xref: /openbmc/linux/drivers/nvme/host/core.c (revision 08ebb1c0da84bbec6df105a60b339e40fba241c9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31 
32 #define NVME_MINORS		(1U << MINORBITS)
33 
34 struct nvme_ns_info {
35 	struct nvme_ns_ids ids;
36 	u32 nsid;
37 	__le32 anagrpid;
38 	bool is_shared;
39 	bool is_readonly;
40 	bool is_ready;
41 };
42 
43 unsigned int admin_timeout = 60;
44 module_param(admin_timeout, uint, 0644);
45 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
46 EXPORT_SYMBOL_GPL(admin_timeout);
47 
48 unsigned int nvme_io_timeout = 30;
49 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
50 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
51 EXPORT_SYMBOL_GPL(nvme_io_timeout);
52 
53 static unsigned char shutdown_timeout = 5;
54 module_param(shutdown_timeout, byte, 0644);
55 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
56 
57 static u8 nvme_max_retries = 5;
58 module_param_named(max_retries, nvme_max_retries, byte, 0644);
59 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
60 
61 static unsigned long default_ps_max_latency_us = 100000;
62 module_param(default_ps_max_latency_us, ulong, 0644);
63 MODULE_PARM_DESC(default_ps_max_latency_us,
64 		 "max power saving latency for new devices; use PM QOS to change per device");
65 
66 static bool force_apst;
67 module_param(force_apst, bool, 0644);
68 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
69 
70 static unsigned long apst_primary_timeout_ms = 100;
71 module_param(apst_primary_timeout_ms, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_timeout_ms,
73 	"primary APST timeout in ms");
74 
75 static unsigned long apst_secondary_timeout_ms = 2000;
76 module_param(apst_secondary_timeout_ms, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_timeout_ms,
78 	"secondary APST timeout in ms");
79 
80 static unsigned long apst_primary_latency_tol_us = 15000;
81 module_param(apst_primary_latency_tol_us, ulong, 0644);
82 MODULE_PARM_DESC(apst_primary_latency_tol_us,
83 	"primary APST latency tolerance in us");
84 
85 static unsigned long apst_secondary_latency_tol_us = 100000;
86 module_param(apst_secondary_latency_tol_us, ulong, 0644);
87 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
88 	"secondary APST latency tolerance in us");
89 
90 /*
91  * nvme_wq - hosts nvme related works that are not reset or delete
92  * nvme_reset_wq - hosts nvme reset works
93  * nvme_delete_wq - hosts nvme delete works
94  *
95  * nvme_wq will host works such as scan, aen handling, fw activation,
96  * keep-alive, periodic reconnects etc. nvme_reset_wq
97  * runs reset works which also flush works hosted on nvme_wq for
98  * serialization purposes. nvme_delete_wq host controller deletion
99  * works which flush reset works for serialization.
100  */
101 struct workqueue_struct *nvme_wq;
102 EXPORT_SYMBOL_GPL(nvme_wq);
103 
104 struct workqueue_struct *nvme_reset_wq;
105 EXPORT_SYMBOL_GPL(nvme_reset_wq);
106 
107 struct workqueue_struct *nvme_delete_wq;
108 EXPORT_SYMBOL_GPL(nvme_delete_wq);
109 
110 static LIST_HEAD(nvme_subsystems);
111 static DEFINE_MUTEX(nvme_subsystems_lock);
112 
113 static DEFINE_IDA(nvme_instance_ida);
114 static dev_t nvme_ctrl_base_chr_devt;
115 static struct class *nvme_class;
116 static struct class *nvme_subsys_class;
117 
118 static DEFINE_IDA(nvme_ns_chr_minor_ida);
119 static dev_t nvme_ns_chr_devt;
120 static struct class *nvme_ns_chr_class;
121 
122 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
123 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
124 					   unsigned nsid);
125 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
126 				   struct nvme_command *cmd);
127 
128 void nvme_queue_scan(struct nvme_ctrl *ctrl)
129 {
130 	/*
131 	 * Only new queue scan work when admin and IO queues are both alive
132 	 */
133 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
134 		queue_work(nvme_wq, &ctrl->scan_work);
135 }
136 
137 /*
138  * Use this function to proceed with scheduling reset_work for a controller
139  * that had previously been set to the resetting state. This is intended for
140  * code paths that can't be interrupted by other reset attempts. A hot removal
141  * may prevent this from succeeding.
142  */
143 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
144 {
145 	if (ctrl->state != NVME_CTRL_RESETTING)
146 		return -EBUSY;
147 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
148 		return -EBUSY;
149 	return 0;
150 }
151 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
152 
153 static void nvme_failfast_work(struct work_struct *work)
154 {
155 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
156 			struct nvme_ctrl, failfast_work);
157 
158 	if (ctrl->state != NVME_CTRL_CONNECTING)
159 		return;
160 
161 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
162 	dev_info(ctrl->device, "failfast expired\n");
163 	nvme_kick_requeue_lists(ctrl);
164 }
165 
166 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
167 {
168 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
169 		return;
170 
171 	schedule_delayed_work(&ctrl->failfast_work,
172 			      ctrl->opts->fast_io_fail_tmo * HZ);
173 }
174 
175 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
176 {
177 	if (!ctrl->opts)
178 		return;
179 
180 	cancel_delayed_work_sync(&ctrl->failfast_work);
181 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
182 }
183 
184 
185 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
186 {
187 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
188 		return -EBUSY;
189 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
190 		return -EBUSY;
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
194 
195 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 	int ret;
198 
199 	ret = nvme_reset_ctrl(ctrl);
200 	if (!ret) {
201 		flush_work(&ctrl->reset_work);
202 		if (ctrl->state != NVME_CTRL_LIVE)
203 			ret = -ENETRESET;
204 	}
205 
206 	return ret;
207 }
208 
209 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
210 {
211 	dev_info(ctrl->device,
212 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
213 
214 	flush_work(&ctrl->reset_work);
215 	nvme_stop_ctrl(ctrl);
216 	nvme_remove_namespaces(ctrl);
217 	ctrl->ops->delete_ctrl(ctrl);
218 	nvme_uninit_ctrl(ctrl);
219 }
220 
221 static void nvme_delete_ctrl_work(struct work_struct *work)
222 {
223 	struct nvme_ctrl *ctrl =
224 		container_of(work, struct nvme_ctrl, delete_work);
225 
226 	nvme_do_delete_ctrl(ctrl);
227 }
228 
229 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
230 {
231 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
232 		return -EBUSY;
233 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
234 		return -EBUSY;
235 	return 0;
236 }
237 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
238 
239 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
240 {
241 	/*
242 	 * Keep a reference until nvme_do_delete_ctrl() complete,
243 	 * since ->delete_ctrl can free the controller.
244 	 */
245 	nvme_get_ctrl(ctrl);
246 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
247 		nvme_do_delete_ctrl(ctrl);
248 	nvme_put_ctrl(ctrl);
249 }
250 
251 static blk_status_t nvme_error_status(u16 status)
252 {
253 	switch (status & 0x7ff) {
254 	case NVME_SC_SUCCESS:
255 		return BLK_STS_OK;
256 	case NVME_SC_CAP_EXCEEDED:
257 		return BLK_STS_NOSPC;
258 	case NVME_SC_LBA_RANGE:
259 	case NVME_SC_CMD_INTERRUPTED:
260 	case NVME_SC_NS_NOT_READY:
261 		return BLK_STS_TARGET;
262 	case NVME_SC_BAD_ATTRIBUTES:
263 	case NVME_SC_ONCS_NOT_SUPPORTED:
264 	case NVME_SC_INVALID_OPCODE:
265 	case NVME_SC_INVALID_FIELD:
266 	case NVME_SC_INVALID_NS:
267 		return BLK_STS_NOTSUPP;
268 	case NVME_SC_WRITE_FAULT:
269 	case NVME_SC_READ_ERROR:
270 	case NVME_SC_UNWRITTEN_BLOCK:
271 	case NVME_SC_ACCESS_DENIED:
272 	case NVME_SC_READ_ONLY:
273 	case NVME_SC_COMPARE_FAILED:
274 		return BLK_STS_MEDIUM;
275 	case NVME_SC_GUARD_CHECK:
276 	case NVME_SC_APPTAG_CHECK:
277 	case NVME_SC_REFTAG_CHECK:
278 	case NVME_SC_INVALID_PI:
279 		return BLK_STS_PROTECTION;
280 	case NVME_SC_RESERVATION_CONFLICT:
281 		return BLK_STS_NEXUS;
282 	case NVME_SC_HOST_PATH_ERROR:
283 		return BLK_STS_TRANSPORT;
284 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
285 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
286 	case NVME_SC_ZONE_TOO_MANY_OPEN:
287 		return BLK_STS_ZONE_OPEN_RESOURCE;
288 	default:
289 		return BLK_STS_IOERR;
290 	}
291 }
292 
293 static void nvme_retry_req(struct request *req)
294 {
295 	unsigned long delay = 0;
296 	u16 crd;
297 
298 	/* The mask and shift result must be <= 3 */
299 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
300 	if (crd)
301 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
302 
303 	nvme_req(req)->retries++;
304 	blk_mq_requeue_request(req, false);
305 	blk_mq_delay_kick_requeue_list(req->q, delay);
306 }
307 
308 static void nvme_log_error(struct request *req)
309 {
310 	struct nvme_ns *ns = req->q->queuedata;
311 	struct nvme_request *nr = nvme_req(req);
312 
313 	if (ns) {
314 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
315 		       ns->disk ? ns->disk->disk_name : "?",
316 		       nvme_get_opcode_str(nr->cmd->common.opcode),
317 		       nr->cmd->common.opcode,
318 		       (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
319 		       (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
320 		       nvme_get_error_status_str(nr->status),
321 		       nr->status >> 8 & 7,	/* Status Code Type */
322 		       nr->status & 0xff,	/* Status Code */
323 		       nr->status & NVME_SC_MORE ? "MORE " : "",
324 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
325 		return;
326 	}
327 
328 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
329 			   dev_name(nr->ctrl->device),
330 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
331 			   nr->cmd->common.opcode,
332 			   nvme_get_error_status_str(nr->status),
333 			   nr->status >> 8 & 7,	/* Status Code Type */
334 			   nr->status & 0xff,	/* Status Code */
335 			   nr->status & NVME_SC_MORE ? "MORE " : "",
336 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
337 }
338 
339 enum nvme_disposition {
340 	COMPLETE,
341 	RETRY,
342 	FAILOVER,
343 	AUTHENTICATE,
344 };
345 
346 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
347 {
348 	if (likely(nvme_req(req)->status == 0))
349 		return COMPLETE;
350 
351 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
352 		return AUTHENTICATE;
353 
354 	if (blk_noretry_request(req) ||
355 	    (nvme_req(req)->status & NVME_SC_DNR) ||
356 	    nvme_req(req)->retries >= nvme_max_retries)
357 		return COMPLETE;
358 
359 	if (req->cmd_flags & REQ_NVME_MPATH) {
360 		if (nvme_is_path_error(nvme_req(req)->status) ||
361 		    blk_queue_dying(req->q))
362 			return FAILOVER;
363 	} else {
364 		if (blk_queue_dying(req->q))
365 			return COMPLETE;
366 	}
367 
368 	return RETRY;
369 }
370 
371 static inline void nvme_end_req_zoned(struct request *req)
372 {
373 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
374 	    req_op(req) == REQ_OP_ZONE_APPEND)
375 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
376 			le64_to_cpu(nvme_req(req)->result.u64));
377 }
378 
379 static inline void nvme_end_req(struct request *req)
380 {
381 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
382 
383 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
384 		nvme_log_error(req);
385 	nvme_end_req_zoned(req);
386 	nvme_trace_bio_complete(req);
387 	blk_mq_end_request(req, status);
388 }
389 
390 void nvme_complete_rq(struct request *req)
391 {
392 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
393 
394 	trace_nvme_complete_rq(req);
395 	nvme_cleanup_cmd(req);
396 
397 	if (ctrl->kas)
398 		ctrl->comp_seen = true;
399 
400 	switch (nvme_decide_disposition(req)) {
401 	case COMPLETE:
402 		nvme_end_req(req);
403 		return;
404 	case RETRY:
405 		nvme_retry_req(req);
406 		return;
407 	case FAILOVER:
408 		nvme_failover_req(req);
409 		return;
410 	case AUTHENTICATE:
411 #ifdef CONFIG_NVME_AUTH
412 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
413 		nvme_retry_req(req);
414 #else
415 		nvme_end_req(req);
416 #endif
417 		return;
418 	}
419 }
420 EXPORT_SYMBOL_GPL(nvme_complete_rq);
421 
422 void nvme_complete_batch_req(struct request *req)
423 {
424 	trace_nvme_complete_rq(req);
425 	nvme_cleanup_cmd(req);
426 	nvme_end_req_zoned(req);
427 }
428 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
429 
430 /*
431  * Called to unwind from ->queue_rq on a failed command submission so that the
432  * multipathing code gets called to potentially failover to another path.
433  * The caller needs to unwind all transport specific resource allocations and
434  * must return propagate the return value.
435  */
436 blk_status_t nvme_host_path_error(struct request *req)
437 {
438 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
439 	blk_mq_set_request_complete(req);
440 	nvme_complete_rq(req);
441 	return BLK_STS_OK;
442 }
443 EXPORT_SYMBOL_GPL(nvme_host_path_error);
444 
445 bool nvme_cancel_request(struct request *req, void *data)
446 {
447 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
448 				"Cancelling I/O %d", req->tag);
449 
450 	/* don't abort one completed request */
451 	if (blk_mq_request_completed(req))
452 		return true;
453 
454 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
455 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
456 	blk_mq_complete_request(req);
457 	return true;
458 }
459 EXPORT_SYMBOL_GPL(nvme_cancel_request);
460 
461 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
462 {
463 	if (ctrl->tagset) {
464 		blk_mq_tagset_busy_iter(ctrl->tagset,
465 				nvme_cancel_request, ctrl);
466 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
467 	}
468 }
469 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
470 
471 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
472 {
473 	if (ctrl->admin_tagset) {
474 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
475 				nvme_cancel_request, ctrl);
476 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
477 	}
478 }
479 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
480 
481 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
482 		enum nvme_ctrl_state new_state)
483 {
484 	enum nvme_ctrl_state old_state;
485 	unsigned long flags;
486 	bool changed = false;
487 
488 	spin_lock_irqsave(&ctrl->lock, flags);
489 
490 	old_state = ctrl->state;
491 	switch (new_state) {
492 	case NVME_CTRL_LIVE:
493 		switch (old_state) {
494 		case NVME_CTRL_NEW:
495 		case NVME_CTRL_RESETTING:
496 		case NVME_CTRL_CONNECTING:
497 			changed = true;
498 			fallthrough;
499 		default:
500 			break;
501 		}
502 		break;
503 	case NVME_CTRL_RESETTING:
504 		switch (old_state) {
505 		case NVME_CTRL_NEW:
506 		case NVME_CTRL_LIVE:
507 			changed = true;
508 			fallthrough;
509 		default:
510 			break;
511 		}
512 		break;
513 	case NVME_CTRL_CONNECTING:
514 		switch (old_state) {
515 		case NVME_CTRL_NEW:
516 		case NVME_CTRL_RESETTING:
517 			changed = true;
518 			fallthrough;
519 		default:
520 			break;
521 		}
522 		break;
523 	case NVME_CTRL_DELETING:
524 		switch (old_state) {
525 		case NVME_CTRL_LIVE:
526 		case NVME_CTRL_RESETTING:
527 		case NVME_CTRL_CONNECTING:
528 			changed = true;
529 			fallthrough;
530 		default:
531 			break;
532 		}
533 		break;
534 	case NVME_CTRL_DELETING_NOIO:
535 		switch (old_state) {
536 		case NVME_CTRL_DELETING:
537 		case NVME_CTRL_DEAD:
538 			changed = true;
539 			fallthrough;
540 		default:
541 			break;
542 		}
543 		break;
544 	case NVME_CTRL_DEAD:
545 		switch (old_state) {
546 		case NVME_CTRL_DELETING:
547 			changed = true;
548 			fallthrough;
549 		default:
550 			break;
551 		}
552 		break;
553 	default:
554 		break;
555 	}
556 
557 	if (changed) {
558 		ctrl->state = new_state;
559 		wake_up_all(&ctrl->state_wq);
560 	}
561 
562 	spin_unlock_irqrestore(&ctrl->lock, flags);
563 	if (!changed)
564 		return false;
565 
566 	if (ctrl->state == NVME_CTRL_LIVE) {
567 		if (old_state == NVME_CTRL_CONNECTING)
568 			nvme_stop_failfast_work(ctrl);
569 		nvme_kick_requeue_lists(ctrl);
570 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
571 		old_state == NVME_CTRL_RESETTING) {
572 		nvme_start_failfast_work(ctrl);
573 	}
574 	return changed;
575 }
576 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
577 
578 /*
579  * Returns true for sink states that can't ever transition back to live.
580  */
581 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
582 {
583 	switch (ctrl->state) {
584 	case NVME_CTRL_NEW:
585 	case NVME_CTRL_LIVE:
586 	case NVME_CTRL_RESETTING:
587 	case NVME_CTRL_CONNECTING:
588 		return false;
589 	case NVME_CTRL_DELETING:
590 	case NVME_CTRL_DELETING_NOIO:
591 	case NVME_CTRL_DEAD:
592 		return true;
593 	default:
594 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
595 		return true;
596 	}
597 }
598 
599 /*
600  * Waits for the controller state to be resetting, or returns false if it is
601  * not possible to ever transition to that state.
602  */
603 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
604 {
605 	wait_event(ctrl->state_wq,
606 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
607 		   nvme_state_terminal(ctrl));
608 	return ctrl->state == NVME_CTRL_RESETTING;
609 }
610 EXPORT_SYMBOL_GPL(nvme_wait_reset);
611 
612 static void nvme_free_ns_head(struct kref *ref)
613 {
614 	struct nvme_ns_head *head =
615 		container_of(ref, struct nvme_ns_head, ref);
616 
617 	nvme_mpath_remove_disk(head);
618 	ida_free(&head->subsys->ns_ida, head->instance);
619 	cleanup_srcu_struct(&head->srcu);
620 	nvme_put_subsystem(head->subsys);
621 	kfree(head);
622 }
623 
624 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
625 {
626 	return kref_get_unless_zero(&head->ref);
627 }
628 
629 void nvme_put_ns_head(struct nvme_ns_head *head)
630 {
631 	kref_put(&head->ref, nvme_free_ns_head);
632 }
633 
634 static void nvme_free_ns(struct kref *kref)
635 {
636 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
637 
638 	put_disk(ns->disk);
639 	nvme_put_ns_head(ns->head);
640 	nvme_put_ctrl(ns->ctrl);
641 	kfree(ns);
642 }
643 
644 static inline bool nvme_get_ns(struct nvme_ns *ns)
645 {
646 	return kref_get_unless_zero(&ns->kref);
647 }
648 
649 void nvme_put_ns(struct nvme_ns *ns)
650 {
651 	kref_put(&ns->kref, nvme_free_ns);
652 }
653 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
654 
655 static inline void nvme_clear_nvme_request(struct request *req)
656 {
657 	nvme_req(req)->status = 0;
658 	nvme_req(req)->retries = 0;
659 	nvme_req(req)->flags = 0;
660 	req->rq_flags |= RQF_DONTPREP;
661 }
662 
663 /* initialize a passthrough request */
664 void nvme_init_request(struct request *req, struct nvme_command *cmd)
665 {
666 	if (req->q->queuedata)
667 		req->timeout = NVME_IO_TIMEOUT;
668 	else /* no queuedata implies admin queue */
669 		req->timeout = NVME_ADMIN_TIMEOUT;
670 
671 	/* passthru commands should let the driver set the SGL flags */
672 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
673 
674 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
675 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
676 		req->cmd_flags |= REQ_POLLED;
677 	nvme_clear_nvme_request(req);
678 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
679 }
680 EXPORT_SYMBOL_GPL(nvme_init_request);
681 
682 /*
683  * For something we're not in a state to send to the device the default action
684  * is to busy it and retry it after the controller state is recovered.  However,
685  * if the controller is deleting or if anything is marked for failfast or
686  * nvme multipath it is immediately failed.
