xref: /openbmc/linux/drivers/net/xen-netback/netback.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * Back-end of the driver for virtual network devices. This portion of the
3  * driver exports a 'unified' network-device interface that can be accessed
4  * by any operating system that implements a compatible front end. A
5  * reference front-end implementation can be found in:
6  *  drivers/net/xen-netfront.c
7  *
8  * Copyright (c) 2002-2005, K A Fraser
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License version 2
12  * as published by the Free Software Foundation; or, when distributed
13  * separately from the Linux kernel or incorporated into other
14  * software packages, subject to the following license:
15  *
16  * Permission is hereby granted, free of charge, to any person obtaining a copy
17  * of this source file (the "Software"), to deal in the Software without
18  * restriction, including without limitation the rights to use, copy, modify,
19  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
20  * and to permit persons to whom the Software is furnished to do so, subject to
21  * the following conditions:
22  *
23  * The above copyright notice and this permission notice shall be included in
24  * all copies or substantial portions of the Software.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
27  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
28  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
29  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
30  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
31  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
32  * IN THE SOFTWARE.
33  */
34 
35 #include "common.h"
36 
37 #include <linux/kthread.h>
38 #include <linux/if_vlan.h>
39 #include <linux/udp.h>
40 #include <linux/highmem.h>
41 
42 #include <net/tcp.h>
43 
44 #include <xen/xen.h>
45 #include <xen/events.h>
46 #include <xen/interface/memory.h>
47 
48 #include <asm/xen/hypercall.h>
49 #include <asm/xen/page.h>
50 
51 /* Provide an option to disable split event channels at load time as
52  * event channels are limited resource. Split event channels are
53  * enabled by default.
54  */
55 bool separate_tx_rx_irq = 1;
56 module_param(separate_tx_rx_irq, bool, 0644);
57 
58 /* The time that packets can stay on the guest Rx internal queue
59  * before they are dropped.
60  */
61 unsigned int rx_drain_timeout_msecs = 10000;
62 module_param(rx_drain_timeout_msecs, uint, 0444);
63 unsigned int rx_drain_timeout_jiffies;
64 
65 /* The length of time before the frontend is considered unresponsive
66  * because it isn't providing Rx slots.
67  */
68 static unsigned int rx_stall_timeout_msecs = 60000;
69 module_param(rx_stall_timeout_msecs, uint, 0444);
70 static unsigned int rx_stall_timeout_jiffies;
71 
72 unsigned int xenvif_max_queues;
73 module_param_named(max_queues, xenvif_max_queues, uint, 0644);
74 MODULE_PARM_DESC(max_queues,
75 		 "Maximum number of queues per virtual interface");
76 
77 /*
78  * This is the maximum slots a skb can have. If a guest sends a skb
79  * which exceeds this limit it is considered malicious.
80  */
81 #define FATAL_SKB_SLOTS_DEFAULT 20
82 static unsigned int fatal_skb_slots = FATAL_SKB_SLOTS_DEFAULT;
83 module_param(fatal_skb_slots, uint, 0444);
84 
85 static void xenvif_idx_release(struct xenvif_queue *queue, u16 pending_idx,
86 			       u8 status);
87 
88 static void make_tx_response(struct xenvif_queue *queue,
89 			     struct xen_netif_tx_request *txp,
90 			     s8       st);
91 
92 static inline int tx_work_todo(struct xenvif_queue *queue);
93 
94 static struct xen_netif_rx_response *make_rx_response(struct xenvif_queue *queue,
95 					     u16      id,
96 					     s8       st,
97 					     u16      offset,
98 					     u16      size,
99 					     u16      flags);
100 
101 static inline unsigned long idx_to_pfn(struct xenvif_queue *queue,
102 				       u16 idx)
103 {
104 	return page_to_pfn(queue->mmap_pages[idx]);
105 }
106 
107 static inline unsigned long idx_to_kaddr(struct xenvif_queue *queue,
108 					 u16 idx)
109 {
110 	return (unsigned long)pfn_to_kaddr(idx_to_pfn(queue, idx));
111 }
112 
113 #define callback_param(vif, pending_idx) \
114 	(vif->pending_tx_info[pending_idx].callback_struct)
115 
116 /* Find the containing VIF's structure from a pointer in pending_tx_info array
117  */
118 static inline struct xenvif_queue *ubuf_to_queue(const struct ubuf_info *ubuf)
119 {
120 	u16 pending_idx = ubuf->desc;
121 	struct pending_tx_info *temp =
122 		container_of(ubuf, struct pending_tx_info, callback_struct);
123 	return container_of(temp - pending_idx,
124 			    struct xenvif_queue,
125 			    pending_tx_info[0]);
126 }
127 
128 /* This is a miniumum size for the linear area to avoid lots of
129  * calls to __pskb_pull_tail() as we set up checksum offsets. The
130  * value 128 was chosen as it covers all IPv4 and most likely
131  * IPv6 headers.
