3236 {
3237 	struct nvme_ctrl *ctrl =
3238 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3239 
3240 	switch (ctrl->state) {
3241 	case NVME_CTRL_LIVE:
3242 		break;
3243 	default:
3244 		return -EWOULDBLOCK;
3245 	}
3246 
3247 	nvme_get_ctrl(ctrl);
3248 	if (!try_module_get(ctrl->ops->module)) {
3249 		nvme_put_ctrl(ctrl);
3250 		return -EINVAL;
3251 	}
3252 
3253 	file->private_data = ctrl;
3254 	return 0;
3255 }
3256 
3257 static int nvme_dev_release(struct inode *inode, struct file *file)
3258 {
3259 	struct nvme_ctrl *ctrl =
3260 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3261 
3262 	module_put(ctrl->ops->module);
3263 	nvme_put_ctrl(ctrl);
3264 	return 0;
3265 }
3266 
3267 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3268 {
3269 	struct nvme_ns *ns;
3270 	int ret;
3271 
3272 	down_read(&ctrl->namespaces_rwsem);
3273 	if (list_empty(&ctrl->namespaces)) {
3274 		ret = -ENOTTY;
3275 		goto out_unlock;
3276 	}
3277 
3278 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3279 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3280 		dev_warn(ctrl->device,
3281 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3282 		ret = -EINVAL;
3283 		goto out_unlock;
3284 	}
3285 
3286 	dev_warn(ctrl->device,
3287 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3288 	kref_get(&ns->kref);
3289 	up_read(&ctrl->namespaces_rwsem);
3290 
3291 	ret = nvme_user_cmd(ctrl, ns, argp);
3292 	nvme_put_ns(ns);
3293 	return ret;
3294 
3295 out_unlock:
3296 	up_read(&ctrl->namespaces_rwsem);
3297 	return ret;
3298 }
3299 
3300 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3301 		unsigned long arg)
3302 {
3303 	struct nvme_ctrl *ctrl = file->private_data;
3304 	void __user *argp = (void __user *)arg;
3305 
3306 	switch (cmd) {
3307 	case NVME_IOCTL_ADMIN_CMD:
3308 		return nvme_user_cmd(ctrl, NULL, argp);
3309 	case NVME_IOCTL_ADMIN64_CMD:
3310 		return nvme_user_cmd64(ctrl, NULL, argp);
3311 	case NVME_IOCTL_IO_CMD:
3312 		return nvme_dev_user_cmd(ctrl, argp);
3313 	case NVME_IOCTL_RESET:
3314 		dev_warn(ctrl->device, "resetting controller\n");
3315 		return nvme_reset_ctrl_sync(ctrl);
3316 	case NVME_IOCTL_SUBSYS_RESET:
3317 		return nvme_reset_subsystem(ctrl);
3318 	case NVME_IOCTL_RESCAN:
3319 		nvme_queue_scan(ctrl);
3320 		return 0;
3321 	default:
3322 		return -ENOTTY;
3323 	}
3324 }
3325 
3326 static const struct file_operations nvme_dev_fops = {
3327 	.owner		= THIS_MODULE,
3328 	.open		= nvme_dev_open,
3329 	.release	= nvme_dev_release,
3330 	.unlocked_ioctl	= nvme_dev_ioctl,
3331 	.compat_ioctl	= compat_ptr_ioctl,
3332 };
3333 
3334 static ssize_t nvme_sysfs_reset(struct device *dev,
3335 				struct device_attribute *attr, const char *buf,
3336 				size_t count)
3337 {
3338 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3339 	int ret;
3340 
3341 	ret = nvme_reset_ctrl_sync(ctrl);
3342 	if (ret < 0)
3343 		return ret;
3344 	return count;
3345 }
3346 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3347 
3348 static ssize_t nvme_sysfs_rescan(struct device *dev,
3349 				struct device_attribute *attr, const char *buf,
3350 				size_t count)
3351 {
3352 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3353 
3354 	nvme_queue_scan(ctrl);
3355 	return count;
3356 }
3357 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3358 
3359 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3360 {
3361 	struct gendisk *disk = dev_to_disk(dev);
3362 
3363 	if (disk->fops == &nvme_bdev_ops)
3364 		return nvme_get_ns_from_dev(dev)->head;
3365 	else
3366 		return disk->private_data;
3367 }
3368 
3369 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3370 		char *buf)
3371 {
3372 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3373 	struct nvme_ns_ids *ids = &head->ids;
3374 	struct nvme_subsystem *subsys = head->subsys;
3375 	int serial_len = sizeof(subsys->serial);
3376 	int model_len = sizeof(subsys->model);
3377 
3378 	if (!uuid_is_null(&ids->uuid))
3379 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3380 
3381 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3382 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3383 
3384 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3385 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3386 
3387 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3388 				  subsys->serial[serial_len - 1] == '\0'))
3389 		serial_len--;
3390 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3391 				 subsys->model[model_len - 1] == '\0'))
3392 		model_len--;
3393 
3394 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3395 		serial_len, subsys->serial, model_len, subsys->model,
3396 		head->ns_id);
3397 }
3398 static DEVICE_ATTR_RO(wwid);
3399 
3400 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3401 		char *buf)
3402 {
3403 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3404 }
3405 static DEVICE_ATTR_RO(nguid);
3406 
3407 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3408 		char *buf)
3409 {
3410 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3411 
3412 	/* For backward compatibility expose the NGUID to userspace if
3413 	 * we have no UUID set
3414 	 */
3415 	if (uuid_is_null(&ids->uuid)) {
3416 		printk_ratelimited(KERN_WARNING
3417 				   "No UUID available providing old NGUID\n");
3418 		return sprintf(buf, "%pU\n", ids->nguid);
3419 	}
3420 	return sprintf(buf, "%pU\n", &ids->uuid);
3421 }
3422 static DEVICE_ATTR_RO(uuid);
3423 
3424 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3425 		char *buf)
3426 {
3427 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3428 }
3429 static DEVICE_ATTR_RO(eui);
3430 
3431 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3432 		char *buf)
3433 {
3434 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3435 }
3436 static DEVICE_ATTR_RO(nsid);
3437 
3438 static struct attribute *nvme_ns_id_attrs[] = {
3439 	&dev_attr_wwid.attr,
3440 	&dev_attr_uuid.attr,
3441 	&dev_attr_nguid.attr,
3442 	&dev_attr_eui.attr,
3443 	&dev_attr_nsid.attr,