687  *
688  * Note: commands used to initialize the controller will be marked for failfast.
689  * Note: nvme cli/ioctl commands are marked for failfast.
690  */
691 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
692 		struct request *rq)
693 {
694 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
695 	    ctrl->state != NVME_CTRL_DELETING &&
696 	    ctrl->state != NVME_CTRL_DEAD &&
697 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
698 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
699 		return BLK_STS_RESOURCE;
700 	return nvme_host_path_error(rq);
701 }
702 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
703 
704 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
705 		bool queue_live)
706 {
707 	struct nvme_request *req = nvme_req(rq);
708 
709 	/*
710 	 * currently we have a problem sending passthru commands
711 	 * on the admin_q if the controller is not LIVE because we can't
712 	 * make sure that they are going out after the admin connect,
713 	 * controller enable and/or other commands in the initialization
714 	 * sequence. until the controller will be LIVE, fail with
715 	 * BLK_STS_RESOURCE so that they will be rescheduled.
716 	 */
717 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
718 		return false;
719 
720 	if (ctrl->ops->flags & NVME_F_FABRICS) {
721 		/*
722 		 * Only allow commands on a live queue, except for the connect
723 		 * command, which is require to set the queue live in the
724 		 * appropinquate states.
725 		 */
726 		switch (ctrl->state) {
727 		case NVME_CTRL_CONNECTING:
728 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
729 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
730 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
731 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
732 				return true;
733 			break;
734 		default:
735 			break;
736 		case NVME_CTRL_DEAD:
737 			return false;
738 		}
739 	}
740 
741 	return queue_live;
742 }
743 EXPORT_SYMBOL_GPL(__nvme_check_ready);
744 
745 static inline void nvme_setup_flush(struct nvme_ns *ns,
746 		struct nvme_command *cmnd)
747 {
748 	memset(cmnd, 0, sizeof(*cmnd));
749 	cmnd->common.opcode = nvme_cmd_flush;
750 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
751 }
752 
753 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
754 		struct nvme_command *cmnd)
755 {
756 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
757 	struct nvme_dsm_range *range;
758 	struct bio *bio;
759 
760 	/*
761 	 * Some devices do not consider the DSM 'Number of Ranges' field when
762 	 * determining how much data to DMA. Always allocate memory for maximum
763 	 * number of segments to prevent device reading beyond end of buffer.
764 	 */
765 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
766 
767 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
768 	if (!range) {
769 		/*
770 		 * If we fail allocation our range, fallback to the controller
771 		 * discard page. If that's also busy, it's safe to return
772 		 * busy, as we know we can make progress once that's freed.
773 		 */
774 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
775 			return BLK_STS_RESOURCE;
776 
777 		range = page_address(ns->ctrl->discard_page);
778 	}
779 
780 	__rq_for_each_bio(bio, req) {
781 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
782 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
783 
784 		if (n < segments) {
785 			range[n].cattr = cpu_to_le32(0);
786 			range[n].nlb = cpu_to_le32(nlb);
787 			range[n].slba = cpu_to_le64(slba);
788 		}
789 		n++;
790 	}
791 
792 	if (WARN_ON_ONCE(n != segments)) {
793 		if (virt_to_page(range) == ns->ctrl->discard_page)
794 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
795 		else
796 			kfree(range);
797 		return BLK_STS_IOERR;
798 	}
799 
800 	memset(cmnd, 0, sizeof(*cmnd));
801 	cmnd->dsm.opcode = nvme_cmd_dsm;
802 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
803 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
804 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
805 
806 	req->special_vec.bv_page = virt_to_page(range);
807 	req->special_vec.bv_offset = offset_in_page(range);
808 	req->special_vec.bv_len = alloc_size;
809 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
810 
811 	return BLK_STS_OK;
812 }
813 
814 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
815 			      struct request *req)
816 {
817 	u32 upper, lower;
818 	u64 ref48;
819 
820 	/* both rw and write zeroes share the same reftag format */
821 	switch (ns->guard_type) {
822 	case NVME_NVM_NS_16B_GUARD:
823 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
824 		break;
825 	case NVME_NVM_NS_64B_GUARD:
826 		ref48 = ext_pi_ref_tag(req);
827 		lower = lower_32_bits(ref48);
828 		upper = upper_32_bits(ref48);
829 
830 		cmnd->rw.reftag = cpu_to_le32(lower);
831 		cmnd->rw.cdw3 = cpu_to_le32(upper);
832 		break;
833 	default:
834 		break;
835 	}
836 }
837 
838 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
839 		struct request *req, struct nvme_command *cmnd)
840 {
841 	memset(cmnd, 0, sizeof(*cmnd));
842 
843 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
844 		return nvme_setup_discard(ns, req, cmnd);
845 
846 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
847 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
848 	cmnd->write_zeroes.slba =
849 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
850 	cmnd->write_zeroes.length =
851 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
852 
853 	if (nvme_ns_has_pi(ns)) {
854 		cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
855 
856 		switch (ns->pi_type) {
857 		case NVME_NS_DPS_PI_TYPE1:
858 		case NVME_NS_DPS_PI_TYPE2:
859 			nvme_set_ref_tag(ns, cmnd, req);
860 			break;
861 		}
862 	}
863 
864 	return BLK_STS_OK;
865 }
866 
867 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
868 		struct request *req, struct nvme_command *cmnd,
869 		enum nvme_opcode op)
870 {
871 	u16 control = 0;
872 	u32 dsmgmt = 0;
873 
874 	if (req->cmd_flags & REQ_FUA)
875 		control |= NVME_RW_FUA;
876 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
877 		control |= NVME_RW_LR;
878 
879 	if (req->cmd_flags & REQ_RAHEAD)
880 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
881 
882 	cmnd->rw.opcode = op;
883 	cmnd->rw.flags = 0;
884 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
885 	cmnd->rw.cdw2 = 0;
886 	cmnd->rw.cdw3 = 0;
887 	cmnd->rw.metadata = 0;
888 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
889 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
890 	cmnd->rw.reftag = 0;
891 	cmnd->rw.apptag = 0;
892 	cmnd->rw.appmask = 0;
893 
894 	if (ns->ms) {
895 		/*
896 		 * If formated with metadata, the block layer always provides a
897 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
898 		 * we enable the PRACT bit for protection information or set the
899 		 * namespace capacity to zero to prevent any I/O.
900 		 */
901 		if (!blk_integrity_rq(req)) {
902 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
903 				return BLK_STS_NOTSUPP;
904 			control |= NVME_RW_PRINFO_PRACT;
905 		}
906 
907 		switch (ns->pi_type) {
908 		case NVME_NS_DPS_PI_TYPE3:
909 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
910 			break;
911 		case NVME_NS_DPS_PI_TYPE1:
912 		case NVME_NS_DPS_PI_TYPE2:
913 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
914 					NVME_RW_PRINFO_PRCHK_REF;
915 			if (op == nvme_cmd_zone_append)
916 				control |= NVME_RW_APPEND_PIREMAP;
917 			nvme_set_ref_tag(ns, cmnd, req);
918 			break;
919 		}
920 	}
921 
922 	cmnd->rw.control = cpu_to_le16(control);
923 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
924 	return 0;
925 }
926 
927 void nvme_cleanup_cmd(struct request *req)
928 {
929 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
930 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
931 
932 		if (req->special_vec.bv_page == ctrl->discard_page)
933 			clear_bit_unlock(0, &ctrl->discard_page_busy);
934 		else
935 			kfree(bvec_virt(&req->special_vec));
936 	}
937 }
938 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
939 
940 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
941 {
942 	struct nvme_command *cmd = nvme_req(req)->cmd;
943 	blk_status_t ret = BLK_STS_OK;
944 
945 	if (!(req->rq_flags & RQF_DONTPREP))
946 		nvme_clear_nvme_request(req);
947 
948 	switch (req_op(req)) {
949 	case REQ_OP_DRV_IN:
950 	case REQ_OP_DRV_OUT:
951 		/* these are setup prior to execution in nvme_init_request() */
952 		break;
953 	case REQ_OP_FLUSH:
954 		nvme_setup_flush(ns, cmd);
955 		break;
956 	case REQ_OP_ZONE_RESET_ALL:
957 	case REQ_OP_ZONE_RESET:
958 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
959 		break;
960 	case REQ_OP_ZONE_OPEN:
961 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
962 		break;
963 	case REQ_OP_ZONE_CLOSE:
964 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
965 		break;
966 	case REQ_OP_ZONE_FINISH:
967 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
968 		break;
969 	case REQ_OP_WRITE_ZEROES:
970 		ret = nvme_setup_write_zeroes(ns, req, cmd);
971 		break;
972 	case REQ_OP_DISCARD:
973 		ret = nvme_setup_discard(ns, req, cmd);
974 		break;
975 	case REQ_OP_READ:
976 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
977 		break;
978 	case REQ_OP_WRITE:
979 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
980 		break;
981 	case REQ_OP_ZONE_APPEND:
982 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
983 		break;
984 	default:
985 		WARN_ON_ONCE(1);
986 		return BLK_STS_IOERR;
987 	}
988 
989 	cmd->common.command_id = nvme_cid(req);
990 	trace_nvme_setup_cmd(req, cmd);
991 	return ret;
992 }
993 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
994 
995 /*
996  * Return values:
997  * 0:  success
998  * >0: nvme controller's cqe status response
999  * <0: kernel error in lieu of controller response
1000  */
1001 static int nvme_execute_rq(struct request *rq, bool at_head)
1002 {
1003 	blk_status_t status;
1004 
1005 	status = blk_execute_rq(rq, at_head);
1006 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1007 		return -EINTR;
1008 	if (nvme_req(rq)->status)
1009 		return nvme_req(rq)->status;
1010 	return blk_status_to_errno(status);
1011 }
1012 
1013 /*
1014  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1015  * if the result is positive, it's an NVM Express status code
1016  */
1017 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1018 		union nvme_result *result, void *buffer, unsigned bufflen,
1019 		int qid, int at_head, blk_mq_req_flags_t flags)
1020 {
1021 	struct request *req;
1022 	int ret;
1023 
1024 	if (qid == NVME_QID_ANY)
1025 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1026 	else
1027 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1028 						qid - 1);
1029 
1030 	if (IS_ERR(req))
1031 		return PTR_ERR(req);
1032 	nvme_init_request(req, cmd);
1033 
1034 	if (buffer && bufflen) {
1035 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1036 		if (ret)
1037 			goto out;
1038 	}
1039 
1040 	req->rq_flags |= RQF_QUIET;
1041 	ret = nvme_execute_rq(req, at_head);
1042 	if (result && ret >= 0)
1043 		*result = nvme_req(req)->result;
1044  out:
1045 	blk_mq_free_request(req);
1046 	return ret;
1047 }
1048 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1049 
1050 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1051 		void *buffer, unsigned bufflen)
1052 {
1053 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1054 			NVME_QID_ANY, 0, 0);
1055 }
1056 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1057 
1058 static u32 nvme_known_admin_effects(u8 opcode)
1059 {
1060 	switch (opcode) {
1061 	case nvme_admin_format_nvm:
1062 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1063 			NVME_CMD_EFFECTS_CSE_MASK;
1064 	case nvme_admin_sanitize_nvm:
1065 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1066 	default:
1067 		break;
1068 	}
1069 	return 0;
1070 }
1071 
1072 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1073 {
1074 	u32 effects = 0;
1075 
1076 	if (ns) {
1077 		if (ns->head->effects)
1078 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1079 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1080 			dev_warn_once(ctrl->device,
1081 				"IO command:%02x has unhandled effects:%08x\n",
1082 				opcode, effects);
1083 		return 0;
1084 	}
1085 
1086 	if (ctrl->effects)
1087 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1088 	effects |= nvme_known_admin_effects(opcode);
1089 
1090 	return effects;
1091 }
1092 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1093 
1094 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1095 			       u8 opcode)
1096 {
1097 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1098 
1099 	/*
1100 	 * For simplicity, IO to all namespaces is quiesced even if the command
1101 	 * effects say only one namespace is affected.
1102 	 */
1103 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1104 		mutex_lock(&ctrl->scan_lock);
1105 		mutex_lock(&ctrl->subsys->lock);
1106 		nvme_mpath_start_freeze(ctrl->subsys);
1107 		nvme_mpath_wait_freeze(ctrl->subsys);
1108 		nvme_start_freeze(ctrl);
1109 		nvme_wait_freeze(ctrl);
1110 	}
1111 	return effects;
1112 }
1113 
1114 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1115 			      struct nvme_command *cmd, int status)
1116 {
1117 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1118 		nvme_unfreeze(ctrl);
1119 		nvme_mpath_unfreeze(ctrl->subsys);
1120 		mutex_unlock(&ctrl->subsys->lock);
1121 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1122 		mutex_unlock(&ctrl->scan_lock);
1123 	}
1124 	if (effects & NVME_CMD_EFFECTS_CCC)
1125 		nvme_init_ctrl_finish(ctrl);
1126 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1127 		nvme_queue_scan(ctrl);
1128 		flush_work(&ctrl->scan_work);
1129 	}
1130 
1131 	switch (cmd->common.opcode) {
1132 	case nvme_admin_set_features:
1133 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1134 		case NVME_FEAT_KATO:
1135 			/*
1136 			 * Keep alive commands interval on the host should be
1137 			 * updated when KATO is modified by Set Features
1138 			 * commands.
1139 			 */
1140 			if (!status)
1141 				nvme_update_keep_alive(ctrl, cmd);
1142 			break;
1143 		default:
1144 			break;
1145 		}
1146 		break;
1147 	default:
1148 		break;
1149 	}
1150 }
1151 
1152 int nvme_execute_passthru_rq(struct request *rq)
1153 {
1154 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1155 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1156 	struct nvme_ns *ns = rq->q->queuedata;
1157 	u32 effects;
1158 	int  ret;
1159 
1160 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1161 	ret = nvme_execute_rq(rq, false);
1162 	if (effects) /* nothing to be done for zero cmd effects */
1163 		nvme_passthru_end(ctrl, effects, cmd, ret);
1164 
1165 	return ret;
1166 }
1167 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1168 
1169 /*
1170  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1171  *
1172  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1173  *   accounting for transport roundtrip times [..].
1174  */
1175 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1176 {
1177 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1178 }
1179 
1180 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1181 {
1182 	struct nvme_ctrl *ctrl = rq->end_io_data;
1183 	unsigned long flags;
1184 	bool startka = false;
1185 
1186 	blk_mq_free_request(rq);
1187 
1188 	if (status) {
1189 		dev_err(ctrl->device,
1190 			"failed nvme_keep_alive_end_io error=%d\n",
1191 				status);
1192 		return;
1193 	}
1194 
1195 	ctrl->comp_seen = false;
1196 	spin_lock_irqsave(&ctrl->lock, flags);
1197 	if (ctrl->state == NVME_CTRL_LIVE ||
1198 	    ctrl->state == NVME_CTRL_CONNECTING)
1199 		startka = true;
1200 	spin_unlock_irqrestore(&ctrl->lock, flags);
1201 	if (startka)
1202 		nvme_queue_keep_alive_work(ctrl);
1203 }
1204 
1205 static void nvme_keep_alive_work(struct work_struct *work)
1206 {
1207 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1208 			struct nvme_ctrl, ka_work);
1209 	bool comp_seen = ctrl->comp_seen;
1210 	struct request *rq;
1211 
1212 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1213 		dev_dbg(ctrl->device,
1214 			"reschedule traffic based keep-alive timer\n");
1215 		ctrl->comp_seen = false;
1216 		nvme_queue_keep_alive_work(ctrl);
1217 		return;
1218 	}
1219 
1220 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1221 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1222 	if (IS_ERR(rq)) {
1223 		/* allocation failure, reset the controller */
1224 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1225 		nvme_reset_ctrl(ctrl);
1226 		return;
1227 	}
1228 	nvme_init_request(rq, &ctrl->ka_cmd);
1229 
1230 	rq->timeout = ctrl->kato * HZ;
1231 	rq->end_io = nvme_keep_alive_end_io;
1232 	rq->end_io_data = ctrl;
1233 	rq->rq_flags |= RQF_QUIET;
1234 	blk_execute_rq_nowait(rq, false);
1235 }
1236 
1237 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1238 {
1239 	if (unlikely(ctrl->kato == 0))
1240 		return;
1241 
1242 	nvme_queue_keep_alive_work(ctrl);
1243 }
1244 
1245 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1246 {
1247 	if (unlikely(ctrl->kato == 0))
1248 		return;
1249 
1250 	cancel_delayed_work_sync(&ctrl->ka_work);
1251 }
1252 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1253 
1254 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1255 				   struct nvme_command *cmd)
1256 {
1257 	unsigned int new_kato =
1258 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1259 
1260 	dev_info(ctrl->device,
1261 		 "keep alive interval updated from %u ms to %u ms\n",
1262 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1263 
1264 	nvme_stop_keep_alive(ctrl);
1265 	ctrl->kato = new_kato;
1266 	nvme_start_keep_alive(ctrl);
1267 }
1268 
1269 /*
1270  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1271  * flag, thus sending any new CNS opcodes has a big chance of not working.
1272  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1273  * (but not for any later version).