132  */
133 #define PKT_PROT_LEN 128
134 
135 static u16 frag_get_pending_idx(skb_frag_t *frag)
136 {
137 	return (u16)frag->page_offset;
138 }
139 
140 static void frag_set_pending_idx(skb_frag_t *frag, u16 pending_idx)
141 {
142 	frag->page_offset = pending_idx;
143 }
144 
145 static inline pending_ring_idx_t pending_index(unsigned i)
146 {
147 	return i & (MAX_PENDING_REQS-1);
148 }
149 
150 bool xenvif_rx_ring_slots_available(struct xenvif_queue *queue, int needed)
151 {
152 	RING_IDX prod, cons;
153 
154 	do {
155 		prod = queue->rx.sring->req_prod;
156 		cons = queue->rx.req_cons;
157 
158 		if (prod - cons >= needed)
159 			return true;
160 
161 		queue->rx.sring->req_event = prod + 1;
162 
163 		/* Make sure event is visible before we check prod
164 		 * again.
165 		 */
166 		mb();
167 	} while (queue->rx.sring->req_prod != prod);
168 
169 	return false;
170 }
171 
172 void xenvif_rx_queue_tail(struct xenvif_queue *queue, struct sk_buff *skb)
173 {
174 	unsigned long flags;
175 
176 	spin_lock_irqsave(&queue->rx_queue.lock, flags);
177 
178 	__skb_queue_tail(&queue->rx_queue, skb);
179 
180 	queue->rx_queue_len += skb->len;
181 	if (queue->rx_queue_len > queue->rx_queue_max)
182 		netif_tx_stop_queue(netdev_get_tx_queue(queue->vif->dev, queue->id));
183 
184 	spin_unlock_irqrestore(&queue->rx_queue.lock, flags);
185 }
186 
187 static struct sk_buff *xenvif_rx_dequeue(struct xenvif_queue *queue)
188 {
189 	struct sk_buff *skb;
190 
191 	spin_lock_irq(&queue->rx_queue.lock);
192 
193 	skb = __skb_dequeue(&queue->rx_queue);
194 	if (skb)
195 		queue->rx_queue_len -= skb->len;
196 
197 	spin_unlock_irq(&queue->rx_queue.lock);
198 
199 	return skb;
200 }
201 
202 static void xenvif_rx_queue_maybe_wake(struct xenvif_queue *queue)
203 {
204 	spin_lock_irq(&queue->rx_queue.lock);
205 
206 	if (queue->rx_queue_len < queue->rx_queue_max)
207 		netif_tx_wake_queue(netdev_get_tx_queue(queue->vif->dev, queue->id));
208 
209 	spin_unlock_irq(&queue->rx_queue.lock);
210 }
211 
212 
213 static void xenvif_rx_queue_purge(struct xenvif_queue *queue)
214 {
215 	struct sk_buff *skb;
216 	while ((skb = xenvif_rx_dequeue(queue)) != NULL)
217 		kfree_skb(skb);
218 }
219 
220 static void xenvif_rx_queue_drop_expired(struct xenvif_queue *queue)
221 {
222 	struct sk_buff *skb;
223 
224 	for(;;) {
225 		skb = skb_peek(&queue->rx_queue);
226 		if (!skb)
227 			break;
228 		if (time_before(jiffies, XENVIF_RX_CB(skb)->expires))
229 			break;
230 		xenvif_rx_dequeue(queue);
231 		kfree_skb(skb);
232 	}
233 }
234 
235 /*
236  * Returns true if we should start a new receive buffer instead of
237  * adding 'size' bytes to a buffer which currently contains 'offset'
238  * bytes.
239  */
240 static bool start_new_rx_buffer(int offset, unsigned long size, int head,
241 				bool full_coalesce)
242 {
243 	/* simple case: we have completely filled the current buffer. */
244 	if (offset == MAX_BUFFER_OFFSET)
245 		return true;
246 
247 	/*
248 	 * complex case: start a fresh buffer if the current frag
249 	 * would overflow the current buffer but only if:
250 	 *     (i)   this frag would fit completely in the next buffer
251 	 * and (ii)  there is already some data in the current buffer
252 	 * and (iii) this is not the head buffer.
253 	 * and (iv)  there is no need to fully utilize the buffers
254 	 *
255 	 * Where:
256 	 * - (i) stops us splitting a frag into two copies
257 	 *   unless the frag is too large for a single buffer.