3444 #ifdef CONFIG_NVME_MULTIPATH
3445 	&dev_attr_ana_grpid.attr,
3446 	&dev_attr_ana_state.attr,
3447 #endif
3448 	NULL,
3449 };
3450 
3451 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3452 		struct attribute *a, int n)
3453 {
3454 	struct device *dev = container_of(kobj, struct device, kobj);
3455 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3456 
3457 	if (a == &dev_attr_uuid.attr) {
3458 		if (uuid_is_null(&ids->uuid) &&
3459 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3460 			return 0;
3461 	}
3462 	if (a == &dev_attr_nguid.attr) {
3463 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3464 			return 0;
3465 	}
3466 	if (a == &dev_attr_eui.attr) {
3467 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3468 			return 0;
3469 	}
3470 #ifdef CONFIG_NVME_MULTIPATH
3471 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3472 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3473 			return 0;
3474 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3475 			return 0;
3476 	}
3477 #endif
3478 	return a->mode;
3479 }
3480 
3481 static const struct attribute_group nvme_ns_id_attr_group = {
3482 	.attrs		= nvme_ns_id_attrs,
3483 	.is_visible	= nvme_ns_id_attrs_are_visible,
3484 };
3485 
3486 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3487 	&nvme_ns_id_attr_group,
3488 #ifdef CONFIG_NVM
3489 	&nvme_nvm_attr_group,
3490 #endif
3491 	NULL,
3492 };
3493 
3494 #define nvme_show_str_function(field)						\
3495 static ssize_t  field##_show(struct device *dev,				\
3496 			    struct device_attribute *attr, char *buf)		\
3497 {										\
3498         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3499         return sprintf(buf, "%.*s\n",						\
3500 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3501 }										\
3502 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3503 
3504 nvme_show_str_function(model);
3505 nvme_show_str_function(serial);
3506 nvme_show_str_function(firmware_rev);
3507 
3508 #define nvme_show_int_function(field)						\
3509 static ssize_t  field##_show(struct device *dev,				\
3510 			    struct device_attribute *attr, char *buf)		\
3511 {										\
3512         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3513         return sprintf(buf, "%d\n", ctrl->field);	\
3514 }										\
3515 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3516 
3517 nvme_show_int_function(cntlid);
3518 nvme_show_int_function(numa_node);
3519 nvme_show_int_function(queue_count);
3520 nvme_show_int_function(sqsize);
3521 
3522 static ssize_t nvme_sysfs_delete(struct device *dev,
3523 				struct device_attribute *attr, const char *buf,
3524 				size_t count)
3525 {
3526 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3527 
3528 	if (device_remove_file_self(dev, attr))
3529 		nvme_delete_ctrl_sync(ctrl);
3530 	return count;
3531 }
3532 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3533 
3534 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3535 					 struct device_attribute *attr,
3536 					 char *buf)
3537 {
3538 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3539 
3540 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3541 }
3542 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3543 
3544 static ssize_t nvme_sysfs_show_state(struct device *dev,
3545 				     struct device_attribute *attr,
3546 				     char *buf)
3547 {
3548 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3549 	static const char *const state_name[] = {
3550 		[NVME_CTRL_NEW]		= "new",
3551 		[NVME_CTRL_LIVE]	= "live",
3552 		[NVME_CTRL_RESETTING]	= "resetting",
3553 		[NVME_CTRL_CONNECTING]	= "connecting",
3554 		[NVME_CTRL_DELETING]	= "deleting",
3555 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3556 		[NVME_CTRL_DEAD]	= "dead",
3557 	};
3558 
3559 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3560 	    state_name[ctrl->state])
3561 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3562 
3563 	return sprintf(buf, "unknown state\n");
3564 }
3565 
3566 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3567 
3568 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3569 					 struct device_attribute *attr,
3570 					 char *buf)
3571 {
3572 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3573 
3574 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3575 }
3576 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3577 
3578 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3579 					struct device_attribute *attr,
3580 					char *buf)
3581 {
3582 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3583 
3584 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3585 }
3586 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3587 
3588 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3589 					struct device_attribute *attr,
3590 					char *buf)
3591 {
3592 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3593 
3594 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3595 }
3596 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3597 
3598 static ssize_t nvme_sysfs_show_address(struct device *dev,
3599 					 struct device_attribute *attr,
3600 					 char *buf)
3601 {
3602 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3603 
3604 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3605 }
3606 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3607 
3608 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3609 		struct device_attribute *attr, char *buf)
3610 {
3611 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3612 	struct nvmf_ctrl_options *opts = ctrl->opts;
3613 
3614 	if (ctrl->opts->max_reconnects == -1)
3615 		return sprintf(buf, "off\n");
3616 	return sprintf(buf, "%d\n",
3617 			opts->max_reconnects * opts->reconnect_delay);
3618 }
3619 
3620 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3621 		struct device_attribute *attr, const char *buf, size_t count)
3622 {
3623 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624 	struct nvmf_ctrl_options *opts = ctrl->opts;