1274  */
1275 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1276 {
1277 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1278 		return ctrl->vs < NVME_VS(1, 2, 0);
1279 	return ctrl->vs < NVME_VS(1, 1, 0);
1280 }
1281 
1282 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1283 {
1284 	struct nvme_command c = { };
1285 	int error;
1286 
1287 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1288 	c.identify.opcode = nvme_admin_identify;
1289 	c.identify.cns = NVME_ID_CNS_CTRL;
1290 
1291 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1292 	if (!*id)
1293 		return -ENOMEM;
1294 
1295 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1296 			sizeof(struct nvme_id_ctrl));
1297 	if (error)
1298 		kfree(*id);
1299 	return error;
1300 }
1301 
1302 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1303 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1304 {
1305 	const char *warn_str = "ctrl returned bogus length:";
1306 	void *data = cur;
1307 
1308 	switch (cur->nidt) {
1309 	case NVME_NIDT_EUI64:
1310 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1311 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1312 				 warn_str, cur->nidl);
1313 			return -1;
1314 		}
1315 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1316 			return NVME_NIDT_EUI64_LEN;
1317 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1318 		return NVME_NIDT_EUI64_LEN;
1319 	case NVME_NIDT_NGUID:
1320 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1321 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1322 				 warn_str, cur->nidl);
1323 			return -1;
1324 		}
1325 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1326 			return NVME_NIDT_NGUID_LEN;
1327 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1328 		return NVME_NIDT_NGUID_LEN;
1329 	case NVME_NIDT_UUID:
1330 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1331 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1332 				 warn_str, cur->nidl);
1333 			return -1;
1334 		}
1335 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1336 			return NVME_NIDT_UUID_LEN;
1337 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1338 		return NVME_NIDT_UUID_LEN;
1339 	case NVME_NIDT_CSI:
1340 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1341 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1342 				 warn_str, cur->nidl);
1343 			return -1;
1344 		}
1345 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1346 		*csi_seen = true;
1347 		return NVME_NIDT_CSI_LEN;
1348 	default:
1349 		/* Skip unknown types */
1350 		return cur->nidl;
1351 	}
1352 }
1353 
1354 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1355 		struct nvme_ns_info *info)
1356 {
1357 	struct nvme_command c = { };
1358 	bool csi_seen = false;
1359 	int status, pos, len;
1360 	void *data;
1361 
1362 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1363 		return 0;
1364 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1365 		return 0;
1366 
1367 	c.identify.opcode = nvme_admin_identify;
1368 	c.identify.nsid = cpu_to_le32(info->nsid);
1369 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1370 
1371 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1372 	if (!data)
1373 		return -ENOMEM;
1374 
1375 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1376 				      NVME_IDENTIFY_DATA_SIZE);
1377 	if (status) {
1378 		dev_warn(ctrl->device,
1379 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1380 			info->nsid, status);
1381 		goto free_data;
1382 	}
1383 
1384 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1385 		struct nvme_ns_id_desc *cur = data + pos;
1386 
1387 		if (cur->nidl == 0)
1388 			break;
1389 
1390 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1391 		if (len < 0)
1392 			break;
1393 
1394 		len += sizeof(*cur);
1395 	}
1396 
1397 	if (nvme_multi_css(ctrl) && !csi_seen) {
1398 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1399 			 info->nsid);
1400 		status = -EINVAL;
1401 	}
1402 
1403 free_data:
1404 	kfree(data);
1405 	return status;
1406 }
1407 
1408 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1409 			struct nvme_id_ns **id)
1410 {
1411 	struct nvme_command c = { };
1412 	int error;
1413 
1414 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1415 	c.identify.opcode = nvme_admin_identify;
1416 	c.identify.nsid = cpu_to_le32(nsid);
1417 	c.identify.cns = NVME_ID_CNS_NS;
1418 
1419 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1420 	if (!*id)
1421 		return -ENOMEM;
1422 
1423 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1424 	if (error) {
1425 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1426 		goto out_free_id;
1427 	}
1428 
1429 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1430 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1431 		goto out_free_id;
1432 	return 0;
1433 
1434 out_free_id:
1435 	kfree(*id);
1436 	return error;
1437 }
1438 
1439 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1440 		struct nvme_ns_info *info)
1441 {
1442 	struct nvme_ns_ids *ids = &info->ids;
1443 	struct nvme_id_ns *id;
1444 	int ret;
1445 
1446 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1447 	if (ret)
1448 		return ret;
1449 	info->anagrpid = id->anagrpid;
1450 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1451 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1452 	info->is_ready = true;
1453 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1454 		dev_info(ctrl->device,
1455 			 "Ignoring bogus Namespace Identifiers\n");
1456 	} else {
1457 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1458 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1459 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1460 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1461 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1462 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1463 	}
1464 	kfree(id);
1465 	return 0;
1466 }
1467 
1468 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1469 		struct nvme_ns_info *info)
1470 {
1471 	struct nvme_id_ns_cs_indep *id;
1472 	struct nvme_command c = {
1473 		.identify.opcode	= nvme_admin_identify,
1474 		.identify.nsid		= cpu_to_le32(info->nsid),
1475 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1476 	};
1477 	int ret;
1478 
1479 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1480 	if (!id)
1481 		return -ENOMEM;
1482 
1483 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1484 	if (!ret) {
1485 		info->anagrpid = id->anagrpid;
1486 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1489 	}
1490 	kfree(id);
1491 	return ret;
1492 }
1493 
1494 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1495 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1496 {
1497 	union nvme_result res = { 0 };
1498 	struct nvme_command c = { };
1499 	int ret;
1500 
1501 	c.features.opcode = op;
1502 	c.features.fid = cpu_to_le32(fid);
1503 	c.features.dword11 = cpu_to_le32(dword11);
1504 
1505 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1506 			buffer, buflen, NVME_QID_ANY, 0, 0);
1507 	if (ret >= 0 && result)
1508 		*result = le32_to_cpu(res.u32);
1509 	return ret;
1510 }
1511 
1512 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1513 		      unsigned int dword11, void *buffer, size_t buflen,
1514 		      u32 *result)
1515 {
1516 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1517 			     buflen, result);
1518 }
1519 EXPORT_SYMBOL_GPL(nvme_set_features);
1520 
1521 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1522 		      unsigned int dword11, void *buffer, size_t buflen,
1523 		      u32 *result)
1524 {
1525 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1526 			     buflen, result);
1527 }
1528 EXPORT_SYMBOL_GPL(nvme_get_features);
1529 
1530 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1531 {
1532 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1533 	u32 result;
1534 	int status, nr_io_queues;
1535 
1536 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1537 			&result);
1538 	if (status < 0)
1539 		return status;
1540 
1541 	/*
1542 	 * Degraded controllers might return an error when setting the queue
1543 	 * count.  We still want to be able to bring them online and offer
1544 	 * access to the admin queue, as that might be only way to fix them up.
1545 	 */
1546 	if (status > 0) {
1547 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1548 		*count = 0;
1549 	} else {
1550 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1551 		*count = min(*count, nr_io_queues);
1552 	}
1553 
1554 	return 0;
1555 }
1556 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1557 
1558 #define NVME_AEN_SUPPORTED \
1559 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1560 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1561 
1562 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1563 {
1564 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1565 	int status;
1566 
1567 	if (!supported_aens)
1568 		return;
1569 
1570 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1571 			NULL, 0, &result);
1572 	if (status)
1573 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1574 			 supported_aens);
1575 
1576 	queue_work(nvme_wq, &ctrl->async_event_work);
1577 }
1578 
1579 static int nvme_ns_open(struct nvme_ns *ns)
1580 {
1581 
1582 	/* should never be called due to GENHD_FL_HIDDEN */
1583 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1584 		goto fail;
1585 	if (!nvme_get_ns(ns))
1586 		goto fail;
1587 	if (!try_module_get(ns->ctrl->ops->module))
1588 		goto fail_put_ns;
1589 
1590 	return 0;
1591 
1592 fail_put_ns:
1593 	nvme_put_ns(ns);
1594 fail:
1595 	return -ENXIO;
1596 }
1597 
1598 static void nvme_ns_release(struct nvme_ns *ns)
1599 {
1600 
1601 	module_put(ns->ctrl->ops->module);
1602 	nvme_put_ns(ns);
1603 }
1604 
1605 static int nvme_open(struct block_device *bdev, fmode_t mode)
1606 {
1607 	return nvme_ns_open(bdev->bd_disk->private_data);
1608 }
1609 
1610 static void nvme_release(struct gendisk *disk, fmode_t mode)
1611 {
1612 	nvme_ns_release(disk->private_data);
1613 }
1614 
1615 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1616 {
1617 	/* some standard values */
1618 	geo->heads = 1 << 6;
1619 	geo->sectors = 1 << 5;
1620 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1621 	return 0;
1622 }
1623 
1624 #ifdef CONFIG_BLK_DEV_INTEGRITY
1625 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1626 				u32 max_integrity_segments)
1627 {
1628 	struct blk_integrity integrity = { };
1629 
1630 	switch (ns->pi_type) {
1631 	case NVME_NS_DPS_PI_TYPE3:
1632 		switch (ns->guard_type) {
1633 		case NVME_NVM_NS_16B_GUARD:
1634 			integrity.profile = &t10_pi_type3_crc;
1635 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1636 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1637 			break;
1638 		case NVME_NVM_NS_64B_GUARD:
1639 			integrity.profile = &ext_pi_type3_crc64;
1640 			integrity.tag_size = sizeof(u16) + 6;
1641 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1642 			break;
1643 		default:
1644 			integrity.profile = NULL;
1645 			break;
1646 		}
1647 		break;
1648 	case NVME_NS_DPS_PI_TYPE1:
1649 	case NVME_NS_DPS_PI_TYPE2:
1650 		switch (ns->guard_type) {
1651 		case NVME_NVM_NS_16B_GUARD:
1652 			integrity.profile = &t10_pi_type1_crc;
1653 			integrity.tag_size = sizeof(u16);
1654 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1655 			break;
1656 		case NVME_NVM_NS_64B_GUARD:
1657 			integrity.profile = &ext_pi_type1_crc64;
1658 			integrity.tag_size = sizeof(u16);
1659 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1660 			break;
1661 		default:
1662 			integrity.profile = NULL;
1663 			break;
1664 		}
1665 		break;
1666 	default:
1667 		integrity.profile = NULL;
1668 		break;
1669 	}
1670 
1671 	integrity.tuple_size = ns->ms;
1672 	blk_integrity_register(disk, &integrity);
1673 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1674 }
1675 #else
1676 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1677 				u32 max_integrity_segments)
1678 {
1679 }
1680 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1681 
1682 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1683 {
1684 	struct nvme_ctrl *ctrl = ns->ctrl;
1685 	struct request_queue *queue = disk->queue;
1686 	u32 size = queue_logical_block_size(queue);
1687 
1688 	if (ctrl->max_discard_sectors == 0) {
1689 		blk_queue_max_discard_sectors(queue, 0);
1690 		return;
1691 	}
1692 
1693 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1694 			NVME_DSM_MAX_RANGES);
1695 
1696 	queue->limits.discard_granularity = size;
1697 
1698 	/* If discard is already enabled, don't reset queue limits */
1699 	if (queue->limits.max_discard_sectors)
1700 		return;
1701 
1702 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1703 		ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1704 
1705 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1706 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1707 
1708 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1709 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1710 }
1711 
1712 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1713 {
1714 	return uuid_equal(&a->uuid, &b->uuid) &&
1715 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1716 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1717 		a->csi == b->csi;
1718 }
1719 
1720 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1721 {
1722 	bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1723 	unsigned lbaf = nvme_lbaf_index(id->flbas);
1724 	struct nvme_ctrl *ctrl = ns->ctrl;
1725 	struct nvme_command c = { };
1726 	struct nvme_id_ns_nvm *nvm;
1727 	int ret = 0;
1728 	u32 elbaf;
1729 
1730 	ns->pi_size = 0;
1731 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1732 	if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1733 		ns->pi_size = sizeof(struct t10_pi_tuple);
1734 		ns->guard_type = NVME_NVM_NS_16B_GUARD;
1735 		goto set_pi;
1736 	}
1737 
1738 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1739 	if (!nvm)
1740 		return -ENOMEM;
1741 
1742 	c.identify.opcode = nvme_admin_identify;
1743 	c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1744 	c.identify.cns = NVME_ID_CNS_CS_NS;
1745 	c.identify.csi = NVME_CSI_NVM;
1746 
1747 	ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1748 	if (ret)
1749 		goto free_data;
1750 
1751 	elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1752 
1753 	/* no support for storage tag formats right now */
1754 	if (nvme_elbaf_sts(elbaf))
1755 		goto free_data;
1756 
1757 	ns->guard_type = nvme_elbaf_guard_type(elbaf);
1758 	switch (ns->guard_type) {
1759 	case NVME_NVM_NS_64B_GUARD:
1760 		ns->pi_size = sizeof(struct crc64_pi_tuple);
1761 		break;
1762 	case NVME_NVM_NS_16B_GUARD:
1763 		ns->pi_size = sizeof(struct t10_pi_tuple);
1764 		break;
1765 	default:
1766 		break;
1767 	}
1768 
1769 free_data:
1770 	kfree(nvm);
1771 set_pi:
1772 	if (ns->pi_size && (first || ns->ms == ns->pi_size))
1773 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1774 	else
1775 		ns->pi_type = 0;
1776 
1777 	return ret;
1778 }
1779 
1780 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1781 {
1782 	struct nvme_ctrl *ctrl = ns->ctrl;
1783 
1784 	if (nvme_init_ms(ns, id))
1785 		return;
1786 
1787 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1788 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1789 		return;
1790 
1791 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1792 		/*
1793 		 * The NVMe over Fabrics specification only supports metadata as
1794 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1795 		 * remap the separate metadata buffer from the block layer.
1796 		 */
1797 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1798 			return;
1799 
1800 		ns->features |= NVME_NS_EXT_LBAS;
1801 
1802 		/*
1803 		 * The current fabrics transport drivers support namespace
1804 		 * metadata formats only if nvme_ns_has_pi() returns true.
1805 		 * Suppress support for all other formats so the namespace will
1806 		 * have a 0 capacity and not be usable through the block stack.
1807 		 *
1808 		 * Note, this check will need to be modified if any drivers
1809 		 * gain the ability to use other metadata formats.
1810 		 */
1811 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1812 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1813 	} else {
1814 		/*
1815 		 * For PCIe controllers, we can't easily remap the separate
1816 		 * metadata buffer from the block layer and thus require a
1817 		 * separate metadata buffer for block layer metadata/PI support.
1818 		 * We allow extended LBAs for the passthrough interface, though.
1819 		 */
1820 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1821 			ns->features |= NVME_NS_EXT_LBAS;
1822 		else
1823 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1824 	}
1825 }
1826 
1827 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1828 		struct request_queue *q)
1829 {
1830 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1831 
1832 	if (ctrl->max_hw_sectors) {
1833 		u32 max_segments =
1834 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1835 
1836 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1837 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1838 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1839 	}
1840 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1841 	blk_queue_dma_alignment(q, 3);
1842 	blk_queue_write_cache(q, vwc, vwc);
1843 }
1844 
1845 static void nvme_update_disk_info(struct gendisk *disk,
1846 		struct nvme_ns *ns, struct nvme_id_ns *id)
1847 {
1848 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1849 	unsigned short bs = 1 << ns->lba_shift;
1850 	u32 atomic_bs, phys_bs, io_opt = 0;
1851 
1852 	/*
1853 	 * The block layer can't support LBA sizes larger than the page size
1854 	 * yet, so catch this early and don't allow block I/O.
1855 	 */
1856 	if (ns->lba_shift > PAGE_SHIFT) {
1857 		capacity = 0;
1858 		bs = (1 << 9);
1859 	}
1860 
1861 	blk_integrity_unregister(disk);
1862 
1863 	atomic_bs = phys_bs = bs;
1864 	if (id->nabo == 0) {
1865 		/*
1866 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1867 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1868 		 * 0 then AWUPF must be used instead.
1869 		 */
1870 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1871 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1872 		else
1873 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1874 	}
1875 
1876 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1877 		/* NPWG = Namespace Preferred Write Granularity */
1878 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1879 		/* NOWS = Namespace Optimal Write Size */
1880 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1881 	}
1882 
1883 	blk_queue_logical_block_size(disk->queue, bs);
1884 	/*
1885 	 * Linux filesystems assume writing a single physical block is
1886 	 * an atomic operation. Hence limit the physical block size to the
1887 	 * value of the Atomic Write Unit Power Fail parameter.
1888 	 */
1889 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1890 	blk_queue_io_min(disk->queue, phys_bs);
1891 	blk_queue_io_opt(disk->queue, io_opt);
1892 
1893 	/*
1894 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1895 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1896 	 * I/O to namespaces with metadata except when the namespace supports
1897 	 * PI, as it can strip/insert in that case.
1898 	 */
1899 	if (ns->ms) {
1900 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1901 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1902 			nvme_init_integrity(disk, ns,
1903 					    ns->ctrl->max_integrity_segments);
1904 		else if (!nvme_ns_has_pi(ns))
1905 			capacity = 0;
1906 	}
1907 
1908 	set_capacity_and_notify(disk, capacity);
1909 
1910 	nvme_config_discard(disk, ns);
1911 	blk_queue_max_write_zeroes_sectors(disk->queue,
1912 					   ns->ctrl->max_zeroes_sectors);
1913 }
1914 
1915 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1916 {
1917 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1918 }
1919 
1920 static inline bool nvme_first_scan(struct gendisk *disk)
1921 {
1922 	/* nvme_alloc_ns() scans the disk prior to adding it */
1923 	return !disk_live(disk);
1924 }
1925 
1926 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1927 {
1928 	struct nvme_ctrl *ctrl = ns->ctrl;
1929 	u32 iob;
1930 
1931 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1932 	    is_power_of_2(ctrl->max_hw_sectors))
1933 		iob = ctrl->max_hw_sectors;
1934 	else
1935 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1936 
1937 	if (!iob)
1938 		return;
1939 
1940 	if (!is_power_of_2(iob)) {
1941 		if (nvme_first_scan(ns->disk))
1942 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1943 				ns->disk->disk_name, iob);
1944 		return;
1945 	}
1946 
1947 	if (blk_queue_is_zoned(ns->disk->queue)) {
1948 		if (nvme_first_scan(ns->disk))
1949 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1950 				ns->disk->disk_name);
1951 		return;
1952 	}
1953 
1954 	blk_queue_chunk_sectors(ns->queue, iob);
1955 }
1956 
1957 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1958 		struct nvme_ns_info *info)
1959 {
1960 	blk_mq_freeze_queue(ns->disk->queue);
1961 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1962 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1963 	blk_mq_unfreeze_queue(ns->disk->queue);
1964 
1965 	if (nvme_ns_head_multipath(ns->head)) {
1966 		blk_mq_freeze_queue(ns->head->disk->queue);
1967 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1968 		nvme_mpath_revalidate_paths(ns);
1969 		blk_stack_limits(&ns->head->disk->queue->limits,
1970 				 &ns->queue->limits, 0);
1971 		ns->head->disk->flags |= GENHD_FL_HIDDEN;
1972 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1973 	}
1974 
1975 	/* Hide the block-interface for these devices */
1976 	ns->disk->flags |= GENHD_FL_HIDDEN;
1977 	set_bit(NVME_NS_READY, &ns->flags);
1978 
1979 	return 0;
1980 }
1981 
1982 static int nvme_update_ns_info_block(struct nvme_ns *ns,
1983 		struct nvme_ns_info *info)
1984 {
1985 	struct nvme_id_ns *id;
1986 	unsigned lbaf;
1987 	int ret;
1988 
1989 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
1990 	if (ret)
1991 		return ret;
1992 
1993 	blk_mq_freeze_queue(ns->disk->queue);
1994 	lbaf = nvme_lbaf_index(id->flbas);
1995 	ns->lba_shift = id->lbaf[lbaf].ds;
1996 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1997 
1998 	nvme_configure_metadata(ns, id);
1999 	nvme_set_chunk_sectors(ns, id);
2000 	nvme_update_disk_info(ns->disk, ns, id);
2001 
2002 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2003 		ret = nvme_update_zone_info(ns, lbaf);
2004 		if (ret) {
2005 			blk_mq_unfreeze_queue(ns->disk->queue);
2006 			goto out;
2007 		}
2008 	}
2009 
2010 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2011 	set_bit(NVME_NS_READY, &ns->flags);
2012 	blk_mq_unfreeze_queue(ns->disk->queue);
2013 
2014 	if (blk_queue_is_zoned(ns->queue)) {
2015 		ret = nvme_revalidate_zones(ns);
2016 		if (ret && !nvme_first_scan(ns->disk))
2017 			goto out;
2018 	}
2019 
2020 	if (nvme_ns_head_multipath(ns->head)) {
2021 		blk_mq_freeze_queue(ns->head->disk->queue);
2022 		nvme_update_disk_info(ns->head->disk, ns, id);
2023 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2024 		nvme_mpath_revalidate_paths(ns);
2025 		blk_stack_limits(&ns->head->disk->queue->limits,
2026 				 &ns->queue->limits, 0);
2027 		disk_update_readahead(ns->head->disk);
2028 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2029 	}
2030 
2031 	ret = 0;
2032 out:
2033 	/*
2034 	 * If probing fails due an unsupported feature, hide the block device,
2035 	 * but still allow other access.