258 	 * - (ii) stops us from leaving a buffer pointlessly empty.
259 	 * - (iii) stops us leaving the first buffer
260 	 *   empty. Strictly speaking this is already covered
261 	 *   by (ii) but is explicitly checked because
262 	 *   netfront relies on the first buffer being
263 	 *   non-empty and can crash otherwise.
264 	 * - (iv) is needed for skbs which can use up more than MAX_SKB_FRAGS
265 	 *   slot
266 	 *
267 	 * This means we will effectively linearise small
268 	 * frags but do not needlessly split large buffers
269 	 * into multiple copies tend to give large frags their
270 	 * own buffers as before.
271 	 */
272 	BUG_ON(size > MAX_BUFFER_OFFSET);
273 	if ((offset + size > MAX_BUFFER_OFFSET) && offset && !head &&
274 	    !full_coalesce)
275 		return true;
276 
277 	return false;
278 }
279 
280 struct netrx_pending_operations {
281 	unsigned copy_prod, copy_cons;
282 	unsigned meta_prod, meta_cons;
283 	struct gnttab_copy *copy;
284 	struct xenvif_rx_meta *meta;
285 	int copy_off;
286 	grant_ref_t copy_gref;
287 };
288 
289 static struct xenvif_rx_meta *get_next_rx_buffer(struct xenvif_queue *queue,
290 						 struct netrx_pending_operations *npo)
291 {
292 	struct xenvif_rx_meta *meta;
293 	struct xen_netif_rx_request *req;
294 
295 	req = RING_GET_REQUEST(&queue->rx, queue->rx.req_cons++);
296 
297 	meta = npo->meta + npo->meta_prod++;
298 	meta->gso_type = XEN_NETIF_GSO_TYPE_NONE;
299 	meta->gso_size = 0;
300 	meta->size = 0;
301 	meta->id = req->id;
302 
303 	npo->copy_off = 0;
304 	npo->copy_gref = req->gref;
305 
306 	return meta;
307 }
308 
309 /*
310  * Set up the grant operations for this fragment. If it's a flipping
311  * interface, we also set up the unmap request from here.
312  */
313 static void xenvif_gop_frag_copy(struct xenvif_queue *queue, struct sk_buff *skb,
314 				 struct netrx_pending_operations *npo,
315 				 struct page *page, unsigned long size,
316 				 unsigned long offset, int *head,
317 				 struct xenvif_queue *foreign_queue,
318 				 grant_ref_t foreign_gref)
319 {
320 	struct gnttab_copy *copy_gop;
321 	struct xenvif_rx_meta *meta;
322 	unsigned long bytes;
323 	int gso_type = XEN_NETIF_GSO_TYPE_NONE;
324 
325 	/* Data must not cross a page boundary. */
326 	BUG_ON(size + offset > PAGE_SIZE<<compound_order(page));
327 
328 	meta = npo->meta + npo->meta_prod - 1;
329 
330 	/* Skip unused frames from start of page */
331 	page += offset >> PAGE_SHIFT;
332 	offset &= ~PAGE_MASK;
333 
334 	while (size > 0) {
335 		BUG_ON(offset >= PAGE_SIZE);
336 		BUG_ON(npo->copy_off > MAX_BUFFER_OFFSET);
337 
338 		bytes = PAGE_SIZE - offset;
339 
340 		if (bytes > size)
341 			bytes = size;
342 
343 		if (start_new_rx_buffer(npo->copy_off,
344 					bytes,
345 					*head,
346 					XENVIF_RX_CB(skb)->full_coalesce)) {
347 			/*
348 			 * Netfront requires there to be some data in the head
349 			 * buffer.