3625 	int ctrl_loss_tmo, err;
3626 
3627 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3628 	if (err)
3629 		return -EINVAL;
3630 
3631 	else if (ctrl_loss_tmo < 0)
3632 		opts->max_reconnects = -1;
3633 	else
3634 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3635 						opts->reconnect_delay);
3636 	return count;
3637 }
3638 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3639 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3640 
3641 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3642 		struct device_attribute *attr, char *buf)
3643 {
3644 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3645 
3646 	if (ctrl->opts->reconnect_delay == -1)
3647 		return sprintf(buf, "off\n");
3648 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3649 }
3650 
3651 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3652 		struct device_attribute *attr, const char *buf, size_t count)
3653 {
3654 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3655 	unsigned int v;
3656 	int err;
3657 
3658 	err = kstrtou32(buf, 10, &v);
3659 	if (err)
3660 		return err;
3661 
3662 	ctrl->opts->reconnect_delay = v;
3663 	return count;
3664 }
3665 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3666 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3667 
3668 static struct attribute *nvme_dev_attrs[] = {
3669 	&dev_attr_reset_controller.attr,
3670 	&dev_attr_rescan_controller.attr,
3671 	&dev_attr_model.attr,
3672 	&dev_attr_serial.attr,
3673 	&dev_attr_firmware_rev.attr,
3674 	&dev_attr_cntlid.attr,
3675 	&dev_attr_delete_controller.attr,
3676 	&dev_attr_transport.attr,
3677 	&dev_attr_subsysnqn.attr,
3678 	&dev_attr_address.attr,
3679 	&dev_attr_state.attr,
3680 	&dev_attr_numa_node.attr,
3681 	&dev_attr_queue_count.attr,
3682 	&dev_attr_sqsize.attr,
3683 	&dev_attr_hostnqn.attr,
3684 	&dev_attr_hostid.attr,
3685 	&dev_attr_ctrl_loss_tmo.attr,
3686 	&dev_attr_reconnect_delay.attr,
3687 	NULL
3688 };
3689 
3690 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3691 		struct attribute *a, int n)
3692 {
3693 	struct device *dev = container_of(kobj, struct device, kobj);
3694 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3695 
3696 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3697 		return 0;
3698 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3699 		return 0;
3700 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3701 		return 0;
3702 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3703 		return 0;
3704 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3705 		return 0;
3706 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3707 		return 0;
3708 
3709 	return a->mode;
3710 }
3711 
3712 static const struct attribute_group nvme_dev_attrs_group = {
3713 	.attrs		= nvme_dev_attrs,
3714 	.is_visible	= nvme_dev_attrs_are_visible,
3715 };
3716 
3717 static const struct attribute_group *nvme_dev_attr_groups[] = {
3718 	&nvme_dev_attrs_group,
3719 	NULL,
3720 };
3721 
3722 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3723 		unsigned nsid)
3724 {
3725 	struct nvme_ns_head *h;
3726 
3727 	lockdep_assert_held(&subsys->lock);
3728 
3729 	list_for_each_entry(h, &subsys->nsheads, entry) {
3730 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3731 			return h;
3732 	}
3733 
3734 	return NULL;
3735 }
3736 
3737 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3738 		struct nvme_ns_head *new)
3739 {
3740 	struct nvme_ns_head *h;
3741 
3742 	lockdep_assert_held(&subsys->lock);
3743 
3744 	list_for_each_entry(h, &subsys->nsheads, entry) {
3745 		if (nvme_ns_ids_valid(&new->ids) &&
3746 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3747 			return -EINVAL;
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3754 		unsigned nsid, struct nvme_ns_ids *ids)
3755 {
3756 	struct nvme_ns_head *head;
3757 	size_t size = sizeof(*head);
3758 	int ret = -ENOMEM;
3759 
3760 #ifdef CONFIG_NVME_MULTIPATH
3761 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3762 #endif
3763 
3764 	head = kzalloc(size, GFP_KERNEL);
3765 	if (!head)
3766 		goto out;
3767 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3768 	if (ret < 0)
3769 		goto out_free_head;
3770 	head->instance = ret;
3771 	INIT_LIST_HEAD(&head->list);
3772 	ret = init_srcu_struct(&head->srcu);
3773 	if (ret)
3774 		goto out_ida_remove;
3775 	head->subsys = ctrl->subsys;
3776 	head->ns_id = nsid;
3777 	head->ids = *ids;
3778 	kref_init(&head->ref);
3779 
3780 	ret = __nvme_check_ids(ctrl->subsys, head);
3781 	if (ret) {
3782 		dev_err(ctrl->device,
3783 			"duplicate IDs for nsid %d\n", nsid);
3784 		goto out_cleanup_srcu;
3785 	}
3786 
3787 	if (head->ids.csi) {
3788 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3789 		if (ret)
3790 			goto out_cleanup_srcu;
3791 	} else
3792 		head->effects = ctrl->effects;
3793 
3794 	ret = nvme_mpath_alloc_disk(ctrl, head);
3795 	if (ret)
3796 		goto out_cleanup_srcu;
3797 
3798 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3799 
3800 	kref_get(&ctrl->subsys->ref);
3801 
3802 	return head;
3803 out_cleanup_srcu:
3804 	cleanup_srcu_struct(&head->srcu);
3805 out_ida_remove:
3806 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3807 out_free_head:
3808 	kfree(head);
3809 out:
3810 	if (ret > 0)
3811 		ret = blk_status_to_errno(nvme_error_status(ret));
3812 	return ERR_PTR(ret);
3813 }
3814 
3815 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3816 		struct nvme_ns_ids *ids, bool is_shared)
3817 {
3818 	struct nvme_ctrl *ctrl = ns->ctrl;
3819 	struct nvme_ns_head *head = NULL;
3820 	int ret = 0;
3821 
3822 	mutex_lock(&ctrl->subsys->lock);
3823 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3824 	if (!head) {
3825 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3826 		if (IS_ERR(head)) {
3827 			ret = PTR_ERR(head);
3828 			goto out_unlock;
3829 		}
3830 		head->shared = is_shared;
3831 	} else {
3832 		ret = -EINVAL;
3833 		if (!is_shared || !head->shared) {
3834 			dev_err(ctrl->device,