2036 	 */
2037 	if (ret == -ENODEV) {
2038 		ns->disk->flags |= GENHD_FL_HIDDEN;
2039 		set_bit(NVME_NS_READY, &ns->flags);
2040 		ret = 0;
2041 	}
2042 	kfree(id);
2043 	return ret;
2044 }
2045 
2046 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2047 {
2048 	switch (info->ids.csi) {
2049 	case NVME_CSI_ZNS:
2050 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2051 			dev_info(ns->ctrl->device,
2052 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2053 				info->nsid);
2054 			return nvme_update_ns_info_generic(ns, info);
2055 		}
2056 		return nvme_update_ns_info_block(ns, info);
2057 	case NVME_CSI_NVM:
2058 		return nvme_update_ns_info_block(ns, info);
2059 	default:
2060 		dev_info(ns->ctrl->device,
2061 			"block device for nsid %u not supported (csi %u)\n",
2062 			info->nsid, info->ids.csi);
2063 		return nvme_update_ns_info_generic(ns, info);
2064 	}
2065 }
2066 
2067 static char nvme_pr_type(enum pr_type type)
2068 {
2069 	switch (type) {
2070 	case PR_WRITE_EXCLUSIVE:
2071 		return 1;
2072 	case PR_EXCLUSIVE_ACCESS:
2073 		return 2;
2074 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2075 		return 3;
2076 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2077 		return 4;
2078 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2079 		return 5;
2080 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2081 		return 6;
2082 	default:
2083 		return 0;
2084 	}
2085 }
2086 
2087 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2088 		struct nvme_command *c, u8 data[16])
2089 {
2090 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2091 	int srcu_idx = srcu_read_lock(&head->srcu);
2092 	struct nvme_ns *ns = nvme_find_path(head);
2093 	int ret = -EWOULDBLOCK;
2094 
2095 	if (ns) {
2096 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
2097 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2098 	}
2099 	srcu_read_unlock(&head->srcu, srcu_idx);
2100 	return ret;
2101 }
2102 
2103 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2104 		u8 data[16])
2105 {
2106 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
2107 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2108 }
2109 
2110 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2111 				u64 key, u64 sa_key, u8 op)
2112 {
2113 	struct nvme_command c = { };
2114 	u8 data[16] = { 0, };
2115 
2116 	put_unaligned_le64(key, &data[0]);
2117 	put_unaligned_le64(sa_key, &data[8]);
2118 
2119 	c.common.opcode = op;
2120 	c.common.cdw10 = cpu_to_le32(cdw10);
2121 
2122 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2123 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
2124 		return nvme_send_ns_head_pr_command(bdev, &c, data);
2125 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2126 }
2127 
2128 static int nvme_pr_register(struct block_device *bdev, u64 old,
2129 		u64 new, unsigned flags)
2130 {
2131 	u32 cdw10;
2132 
2133 	if (flags & ~PR_FL_IGNORE_KEY)
2134 		return -EOPNOTSUPP;
2135 
2136 	cdw10 = old ? 2 : 0;
2137 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2138 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2139 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2140 }
2141 
2142 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2143 		enum pr_type type, unsigned flags)
2144 {
2145 	u32 cdw10;
2146 
2147 	if (flags & ~PR_FL_IGNORE_KEY)
2148 		return -EOPNOTSUPP;
2149 
2150 	cdw10 = nvme_pr_type(type) << 8;
2151 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2152 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2153 }
2154 
2155 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2156 		enum pr_type type, bool abort)
2157 {
2158 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2159 
2160 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2161 }
2162 
2163 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2164 {
2165 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2166 
2167 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2168 }
2169 
2170 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2171 {
2172 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2173 
2174 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2175 }
2176 
2177 const struct pr_ops nvme_pr_ops = {
2178 	.pr_register	= nvme_pr_register,
2179 	.pr_reserve	= nvme_pr_reserve,
2180 	.pr_release	= nvme_pr_release,
2181 	.pr_preempt	= nvme_pr_preempt,
2182 	.pr_clear	= nvme_pr_clear,
2183 };
2184 
2185 #ifdef CONFIG_BLK_SED_OPAL
2186 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2187 		bool send)
2188 {
2189 	struct nvme_ctrl *ctrl = data;
2190 	struct nvme_command cmd = { };
2191 
2192 	if (send)
2193 		cmd.common.opcode = nvme_admin_security_send;
2194 	else
2195 		cmd.common.opcode = nvme_admin_security_recv;
2196 	cmd.common.nsid = 0;
2197 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2198 	cmd.common.cdw11 = cpu_to_le32(len);
2199 
2200 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2201 			NVME_QID_ANY, 1, 0);
2202 }
2203 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2204 #endif /* CONFIG_BLK_SED_OPAL */
2205 
2206 #ifdef CONFIG_BLK_DEV_ZONED
2207 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2208 		unsigned int nr_zones, report_zones_cb cb, void *data)
2209 {
2210 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2211 			data);
2212 }
2213 #else
2214 #define nvme_report_zones	NULL
2215 #endif /* CONFIG_BLK_DEV_ZONED */
2216 
2217 static const struct block_device_operations nvme_bdev_ops = {
2218 	.owner		= THIS_MODULE,
2219 	.ioctl		= nvme_ioctl,
2220 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2221 	.open		= nvme_open,
2222 	.release	= nvme_release,
2223 	.getgeo		= nvme_getgeo,
2224 	.report_zones	= nvme_report_zones,
2225 	.pr_ops		= &nvme_pr_ops,
2226 };
2227 
2228 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled)
2229 {
2230 	unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies;
2231 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2232 	int ret;
2233 
2234 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2235 		if (csts == ~0)
2236 			return -ENODEV;
2237 		if ((csts & NVME_CSTS_RDY) == bit)
2238 			break;
2239 
2240 		usleep_range(1000, 2000);
2241 		if (fatal_signal_pending(current))
2242 			return -EINTR;
2243 		if (time_after(jiffies, timeout_jiffies)) {
2244 			dev_err(ctrl->device,
2245 				"Device not ready; aborting %s, CSTS=0x%x\n",
2246 				enabled ? "initialisation" : "reset", csts);
2247 			return -ENODEV;
2248 		}
2249 	}
2250 
2251 	return ret;
2252 }
2253 
2254 /*
2255  * If the device has been passed off to us in an enabled state, just clear
2256  * the enabled bit.  The spec says we should set the 'shutdown notification
2257  * bits', but doing so may cause the device to complete commands to the
2258  * admin queue ... and we don't know what memory that might be pointing at!
2259  */
2260 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2261 {
2262 	int ret;
2263 
2264 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2265 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2266 
2267 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2268 	if (ret)
2269 		return ret;
2270 
2271 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2272 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2273 
2274 	return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false);
2275 }
2276 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2277 
2278 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2279 {
2280 	unsigned dev_page_min;
2281 	u32 timeout;
2282 	int ret;
2283 
2284 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2285 	if (ret) {
2286 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2287 		return ret;
2288 	}
2289 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2290 
2291 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2292 		dev_err(ctrl->device,
2293 			"Minimum device page size %u too large for host (%u)\n",
2294 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2295 		return -ENODEV;
2296 	}
2297 
2298 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2299 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2300 	else
2301 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2302 
2303 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2304 		u32 crto;
2305 
2306 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2307 		if (ret) {
2308 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2309 				ret);
2310 			return ret;
2311 		}
2312 
2313 		if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2314 			ctrl->ctrl_config |= NVME_CC_CRIME;
2315 			timeout = NVME_CRTO_CRIMT(crto);
2316 		} else {
2317 			timeout = NVME_CRTO_CRWMT(crto);
2318 		}
2319 	} else {
2320 		timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2321 	}
2322 
2323 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2324 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2325 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2326 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2327 	if (ret)
2328 		return ret;
2329 
2330 	/* Flush write to device (required if transport is PCI) */
2331 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2332 	if (ret)
2333 		return ret;
2334 
2335 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2336 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2337 	if (ret)
2338 		return ret;
2339 	return nvme_wait_ready(ctrl, timeout, true);
2340 }
2341 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2342 
2343 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2344 {
2345 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2346 	u32 csts;
2347 	int ret;
2348 
2349 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2350 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2351 
2352 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2353 	if (ret)
2354 		return ret;
2355 
2356 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2357 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2358 			break;
2359 
2360 		msleep(100);
2361 		if (fatal_signal_pending(current))
2362 			return -EINTR;
2363 		if (time_after(jiffies, timeout)) {
2364 			dev_err(ctrl->device,
2365 				"Device shutdown incomplete; abort shutdown\n");
2366 			return -ENODEV;
2367 		}
2368 	}
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2373 
2374 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2375 {
2376 	__le64 ts;
2377 	int ret;
2378 
2379 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2380 		return 0;
2381 
2382 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2383 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2384 			NULL);
2385 	if (ret)
2386 		dev_warn_once(ctrl->device,
2387 			"could not set timestamp (%d)\n", ret);
2388 	return ret;
2389 }
2390 
2391 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2392 {
2393 	struct nvme_feat_host_behavior *host;
2394 	u8 acre = 0, lbafee = 0;
2395 	int ret;
2396 
2397 	/* Don't bother enabling the feature if retry delay is not reported */
2398 	if (ctrl->crdt[0])
2399 		acre = NVME_ENABLE_ACRE;
2400 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2401 		lbafee = NVME_ENABLE_LBAFEE;
2402 
2403 	if (!acre && !lbafee)
2404 		return 0;
2405 
2406 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2407 	if (!host)
2408 		return 0;
2409 
2410 	host->acre = acre;
2411 	host->lbafee = lbafee;
2412 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2413 				host, sizeof(*host), NULL);
2414 	kfree(host);
2415 	return ret;
2416 }
2417 
2418 /*
2419  * The function checks whether the given total (exlat + enlat) latency of
2420  * a power state allows the latter to be used as an APST transition target.
2421  * It does so by comparing the latency to the primary and secondary latency
2422  * tolerances defined by module params. If there's a match, the corresponding
2423  * timeout value is returned and the matching tolerance index (1 or 2) is
2424  * reported.
2425  */
2426 static bool nvme_apst_get_transition_time(u64 total_latency,
2427 		u64 *transition_time, unsigned *last_index)
2428 {
2429 	if (total_latency <= apst_primary_latency_tol_us) {
2430 		if (*last_index == 1)
2431 			return false;
2432 		*last_index = 1;
2433 		*transition_time = apst_primary_timeout_ms;
2434 		return true;
2435 	}
2436 	if (apst_secondary_timeout_ms &&
2437 		total_latency <= apst_secondary_latency_tol_us) {
2438 		if (*last_index <= 2)
2439 			return false;
2440 		*last_index = 2;
2441 		*transition_time = apst_secondary_timeout_ms;
2442 		return true;
2443 	}
2444 	return false;
2445 }
2446 
2447 /*
2448  * APST (Autonomous Power State Transition) lets us program a table of power
2449  * state transitions that the controller will perform automatically.
2450  *
2451  * Depending on module params, one of the two supported techniques will be used:
2452  *
2453  * - If the parameters provide explicit timeouts and tolerances, they will be
2454  *   used to build a table with up to 2 non-operational states to transition to.
2455  *   The default parameter values were selected based on the values used by
2456  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2457  *   regeneration of the APST table in the event of switching between external
2458  *   and battery power, the timeouts and tolerances reflect a compromise
2459  *   between values used by Microsoft for AC and battery scenarios.
2460  * - If not, we'll configure the table with a simple heuristic: we are willing
2461  *   to spend at most 2% of the time transitioning between power states.
2462  *   Therefore, when running in any given state, we will enter the next
2463  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2464  *   microseconds, as long as that state's exit latency is under the requested
2465  *   maximum latency.
2466  *
2467  * We will not autonomously enter any non-operational state for which the total
2468  * latency exceeds ps_max_latency_us.
2469  *
2470  * Users can set ps_max_latency_us to zero to turn off APST.
2471  */
2472 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2473 {
2474 	struct nvme_feat_auto_pst *table;
2475 	unsigned apste = 0;
2476 	u64 max_lat_us = 0;
2477 	__le64 target = 0;
2478 	int max_ps = -1;
2479 	int state;
2480 	int ret;
2481 	unsigned last_lt_index = UINT_MAX;
2482 
2483 	/*
2484 	 * If APST isn't supported or if we haven't been initialized yet,
2485 	 * then don't do anything.
2486 	 */
2487 	if (!ctrl->apsta)
2488 		return 0;
2489 
2490 	if (ctrl->npss > 31) {
2491 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2492 		return 0;
2493 	}
2494 
2495 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2496 	if (!table)
2497 		return 0;
2498 
2499 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2500 		/* Turn off APST. */
2501 		dev_dbg(ctrl->device, "APST disabled\n");
2502 		goto done;
2503 	}
2504 
2505 	/*
2506 	 * Walk through all states from lowest- to highest-power.
2507 	 * According to the spec, lower-numbered states use more power.  NPSS,
2508 	 * despite the name, is the index of the lowest-power state, not the
2509 	 * number of states.
2510 	 */
2511 	for (state = (int)ctrl->npss; state >= 0; state--) {
2512 		u64 total_latency_us, exit_latency_us, transition_ms;
2513 
2514 		if (target)
2515 			table->entries[state] = target;
2516 
2517 		/*
2518 		 * Don't allow transitions to the deepest state if it's quirked
2519 		 * off.
2520 		 */
2521 		if (state == ctrl->npss &&
2522 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2523 			continue;
2524 
2525 		/*
2526 		 * Is this state a useful non-operational state for higher-power
2527 		 * states to autonomously transition to?
2528 		 */
2529 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2530 			continue;
2531 
2532 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2533 		if (exit_latency_us > ctrl->ps_max_latency_us)
2534 			continue;
2535 
2536 		total_latency_us = exit_latency_us +
2537 			le32_to_cpu(ctrl->psd[state].entry_lat);
2538 
2539 		/*
2540 		 * This state is good. It can be used as the APST idle target
2541 		 * for higher power states.
2542 		 */
2543 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2544 			if (!nvme_apst_get_transition_time(total_latency_us,
2545 					&transition_ms, &last_lt_index))
2546 				continue;
2547 		} else {
2548 			transition_ms = total_latency_us + 19;
2549 			do_div(transition_ms, 20);
2550 			if (transition_ms > (1 << 24) - 1)
2551 				transition_ms = (1 << 24) - 1;
2552 		}
2553 
2554 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2555 		if (max_ps == -1)
2556 			max_ps = state;
2557 		if (total_latency_us > max_lat_us)
2558 			max_lat_us = total_latency_us;
2559 	}
2560 
2561 	if (max_ps == -1)
2562 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2563 	else
2564 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2565 			max_ps, max_lat_us, (int)sizeof(*table), table);
2566 	apste = 1;
2567 
2568 done:
2569 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2570 				table, sizeof(*table), NULL);
2571 	if (ret)
2572 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2573 	kfree(table);
2574 	return ret;
2575 }
2576 
2577 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2578 {
2579 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2580 	u64 latency;
2581 
2582 	switch (val) {
2583 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2584 	case PM_QOS_LATENCY_ANY:
2585 		latency = U64_MAX;
2586 		break;
2587 
2588 	default:
2589 		latency = val;
2590 	}
2591 
2592 	if (ctrl->ps_max_latency_us != latency) {
2593 		ctrl->ps_max_latency_us = latency;
2594 		if (ctrl->state == NVME_CTRL_LIVE)
2595 			nvme_configure_apst(ctrl);
2596 	}
2597 }
2598 
2599 struct nvme_core_quirk_entry {
2600 	/*
2601 	 * NVMe model and firmware strings are padded with spaces.  For
2602 	 * simplicity, strings in the quirk table are padded with NULLs
2603 	 * instead.
2604 	 */
2605 	u16 vid;
2606 	const char *mn;
2607 	const char *fr;
2608 	unsigned long quirks;
2609 };
2610 
2611 static const struct nvme_core_quirk_entry core_quirks[] = {
2612 	{
2613 		/*
2614 		 * This Toshiba device seems to die using any APST states.  See:
2615 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2616 		 */
2617 		.vid = 0x1179,
2618 		.mn = "THNSF5256GPUK TOSHIBA",
2619 		.quirks = NVME_QUIRK_NO_APST,
2620 	},
2621 	{
2622 		/*
2623 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2624 		 * condition associated with actions related to suspend to idle
2625 		 * LiteON has resolved the problem in future firmware
2626 		 */
2627 		.vid = 0x14a4,
2628 		.fr = "22301111",
2629 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2630 	},
2631 	{
2632 		/*
2633 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2634 		 * aborts I/O during any load, but more easily reproducible
2635 		 * with discards (fstrim).
2636 		 *
2637 		 * The device is left in a state where it is also not possible
2638 		 * to use "nvme set-feature" to disable APST, but booting with
2639 		 * nvme_core.default_ps_max_latency=0 works.
2640 		 */
2641 		.vid = 0x1e0f,
2642 		.mn = "KCD6XVUL6T40",
2643 		.quirks = NVME_QUIRK_NO_APST,
2644 	},
2645 	{
2646 		/*
2647 		 * The external Samsung X5 SSD fails initialization without a
2648 		 * delay before checking if it is ready and has a whole set of
2649 		 * other problems.  To make this even more interesting, it
2650 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2651 		 * does not need or want these quirks.