350 			 */
351 			BUG_ON(*head);
352 
353 			meta = get_next_rx_buffer(queue, npo);
354 		}
355 
356 		if (npo->copy_off + bytes > MAX_BUFFER_OFFSET)
357 			bytes = MAX_BUFFER_OFFSET - npo->copy_off;
358 
359 		copy_gop = npo->copy + npo->copy_prod++;
360 		copy_gop->flags = GNTCOPY_dest_gref;
361 		copy_gop->len = bytes;
362 
363 		if (foreign_queue) {
364 			copy_gop->source.domid = foreign_queue->vif->domid;
365 			copy_gop->source.u.ref = foreign_gref;
366 			copy_gop->flags |= GNTCOPY_source_gref;
367 		} else {
368 			copy_gop->source.domid = DOMID_SELF;
369 			copy_gop->source.u.gmfn =
370 				virt_to_mfn(page_address(page));
371 		}
372 		copy_gop->source.offset = offset;
373 
374 		copy_gop->dest.domid = queue->vif->domid;
375 		copy_gop->dest.offset = npo->copy_off;
376 		copy_gop->dest.u.ref = npo->copy_gref;
377 
378 		npo->copy_off += bytes;
379 		meta->size += bytes;
380 
381 		offset += bytes;
382 		size -= bytes;
383 
384 		/* Next frame */
385 		if (offset == PAGE_SIZE && size) {
386 			BUG_ON(!PageCompound(page));
387 			page++;
388 			offset = 0;
389 		}
390 
391 		/* Leave a gap for the GSO descriptor. */
392 		if (skb_is_gso(skb)) {
393 			if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4)
394 				gso_type = XEN_NETIF_GSO_TYPE_TCPV4;
395 			else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
396 				gso_type = XEN_NETIF_GSO_TYPE_TCPV6;
397 		}
398 
399 		if (*head && ((1 << gso_type) & queue->vif->gso_mask))
400 			queue->rx.req_cons++;
401 
402 		*head = 0; /* There must be something in this buffer now. */
403 
404 	}
405 }
406 
407 /*
408  * Find the grant ref for a given frag in a chain of struct ubuf_info's
409  * skb: the skb itself
410  * i: the frag's number
411  * ubuf: a pointer to an element in the chain. It should not be NULL
412  *
413  * Returns a pointer to the element in the chain where the page were found. If
414  * not found, returns NULL.
415  * See the definition of callback_struct in common.h for more details about
416  * the chain.
417  */
418 static const struct ubuf_info *xenvif_find_gref(const struct sk_buff *const skb,
419 						const int i,
420 						const struct ubuf_info *ubuf)
421 {
422 	struct xenvif_queue *foreign_queue = ubuf_to_queue(ubuf);
423 
424 	do {
425 		u16 pending_idx = ubuf->desc;
426 
427 		if (skb_shinfo(skb)->frags[i].page.p ==
428 		    foreign_queue->mmap_pages[pending_idx])
429 			break;
430 		ubuf = (struct ubuf_info *) ubuf->ctx;
431 	} while (ubuf);
432 
433 	return ubuf;
434 }
435 
436 /*
437  * Prepare an SKB to be transmitted to the frontend.
438  *
439  * This function is responsible for allocating grant operations, meta
440  * structures, etc.
441  *
442  * It returns the number of meta structures consumed. The number of
443  * ring slots used is always equal to the number of meta slots used
444  * plus the number of GSO descriptors used. Currently, we use either
445  * zero GSO descriptors (for non-GSO packets) or one descriptor (for
446  * frontend-side LRO).
447  */
448 static int xenvif_gop_skb(struct sk_buff *skb,
449 			  struct netrx_pending_operations *npo,
450 			  struct xenvif_queue *queue)
451 {
452 	struct xenvif *vif = netdev_priv(skb->dev);
453 	int nr_frags = skb_shinfo(skb)->nr_frags;
454 	int i;
455 	struct xen_netif_rx_request *req;
456 	struct xenvif_rx_meta *meta;
457 	unsigned char *data;
458 	int head = 1;
459 	int old_meta_prod;
460 	int gso_type;
461 	const struct ubuf_info *ubuf = skb_shinfo(skb)->destructor_arg;
462 	const struct ubuf_info *const head_ubuf = ubuf;
463 
464 	old_meta_prod = npo->meta_prod;
465 
466 	gso_type = XEN_NETIF_GSO_TYPE_NONE;
467 	if (skb_is_gso(skb)) {
468 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4)
469 			gso_type = XEN_NETIF_GSO_TYPE_TCPV4;
470 		else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
471 			gso_type = XEN_NETIF_GSO_TYPE_TCPV6;
472 	}
473 
474 	/* Set up a GSO prefix descriptor, if necessary */
475 	if ((1 << gso_type) & vif->gso_prefix_mask) {
476 		req = RING_GET_REQUEST(&queue->rx, queue->rx.req_cons++);
477 		meta = npo->meta + npo->meta_prod++;
478 		meta->gso_type = gso_type;
479 		meta->gso_size = skb_shinfo(skb)->gso_size;
480 		meta->size = 0;
481 		meta->id = req->id;
482 	}
483 
484 	req = RING_GET_REQUEST(&queue->rx, queue->rx.req_cons++);
485 	meta = npo->meta + npo->meta_prod++;
486 
487 	if ((1 << gso_type) & vif->gso_mask) {
488 		meta->gso_type = gso_type;
489 		meta->gso_size = skb_shinfo(skb)->gso_size;
490 	} else {
491 		meta->gso_type = XEN_NETIF_GSO_TYPE_NONE;
492 		meta->gso_size = 0;
493 	}
494 
495 	meta->size = 0;
496 	meta->id = req->id;
497 	npo->copy_off = 0;
498 	npo->copy_gref = req->gref;
499 
500 	data = skb->data;
501 	while (data < skb_tail_pointer(skb)) {
502 		unsigned int offset = offset_in_page(data);
503 		unsigned int len = PAGE_SIZE - offset;
504 
505 		if (data + len > skb_tail_pointer(skb))
506 			len = skb_tail_pointer(skb) - data;
507 
508 		xenvif_gop_frag_copy(queue, skb, npo,
509 				     virt_to_page(data), len, offset, &head,
510 				     NULL,
511 				     0);
512 		data += len;
513 	}
514 
515 	for (i = 0; i < nr_frags; i++) {
516 		/* This variable also signals whether foreign_gref has a real
517 		 * value or not.