3835 				"Duplicate unshared namespace %d\n", nsid);
3836 			goto out_put_ns_head;
3837 		}
3838 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3839 			dev_err(ctrl->device,
3840 				"IDs don't match for shared namespace %d\n",
3841 					nsid);
3842 			goto out_put_ns_head;
3843 		}
3844 	}
3845 
3846 	list_add_tail_rcu(&ns->siblings, &head->list);
3847 	ns->head = head;
3848 	mutex_unlock(&ctrl->subsys->lock);
3849 	return 0;
3850 
3851 out_put_ns_head:
3852 	nvme_put_ns_head(head);
3853 out_unlock:
3854 	mutex_unlock(&ctrl->subsys->lock);
3855 	return ret;
3856 }
3857 
3858 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3859 {
3860 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3861 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3862 
3863 	return nsa->head->ns_id - nsb->head->ns_id;
3864 }
3865 
3866 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3867 {
3868 	struct nvme_ns *ns, *ret = NULL;
3869 
3870 	down_read(&ctrl->namespaces_rwsem);
3871 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3872 		if (ns->head->ns_id == nsid) {
3873 			if (!kref_get_unless_zero(&ns->kref))
3874 				continue;
3875 			ret = ns;
3876 			break;
3877 		}
3878 		if (ns->head->ns_id > nsid)
3879 			break;
3880 	}
3881 	up_read(&ctrl->namespaces_rwsem);
3882 	return ret;
3883 }
3884 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3885 
3886 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3887 		struct nvme_ns_ids *ids)
3888 {
3889 	struct nvme_ns *ns;
3890 	struct gendisk *disk;
3891 	struct nvme_id_ns *id;
3892 	char disk_name[DISK_NAME_LEN];
3893 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3894 
3895 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3896 		return;
3897 
3898 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3899 	if (!ns)
3900 		goto out_free_id;
3901 
3902 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3903 	if (IS_ERR(ns->queue))
3904 		goto out_free_ns;
3905 
3906 	if (ctrl->opts && ctrl->opts->data_digest)
3907 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3908 
3909 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3910 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3911 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3912 
3913 	ns->queue->queuedata = ns;
3914 	ns->ctrl = ctrl;
3915 	kref_init(&ns->kref);
3916 
3917 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3918 		goto out_free_queue;
3919 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3920 
3921 	disk = alloc_disk_node(0, node);
3922 	if (!disk)
3923 		goto out_unlink_ns;
3924 
3925 	disk->fops = &nvme_bdev_ops;
3926 	disk->private_data = ns;
3927 	disk->queue = ns->queue;
3928 	disk->flags = flags;
3929 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3930 	ns->disk = disk;
3931 
3932 	if (nvme_update_ns_info(ns, id))
3933 		goto out_put_disk;
3934 
3935 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3936 		if (nvme_nvm_register(ns, disk_name, node)) {
3937 			dev_warn(ctrl->device, "LightNVM init failure\n");
3938 			goto out_put_disk;
3939 		}
3940 	}
3941 
3942 	down_write(&ctrl->namespaces_rwsem);
3943 	list_add_tail(&ns->list, &ctrl->namespaces);
3944 	up_write(&ctrl->namespaces_rwsem);
3945 
3946 	nvme_get_ctrl(ctrl);
3947 
3948 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3949 
3950 	nvme_mpath_add_disk(ns, id);
3951 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3952 	kfree(id);
3953 
3954 	return;
3955  out_put_disk:
3956 	/* prevent double queue cleanup */
3957 	ns->disk->queue = NULL;
3958 	put_disk(ns->disk);
3959  out_unlink_ns:
3960 	mutex_lock(&ctrl->subsys->lock);
3961 	list_del_rcu(&ns->siblings);
3962 	if (list_empty(&ns->head->list))
3963 		list_del_init(&ns->head->entry);
3964 	mutex_unlock(&ctrl->subsys->lock);
3965 	nvme_put_ns_head(ns->head);
3966  out_free_queue:
3967 	blk_cleanup_queue(ns->queue);
3968  out_free_ns:
3969 	kfree(ns);
3970  out_free_id:
3971 	kfree(id);
3972 }
3973 
3974 static void nvme_ns_remove(struct nvme_ns *ns)
3975 {
3976 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3977 		return;
3978 
3979 	set_capacity(ns->disk, 0);
3980 	nvme_fault_inject_fini(&ns->fault_inject);
3981 
3982 	mutex_lock(&ns->ctrl->subsys->lock);
3983 	list_del_rcu(&ns->siblings);
3984 	if (list_empty(&ns->head->list))
3985 		list_del_init(&ns->head->entry);
3986 	mutex_unlock(&ns->ctrl->subsys->lock);
3987 
3988 	synchronize_rcu(); /* guarantee not available in head->list */
3989 	nvme_mpath_clear_current_path(ns);
3990 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3991 
3992 	if (ns->disk->flags & GENHD_FL_UP) {
3993 		del_gendisk(ns->disk);
3994 		blk_cleanup_queue(ns->queue);
3995 		if (blk_get_integrity(ns->disk))
3996 			blk_integrity_unregister(ns->disk);
3997 	}
3998 
3999 	down_write(&ns->ctrl->namespaces_rwsem);
4000 	list_del_init(&ns->list);
4001 	up_write(&ns->ctrl->namespaces_rwsem);
4002 
4003 	nvme_mpath_check_last_path(ns);
4004 	nvme_put_ns(ns);
4005 }
4006 
4007 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4008 {
4009 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4010 
4011 	if (ns) {
4012 		nvme_ns_remove(ns);
4013 		nvme_put_ns(ns);
4014 	}
4015 }
4016 
4017 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4018 {
4019 	struct nvme_id_ns *id;
4020 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4021 
4022 	if (test_bit(NVME_NS_DEAD, &ns->flags))
4023 		goto out;
4024 
4025 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4026 	if (ret)
4027 		goto out;
4028 
4029 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4030 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4031 		dev_err(ns->ctrl->device,
4032 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4033 		goto out_free_id;
4034 	}
4035 
4036 	ret = nvme_update_ns_info(ns, id);
4037 
4038 out_free_id:
4039 	kfree(id);
4040 out:
4041 	/*
4042 	 * Only remove the namespace if we got a fatal error back from the
4043 	 * device, otherwise ignore the error and just move on.