2652 		 */
2653 		.vid = 0x144d,
2654 		.mn = "Samsung Portable SSD X5",
2655 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2656 			  NVME_QUIRK_NO_DEEPEST_PS |
2657 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2658 	}
2659 };
2660 
2661 /* match is null-terminated but idstr is space-padded. */
2662 static bool string_matches(const char *idstr, const char *match, size_t len)
2663 {
2664 	size_t matchlen;
2665 
2666 	if (!match)
2667 		return true;
2668 
2669 	matchlen = strlen(match);
2670 	WARN_ON_ONCE(matchlen > len);
2671 
2672 	if (memcmp(idstr, match, matchlen))
2673 		return false;
2674 
2675 	for (; matchlen < len; matchlen++)
2676 		if (idstr[matchlen] != ' ')
2677 			return false;
2678 
2679 	return true;
2680 }
2681 
2682 static bool quirk_matches(const struct nvme_id_ctrl *id,
2683 			  const struct nvme_core_quirk_entry *q)
2684 {
2685 	return q->vid == le16_to_cpu(id->vid) &&
2686 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2687 		string_matches(id->fr, q->fr, sizeof(id->fr));
2688 }
2689 
2690 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2691 		struct nvme_id_ctrl *id)
2692 {
2693 	size_t nqnlen;
2694 	int off;
2695 
2696 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2697 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2698 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2699 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2700 			return;
2701 		}
2702 
2703 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2704 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2705 	}
2706 
2707 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2708 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2709 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2710 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2711 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2712 	off += sizeof(id->sn);
2713 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2714 	off += sizeof(id->mn);
2715 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2716 }
2717 
2718 static void nvme_release_subsystem(struct device *dev)
2719 {
2720 	struct nvme_subsystem *subsys =
2721 		container_of(dev, struct nvme_subsystem, dev);
2722 
2723 	if (subsys->instance >= 0)
2724 		ida_free(&nvme_instance_ida, subsys->instance);
2725 	kfree(subsys);
2726 }
2727 
2728 static void nvme_destroy_subsystem(struct kref *ref)
2729 {
2730 	struct nvme_subsystem *subsys =
2731 			container_of(ref, struct nvme_subsystem, ref);
2732 
2733 	mutex_lock(&nvme_subsystems_lock);
2734 	list_del(&subsys->entry);
2735 	mutex_unlock(&nvme_subsystems_lock);
2736 
2737 	ida_destroy(&subsys->ns_ida);
2738 	device_del(&subsys->dev);
2739 	put_device(&subsys->dev);
2740 }
2741 
2742 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2743 {
2744 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2745 }
2746 
2747 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2748 {
2749 	struct nvme_subsystem *subsys;
2750 
2751 	lockdep_assert_held(&nvme_subsystems_lock);
2752 
2753 	/*
2754 	 * Fail matches for discovery subsystems. This results
2755 	 * in each discovery controller bound to a unique subsystem.
2756 	 * This avoids issues with validating controller values
2757 	 * that can only be true when there is a single unique subsystem.
2758 	 * There may be multiple and completely independent entities
2759 	 * that provide discovery controllers.
2760 	 */
2761 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2762 		return NULL;
2763 
2764 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2765 		if (strcmp(subsys->subnqn, subsysnqn))
2766 			continue;
2767 		if (!kref_get_unless_zero(&subsys->ref))
2768 			continue;
2769 		return subsys;
2770 	}
2771 
2772 	return NULL;
2773 }
2774 
2775 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2776 	struct device_attribute subsys_attr_##_name = \
2777 		__ATTR(_name, _mode, _show, NULL)
2778 
2779 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2780 				    struct device_attribute *attr,
2781 				    char *buf)
2782 {
2783 	struct nvme_subsystem *subsys =
2784 		container_of(dev, struct nvme_subsystem, dev);
2785 
2786 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2787 }
2788 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2789 
2790 static ssize_t nvme_subsys_show_type(struct device *dev,
2791 				    struct device_attribute *attr,
2792 				    char *buf)
2793 {
2794 	struct nvme_subsystem *subsys =
2795 		container_of(dev, struct nvme_subsystem, dev);
2796 
2797 	switch (subsys->subtype) {
2798 	case NVME_NQN_DISC:
2799 		return sysfs_emit(buf, "discovery\n");
2800 	case NVME_NQN_NVME:
2801 		return sysfs_emit(buf, "nvm\n");
2802 	default:
2803 		return sysfs_emit(buf, "reserved\n");
2804 	}
2805 }
2806 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2807 
2808 #define nvme_subsys_show_str_function(field)				\
2809 static ssize_t subsys_##field##_show(struct device *dev,		\
2810 			    struct device_attribute *attr, char *buf)	\
2811 {									\
2812 	struct nvme_subsystem *subsys =					\
2813 		container_of(dev, struct nvme_subsystem, dev);		\
2814 	return sysfs_emit(buf, "%.*s\n",				\
2815 			   (int)sizeof(subsys->field), subsys->field);	\
2816 }									\
2817 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2818 
2819 nvme_subsys_show_str_function(model);
2820 nvme_subsys_show_str_function(serial);
2821 nvme_subsys_show_str_function(firmware_rev);
2822 
2823 static struct attribute *nvme_subsys_attrs[] = {
2824 	&subsys_attr_model.attr,
2825 	&subsys_attr_serial.attr,
2826 	&subsys_attr_firmware_rev.attr,
2827 	&subsys_attr_subsysnqn.attr,
2828 	&subsys_attr_subsystype.attr,
2829 #ifdef CONFIG_NVME_MULTIPATH
2830 	&subsys_attr_iopolicy.attr,
2831 #endif
2832 	NULL,
2833 };
2834 
2835 static const struct attribute_group nvme_subsys_attrs_group = {
2836 	.attrs = nvme_subsys_attrs,
2837 };
2838 
2839 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2840 	&nvme_subsys_attrs_group,
2841 	NULL,
2842 };
2843 
2844 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2845 {
2846 	return ctrl->opts && ctrl->opts->discovery_nqn;
2847 }
2848 
2849 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2850 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2851 {
2852 	struct nvme_ctrl *tmp;
2853 
2854 	lockdep_assert_held(&nvme_subsystems_lock);
2855 
2856 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2857 		if (nvme_state_terminal(tmp))
2858 			continue;
2859 
2860 		if (tmp->cntlid == ctrl->cntlid) {
2861 			dev_err(ctrl->device,
2862 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2863 				ctrl->cntlid, dev_name(tmp->device),
2864 				subsys->subnqn);
2865 			return false;
2866 		}
2867 
2868 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2869 		    nvme_discovery_ctrl(ctrl))
2870 			continue;
2871 
2872 		dev_err(ctrl->device,
2873 			"Subsystem does not support multiple controllers\n");
2874 		return false;
2875 	}
2876 
2877 	return true;
2878 }
2879 
2880 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2881 {
2882 	struct nvme_subsystem *subsys, *found;
2883 	int ret;
2884 
2885 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2886 	if (!subsys)
2887 		return -ENOMEM;
2888 
2889 	subsys->instance = -1;
2890 	mutex_init(&subsys->lock);
2891 	kref_init(&subsys->ref);
2892 	INIT_LIST_HEAD(&subsys->ctrls);
2893 	INIT_LIST_HEAD(&subsys->nsheads);
2894 	nvme_init_subnqn(subsys, ctrl, id);
2895 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2896 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2897 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2898 	subsys->vendor_id = le16_to_cpu(id->vid);
2899 	subsys->cmic = id->cmic;
2900 
2901 	/* Versions prior to 1.4 don't necessarily report a valid type */
2902 	if (id->cntrltype == NVME_CTRL_DISC ||
2903 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2904 		subsys->subtype = NVME_NQN_DISC;
2905 	else
2906 		subsys->subtype = NVME_NQN_NVME;
2907 
2908 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2909 		dev_err(ctrl->device,
2910 			"Subsystem %s is not a discovery controller",
2911 			subsys->subnqn);
2912 		kfree(subsys);
2913 		return -EINVAL;
2914 	}
2915 	subsys->awupf = le16_to_cpu(id->awupf);
2916 	nvme_mpath_default_iopolicy(subsys);
2917 
2918 	subsys->dev.class = nvme_subsys_class;
2919 	subsys->dev.release = nvme_release_subsystem;
2920 	subsys->dev.groups = nvme_subsys_attrs_groups;
2921 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2922 	device_initialize(&subsys->dev);
2923 
2924 	mutex_lock(&nvme_subsystems_lock);
2925 	found = __nvme_find_get_subsystem(subsys->subnqn);
2926 	if (found) {
2927 		put_device(&subsys->dev);
2928 		subsys = found;
2929 
2930 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2931 			ret = -EINVAL;
2932 			goto out_put_subsystem;
2933 		}
2934 	} else {
2935 		ret = device_add(&subsys->dev);
2936 		if (ret) {
2937 			dev_err(ctrl->device,
2938 				"failed to register subsystem device.\n");
2939 			put_device(&subsys->dev);
2940 			goto out_unlock;
2941 		}
2942 		ida_init(&subsys->ns_ida);
2943 		list_add_tail(&subsys->entry, &nvme_subsystems);
2944 	}
2945 
2946 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2947 				dev_name(ctrl->device));
2948 	if (ret) {
2949 		dev_err(ctrl->device,
2950 			"failed to create sysfs link from subsystem.\n");
2951 		goto out_put_subsystem;
2952 	}
2953 
2954 	if (!found)
2955 		subsys->instance = ctrl->instance;
2956 	ctrl->subsys = subsys;
2957 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2958 	mutex_unlock(&nvme_subsystems_lock);
2959 	return 0;
2960 
2961 out_put_subsystem:
2962 	nvme_put_subsystem(subsys);
2963 out_unlock:
2964 	mutex_unlock(&nvme_subsystems_lock);
2965 	return ret;
2966 }
2967 
2968 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2969 		void *log, size_t size, u64 offset)
2970 {
2971 	struct nvme_command c = { };
2972 	u32 dwlen = nvme_bytes_to_numd(size);
2973 
2974 	c.get_log_page.opcode = nvme_admin_get_log_page;
2975 	c.get_log_page.nsid = cpu_to_le32(nsid);
2976 	c.get_log_page.lid = log_page;
2977 	c.get_log_page.lsp = lsp;
2978 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2979 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2980 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2981 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2982 	c.get_log_page.csi = csi;
2983 
2984 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2985 }
2986 
2987 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2988 				struct nvme_effects_log **log)
2989 {
2990 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2991 	int ret;
2992 
2993 	if (cel)
2994 		goto out;
2995 
2996 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2997 	if (!cel)
2998 		return -ENOMEM;
2999 
3000 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3001 			cel, sizeof(*cel), 0);
3002 	if (ret) {
3003 		kfree(cel);
3004 		return ret;
3005 	}
3006 
3007 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3008 out:
3009 	*log = cel;
3010 	return 0;
3011 }
3012 
3013 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3014 {
3015 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3016 
3017 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3018 		return UINT_MAX;
3019 	return val;
3020 }
3021 
3022 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3023 {
3024 	struct nvme_command c = { };
3025 	struct nvme_id_ctrl_nvm *id;
3026 	int ret;
3027 
3028 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
3029 		ctrl->max_discard_sectors = UINT_MAX;
3030 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
3031 	} else {
3032 		ctrl->max_discard_sectors = 0;
3033 		ctrl->max_discard_segments = 0;
3034 	}
3035 
3036 	/*
3037 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3038 	 * to the write-zeroes, we are cautious and limit the size to the
3039 	 * controllers max_hw_sectors value, which is based on the MDTS field
3040 	 * and possibly other limiting factors.
3041 	 */
3042 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3043 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3044 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3045 	else
3046 		ctrl->max_zeroes_sectors = 0;
3047 
3048 	if (nvme_ctrl_limited_cns(ctrl))
3049 		return 0;
3050 
3051 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3052 	if (!id)
3053 		return 0;
3054 
3055 	c.identify.opcode = nvme_admin_identify;
3056 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3057 	c.identify.csi = NVME_CSI_NVM;
3058 
3059 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3060 	if (ret)
3061 		goto free_data;
3062 
3063 	if (id->dmrl)
3064 		ctrl->max_discard_segments = id->dmrl;
3065 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3066 	if (id->wzsl)
3067 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3068 
3069 free_data:
3070 	kfree(id);
3071 	return ret;
3072 }
3073 
3074 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3075 {
3076 	struct nvme_id_ctrl *id;
3077 	u32 max_hw_sectors;
3078 	bool prev_apst_enabled;
3079 	int ret;
3080 
3081 	ret = nvme_identify_ctrl(ctrl, &id);
3082 	if (ret) {
3083 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3084 		return -EIO;
3085 	}
3086 
3087 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3088 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3089 		if (ret < 0)
3090 			goto out_free;
3091 	}
3092 
3093 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3094 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3095 
3096 	if (!ctrl->identified) {
3097 		unsigned int i;
3098 
3099 		ret = nvme_init_subsystem(ctrl, id);
3100 		if (ret)
3101 			goto out_free;
3102 
3103 		/*
3104 		 * Check for quirks.  Quirk can depend on firmware version,
3105 		 * so, in principle, the set of quirks present can change
3106 		 * across a reset.  As a possible future enhancement, we
3107 		 * could re-scan for quirks every time we reinitialize
3108 		 * the device, but we'd have to make sure that the driver
3109 		 * behaves intelligently if the quirks change.
3110 		 */
3111 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3112 			if (quirk_matches(id, &core_quirks[i]))
3113 				ctrl->quirks |= core_quirks[i].quirks;
3114 		}
3115 	}
3116 
3117 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3118 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3119 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3120 	}
3121 
3122 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3123 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3124 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3125 
3126 	ctrl->oacs = le16_to_cpu(id->oacs);
3127 	ctrl->oncs = le16_to_cpu(id->oncs);
3128 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3129 	ctrl->oaes = le32_to_cpu(id->oaes);
3130 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3131 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3132 
3133 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3134 	ctrl->vwc = id->vwc;
3135 	if (id->mdts)
3136 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3137 	else
3138 		max_hw_sectors = UINT_MAX;
3139 	ctrl->max_hw_sectors =
3140 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3141 
3142 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3143 	ctrl->sgls = le32_to_cpu(id->sgls);
3144 	ctrl->kas = le16_to_cpu(id->kas);
3145 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3146 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3147 
3148 	ctrl->cntrltype = id->cntrltype;
3149 	ctrl->dctype = id->dctype;
3150 
3151 	if (id->rtd3e) {
3152 		/* us -> s */
3153 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3154 
3155 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3156 						 shutdown_timeout, 60);
3157 
3158 		if (ctrl->shutdown_timeout != shutdown_timeout)
3159 			dev_info(ctrl->device,
3160 				 "Shutdown timeout set to %u seconds\n",
3161 				 ctrl->shutdown_timeout);
3162 	} else
3163 		ctrl->shutdown_timeout = shutdown_timeout;
3164 
3165 	ctrl->npss = id->npss;
3166 	ctrl->apsta = id->apsta;
3167 	prev_apst_enabled = ctrl->apst_enabled;
3168 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3169 		if (force_apst && id->apsta) {
3170 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3171 			ctrl->apst_enabled = true;
3172 		} else {
3173 			ctrl->apst_enabled = false;
3174 		}
3175 	} else {
3176 		ctrl->apst_enabled = id->apsta;
3177 	}
3178 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3179 
3180 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3181 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3182 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3183 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3184 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3185 
3186 		/*
3187 		 * In fabrics we need to verify the cntlid matches the
3188 		 * admin connect
3189 		 */
3190 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3191 			dev_err(ctrl->device,
3192 				"Mismatching cntlid: Connect %u vs Identify "
3193 				"%u, rejecting\n",
3194 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3195 			ret = -EINVAL;
3196 			goto out_free;
3197 		}
3198 
3199 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3200 			dev_err(ctrl->device,
3201 				"keep-alive support is mandatory for fabrics\n");
3202 			ret = -EINVAL;
3203 			goto out_free;
3204 		}
3205 	} else {
3206 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3207 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3208 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3209 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3210 	}
3211 
3212 	ret = nvme_mpath_init_identify(ctrl, id);
3213 	if (ret < 0)
3214 		goto out_free;
3215 
3216 	if (ctrl->apst_enabled && !prev_apst_enabled)
3217 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3218 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3219 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3220 
3221 out_free:
3222 	kfree(id);
3223 	return ret;
3224 }
3225 
3226 /*
3227  * Initialize the cached copies of the Identify data and various controller
3228  * register in our nvme_ctrl structure.  This should be called as soon as
3229  * the admin queue is fully up and running.