518 		 */
519 		struct xenvif_queue *foreign_queue = NULL;
520 		grant_ref_t foreign_gref;
521 
522 		if ((skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) &&
523 			(ubuf->callback == &xenvif_zerocopy_callback)) {
524 			const struct ubuf_info *const startpoint = ubuf;
525 
526 			/* Ideally ubuf points to the chain element which
527 			 * belongs to this frag. Or if frags were removed from
528 			 * the beginning, then shortly before it.
529 			 */
530 			ubuf = xenvif_find_gref(skb, i, ubuf);
531 
532 			/* Try again from the beginning of the list, if we
533 			 * haven't tried from there. This only makes sense in
534 			 * the unlikely event of reordering the original frags.
535 			 * For injected local pages it's an unnecessary second
536 			 * run.
537 			 */
538 			if (unlikely(!ubuf) && startpoint != head_ubuf)
539 				ubuf = xenvif_find_gref(skb, i, head_ubuf);
540 
541 			if (likely(ubuf)) {
542 				u16 pending_idx = ubuf->desc;
543 
544 				foreign_queue = ubuf_to_queue(ubuf);
545 				foreign_gref =
546 					foreign_queue->pending_tx_info[pending_idx].req.gref;
547 				/* Just a safety measure. If this was the last
548 				 * element on the list, the for loop will
549 				 * iterate again if a local page were added to
550 				 * the end. Using head_ubuf here prevents the
551 				 * second search on the chain. Or the original
552 				 * frags changed order, but that's less likely.
553 				 * In any way, ubuf shouldn't be NULL.
554 				 */
555 				ubuf = ubuf->ctx ?
556 					(struct ubuf_info *) ubuf->ctx :
557 					head_ubuf;
558 			} else
559 				/* This frag was a local page, added to the
560 				 * array after the skb left netback.
561 				 */
562 				ubuf = head_ubuf;
563 		}
564 		xenvif_gop_frag_copy(queue, skb, npo,
565 				     skb_frag_page(&skb_shinfo(skb)->frags[i]),
566 				     skb_frag_size(&skb_shinfo(skb)->frags[i]),
567 				     skb_shinfo(skb)->frags[i].page_offset,
568 				     &head,
569 				     foreign_queue,
570 				     foreign_queue ? foreign_gref : UINT_MAX);
571 	}
572 
573 	return npo->meta_prod - old_meta_prod;
574 }
575 
576 /*
577  * This is a twin to xenvif_gop_skb.  Assume that xenvif_gop_skb was
578  * used to set up the operations on the top of
579  * netrx_pending_operations, which have since been done.  Check that
580  * they didn't give any errors and advance over them.