4044 	 *
4045 	 * TODO: we should probably schedule a delayed retry here.
4046 	 */
4047 	if (ret > 0 && (ret & NVME_SC_DNR))
4048 		nvme_ns_remove(ns);
4049 }
4050 
4051 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4052 {
4053 	struct nvme_ns_ids ids = { };
4054 	struct nvme_ns *ns;
4055 
4056 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4057 		return;
4058 
4059 	ns = nvme_find_get_ns(ctrl, nsid);
4060 	if (ns) {
4061 		nvme_validate_ns(ns, &ids);
4062 		nvme_put_ns(ns);
4063 		return;
4064 	}
4065 
4066 	switch (ids.csi) {
4067 	case NVME_CSI_NVM:
4068 		nvme_alloc_ns(ctrl, nsid, &ids);
4069 		break;
4070 	case NVME_CSI_ZNS:
4071 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4072 			dev_warn(ctrl->device,
4073 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4074 				nsid);
4075 			break;
4076 		}
4077 		if (!nvme_multi_css(ctrl)) {
4078 			dev_warn(ctrl->device,
4079 				"command set not reported for nsid: %d\n",
4080 				nsid);
4081 			break;
4082 		}
4083 		nvme_alloc_ns(ctrl, nsid, &ids);
4084 		break;
4085 	default:
4086 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4087 			ids.csi, nsid);
4088 		break;
4089 	}
4090 }
4091 
4092 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4093 					unsigned nsid)
4094 {
4095 	struct nvme_ns *ns, *next;
4096 	LIST_HEAD(rm_list);
4097 
4098 	down_write(&ctrl->namespaces_rwsem);
4099 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4100 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4101 			list_move_tail(&ns->list, &rm_list);
4102 	}
4103 	up_write(&ctrl->namespaces_rwsem);
4104 
4105 	list_for_each_entry_safe(ns, next, &rm_list, list)
4106 		nvme_ns_remove(ns);
4107 
4108 }
4109 
4110 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4111 {
4112 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4113 	__le32 *ns_list;
4114 	u32 prev = 0;
4115 	int ret = 0, i;
4116 
4117 	if (nvme_ctrl_limited_cns(ctrl))
4118 		return -EOPNOTSUPP;
4119 
4120 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4121 	if (!ns_list)
4122 		return -ENOMEM;
4123 
4124 	for (;;) {
4125 		struct nvme_command cmd = {
4126 			.identify.opcode	= nvme_admin_identify,
4127 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4128 			.identify.nsid		= cpu_to_le32(prev),
4129 		};
4130 
4131 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4132 					    NVME_IDENTIFY_DATA_SIZE);
4133 		if (ret) {
4134 			dev_warn(ctrl->device,
4135 				"Identify NS List failed (status=0x%x)\n", ret);
4136 			goto free;
4137 		}
4138 
4139 		for (i = 0; i < nr_entries; i++) {
4140 			u32 nsid = le32_to_cpu(ns_list[i]);
4141 
4142 			if (!nsid)	/* end of the list? */
4143 				goto out;
4144 			nvme_validate_or_alloc_ns(ctrl, nsid);
4145 			while (++prev < nsid)
4146 				nvme_ns_remove_by_nsid(ctrl, prev);
4147 		}
4148 	}
4149  out:
4150 	nvme_remove_invalid_namespaces(ctrl, prev);
4151  free:
4152 	kfree(ns_list);
4153 	return ret;
4154 }
4155 
4156 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4157 {
4158 	struct nvme_id_ctrl *id;
4159 	u32 nn, i;
4160 
4161 	if (nvme_identify_ctrl(ctrl, &id))
4162 		return;
4163 	nn = le32_to_cpu(id->nn);
4164 	kfree(id);
4165 
4166 	for (i = 1; i <= nn; i++)
4167 		nvme_validate_or_alloc_ns(ctrl, i);
4168 
4169 	nvme_remove_invalid_namespaces(ctrl, nn);
4170 }
4171 
4172 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4173 {
4174 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4175 	__le32 *log;
4176 	int error;
4177 
4178 	log = kzalloc(log_size, GFP_KERNEL);
4179 	if (!log)
4180 		return;
4181 
4182 	/*
4183 	 * We need to read the log to clear the AEN, but we don't want to rely
4184 	 * on it for the changed namespace information as userspace could have
4185 	 * raced with us in reading the log page, which could cause us to miss
4186 	 * updates.
4187 	 */
4188 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4189 			NVME_CSI_NVM, log, log_size, 0);
4190 	if (error)
4191 		dev_warn(ctrl->device,
4192 			"reading changed ns log failed: %d\n", error);
4193 
4194 	kfree(log);
4195 }
4196 
4197 static void nvme_scan_work(struct work_struct *work)
4198 {
4199 	struct nvme_ctrl *ctrl =
4200 		container_of(work, struct nvme_ctrl, scan_work);
4201 
4202 	/* No tagset on a live ctrl means IO queues could not created */
4203 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4204 		return;
4205 
4206 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4207 		dev_info(ctrl->device, "rescanning namespaces.\n");
4208 		nvme_clear_changed_ns_log(ctrl);
4209 	}
4210 
4211 	mutex_lock(&ctrl->scan_lock);
4212 	if (nvme_scan_ns_list(ctrl) != 0)
4213 		nvme_scan_ns_sequential(ctrl);
4214 	mutex_unlock(&ctrl->scan_lock);
4215 
4216 	down_write(&ctrl->namespaces_rwsem);
4217 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4218 	up_write(&ctrl->namespaces_rwsem);
4219 }
4220 
4221 /*
4222  * This function iterates the namespace list unlocked to allow recovery from
4223  * controller failure. It is up to the caller to ensure the namespace list is
4224  * not modified by scan work while this function is executing.