3230  */
3231 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3232 {
3233 	int ret;
3234 
3235 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3236 	if (ret) {
3237 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3238 		return ret;
3239 	}
3240 
3241 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3242 
3243 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3244 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3245 
3246 	ret = nvme_init_identify(ctrl);
3247 	if (ret)
3248 		return ret;
3249 
3250 	ret = nvme_configure_apst(ctrl);
3251 	if (ret < 0)
3252 		return ret;
3253 
3254 	ret = nvme_configure_timestamp(ctrl);
3255 	if (ret < 0)
3256 		return ret;
3257 
3258 	ret = nvme_configure_host_options(ctrl);
3259 	if (ret < 0)
3260 		return ret;
3261 
3262 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3263 		ret = nvme_hwmon_init(ctrl);
3264 		if (ret < 0)
3265 			return ret;
3266 	}
3267 
3268 	ctrl->identified = true;
3269 
3270 	return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3273 
3274 static int nvme_dev_open(struct inode *inode, struct file *file)
3275 {
3276 	struct nvme_ctrl *ctrl =
3277 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3278 
3279 	switch (ctrl->state) {
3280 	case NVME_CTRL_LIVE:
3281 		break;
3282 	default:
3283 		return -EWOULDBLOCK;
3284 	}
3285 
3286 	nvme_get_ctrl(ctrl);
3287 	if (!try_module_get(ctrl->ops->module)) {
3288 		nvme_put_ctrl(ctrl);
3289 		return -EINVAL;
3290 	}
3291 
3292 	file->private_data = ctrl;
3293 	return 0;
3294 }
3295 
3296 static int nvme_dev_release(struct inode *inode, struct file *file)
3297 {
3298 	struct nvme_ctrl *ctrl =
3299 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3300 
3301 	module_put(ctrl->ops->module);
3302 	nvme_put_ctrl(ctrl);
3303 	return 0;
3304 }
3305 
3306 static const struct file_operations nvme_dev_fops = {
3307 	.owner		= THIS_MODULE,
3308 	.open		= nvme_dev_open,
3309 	.release	= nvme_dev_release,
3310 	.unlocked_ioctl	= nvme_dev_ioctl,
3311 	.compat_ioctl	= compat_ptr_ioctl,
3312 	.uring_cmd	= nvme_dev_uring_cmd,
3313 };
3314 
3315 static ssize_t nvme_sysfs_reset(struct device *dev,
3316 				struct device_attribute *attr, const char *buf,
3317 				size_t count)
3318 {
3319 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3320 	int ret;
3321 
3322 	ret = nvme_reset_ctrl_sync(ctrl);
3323 	if (ret < 0)
3324 		return ret;
3325 	return count;
3326 }
3327 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3328 
3329 static ssize_t nvme_sysfs_rescan(struct device *dev,
3330 				struct device_attribute *attr, const char *buf,
3331 				size_t count)
3332 {
3333 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3334 
3335 	nvme_queue_scan(ctrl);
3336 	return count;
3337 }
3338 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3339 
3340 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3341 {
3342 	struct gendisk *disk = dev_to_disk(dev);
3343 
3344 	if (disk->fops == &nvme_bdev_ops)
3345 		return nvme_get_ns_from_dev(dev)->head;
3346 	else
3347 		return disk->private_data;
3348 }
3349 
3350 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3351 		char *buf)
3352 {
3353 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3354 	struct nvme_ns_ids *ids = &head->ids;
3355 	struct nvme_subsystem *subsys = head->subsys;
3356 	int serial_len = sizeof(subsys->serial);
3357 	int model_len = sizeof(subsys->model);
3358 
3359 	if (!uuid_is_null(&ids->uuid))
3360 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3361 
3362 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3363 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3364 
3365 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3366 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3367 
3368 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3369 				  subsys->serial[serial_len - 1] == '\0'))
3370 		serial_len--;
3371 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3372 				 subsys->model[model_len - 1] == '\0'))
3373 		model_len--;
3374 
3375 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3376 		serial_len, subsys->serial, model_len, subsys->model,
3377 		head->ns_id);
3378 }
3379 static DEVICE_ATTR_RO(wwid);
3380 
3381 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3382 		char *buf)
3383 {
3384 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3385 }
3386 static DEVICE_ATTR_RO(nguid);
3387 
3388 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3389 		char *buf)
3390 {
3391 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3392 
3393 	/* For backward compatibility expose the NGUID to userspace if
3394 	 * we have no UUID set
3395 	 */
3396 	if (uuid_is_null(&ids->uuid)) {
3397 		dev_warn_ratelimited(dev,
3398 			"No UUID available providing old NGUID\n");
3399 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3400 	}
3401 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3402 }
3403 static DEVICE_ATTR_RO(uuid);
3404 
3405 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3406 		char *buf)
3407 {
3408 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3409 }
3410 static DEVICE_ATTR_RO(eui);
3411 
3412 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3413 		char *buf)
3414 {
3415 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3416 }
3417 static DEVICE_ATTR_RO(nsid);
3418 
3419 static struct attribute *nvme_ns_id_attrs[] = {
3420 	&dev_attr_wwid.attr,
3421 	&dev_attr_uuid.attr,
3422 	&dev_attr_nguid.attr,
3423 	&dev_attr_eui.attr,
3424 	&dev_attr_nsid.attr,
3425 #ifdef CONFIG_NVME_MULTIPATH
3426 	&dev_attr_ana_grpid.attr,
3427 	&dev_attr_ana_state.attr,
3428 #endif
3429 	NULL,
3430 };
3431 
3432 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3433 		struct attribute *a, int n)
3434 {
3435 	struct device *dev = container_of(kobj, struct device, kobj);
3436 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3437 
3438 	if (a == &dev_attr_uuid.attr) {
3439 		if (uuid_is_null(&ids->uuid) &&
3440 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3441 			return 0;
3442 	}
3443 	if (a == &dev_attr_nguid.attr) {
3444 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3445 			return 0;
3446 	}
3447 	if (a == &dev_attr_eui.attr) {
3448 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3449 			return 0;
3450 	}
3451 #ifdef CONFIG_NVME_MULTIPATH
3452 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3453 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3454 			return 0;
3455 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3456 			return 0;
3457 	}
3458 #endif
3459 	return a->mode;
3460 }
3461 
3462 static const struct attribute_group nvme_ns_id_attr_group = {
3463 	.attrs		= nvme_ns_id_attrs,
3464 	.is_visible	= nvme_ns_id_attrs_are_visible,
3465 };
3466 
3467 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3468 	&nvme_ns_id_attr_group,
3469 	NULL,
3470 };
3471 
3472 #define nvme_show_str_function(field)						\
3473 static ssize_t  field##_show(struct device *dev,				\
3474 			    struct device_attribute *attr, char *buf)		\
3475 {										\
3476         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3477         return sysfs_emit(buf, "%.*s\n",					\
3478 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3479 }										\
3480 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3481 
3482 nvme_show_str_function(model);
3483 nvme_show_str_function(serial);
3484 nvme_show_str_function(firmware_rev);
3485 
3486 #define nvme_show_int_function(field)						\
3487 static ssize_t  field##_show(struct device *dev,				\
3488 			    struct device_attribute *attr, char *buf)		\
3489 {										\
3490         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3491         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3492 }										\
3493 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3494 
3495 nvme_show_int_function(cntlid);
3496 nvme_show_int_function(numa_node);
3497 nvme_show_int_function(queue_count);
3498 nvme_show_int_function(sqsize);
3499 nvme_show_int_function(kato);
3500 
3501 static ssize_t nvme_sysfs_delete(struct device *dev,
3502 				struct device_attribute *attr, const char *buf,
3503 				size_t count)
3504 {
3505 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3506 
3507 	if (device_remove_file_self(dev, attr))
3508 		nvme_delete_ctrl_sync(ctrl);
3509 	return count;
3510 }
3511 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3512 
3513 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3514 					 struct device_attribute *attr,
3515 					 char *buf)
3516 {
3517 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3518 
3519 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3520 }
3521 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3522 
3523 static ssize_t nvme_sysfs_show_state(struct device *dev,
3524 				     struct device_attribute *attr,
3525 				     char *buf)
3526 {
3527 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3528 	static const char *const state_name[] = {
3529 		[NVME_CTRL_NEW]		= "new",
3530 		[NVME_CTRL_LIVE]	= "live",
3531 		[NVME_CTRL_RESETTING]	= "resetting",
3532 		[NVME_CTRL_CONNECTING]	= "connecting",
3533 		[NVME_CTRL_DELETING]	= "deleting",
3534 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3535 		[NVME_CTRL_DEAD]	= "dead",
3536 	};
3537 
3538 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3539 	    state_name[ctrl->state])
3540 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3541 
3542 	return sysfs_emit(buf, "unknown state\n");
3543 }
3544 
3545 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3546 
3547 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3548 					 struct device_attribute *attr,
3549 					 char *buf)
3550 {
3551 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3552 
3553 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3554 }
3555 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3556 
3557 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3558 					struct device_attribute *attr,
3559 					char *buf)
3560 {
3561 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3562 
3563 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3564 }
3565 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3566 
3567 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3568 					struct device_attribute *attr,
3569 					char *buf)
3570 {
3571 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3572 
3573 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3574 }
3575 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3576 
3577 static ssize_t nvme_sysfs_show_address(struct device *dev,
3578 					 struct device_attribute *attr,
3579 					 char *buf)
3580 {
3581 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3582 
3583 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3584 }
3585 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3586 
3587 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3588 		struct device_attribute *attr, char *buf)
3589 {
3590 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3591 	struct nvmf_ctrl_options *opts = ctrl->opts;
3592 
3593 	if (ctrl->opts->max_reconnects == -1)
3594 		return sysfs_emit(buf, "off\n");
3595 	return sysfs_emit(buf, "%d\n",
3596 			  opts->max_reconnects * opts->reconnect_delay);
3597 }
3598 
3599 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3600 		struct device_attribute *attr, const char *buf, size_t count)
3601 {
3602 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3603 	struct nvmf_ctrl_options *opts = ctrl->opts;
3604 	int ctrl_loss_tmo, err;
3605 
3606 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3607 	if (err)
3608 		return -EINVAL;
3609 
3610 	if (ctrl_loss_tmo < 0)
3611 		opts->max_reconnects = -1;
3612 	else
3613 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3614 						opts->reconnect_delay);
3615 	return count;
3616 }
3617 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3618 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3619 
3620 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3621 		struct device_attribute *attr, char *buf)
3622 {
3623 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624 
3625 	if (ctrl->opts->reconnect_delay == -1)
3626 		return sysfs_emit(buf, "off\n");
3627 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3628 }
3629 
3630 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3631 		struct device_attribute *attr, const char *buf, size_t count)
3632 {
3633 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3634 	unsigned int v;
3635 	int err;
3636 
3637 	err = kstrtou32(buf, 10, &v);
3638 	if (err)
3639 		return err;
3640 
3641 	ctrl->opts->reconnect_delay = v;
3642 	return count;
3643 }
3644 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3645 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3646 
3647 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3648 		struct device_attribute *attr, char *buf)
3649 {
3650 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3651 
3652 	if (ctrl->opts->fast_io_fail_tmo == -1)
3653 		return sysfs_emit(buf, "off\n");
3654 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3655 }
3656 
3657 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3658 		struct device_attribute *attr, const char *buf, size_t count)
3659 {
3660 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3661 	struct nvmf_ctrl_options *opts = ctrl->opts;
3662 	int fast_io_fail_tmo, err;
3663 
3664 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3665 	if (err)
3666 		return -EINVAL;
3667 
3668 	if (fast_io_fail_tmo < 0)
3669 		opts->fast_io_fail_tmo = -1;
3670 	else
3671 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3672 	return count;
3673 }
3674 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3675 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3676 
3677 static ssize_t cntrltype_show(struct device *dev,
3678 			      struct device_attribute *attr, char *buf)
3679 {
3680 	static const char * const type[] = {
3681 		[NVME_CTRL_IO] = "io\n",
3682 		[NVME_CTRL_DISC] = "discovery\n",
3683 		[NVME_CTRL_ADMIN] = "admin\n",
3684 	};
3685 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3686 
3687 	if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3688 		return sysfs_emit(buf, "reserved\n");
3689 
3690 	return sysfs_emit(buf, type[ctrl->cntrltype]);
3691 }
3692 static DEVICE_ATTR_RO(cntrltype);
3693 
3694 static ssize_t dctype_show(struct device *dev,
3695 			   struct device_attribute *attr, char *buf)
3696 {
3697 	static const char * const type[] = {
3698 		[NVME_DCTYPE_NOT_REPORTED] = "none\n",
3699 		[NVME_DCTYPE_DDC] = "ddc\n",
3700 		[NVME_DCTYPE_CDC] = "cdc\n",
3701 	};
3702 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3703 
3704 	if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3705 		return sysfs_emit(buf, "reserved\n");
3706 
3707 	return sysfs_emit(buf, type[ctrl->dctype]);
3708 }
3709 static DEVICE_ATTR_RO(dctype);
3710 
3711 #ifdef CONFIG_NVME_AUTH
3712 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
3713 		struct device_attribute *attr, char *buf)
3714 {
3715 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3716 	struct nvmf_ctrl_options *opts = ctrl->opts;
3717 
3718 	if (!opts->dhchap_secret)
3719 		return sysfs_emit(buf, "none\n");
3720 	return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
3721 }
3722 
3723 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
3724 		struct device_attribute *attr, const char *buf, size_t count)
3725 {
3726 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3727 	struct nvmf_ctrl_options *opts = ctrl->opts;
3728 	char *dhchap_secret;
3729 
3730 	if (!ctrl->opts->dhchap_secret)
3731 		return -EINVAL;
3732 	if (count < 7)
3733 		return -EINVAL;
3734 	if (memcmp(buf, "DHHC-1:", 7))
3735 		return -EINVAL;
3736 
3737 	dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3738 	if (!dhchap_secret)
3739 		return -ENOMEM;
3740 	memcpy(dhchap_secret, buf, count);
3741 	nvme_auth_stop(ctrl);
3742 	if (strcmp(dhchap_secret, opts->dhchap_secret)) {
3743 		int ret;
3744 
3745 		ret = nvme_auth_generate_key(dhchap_secret, &ctrl->host_key);
3746 		if (ret)
3747 			return ret;
3748 		kfree(opts->dhchap_secret);
3749 		opts->dhchap_secret = dhchap_secret;
3750 		/* Key has changed; re-authentication with new key */
3751 		nvme_auth_reset(ctrl);
3752 	}
3753 	/* Start re-authentication */
3754 	dev_info(ctrl->device, "re-authenticating controller\n");
3755 	queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3756 
3757 	return count;
3758 }
3759 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
3760 	nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
3761 
3762 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
3763 		struct device_attribute *attr, char *buf)
3764 {
3765 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3766 	struct nvmf_ctrl_options *opts = ctrl->opts;
3767 
3768 	if (!opts->dhchap_ctrl_secret)
3769 		return sysfs_emit(buf, "none\n");
3770 	return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
3771 }
3772 
3773 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
3774 		struct device_attribute *attr, const char *buf, size_t count)
3775 {
3776 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3777 	struct nvmf_ctrl_options *opts = ctrl->opts;
3778 	char *dhchap_secret;
3779 
3780 	if (!ctrl->opts->dhchap_ctrl_secret)
3781 		return -EINVAL;
3782 	if (count < 7)
3783 		return -EINVAL;
3784 	if (memcmp(buf, "DHHC-1:", 7))
3785 		return -EINVAL;
3786 
3787 	dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3788 	if (!dhchap_secret)
3789 		return -ENOMEM;
3790 	memcpy(dhchap_secret, buf, count);
3791 	nvme_auth_stop(ctrl);
3792 	if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
3793 		int ret;
3794 
3795 		ret = nvme_auth_generate_key(dhchap_secret, &ctrl->ctrl_key);
3796 		if (ret)
3797 			return ret;
3798 		kfree(opts->dhchap_ctrl_secret);
3799 		opts->dhchap_ctrl_secret = dhchap_secret;
3800 		/* Key has changed; re-authentication with new key */
3801 		nvme_auth_reset(ctrl);
3802 	}
3803 	/* Start re-authentication */
3804 	dev_info(ctrl->device, "re-authenticating controller\n");
3805 	queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3806 
3807 	return count;
3808 }
3809 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
3810 	nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
3811 #endif
3812 
3813 static struct attribute *nvme_dev_attrs[] = {
3814 	&dev_attr_reset_controller.attr,
3815 	&dev_attr_rescan_controller.attr,
3816 	&dev_attr_model.attr,
3817 	&dev_attr_serial.attr,
3818 	&dev_attr_firmware_rev.attr,
3819 	&dev_attr_cntlid.attr,
3820 	&dev_attr_delete_controller.attr,
3821 	&dev_attr_transport.attr,
3822 	&dev_attr_subsysnqn.attr,
3823 	&dev_attr_address.attr,
3824 	&dev_attr_state.attr,
3825 	&dev_attr_numa_node.attr,
3826 	&dev_attr_queue_count.attr,
3827 	&dev_attr_sqsize.attr,
3828 	&dev_attr_hostnqn.attr,
3829 	&dev_attr_hostid.attr,
3830 	&dev_attr_ctrl_loss_tmo.attr,
3831 	&dev_attr_reconnect_delay.attr,
3832 	&dev_attr_fast_io_fail_tmo.attr,
3833 	&dev_attr_kato.attr,
3834 	&dev_attr_cntrltype.attr,
3835 	&dev_attr_dctype.attr,
3836 #ifdef CONFIG_NVME_AUTH
3837 	&dev_attr_dhchap_secret.attr,
3838 	&dev_attr_dhchap_ctrl_secret.attr,
3839 #endif
3840 	NULL
3841 };
3842 
3843 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3844 		struct attribute *a, int n)
3845 {
3846 	struct device *dev = container_of(kobj, struct device, kobj);
3847 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3848 
3849 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3850 		return 0;
3851 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3852 		return 0;
3853 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3854 		return 0;
3855 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3856 		return 0;
3857 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3858 		return 0;
3859 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3860 		return 0;
3861 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3862 		return 0;
3863 #ifdef CONFIG_NVME_AUTH
3864 	if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
3865 		return 0;
3866 	if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
3867 		return 0;
3868 #endif
3869 
3870 	return a->mode;
3871 }
3872 
3873 static const struct attribute_group nvme_dev_attrs_group = {
3874 	.attrs		= nvme_dev_attrs,
3875 	.is_visible	= nvme_dev_attrs_are_visible,
3876 };
3877 
3878 static const struct attribute_group *nvme_dev_attr_groups[] = {
3879 	&nvme_dev_attrs_group,
3880 	NULL,
3881 };
3882 
3883 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3884 		unsigned nsid)
3885 {
3886 	struct nvme_ns_head *h;
3887 
3888 	lockdep_assert_held(&ctrl->subsys->lock);
3889 
3890 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3891 		/*
3892 		 * Private namespaces can share NSIDs under some conditions.
3893 		 * In that case we can't use the same ns_head for namespaces
3894 		 * with the same NSID.
3895 		 */
3896 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3897 			continue;
3898 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3899 			return h;
3900 	}
3901 
3902 	return NULL;
3903 }
3904 
3905 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3906 		struct nvme_ns_ids *ids)
3907 {
3908 	bool has_uuid = !uuid_is_null(&ids->uuid);
3909 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3910 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3911 	struct nvme_ns_head *h;
3912 
3913 	lockdep_assert_held(&subsys->lock);
3914 
3915 	list_for_each_entry(h, &subsys->nsheads, entry) {
3916 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3917 			return -EINVAL;
3918 		if (has_nguid &&
3919 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3920 			return -EINVAL;
3921 		if (has_eui64 &&
3922 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3923 			return -EINVAL;
3924 	}
3925 
3926 	return 0;
3927 }
3928 
3929 static void nvme_cdev_rel(struct device *dev)
3930 {
3931 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3932 }
3933 
3934 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3935 {
3936 	cdev_device_del(cdev, cdev_device);
3937 	put_device(cdev_device);
3938 }
3939 
3940 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3941 		const struct file_operations *fops, struct module *owner)
3942 {
3943 	int minor, ret;
3944 
3945 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3946 	if (minor < 0)
3947 		return minor;
3948 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3949 	cdev_device->class = nvme_ns_chr_class;
3950 	cdev_device->release = nvme_cdev_rel;
3951 	device_initialize(cdev_device);
3952 	cdev_init(cdev, fops);
3953 	cdev->owner = owner;
3954 	ret = cdev_device_add(cdev, cdev_device);
3955 	if (ret)
3956 		put_device(cdev_device);
3957 
3958 	return ret;
3959 }
3960 
3961 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3962 {
3963 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3964 }
3965 
3966 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3967 {
3968 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3969 	return 0;
3970 }
3971 
3972 static const struct file_operations nvme_ns_chr_fops = {
3973 	.owner		= THIS_MODULE,
3974 	.open		= nvme_ns_chr_open,
3975 	.release	= nvme_ns_chr_release,
3976 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3977 	.compat_ioctl	= compat_ptr_ioctl,
3978 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3979 };
3980 
3981 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3982 {
3983 	int ret;
3984 
3985 	ns->cdev_device.parent = ns->ctrl->device;
3986 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3987 			   ns->ctrl->instance, ns->head->instance);
3988 	if (ret)
3989 		return ret;
3990 
3991 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3992 			     ns->ctrl->ops->module);
3993 }
3994 
3995 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3996 		struct nvme_ns_info *info)
3997 {
3998 	struct nvme_ns_head *head;
3999 	size_t size = sizeof(*head);
4000 	int ret = -ENOMEM;
4001 
4002 #ifdef CONFIG_NVME_MULTIPATH
4003 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
4004 #endif
4005 
4006 	head = kzalloc(size, GFP_KERNEL);
4007 	if (!head)
4008 		goto out;
4009 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
4010 	if (ret < 0)
4011 		goto out_free_head;
4012 	head->instance = ret;
4013 	INIT_LIST_HEAD(&head->list);
4014 	ret = init_srcu_struct(&head->srcu);
4015 	if (ret)
4016 		goto out_ida_remove;
4017 	head->subsys = ctrl->subsys;
4018 	head->ns_id = info->nsid;
4019 	head->ids = info->ids;
4020 	head->shared = info->is_shared;
4021 	kref_init(&head->ref);
4022 
4023 	if (head->ids.csi) {
4024 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
4025 		if (ret)
4026 			goto out_cleanup_srcu;
4027 	} else
4028 		head->effects = ctrl->effects;
4029 
4030 	ret = nvme_mpath_alloc_disk(ctrl, head);
4031 	if (ret)
4032 		goto out_cleanup_srcu;
4033 
4034 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
4035 
4036 	kref_get(&ctrl->subsys->ref);
4037 
4038 	return head;
4039 out_cleanup_srcu:
4040 	cleanup_srcu_struct(&head->srcu);
4041 out_ida_remove:
4042 	ida_free(&ctrl->subsys->ns_ida, head->instance);
4043 out_free_head:
4044 	kfree(head);
4045 out:
4046 	if (ret > 0)
4047 		ret = blk_status_to_errno(nvme_error_status(ret));
4048 	return ERR_PTR(ret);
4049 }
4050 
4051 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
4052 		struct nvme_ns_ids *ids)
4053 {
4054 	struct nvme_subsystem *s;
4055 	int ret = 0;
4056 
4057 	/*
4058 	 * Note that this check is racy as we try to avoid holding the global
4059 	 * lock over the whole ns_head creation.  But it is only intended as
4060 	 * a sanity check anyway.