581  */
582 static int xenvif_check_gop(struct xenvif *vif, int nr_meta_slots,
583 			    struct netrx_pending_operations *npo)
584 {
585 	struct gnttab_copy     *copy_op;
586 	int status = XEN_NETIF_RSP_OKAY;
587 	int i;
588 
589 	for (i = 0; i < nr_meta_slots; i++) {
590 		copy_op = npo->copy + npo->copy_cons++;
591 		if (copy_op->status != GNTST_okay) {
592 			netdev_dbg(vif->dev,
593 				   "Bad status %d from copy to DOM%d.\n",
594 				   copy_op->status, vif->domid);
595 			status = XEN_NETIF_RSP_ERROR;
596 		}
597 	}
598 
599 	return status;
600 }
601 
602 static void xenvif_add_frag_responses(struct xenvif_queue *queue, int status,
603 				      struct xenvif_rx_meta *meta,
604 				      int nr_meta_slots)
605 {
606 	int i;
607 	unsigned long offset;
608 
609 	/* No fragments used */
610 	if (nr_meta_slots <= 1)
611 		return;
612 
613 	nr_meta_slots--;
614 
615 	for (i = 0; i < nr_meta_slots; i++) {
616 		int flags;
617 		if (i == nr_meta_slots - 1)
618 			flags = 0;
619 		else
620 			flags = XEN_NETRXF_more_data;
621 
622 		offset = 0;
623 		make_rx_response(queue, meta[i].id, status, offset,
624 				 meta[i].size, flags);
625 	}
626 }
627 
628 void xenvif_kick_thread(struct xenvif_queue *queue)
629 {
630 	wake_up(&queue->wq);
631 }
632 
633 static void xenvif_rx_action(struct xenvif_queue *queue)
634 {
635 	s8 status;
636 	u16 flags;
637 	struct xen_netif_rx_response *resp;
638 	struct sk_buff_head rxq;
639 	struct sk_buff *skb;
640 	LIST_HEAD(notify);
641 	int ret;
642 	unsigned long offset;
643 	bool need_to_notify = false;
644 
645 	struct netrx_pending_operations npo = {
646 		.copy  = queue->grant_copy_op,
647 		.meta  = queue->meta,
648 	};
649 
650 	skb_queue_head_init(&rxq);
651 
652 	while (xenvif_rx_ring_slots_available(queue, XEN_NETBK_RX_SLOTS_MAX)
653 	       && (skb = xenvif_rx_dequeue(queue)) != NULL) {
654 		RING_IDX max_slots_needed;
655 		RING_IDX old_req_cons;
656 		RING_IDX ring_slots_used;
657 		int i;
658 
659 		queue->last_rx_time = jiffies;
660 
661 		/* We need a cheap worse case estimate for the number of
662 		 * slots we'll use.
663 		 */
664 
665 		max_slots_needed = DIV_ROUND_UP(offset_in_page(skb->data) +
666 						skb_headlen(skb),
667 						PAGE_SIZE);
668 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
669 			unsigned int size;
670 			unsigned int offset;
671 
672 			size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
673 			offset = skb_shinfo(skb)->frags[i].page_offset;
674 
675 			/* For a worse-case estimate we need to factor in
676 			 * the fragment page offset as this will affect the
677 			 * number of times xenvif_gop_frag_copy() will
678 			 * call start_new_rx_buffer().
679 			 */
680 			max_slots_needed += DIV_ROUND_UP(offset + size,
681 							 PAGE_SIZE);
682 		}
683 
684 		/* To avoid the estimate becoming too pessimal for some
685 		 * frontends that limit posted rx requests, cap the estimate
686 		 * at MAX_SKB_FRAGS. In this case netback will fully coalesce
687 		 * the skb into the provided slots.
688 		 */
689 		if (max_slots_needed > MAX_SKB_FRAGS) {
690 			max_slots_needed = MAX_SKB_FRAGS;
691 			XENVIF_RX_CB(skb)->full_coalesce = true;
692 		} else {
693 			XENVIF_RX_CB(skb)->full_coalesce = false;
694 		}
695 
696 		/* We may need one more slot for GSO metadata */
697 		if (skb_is_gso(skb) &&
698 		   (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4 ||
699 		    skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6))
700 			max_slots_needed++;
701 
702 		old_req_cons = queue->rx.req_cons;
703 		XENVIF_RX_CB(skb)->meta_slots_used = xenvif_gop_skb(skb, &npo, queue);
704 		ring_slots_used = queue->rx.req_cons - old_req_cons;
705 
706 		BUG_ON(ring_slots_used > max_slots_needed);
707 
708 		__skb_queue_tail(&rxq, skb);
709 	}
710 
711 	BUG_ON(npo.meta_prod > ARRAY_SIZE(queue->meta));
712 
713 	if (!npo.copy_prod)
714 		goto done;
715 
716 	BUG_ON(npo.copy_prod > MAX_GRANT_COPY_OPS);
717 	gnttab_batch_copy(queue->grant_copy_op, npo.copy_prod);
718 
719 	while ((skb = __skb_dequeue(&rxq)) != NULL) {
720 
721 		if ((1 << queue->meta[npo.meta_cons].gso_type) &
722 		    queue->vif->gso_prefix_mask) {
723 			resp = RING_GET_RESPONSE(&queue->rx,
724 						 queue->rx.rsp_prod_pvt++);
725 
726 			resp->flags = XEN_NETRXF_gso_prefix | XEN_NETRXF_more_data;
727 
728 			resp->offset = queue->meta[npo.meta_cons].gso_size;
729 			resp->id = queue->meta[npo.meta_cons].id;
730 			resp->status = XENVIF_RX_CB(skb)->meta_slots_used;
731 
732 			npo.meta_cons++;
733 			XENVIF_RX_CB(skb)->meta_slots_used--;
734 		}
735 
736 