4225  */
4226 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4227 {
4228 	struct nvme_ns *ns, *next;
4229 	LIST_HEAD(ns_list);
4230 
4231 	/*
4232 	 * make sure to requeue I/O to all namespaces as these
4233 	 * might result from the scan itself and must complete
4234 	 * for the scan_work to make progress
4235 	 */
4236 	nvme_mpath_clear_ctrl_paths(ctrl);
4237 
4238 	/* prevent racing with ns scanning */
4239 	flush_work(&ctrl->scan_work);
4240 
4241 	/*
4242 	 * The dead states indicates the controller was not gracefully
4243 	 * disconnected. In that case, we won't be able to flush any data while
4244 	 * removing the namespaces' disks; fail all the queues now to avoid
4245 	 * potentially having to clean up the failed sync later.
4246 	 */
4247 	if (ctrl->state == NVME_CTRL_DEAD)
4248 		nvme_kill_queues(ctrl);
4249 
4250 	/* this is a no-op when called from the controller reset handler */
4251 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4252 
4253 	down_write(&ctrl->namespaces_rwsem);
4254 	list_splice_init(&ctrl->namespaces, &ns_list);
4255 	up_write(&ctrl->namespaces_rwsem);
4256 
4257 	list_for_each_entry_safe(ns, next, &ns_list, list)
4258 		nvme_ns_remove(ns);
4259 }
4260 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4261 
4262 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4263 {
4264 	struct nvme_ctrl *ctrl =
4265 		container_of(dev, struct nvme_ctrl, ctrl_device);
4266 	struct nvmf_ctrl_options *opts = ctrl->opts;
4267 	int ret;
4268 
4269 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4270 	if (ret)
4271 		return ret;
4272 
4273 	if (opts) {
4274 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4275 		if (ret)
4276 			return ret;
4277 
4278 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4279 				opts->trsvcid ?: "none");
4280 		if (ret)
4281 			return ret;
4282 
4283 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4284 				opts->host_traddr ?: "none");
4285 	}
4286 	return ret;
4287 }
4288 
4289 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4290 {
4291 	char *envp[2] = { NULL, NULL };
4292 	u32 aen_result = ctrl->aen_result;
4293 
4294 	ctrl->aen_result = 0;
4295 	if (!aen_result)
4296 		return;
4297 
4298 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4299 	if (!envp[0])
4300 		return;
4301 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4302 	kfree(envp[0]);
4303 }
4304 
4305 static void nvme_async_event_work(struct work_struct *work)
4306 {
4307 	struct nvme_ctrl *ctrl =
4308 		container_of(work, struct nvme_ctrl, async_event_work);
4309 
4310 	nvme_aen_uevent(ctrl);
4311 	ctrl->ops->submit_async_event(ctrl);
4312 }
4313 
4314 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4315 {
4316 
4317 	u32 csts;
4318 
4319 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4320 		return false;
4321 
4322 	if (csts == ~0)
4323 		return false;
4324 
4325 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4326 }
4327 
4328 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4329 {
4330 	struct nvme_fw_slot_info_log *log;
4331 
4332 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4333 	if (!log)
4334 		return;
4335 
4336 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4337 			log, sizeof(*log), 0))
4338 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4339 	kfree(log);
4340 }
4341 
4342 static void nvme_fw_act_work(struct work_struct *work)
4343 {
4344 	struct nvme_ctrl *ctrl = container_of(work,
4345 				struct nvme_ctrl, fw_act_work);
4346 	unsigned long fw_act_timeout;
4347 
4348 	if (ctrl->mtfa)
4349 		fw_act_timeout = jiffies +
4350 				msecs_to_jiffies(ctrl->mtfa * 100);
4351 	else
4352 		fw_act_timeout = jiffies +
4353 				msecs_to_jiffies(admin_timeout * 1000);
4354 
4355 	nvme_stop_queues(ctrl);
4356 	while (nvme_ctrl_pp_status(ctrl)) {
4357 		if (time_after(jiffies, fw_act_timeout)) {
4358 			dev_warn(ctrl->device,
4359 				"Fw activation timeout, reset controller\n");
4360 			nvme_try_sched_reset(ctrl);
4361 			return;
4362 		}
4363 		msleep(100);
4364 	}
4365 
4366 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4367 		return;
4368 
4369 	nvme_start_queues(ctrl);
4370 	/* read FW slot information to clear the AER */
4371 	nvme_get_fw_slot_info(ctrl);
4372 }
4373 
4374 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4375 {
4376 	u32 aer_notice_type = (result & 0xff00) >> 8;
4377 
4378 	trace_nvme_async_event(ctrl, aer_notice_type);
4379 
4380 	switch (aer_notice_type) {
4381 	case NVME_AER_NOTICE_NS_CHANGED:
4382 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4383 		nvme_queue_scan(ctrl);
4384 		break;
4385 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4386 		/*
4387 		 * We are (ab)using the RESETTING state to prevent subsequent
4388 		 * recovery actions from interfering with the controller's
4389 		 * firmware activation.