4061 	 */
4062 	mutex_lock(&nvme_subsystems_lock);
4063 	list_for_each_entry(s, &nvme_subsystems, entry) {
4064 		if (s == this)
4065 			continue;
4066 		mutex_lock(&s->lock);
4067 		ret = nvme_subsys_check_duplicate_ids(s, ids);
4068 		mutex_unlock(&s->lock);
4069 		if (ret)
4070 			break;
4071 	}
4072 	mutex_unlock(&nvme_subsystems_lock);
4073 
4074 	return ret;
4075 }
4076 
4077 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
4078 {
4079 	struct nvme_ctrl *ctrl = ns->ctrl;
4080 	struct nvme_ns_head *head = NULL;
4081 	int ret;
4082 
4083 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
4084 	if (ret) {
4085 		dev_err(ctrl->device,
4086 			"globally duplicate IDs for nsid %d\n", info->nsid);
4087 		nvme_print_device_info(ctrl);
4088 		return ret;
4089 	}
4090 
4091 	mutex_lock(&ctrl->subsys->lock);
4092 	head = nvme_find_ns_head(ctrl, info->nsid);
4093 	if (!head) {
4094 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4095 		if (ret) {
4096 			dev_err(ctrl->device,
4097 				"duplicate IDs in subsystem for nsid %d\n",
4098 				info->nsid);
4099 			goto out_unlock;
4100 		}
4101 		head = nvme_alloc_ns_head(ctrl, info);
4102 		if (IS_ERR(head)) {
4103 			ret = PTR_ERR(head);
4104 			goto out_unlock;
4105 		}
4106 	} else {
4107 		ret = -EINVAL;
4108 		if (!info->is_shared || !head->shared) {
4109 			dev_err(ctrl->device,
4110 				"Duplicate unshared namespace %d\n",
4111 				info->nsid);
4112 			goto out_put_ns_head;
4113 		}
4114 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4115 			dev_err(ctrl->device,
4116 				"IDs don't match for shared namespace %d\n",
4117 					info->nsid);
4118 			goto out_put_ns_head;
4119 		}
4120 
4121 		if (!multipath && !list_empty(&head->list)) {
4122 			dev_warn(ctrl->device,
4123 				"Found shared namespace %d, but multipathing not supported.\n",
4124 				info->nsid);
4125 			dev_warn_once(ctrl->device,
4126 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
4127 		}
4128 	}
4129 
4130 	list_add_tail_rcu(&ns->siblings, &head->list);
4131 	ns->head = head;
4132 	mutex_unlock(&ctrl->subsys->lock);
4133 	return 0;
4134 
4135 out_put_ns_head:
4136 	nvme_put_ns_head(head);
4137 out_unlock:
4138 	mutex_unlock(&ctrl->subsys->lock);
4139 	return ret;
4140 }
4141 
4142 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4143 {
4144 	struct nvme_ns *ns, *ret = NULL;
4145 
4146 	down_read(&ctrl->namespaces_rwsem);
4147 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4148 		if (ns->head->ns_id == nsid) {
4149 			if (!nvme_get_ns(ns))
4150 				continue;
4151 			ret = ns;
4152 			break;
4153 		}
4154 		if (ns->head->ns_id > nsid)
4155 			break;
4156 	}
4157 	up_read(&ctrl->namespaces_rwsem);
4158 	return ret;
4159 }
4160 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
4161 
4162 /*
4163  * Add the namespace to the controller list while keeping the list ordered.
4164  */
4165 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4166 {
4167 	struct nvme_ns *tmp;
4168 
4169 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4170 		if (tmp->head->ns_id < ns->head->ns_id) {
4171 			list_add(&ns->list, &tmp->list);
4172 			return;
4173 		}
4174 	}
4175 	list_add(&ns->list, &ns->ctrl->namespaces);
4176 }
4177 
4178 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4179 {
4180 	struct nvme_ns *ns;
4181 	struct gendisk *disk;
4182 	int node = ctrl->numa_node;
4183 
4184 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4185 	if (!ns)
4186 		return;
4187 
4188 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
4189 	if (IS_ERR(disk))
4190 		goto out_free_ns;
4191 	disk->fops = &nvme_bdev_ops;
4192 	disk->private_data = ns;
4193 
4194 	ns->disk = disk;
4195 	ns->queue = disk->queue;
4196 
4197 	if (ctrl->opts && ctrl->opts->data_digest)
4198 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
4199 
4200 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4201 	if (ctrl->ops->supports_pci_p2pdma &&
4202 	    ctrl->ops->supports_pci_p2pdma(ctrl))
4203 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4204 
4205 	ns->ctrl = ctrl;
4206 	kref_init(&ns->kref);
4207 
4208 	if (nvme_init_ns_head(ns, info))
4209 		goto out_cleanup_disk;
4210 
4211 	/*
4212 	 * If multipathing is enabled, the device name for all disks and not
4213 	 * just those that represent shared namespaces needs to be based on the
4214 	 * subsystem instance.  Using the controller instance for private
4215 	 * namespaces could lead to naming collisions between shared and private
4216 	 * namespaces if they don't use a common numbering scheme.
4217 	 *
4218 	 * If multipathing is not enabled, disk names must use the controller
4219 	 * instance as shared namespaces will show up as multiple block
4220 	 * devices.
4221 	 */
4222 	if (ns->head->disk) {
4223 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4224 			ctrl->instance, ns->head->instance);
4225 		disk->flags |= GENHD_FL_HIDDEN;
4226 	} else if (multipath) {
4227 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4228 			ns->head->instance);
4229 	} else {
4230 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4231 			ns->head->instance);
4232 	}
4233 
4234 	if (nvme_update_ns_info(ns, info))
4235 		goto out_unlink_ns;
4236 
4237 	down_write(&ctrl->namespaces_rwsem);
4238 	nvme_ns_add_to_ctrl_list(ns);
4239 	up_write(&ctrl->namespaces_rwsem);
4240 	nvme_get_ctrl(ctrl);
4241 
4242 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4243 		goto out_cleanup_ns_from_list;
4244 
4245 	if (!nvme_ns_head_multipath(ns->head))
4246 		nvme_add_ns_cdev(ns);
4247 
4248 	nvme_mpath_add_disk(ns, info->anagrpid);
4249 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4250 
4251 	return;
4252 
4253  out_cleanup_ns_from_list:
4254 	nvme_put_ctrl(ctrl);
4255 	down_write(&ctrl->namespaces_rwsem);
4256 	list_del_init(&ns->list);
4257 	up_write(&ctrl->namespaces_rwsem);
4258  out_unlink_ns:
4259 	mutex_lock(&ctrl->subsys->lock);
4260 	list_del_rcu(&ns->siblings);
4261 	if (list_empty(&ns->head->list))
4262 		list_del_init(&ns->head->entry);
4263 	mutex_unlock(&ctrl->subsys->lock);
4264 	nvme_put_ns_head(ns->head);
4265  out_cleanup_disk:
4266 	put_disk(disk);
4267  out_free_ns:
4268 	kfree(ns);
4269 }
4270 
4271 static void nvme_ns_remove(struct nvme_ns *ns)
4272 {
4273 	bool last_path = false;
4274 
4275 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4276 		return;
4277 
4278 	clear_bit(NVME_NS_READY, &ns->flags);
4279 	set_capacity(ns->disk, 0);
4280 	nvme_fault_inject_fini(&ns->fault_inject);
4281 
4282 	/*
4283 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4284 	 * this ns going back into current_path.
4285 	 */
4286 	synchronize_srcu(&ns->head->srcu);
4287 
4288 	/* wait for concurrent submissions */
4289 	if (nvme_mpath_clear_current_path(ns))
4290 		synchronize_srcu(&ns->head->srcu);
4291 
4292 	mutex_lock(&ns->ctrl->subsys->lock);
4293 	list_del_rcu(&ns->siblings);
4294 	if (list_empty(&ns->head->list)) {
4295 		list_del_init(&ns->head->entry);
4296 		last_path = true;
4297 	}
4298 	mutex_unlock(&ns->ctrl->subsys->lock);
4299 
4300 	/* guarantee not available in head->list */
4301 	synchronize_rcu();
4302 
4303 	if (!nvme_ns_head_multipath(ns->head))
4304 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4305 	del_gendisk(ns->disk);
4306 
4307 	down_write(&ns->ctrl->namespaces_rwsem);
4308 	list_del_init(&ns->list);
4309 	up_write(&ns->ctrl->namespaces_rwsem);
4310 
4311 	if (last_path)
4312 		nvme_mpath_shutdown_disk(ns->head);
4313 	nvme_put_ns(ns);
4314 }
4315 
4316 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4317 {
4318 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4319 
4320 	if (ns) {
4321 		nvme_ns_remove(ns);
4322 		nvme_put_ns(ns);
4323 	}
4324 }
4325 
4326 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4327 {
4328 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4329 
4330 	if (test_bit(NVME_NS_DEAD, &ns->flags))
4331 		goto out;
4332 
4333 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4334 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4335 		dev_err(ns->ctrl->device,
4336 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4337 		goto out;
4338 	}
4339 
4340 	ret = nvme_update_ns_info(ns, info);
4341 out:
4342 	/*
4343 	 * Only remove the namespace if we got a fatal error back from the
4344 	 * device, otherwise ignore the error and just move on.
4345 	 *
4346 	 * TODO: we should probably schedule a delayed retry here.
4347 	 */
4348 	if (ret > 0 && (ret & NVME_SC_DNR))
4349 		nvme_ns_remove(ns);
4350 }
4351 
4352 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4353 {
4354 	struct nvme_ns_info info = { .nsid = nsid };
4355 	struct nvme_ns *ns;
4356 
4357 	if (nvme_identify_ns_descs(ctrl, &info))
4358 		return;
4359 
4360 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4361 		dev_warn(ctrl->device,
4362 			"command set not reported for nsid: %d\n", nsid);
4363 		return;
4364 	}
4365 
4366 	/*
4367 	 * If available try to use the Command Set Idependent Identify Namespace
4368 	 * data structure to find all the generic information that is needed to
4369 	 * set up a namespace.  If not fall back to the legacy version.
4370 	 */
4371 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4372 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) {
4373 		if (nvme_ns_info_from_id_cs_indep(ctrl, &info))
4374 			return;
4375 	} else {
4376 		if (nvme_ns_info_from_identify(ctrl, &info))
4377 			return;
4378 	}
4379 
4380 	/*
4381 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4382 	 * becomes ready and restart the scan.
4383 	 */
4384 	if (!info.is_ready)
4385 		return;
4386 
4387 	ns = nvme_find_get_ns(ctrl, nsid);
4388 	if (ns) {
4389 		nvme_validate_ns(ns, &info);
4390 		nvme_put_ns(ns);
4391 	} else {
4392 		nvme_alloc_ns(ctrl, &info);
4393 	}
4394 }
4395 
4396 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4397 					unsigned nsid)
4398 {
4399 	struct nvme_ns *ns, *next;
4400 	LIST_HEAD(rm_list);
4401 
4402 	down_write(&ctrl->namespaces_rwsem);
4403 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4404 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4405 			list_move_tail(&ns->list, &rm_list);
4406 	}
4407 	up_write(&ctrl->namespaces_rwsem);
4408 
4409 	list_for_each_entry_safe(ns, next, &rm_list, list)
4410 		nvme_ns_remove(ns);
4411 
4412 }
4413 
4414 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4415 {
4416 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4417 	__le32 *ns_list;
4418 	u32 prev = 0;
4419 	int ret = 0, i;
4420 
4421 	if (nvme_ctrl_limited_cns(ctrl))
4422 		return -EOPNOTSUPP;
4423 
4424 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4425 	if (!ns_list)
4426 		return -ENOMEM;
4427 
4428 	for (;;) {
4429 		struct nvme_command cmd = {
4430 			.identify.opcode	= nvme_admin_identify,
4431 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4432 			.identify.nsid		= cpu_to_le32(prev),
4433 		};
4434 
4435 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4436 					    NVME_IDENTIFY_DATA_SIZE);
4437 		if (ret) {
4438 			dev_warn(ctrl->device,
4439 				"Identify NS List failed (status=0x%x)\n", ret);
4440 			goto free;
4441 		}
4442 
4443 		for (i = 0; i < nr_entries; i++) {
4444 			u32 nsid = le32_to_cpu(ns_list[i]);
4445 
4446 			if (!nsid)	/* end of the list? */
4447 				goto out;
4448 			nvme_scan_ns(ctrl, nsid);
4449 			while (++prev < nsid)
4450 				nvme_ns_remove_by_nsid(ctrl, prev);
4451 		}
4452 	}
4453  out:
4454 	nvme_remove_invalid_namespaces(ctrl, prev);
4455  free:
4456 	kfree(ns_list);
4457 	return ret;
4458 }
4459 
4460 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4461 {
4462 	struct nvme_id_ctrl *id;
4463 	u32 nn, i;
4464 
4465 	if (nvme_identify_ctrl(ctrl, &id))
4466 		return;
4467 	nn = le32_to_cpu(id->nn);
4468 	kfree(id);
4469 
4470 	for (i = 1; i <= nn; i++)
4471 		nvme_scan_ns(ctrl, i);
4472 
4473 	nvme_remove_invalid_namespaces(ctrl, nn);
4474 }
4475 
4476 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4477 {
4478 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4479 	__le32 *log;
4480 	int error;
4481 
4482 	log = kzalloc(log_size, GFP_KERNEL);
4483 	if (!log)
4484 		return;
4485 
4486 	/*
4487 	 * We need to read the log to clear the AEN, but we don't want to rely
4488 	 * on it for the changed namespace information as userspace could have
4489 	 * raced with us in reading the log page, which could cause us to miss
4490 	 * updates.
4491 	 */
4492 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4493 			NVME_CSI_NVM, log, log_size, 0);
4494 	if (error)
4495 		dev_warn(ctrl->device,
4496 			"reading changed ns log failed: %d\n", error);
4497 
4498 	kfree(log);
4499 }
4500 
4501 static void nvme_scan_work(struct work_struct *work)
4502 {
4503 	struct nvme_ctrl *ctrl =
4504 		container_of(work, struct nvme_ctrl, scan_work);
4505 	int ret;
4506 
4507 	/* No tagset on a live ctrl means IO queues could not created */
4508 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4509 		return;
4510 
4511 	/*
4512 	 * Identify controller limits can change at controller reset due to
4513 	 * new firmware download, even though it is not common we cannot ignore
4514 	 * such scenario. Controller's non-mdts limits are reported in the unit
4515 	 * of logical blocks that is dependent on the format of attached
4516 	 * namespace. Hence re-read the limits at the time of ns allocation.
4517 	 */
4518 	ret = nvme_init_non_mdts_limits(ctrl);
4519 	if (ret < 0) {
4520 		dev_warn(ctrl->device,
4521 			"reading non-mdts-limits failed: %d\n", ret);
4522 		return;
4523 	}
4524 
4525 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4526 		dev_info(ctrl->device, "rescanning namespaces.\n");
4527 		nvme_clear_changed_ns_log(ctrl);
4528 	}
4529 
4530 	mutex_lock(&ctrl->scan_lock);
4531 	if (nvme_scan_ns_list(ctrl) != 0)
4532 		nvme_scan_ns_sequential(ctrl);
4533 	mutex_unlock(&ctrl->scan_lock);
4534 }
4535 
4536 /*
4537  * This function iterates the namespace list unlocked to allow recovery from
4538  * controller failure. It is up to the caller to ensure the namespace list is
4539  * not modified by scan work while this function is executing.
4540  */
4541 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4542 {
4543 	struct nvme_ns *ns, *next;
4544 	LIST_HEAD(ns_list);
4545 
4546 	/*
4547 	 * make sure to requeue I/O to all namespaces as these
4548 	 * might result from the scan itself and must complete
4549 	 * for the scan_work to make progress
4550 	 */
4551 	nvme_mpath_clear_ctrl_paths(ctrl);
4552 
4553 	/* prevent racing with ns scanning */
4554 	flush_work(&ctrl->scan_work);
4555 
4556 	/*
4557 	 * The dead states indicates the controller was not gracefully
4558 	 * disconnected. In that case, we won't be able to flush any data while
4559 	 * removing the namespaces' disks; fail all the queues now to avoid
4560 	 * potentially having to clean up the failed sync later.
4561 	 */
4562 	if (ctrl->state == NVME_CTRL_DEAD)
4563 		nvme_kill_queues(ctrl);
4564 
4565 	/* this is a no-op when called from the controller reset handler */
4566 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4567 
4568 	down_write(&ctrl->namespaces_rwsem);
4569 	list_splice_init(&ctrl->namespaces, &ns_list);
4570 	up_write(&ctrl->namespaces_rwsem);
4571 
4572 	list_for_each_entry_safe(ns, next, &ns_list, list)
4573 		nvme_ns_remove(ns);
4574 }
4575 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4576 
4577 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4578 {
4579 	struct nvme_ctrl *ctrl =
4580 		container_of(dev, struct nvme_ctrl, ctrl_device);
4581 	struct nvmf_ctrl_options *opts = ctrl->opts;
4582 	int ret;
4583 
4584 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4585 	if (ret)
4586 		return ret;
4587 
4588 	if (opts) {
4589 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4590 		if (ret)
4591 			return ret;
4592 
4593 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4594 				opts->trsvcid ?: "none");
4595 		if (ret)
4596 			return ret;
4597 
4598 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4599 				opts->host_traddr ?: "none");
4600 		if (ret)
4601 			return ret;
4602 
4603 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4604 				opts->host_iface ?: "none");
4605 	}
4606 	return ret;
4607 }
4608 
4609 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4610 {
4611 	char *envp[2] = { envdata, NULL };
4612 
4613 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4614 }
4615 
4616 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4617 {
4618 	char *envp[2] = { NULL, NULL };
4619 	u32 aen_result = ctrl->aen_result;
4620 
4621 	ctrl->aen_result = 0;
4622 	if (!aen_result)
4623 		return;
4624 
4625 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4626 	if (!envp[0])
4627 		return;
4628 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4629 	kfree(envp[0]);
4630 }
4631 
4632 static void nvme_async_event_work(struct work_struct *work)
4633 {
4634 	struct nvme_ctrl *ctrl =
4635 		container_of(work, struct nvme_ctrl, async_event_work);
4636 
4637 	nvme_aen_uevent(ctrl);
4638 
4639 	/*
4640 	 * The transport drivers must guarantee AER submission here is safe by
4641 	 * flushing ctrl async_event_work after changing the controller state
4642 	 * from LIVE and before freeing the admin queue.