737 		queue->stats.tx_bytes += skb->len;
738 		queue->stats.tx_packets++;
739 
740 		status = xenvif_check_gop(queue->vif,
741 					  XENVIF_RX_CB(skb)->meta_slots_used,
742 					  &npo);
743 
744 		if (XENVIF_RX_CB(skb)->meta_slots_used == 1)
745 			flags = 0;
746 		else
747 			flags = XEN_NETRXF_more_data;
748 
749 		if (skb->ip_summed == CHECKSUM_PARTIAL) /* local packet? */
750 			flags |= XEN_NETRXF_csum_blank | XEN_NETRXF_data_validated;
751 		else if (skb->ip_summed == CHECKSUM_UNNECESSARY)
752 			/* remote but checksummed. */
753 			flags |= XEN_NETRXF_data_validated;
754 
755 		offset = 0;
756 		resp = make_rx_response(queue, queue->meta[npo.meta_cons].id,
757 					status, offset,
758 					queue->meta[npo.meta_cons].size,
759 					flags);
760 
761 		if ((1 << queue->meta[npo.meta_cons].gso_type) &
762 		    queue->vif->gso_mask) {
763 			struct xen_netif_extra_info *gso =
764 				(struct xen_netif_extra_info *)
765 				RING_GET_RESPONSE(&queue->rx,
766 						  queue->rx.rsp_prod_pvt++);
767 
768 			resp->flags |= XEN_NETRXF_extra_info;
769 
770 			gso->u.gso.type = queue->meta[npo.meta_cons].gso_type;
771 			gso->u.gso.size = queue->meta[npo.meta_cons].gso_size;
772 			gso->u.gso.pad = 0;
773 			gso->u.gso.features = 0;
774 
775 			gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
776 			gso->flags = 0;
777 		}
778 
779 		xenvif_add_frag_responses(queue, status,
780 					  queue->meta + npo.meta_cons + 1,
781 					  XENVIF_RX_CB(skb)->meta_slots_used);
782 
783 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&queue->rx, ret);
784 
785 		need_to_notify |= !!ret;
786 
787 		npo.meta_cons += XENVIF_RX_CB(skb)->meta_slots_used;
788 		dev_kfree_skb(skb);
789 	}
790 
791 done:
792 	if (need_to_notify)
793 		notify_remote_via_irq(queue->rx_irq);
794 }
795 
796 void xenvif_napi_schedule_or_enable_events(struct xenvif_queue *queue)
797 {
798 	int more_to_do;
799 
800 	RING_FINAL_CHECK_FOR_REQUESTS(&queue->tx, more_to_do);
801 
802 	if (more_to_do)
803 		napi_schedule(&queue->napi);
804 }
805 
806 static void tx_add_credit(struct xenvif_queue *queue)
807 {
808 	unsigned long max_burst, max_credit;
809 
810 	/*
811 	 * Allow a burst big enough to transmit a jumbo packet of up to 128kB.
812 	 * Otherwise the interface can seize up due to insufficient credit.
813 	 */
814 	max_burst = RING_GET_REQUEST(&queue->tx, queue->tx.req_cons)->size;
815 	max_burst = min(max_burst, 131072UL);
816 	max_burst = max(max_burst, queue->credit_bytes);
817 
818 	/* Take care that adding a new chunk of credit doesn't wrap to zero. */
819 	max_credit = queue->remaining_credit + queue->credit_bytes;
820 	if (max_credit < queue->remaining_credit)
821 		max_credit = ULONG_MAX; /* wrapped: clamp to ULONG_MAX */
822 
823 	queue->remaining_credit = min(max_credit, max_burst);
824 }
825 
826 static void tx_credit_callback(unsigned long data)
827 {
828 	struct xenvif_queue *queue = (struct xenvif_queue *)data;
829 	tx_add_credit(queue);
830 	xenvif_napi_schedule_or_enable_events(queue);
831 }
832 
833 static void xenvif_tx_err(struct xenvif_queue *queue,
834 			  struct xen_netif_tx_request *txp, RING_IDX end)
835 {
836 	RING_IDX cons = queue->tx.req_cons;
837 	unsigned long flags;
838 
839 	do {
840 		spin_lock_irqsave(&queue->response_lock, flags);
841 		make_tx_response(queue, txp, XEN_NETIF_RSP_ERROR);
842 		spin_unlock_irqrestore(&queue->response_lock, flags);
843 		if (cons == end)
844 			break;
845 		txp = RING_GET_REQUEST(&queue->tx, cons++);
846 	} while (1);
847 	queue->tx.req_cons = cons;
848 }
849 
850 static void xenvif_fatal_tx_err(struct xenvif *vif)
851 {
852 	netdev_err(vif->dev, "fatal error; disabling device\n");
853 	vif->disabled = true;
854 	/* Disable the vif from queue 0's kthread */
855 	if (vif->queues)
856 		xenvif_kick_thread(&vif->queues[0]);
857 }
858 
859 static int xenvif_count_requests(struct xenvif_queue *queue,
860 				 struct xen_netif_tx_request *first,
861 				 struct xen_netif_tx_request *txp,
862 				 int work_to_do)
863 {
864 	RING_IDX cons = queue->tx.req_cons;
865 	int slots = 0;
866 	int drop_err = 0;
867 	int more_data;
868 
869 	if (!(first->flags & XEN_NETTXF_more_data))
870 		return 0;
871 
872 	do {
873 		struct xen_netif_tx_request dropped_tx = { 0 };
874 
875 		if (slots >= work_to_do) {
876 			netdev_err(queue->vif->dev,
877 				   "Asked for %d slots but exceeds this limit\n",
878 				   work_to_do);
879 			xenvif_fatal_tx_err(queue->vif);
880 			return -ENODATA;
881 		}
882 
883 		/* This guest is really using too many slots and
884 		 * considered malicious.