4390 		 */
4391 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4392 			queue_work(nvme_wq, &ctrl->fw_act_work);
4393 		break;
4394 #ifdef CONFIG_NVME_MULTIPATH
4395 	case NVME_AER_NOTICE_ANA:
4396 		if (!ctrl->ana_log_buf)
4397 			break;
4398 		queue_work(nvme_wq, &ctrl->ana_work);
4399 		break;
4400 #endif
4401 	case NVME_AER_NOTICE_DISC_CHANGED:
4402 		ctrl->aen_result = result;
4403 		break;
4404 	default:
4405 		dev_warn(ctrl->device, "async event result %08x\n", result);
4406 	}
4407 }
4408 
4409 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4410 		volatile union nvme_result *res)
4411 {
4412 	u32 result = le32_to_cpu(res->u32);
4413 	u32 aer_type = result & 0x07;
4414 
4415 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4416 		return;
4417 
4418 	switch (aer_type) {
4419 	case NVME_AER_NOTICE:
4420 		nvme_handle_aen_notice(ctrl, result);
4421 		break;
4422 	case NVME_AER_ERROR:
4423 	case NVME_AER_SMART:
4424 	case NVME_AER_CSS:
4425 	case NVME_AER_VS:
4426 		trace_nvme_async_event(ctrl, aer_type);
4427 		ctrl->aen_result = result;
4428 		break;
4429 	default:
4430 		break;
4431 	}
4432 	queue_work(nvme_wq, &ctrl->async_event_work);
4433 }
4434 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4435 
4436 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4437 {
4438 	nvme_mpath_stop(ctrl);
4439 	nvme_stop_keep_alive(ctrl);
4440 	nvme_stop_failfast_work(ctrl);
4441 	flush_work(&ctrl->async_event_work);
4442 	cancel_work_sync(&ctrl->fw_act_work);
4443 }
4444 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4445 
4446 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4447 {
4448 	nvme_start_keep_alive(ctrl);
4449 
4450 	nvme_enable_aen(ctrl);
4451 
4452 	if (ctrl->queue_count > 1) {
4453 		nvme_queue_scan(ctrl);
4454 		nvme_start_queues(ctrl);
4455 	}
4456 }
4457 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4458 
4459 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4460 {
4461 	nvme_hwmon_exit(ctrl);
4462 	nvme_fault_inject_fini(&ctrl->fault_inject);
4463 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4464 	cdev_device_del(&ctrl->cdev, ctrl->device);
4465 	nvme_put_ctrl(ctrl);
4466 }
4467 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4468 
4469 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4470 {
4471 	struct nvme_effects_log	*cel;
4472 	unsigned long i;
4473 
4474 	xa_for_each(&ctrl->cels, i, cel) {
4475 		xa_erase(&ctrl->cels, i);
4476 		kfree(cel);
4477 	}
4478 
4479 	xa_destroy(&ctrl->cels);
4480 }
4481 
4482 static void nvme_free_ctrl(struct device *dev)
4483 {
4484 	struct nvme_ctrl *ctrl =
4485 		container_of(dev, struct nvme_ctrl, ctrl_device);
4486 	struct nvme_subsystem *subsys = ctrl->subsys;
4487 
4488 	if (!subsys || ctrl->instance != subsys->instance)
4489 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4490 
4491 	nvme_free_cels(ctrl);
4492 	nvme_mpath_uninit(ctrl);
4493 	__free_page(ctrl->discard_page);
4494 
4495 	if (subsys) {
4496 		mutex_lock(&nvme_subsystems_lock);
4497 		list_del(&ctrl->subsys_entry);
4498 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4499 		mutex_unlock(&nvme_subsystems_lock);
4500 	}
4501 
4502 	ctrl->ops->free_ctrl(ctrl);
4503 
4504 	if (subsys)
4505 		nvme_put_subsystem(subsys);
4506 }
4507 
4508 /*
4509  * Initialize a NVMe controller structures.  This needs to be called during
4510  * earliest initialization so that we have the initialized structured around
4511  * during probing.
4512  */
4513 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4514 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4515 {
4516 	int ret;
4517 
4518 	ctrl->state = NVME_CTRL_NEW;
4519 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4520 	spin_lock_init(&ctrl->lock);
4521 	mutex_init(&ctrl->scan_lock);
4522 	INIT_LIST_HEAD(&ctrl->namespaces);
4523 	xa_init(&ctrl->cels);
4524 	init_rwsem(&ctrl->namespaces_rwsem);
4525 	ctrl->dev = dev;
4526 	ctrl->ops = ops;
4527 	ctrl->quirks = quirks;
4528 	ctrl->numa_node = NUMA_NO_NODE;
4529 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4530 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4531 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4532 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4533 	init_waitqueue_head(&ctrl->state_wq);
4534 
4535 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4536 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4537 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4538 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4539 
4540 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4541 			PAGE_SIZE);
4542 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4543 	if (!ctrl->discard_page) {
4544 		ret = -ENOMEM;
4545 		goto out;
4546 	}
4547 
4548 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4549 	if (ret < 0)
4550 		goto out;
4551 	ctrl->instance = ret;
4552 
4553 	device_initialize(&ctrl->ctrl_device);
4554 	ctrl->device = &ctrl->ctrl_device;
4555 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4556 			ctrl->instance);
4557 	ctrl->device->class = nvme_class;
4558 	ctrl->device->parent = ctrl->dev;
4559 	ctrl->device->groups = nvme_dev_attr_groups;
4560 	ctrl->device->release = nvme_free_ctrl;
4561 	dev_set_drvdata(ctrl->device, ctrl);
4562 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4563 	if (ret)
4564 		goto out_release_instance;
4565 
4566 	nvme_get_ctrl(ctrl);
4567 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4568 	ctrl->cdev.owner = ops->module;
4569 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4570 	if (ret)
4571 		goto out_free_name;
4572 
4573 	/*
4574 	 * Initialize latency tolerance controls.  The sysfs files won't
4575 	 * be visible to userspace unless the device actually supports APST.
4576 	 */
4577 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4578 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4579 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4580 
4581 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4582 
4583 	return 0;
4584 out_free_name:
4585 	nvme_put_ctrl(ctrl);
4586 	kfree_const(ctrl->device->kobj.name);
4587 out_release_instance:
4588 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4589 out:
4590 	if (ctrl->discard_page)
4591 		__free_page(ctrl->discard_page);
4592 	return ret;
4593 }
4594 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4595 
4596 /**
4597  * nvme_kill_queues(): Ends all namespace queues
4598  * @ctrl: the dead controller that needs to end
4599  *
4600  * Call this function when the driver determines it is unable to get the
4601  * controller in a state capable of servicing IO.