4643 	*/
4644 	if (ctrl->state == NVME_CTRL_LIVE)
4645 		ctrl->ops->submit_async_event(ctrl);
4646 }
4647 
4648 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4649 {
4650 
4651 	u32 csts;
4652 
4653 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4654 		return false;
4655 
4656 	if (csts == ~0)
4657 		return false;
4658 
4659 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4660 }
4661 
4662 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4663 {
4664 	struct nvme_fw_slot_info_log *log;
4665 
4666 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4667 	if (!log)
4668 		return;
4669 
4670 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4671 			log, sizeof(*log), 0))
4672 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4673 	kfree(log);
4674 }
4675 
4676 static void nvme_fw_act_work(struct work_struct *work)
4677 {
4678 	struct nvme_ctrl *ctrl = container_of(work,
4679 				struct nvme_ctrl, fw_act_work);
4680 	unsigned long fw_act_timeout;
4681 
4682 	if (ctrl->mtfa)
4683 		fw_act_timeout = jiffies +
4684 				msecs_to_jiffies(ctrl->mtfa * 100);
4685 	else
4686 		fw_act_timeout = jiffies +
4687 				msecs_to_jiffies(admin_timeout * 1000);
4688 
4689 	nvme_stop_queues(ctrl);
4690 	while (nvme_ctrl_pp_status(ctrl)) {
4691 		if (time_after(jiffies, fw_act_timeout)) {
4692 			dev_warn(ctrl->device,
4693 				"Fw activation timeout, reset controller\n");
4694 			nvme_try_sched_reset(ctrl);
4695 			return;
4696 		}
4697 		msleep(100);
4698 	}
4699 
4700 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4701 		return;
4702 
4703 	nvme_start_queues(ctrl);
4704 	/* read FW slot information to clear the AER */
4705 	nvme_get_fw_slot_info(ctrl);
4706 }
4707 
4708 static u32 nvme_aer_type(u32 result)
4709 {
4710 	return result & 0x7;
4711 }
4712 
4713 static u32 nvme_aer_subtype(u32 result)
4714 {
4715 	return (result & 0xff00) >> 8;
4716 }
4717 
4718 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4719 {
4720 	u32 aer_notice_type = nvme_aer_subtype(result);
4721 
4722 	trace_nvme_async_event(ctrl, aer_notice_type);
4723 
4724 	switch (aer_notice_type) {
4725 	case NVME_AER_NOTICE_NS_CHANGED:
4726 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4727 		nvme_queue_scan(ctrl);
4728 		break;
4729 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4730 		/*
4731 		 * We are (ab)using the RESETTING state to prevent subsequent
4732 		 * recovery actions from interfering with the controller's
4733 		 * firmware activation.
4734 		 */
4735 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4736 			nvme_auth_stop(ctrl);
4737 			queue_work(nvme_wq, &ctrl->fw_act_work);
4738 		}
4739 		break;
4740 #ifdef CONFIG_NVME_MULTIPATH
4741 	case NVME_AER_NOTICE_ANA:
4742 		if (!ctrl->ana_log_buf)
4743 			break;
4744 		queue_work(nvme_wq, &ctrl->ana_work);
4745 		break;
4746 #endif
4747 	case NVME_AER_NOTICE_DISC_CHANGED:
4748 		ctrl->aen_result = result;
4749 		break;
4750 	default:
4751 		dev_warn(ctrl->device, "async event result %08x\n", result);
4752 	}
4753 }
4754 
4755 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4756 {
4757 	trace_nvme_async_event(ctrl, NVME_AER_ERROR);
4758 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4759 	nvme_reset_ctrl(ctrl);
4760 }
4761 
4762 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4763 		volatile union nvme_result *res)
4764 {
4765 	u32 result = le32_to_cpu(res->u32);
4766 	u32 aer_type = nvme_aer_type(result);
4767 	u32 aer_subtype = nvme_aer_subtype(result);
4768 
4769 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4770 		return;
4771 
4772 	switch (aer_type) {
4773 	case NVME_AER_NOTICE:
4774 		nvme_handle_aen_notice(ctrl, result);
4775 		break;
4776 	case NVME_AER_ERROR:
4777 		/*
4778 		 * For a persistent internal error, don't run async_event_work
4779 		 * to submit a new AER. The controller reset will do it.
4780 		 */
4781 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4782 			nvme_handle_aer_persistent_error(ctrl);
4783 			return;
4784 		}
4785 		fallthrough;
4786 	case NVME_AER_SMART:
4787 	case NVME_AER_CSS:
4788 	case NVME_AER_VS:
4789 		trace_nvme_async_event(ctrl, aer_type);
4790 		ctrl->aen_result = result;
4791 		break;
4792 	default:
4793 		break;
4794 	}
4795 	queue_work(nvme_wq, &ctrl->async_event_work);
4796 }
4797 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4798 
4799 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4800 {
4801 	nvme_mpath_stop(ctrl);
4802 	nvme_auth_stop(ctrl);
4803 	nvme_stop_keep_alive(ctrl);
4804 	nvme_stop_failfast_work(ctrl);
4805 	flush_work(&ctrl->async_event_work);
4806 	cancel_work_sync(&ctrl->fw_act_work);
4807 	if (ctrl->ops->stop_ctrl)
4808 		ctrl->ops->stop_ctrl(ctrl);
4809 }
4810 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4811 
4812 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4813 {
4814 	nvme_start_keep_alive(ctrl);
4815 
4816 	nvme_enable_aen(ctrl);
4817 
4818 	if (ctrl->queue_count > 1) {
4819 		nvme_queue_scan(ctrl);
4820 		nvme_start_queues(ctrl);
4821 		nvme_mpath_update(ctrl);
4822 	}
4823 
4824 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4825 }
4826 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4827 
4828 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4829 {
4830 	nvme_hwmon_exit(ctrl);
4831 	nvme_fault_inject_fini(&ctrl->fault_inject);
4832 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4833 	cdev_device_del(&ctrl->cdev, ctrl->device);
4834 	nvme_put_ctrl(ctrl);
4835 }
4836 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4837 
4838 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4839 {
4840 	struct nvme_effects_log	*cel;
4841 	unsigned long i;
4842 
4843 	xa_for_each(&ctrl->cels, i, cel) {
4844 		xa_erase(&ctrl->cels, i);
4845 		kfree(cel);
4846 	}
4847 
4848 	xa_destroy(&ctrl->cels);
4849 }
4850 
4851 static void nvme_free_ctrl(struct device *dev)
4852 {
4853 	struct nvme_ctrl *ctrl =
4854 		container_of(dev, struct nvme_ctrl, ctrl_device);
4855 	struct nvme_subsystem *subsys = ctrl->subsys;
4856 
4857 	if (!subsys || ctrl->instance != subsys->instance)
4858 		ida_free(&nvme_instance_ida, ctrl->instance);
4859 
4860 	nvme_free_cels(ctrl);
4861 	nvme_mpath_uninit(ctrl);
4862 	nvme_auth_stop(ctrl);
4863 	nvme_auth_free(ctrl);
4864 	__free_page(ctrl->discard_page);
4865 
4866 	if (subsys) {
4867 		mutex_lock(&nvme_subsystems_lock);
4868 		list_del(&ctrl->subsys_entry);
4869 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4870 		mutex_unlock(&nvme_subsystems_lock);
4871 	}
4872 
4873 	ctrl->ops->free_ctrl(ctrl);
4874 
4875 	if (subsys)
4876 		nvme_put_subsystem(subsys);
4877 }
4878 
4879 /*
4880  * Initialize a NVMe controller structures.  This needs to be called during
4881  * earliest initialization so that we have the initialized structured around
4882  * during probing.
4883  */
4884 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4885 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4886 {
4887 	int ret;
4888 
4889 	ctrl->state = NVME_CTRL_NEW;
4890 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4891 	spin_lock_init(&ctrl->lock);
4892 	mutex_init(&ctrl->scan_lock);
4893 	INIT_LIST_HEAD(&ctrl->namespaces);
4894 	xa_init(&ctrl->cels);
4895 	init_rwsem(&ctrl->namespaces_rwsem);
4896 	ctrl->dev = dev;
4897 	ctrl->ops = ops;
4898 	ctrl->quirks = quirks;
4899 	ctrl->numa_node = NUMA_NO_NODE;
4900 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4901 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4902 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4903 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4904 	init_waitqueue_head(&ctrl->state_wq);
4905 
4906 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4907 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4908 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4909 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4910 
4911 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4912 			PAGE_SIZE);
4913 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4914 	if (!ctrl->discard_page) {
4915 		ret = -ENOMEM;
4916 		goto out;
4917 	}
4918 
4919 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4920 	if (ret < 0)
4921 		goto out;
4922 	ctrl->instance = ret;
4923 
4924 	device_initialize(&ctrl->ctrl_device);
4925 	ctrl->device = &ctrl->ctrl_device;
4926 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4927 			ctrl->instance);
4928 	ctrl->device->class = nvme_class;
4929 	ctrl->device->parent = ctrl->dev;
4930 	ctrl->device->groups = nvme_dev_attr_groups;
4931 	ctrl->device->release = nvme_free_ctrl;
4932 	dev_set_drvdata(ctrl->device, ctrl);
4933 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4934 	if (ret)
4935 		goto out_release_instance;
4936 
4937 	nvme_get_ctrl(ctrl);
4938 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4939 	ctrl->cdev.owner = ops->module;
4940 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4941 	if (ret)
4942 		goto out_free_name;
4943 
4944 	/*
4945 	 * Initialize latency tolerance controls.  The sysfs files won't
4946 	 * be visible to userspace unless the device actually supports APST.
4947 	 */
4948 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4949 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4950 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4951 
4952 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4953 	nvme_mpath_init_ctrl(ctrl);
4954 	nvme_auth_init_ctrl(ctrl);
4955 
4956 	return 0;
4957 out_free_name:
4958 	nvme_put_ctrl(ctrl);
4959 	kfree_const(ctrl->device->kobj.name);
4960 out_release_instance:
4961 	ida_free(&nvme_instance_ida, ctrl->instance);
4962 out:
4963 	if (ctrl->discard_page)
4964 		__free_page(ctrl->discard_page);
4965 	return ret;
4966 }
4967 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4968 
4969 static void nvme_start_ns_queue(struct nvme_ns *ns)
4970 {
4971 	if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4972 		blk_mq_unquiesce_queue(ns->queue);
4973 }
4974 
4975 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4976 {
4977 	if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4978 		blk_mq_quiesce_queue(ns->queue);
4979 	else
4980 		blk_mq_wait_quiesce_done(ns->queue);
4981 }
4982 
4983 /*
4984  * Prepare a queue for teardown.
4985  *
4986  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4987  * the capacity to 0 after that to avoid blocking dispatchers that may be
4988  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4989  * be synced.
4990  */
4991 static void nvme_set_queue_dying(struct nvme_ns *ns)
4992 {
4993 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4994 		return;
4995 
4996 	blk_mark_disk_dead(ns->disk);
4997 	nvme_start_ns_queue(ns);
4998 
4999 	set_capacity_and_notify(ns->disk, 0);
5000 }
5001 
5002 /**
5003  * nvme_kill_queues(): Ends all namespace queues
5004  * @ctrl: the dead controller that needs to end
5005  *
5006  * Call this function when the driver determines it is unable to get the
5007  * controller in a state capable of servicing IO.
5008  */
5009 void nvme_kill_queues(struct nvme_ctrl *ctrl)
5010 {
5011 	struct nvme_ns *ns;
5012 
5013 	down_read(&ctrl->namespaces_rwsem);
5014 
5015 	/* Forcibly unquiesce queues to avoid blocking dispatch */
5016 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
5017 		nvme_start_admin_queue(ctrl);
5018 
5019 	list_for_each_entry(ns, &ctrl->namespaces, list)
5020 		nvme_set_queue_dying(ns);
5021 
5022 	up_read(&ctrl->namespaces_rwsem);
5023 }
5024 EXPORT_SYMBOL_GPL(nvme_kill_queues);
5025 
5026 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5027 {
5028 	struct nvme_ns *ns;
5029 
5030 	down_read(&ctrl->namespaces_rwsem);
5031 	list_for_each_entry(ns, &ctrl->namespaces, list)
5032 		blk_mq_unfreeze_queue(ns->queue);
5033 	up_read(&ctrl->namespaces_rwsem);
5034 }
5035 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5036 
5037 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5038 {
5039 	struct nvme_ns *ns;
5040 
5041 	down_read(&ctrl->namespaces_rwsem);
5042 	list_for_each_entry(ns, &ctrl->namespaces, list) {
5043 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5044 		if (timeout <= 0)
5045 			break;
5046 	}
5047 	up_read(&ctrl->namespaces_rwsem);
5048 	return timeout;
5049 }
5050 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5051 
5052 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5053 {
5054 	struct nvme_ns *ns;
5055 
5056 	down_read(&ctrl->namespaces_rwsem);
5057 	list_for_each_entry(ns, &ctrl->namespaces, list)
5058 		blk_mq_freeze_queue_wait(ns->queue);
5059 	up_read(&ctrl->namespaces_rwsem);
5060 }
5061 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5062 
5063 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5064 {
5065 	struct nvme_ns *ns;
5066 
5067 	down_read(&ctrl->namespaces_rwsem);
5068 	list_for_each_entry(ns, &ctrl->namespaces, list)
5069 		blk_freeze_queue_start(ns->queue);
5070 	up_read(&ctrl->namespaces_rwsem);
5071 }
5072 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5073 
5074 void nvme_stop_queues(struct nvme_ctrl *ctrl)
5075 {
5076 	struct nvme_ns *ns;
5077 
5078 	down_read(&ctrl->namespaces_rwsem);
5079 	list_for_each_entry(ns, &ctrl->namespaces, list)
5080 		nvme_stop_ns_queue(ns);
5081 	up_read(&ctrl->namespaces_rwsem);
5082 }
5083 EXPORT_SYMBOL_GPL(nvme_stop_queues);
5084 
5085 void nvme_start_queues(struct nvme_ctrl *ctrl)
5086 {
5087 	struct nvme_ns *ns;
5088 
5089 	down_read(&ctrl->namespaces_rwsem);
5090 	list_for_each_entry(ns, &ctrl->namespaces, list)
5091 		nvme_start_ns_queue(ns);
5092 	up_read(&ctrl->namespaces_rwsem);
5093 }
5094 EXPORT_SYMBOL_GPL(nvme_start_queues);
5095 
5096 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
5097 {
5098 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5099 		blk_mq_quiesce_queue(ctrl->admin_q);
5100 	else
5101 		blk_mq_wait_quiesce_done(ctrl->admin_q);
5102 }
5103 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
5104 
5105 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
5106 {
5107 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5108 		blk_mq_unquiesce_queue(ctrl->admin_q);
5109 }
5110 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
5111 
5112 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5113 {
5114 	struct nvme_ns *ns;
5115 
5116 	down_read(&ctrl->namespaces_rwsem);
5117 	list_for_each_entry(ns, &ctrl->namespaces, list)
5118 		blk_sync_queue(ns->queue);
5119 	up_read(&ctrl->namespaces_rwsem);
5120 }
5121 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5122 
5123 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5124 {
5125 	nvme_sync_io_queues(ctrl);
5126 	if (ctrl->admin_q)
5127 		blk_sync_queue(ctrl->admin_q);
5128 }
5129 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5130 
5131 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5132 {
5133 	if (file->f_op != &nvme_dev_fops)
5134 		return NULL;
5135 	return file->private_data;
5136 }
5137 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5138 
5139 /*
5140  * Check we didn't inadvertently grow the command structure sizes:
5141  */
5142 static inline void _nvme_check_size(void)
5143 {
5144 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5145 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5146 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5147 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5148 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5149 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5150 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5151 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5152 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5153 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5154 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5155 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5156 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5157 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5158 			NVME_IDENTIFY_DATA_SIZE);
5159 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5160 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5161 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5162 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5163 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5164 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5165 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5166 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5167 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5168 }
5169 
5170 
5171 static int __init nvme_core_init(void)
5172 {
5173 	int result = -ENOMEM;
5174 
5175 	_nvme_check_size();
5176 
5177 	nvme_wq = alloc_workqueue("nvme-wq",
5178 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5179 	if (!nvme_wq)
5180 		goto out;
5181 
5182 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5183 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5184 	if (!nvme_reset_wq)
5185 		goto destroy_wq;
5186 
5187 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5188 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5189 	if (!nvme_delete_wq)
5190 		goto destroy_reset_wq;
5191 
5192 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5193 			NVME_MINORS, "nvme");
5194 	if (result < 0)
5195 		goto destroy_delete_wq;
5196 
5197 	nvme_class = class_create(THIS_MODULE, "nvme");
5198 	if (IS_ERR(nvme_class)) {
5199 		result = PTR_ERR(nvme_class);
5200 		goto unregister_chrdev;
5201 	}
5202 	nvme_class->dev_uevent = nvme_class_uevent;
5203 
5204 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
5205 	if (IS_ERR(nvme_subsys_class)) {
5206 		result = PTR_ERR(nvme_subsys_class);
5207 		goto destroy_class;
5208 	}
5209 
5210 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5211 				     "nvme-generic");
5212 	if (result < 0)
5213 		goto destroy_subsys_class;
5214 
5215 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
5216 	if (IS_ERR(nvme_ns_chr_class)) {
5217 		result = PTR_ERR(nvme_ns_chr_class);
5218 		goto unregister_generic_ns;
5219 	}
5220 
5221 	return 0;
5222 
5223 unregister_generic_ns:
5224 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5225 destroy_subsys_class:
5226 	class_destroy(nvme_subsys_class);
5227 destroy_class:
5228 	class_destroy(nvme_class);
5229 unregister_chrdev:
5230 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5231 destroy_delete_wq:
5232 	destroy_workqueue(nvme_delete_wq);
5233 destroy_reset_wq:
5234 	destroy_workqueue(nvme_reset_wq);
5235 destroy_wq:
5236 	destroy_workqueue(nvme_wq);
5237 out:
5238 	return result;
5239 }
5240 
5241 static void __exit nvme_core_exit(void)
5242 {
5243 	class_destroy(nvme_ns_chr_class);
5244 	class_destroy(nvme_subsys_class);
5245 	class_destroy(nvme_class);
5246 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5247 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5248 	destroy_workqueue(nvme_delete_wq);
5249 	destroy_workqueue(nvme_reset_wq);
5250 	destroy_workqueue(nvme_wq);
5251 	ida_destroy(&nvme_ns_chr_minor_ida);
5252 	ida_destroy(&nvme_instance_ida);
5253 }
5254 
5255 MODULE_LICENSE("GPL");
5256 MODULE_VERSION("1.0");
5257 module_init(nvme_core_init);
5258 module_exit(nvme_core_exit);
5259