4602  */
4603 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4604 {
4605 	struct nvme_ns *ns;
4606 
4607 	down_read(&ctrl->namespaces_rwsem);
4608 
4609 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4610 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4611 		blk_mq_unquiesce_queue(ctrl->admin_q);
4612 
4613 	list_for_each_entry(ns, &ctrl->namespaces, list)
4614 		nvme_set_queue_dying(ns);
4615 
4616 	up_read(&ctrl->namespaces_rwsem);
4617 }
4618 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4619 
4620 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4621 {
4622 	struct nvme_ns *ns;
4623 
4624 	down_read(&ctrl->namespaces_rwsem);
4625 	list_for_each_entry(ns, &ctrl->namespaces, list)
4626 		blk_mq_unfreeze_queue(ns->queue);
4627 	up_read(&ctrl->namespaces_rwsem);
4628 }
4629 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4630 
4631 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4632 {
4633 	struct nvme_ns *ns;
4634 
4635 	down_read(&ctrl->namespaces_rwsem);
4636 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4637 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4638 		if (timeout <= 0)
4639 			break;
4640 	}
4641 	up_read(&ctrl->namespaces_rwsem);
4642 	return timeout;
4643 }
4644 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4645 
4646 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4647 {
4648 	struct nvme_ns *ns;
4649 
4650 	down_read(&ctrl->namespaces_rwsem);
4651 	list_for_each_entry(ns, &ctrl->namespaces, list)
4652 		blk_mq_freeze_queue_wait(ns->queue);
4653 	up_read(&ctrl->namespaces_rwsem);
4654 }
4655 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4656 
4657 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4658 {
4659 	struct nvme_ns *ns;
4660 
4661 	down_read(&ctrl->namespaces_rwsem);
4662 	list_for_each_entry(ns, &ctrl->namespaces, list)
4663 		blk_freeze_queue_start(ns->queue);
4664 	up_read(&ctrl->namespaces_rwsem);
4665 }
4666 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4667 
4668 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4669 {
4670 	struct nvme_ns *ns;
4671 
4672 	down_read(&ctrl->namespaces_rwsem);
4673 	list_for_each_entry(ns, &ctrl->namespaces, list)
4674 		blk_mq_quiesce_queue(ns->queue);
4675 	up_read(&ctrl->namespaces_rwsem);
4676 }
4677 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4678 
4679 void nvme_start_queues(struct nvme_ctrl *ctrl)
4680 {
4681 	struct nvme_ns *ns;
4682 
4683 	down_read(&ctrl->namespaces_rwsem);
4684 	list_for_each_entry(ns, &ctrl->namespaces, list)
4685 		blk_mq_unquiesce_queue(ns->queue);
4686 	up_read(&ctrl->namespaces_rwsem);
4687 }
4688 EXPORT_SYMBOL_GPL(nvme_start_queues);
4689 
4690 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4691 {
4692 	struct nvme_ns *ns;
4693 
4694 	down_read(&ctrl->namespaces_rwsem);
4695 	list_for_each_entry(ns, &ctrl->namespaces, list)
4696 		blk_sync_queue(ns->queue);
4697 	up_read(&ctrl->namespaces_rwsem);
4698 }
4699 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4700 
4701 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4702 {
4703 	nvme_sync_io_queues(ctrl);
4704 	if (ctrl->admin_q)
4705 		blk_sync_queue(ctrl->admin_q);
4706 }
4707 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4708 
4709 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4710 {
4711 	if (file->f_op != &nvme_dev_fops)
4712 		return NULL;
4713 	return file->private_data;
4714 }
4715 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4716 
4717 /*
4718  * Check we didn't inadvertently grow the command structure sizes:
4719  */
4720 static inline void _nvme_check_size(void)
4721 {
4722 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4723 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4724 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4725 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4726 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4727 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4728 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4729 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4730 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4731 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4732 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4733 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4734 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4735 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4736 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4737 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4738 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4739 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4740 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4741 }
4742 
4743 
4744 static int __init nvme_core_init(void)
4745 {
4746 	int result = -ENOMEM;
4747 
4748 	_nvme_check_size();
4749 
4750 	nvme_wq = alloc_workqueue("nvme-wq",
4751 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4752 	if (!nvme_wq)
4753 		goto out;
4754 
4755 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4756 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4757 	if (!nvme_reset_wq)
4758 		goto destroy_wq;
4759 
4760 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4761 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4762 	if (!nvme_delete_wq)
4763 		goto destroy_reset_wq;
4764 
4765 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4766 			NVME_MINORS, "nvme");
4767 	if (result < 0)
4768 		goto destroy_delete_wq;
4769 
4770 	nvme_class = class_create(THIS_MODULE, "nvme");
4771 	if (IS_ERR(nvme_class)) {
4772 		result = PTR_ERR(nvme_class);
4773 		goto unregister_chrdev;
4774 	}
4775 	nvme_class->dev_uevent = nvme_class_uevent;
4776 
4777 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4778 	if (IS_ERR(nvme_subsys_class)) {
4779 		result = PTR_ERR(nvme_subsys_class);
4780 		goto destroy_class;
4781 	}
4782 	return 0;
4783 
4784 destroy_class:
4785 	class_destroy(nvme_class);
4786 unregister_chrdev:
4787 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4788 destroy_delete_wq:
4789 	destroy_workqueue(nvme_delete_wq);
4790 destroy_reset_wq:
4791 	destroy_workqueue(nvme_reset_wq);
4792 destroy_wq:
4793 	destroy_workqueue(nvme_wq);
4794 out:
4795 	return result;
4796 }
4797 
4798 static void __exit nvme_core_exit(void)
4799 {
4800 	class_destroy(nvme_subsys_class);
4801 	class_destroy(nvme_class);
4802 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4803 	destroy_workqueue(nvme_delete_wq);
4804 	destroy_workqueue(nvme_reset_wq);
4805 	destroy_workqueue(nvme_wq);
4806 	ida_destroy(&nvme_instance_ida);
4807 }
4808 
4809 MODULE_LICENSE("GPL");
4810 MODULE_VERSION("1.0");
4811 module_init(nvme_core_init);
4812 module_exit(nvme_core_exit);
4813