885 		 */
886 		if (unlikely(slots >= fatal_skb_slots)) {
887 			netdev_err(queue->vif->dev,
888 				   "Malicious frontend using %d slots, threshold %u\n",
889 				   slots, fatal_skb_slots);
890 			xenvif_fatal_tx_err(queue->vif);
891 			return -E2BIG;
892 		}
893 
894 		/* Xen network protocol had implicit dependency on
895 		 * MAX_SKB_FRAGS. XEN_NETBK_LEGACY_SLOTS_MAX is set to
896 		 * the historical MAX_SKB_FRAGS value 18 to honor the
897 		 * same behavior as before. Any packet using more than
898 		 * 18 slots but less than fatal_skb_slots slots is
899 		 * dropped
900 		 */
901 		if (!drop_err && slots >= XEN_NETBK_LEGACY_SLOTS_MAX) {
902 			if (net_ratelimit())
903 				netdev_dbg(queue->vif->dev,
904 					   "Too many slots (%d) exceeding limit (%d), dropping packet\n",
905 					   slots, XEN_NETBK_LEGACY_SLOTS_MAX);
906 			drop_err = -E2BIG;
907 		}
908 
909 		if (drop_err)
910 			txp = &dropped_tx;
911 
912 		memcpy(txp, RING_GET_REQUEST(&queue->tx, cons + slots),
913 		       sizeof(*txp));
914 
915 		/* If the guest submitted a frame >= 64 KiB then
916 		 * first->size overflowed and following slots will
917 		 * appear to be larger than the frame.
918 		 *
919 		 * This cannot be fatal error as there are buggy
920 		 * frontends that do this.
921 		 *
922 		 * Consume all slots and drop the packet.
923 		 */
924 		if (!drop_err && txp->size > first->size) {
925 			if (net_ratelimit())
926 				netdev_dbg(queue->vif->dev,
927 					   "Invalid tx request, slot size %u > remaining size %u\n",
928 					   txp->size, first->size);
929 			drop_err = -EIO;
930 		}
931 
932 		first->size -= txp->size;
933 		slots++;
934 
935 		if (unlikely((txp->offset + txp->size) > PAGE_SIZE)) {
936 			netdev_err(queue->vif->dev, "Cross page boundary, txp->offset: %x, size: %u\n",
937 				 txp->offset, txp->size);
938 			xenvif_fatal_tx_err(queue->vif);
939 			return -EINVAL;
940 		}
941 
942 		more_data = txp->flags & XEN_NETTXF_more_data;
943 
944 		if (!drop_err)
945 			txp++;
946 
947 	} while (more_data);
948 
949 	if (drop_err) {
950 		xenvif_tx_err(queue, first, cons + slots);
951 		return drop_err;
952 	}
953 
954 	return slots;
955 }
956 
957 
958 struct xenvif_tx_cb {
959 	u16 pending_idx;
960 };
961 
962 #define XENVIF_TX_CB(skb) ((struct xenvif_tx_cb *)(skb)->cb)
963 
964 static inline void xenvif_tx_create_map_op(struct xenvif_queue *queue,
965 					  u16 pending_idx,
966 					  struct xen_netif_tx_request *txp,
967 					  struct gnttab_map_grant_ref *mop)
968 {
969 	queue->pages_to_map[mop-queue->tx_map_ops] = queue->mmap_pages[pending_idx];
970 	gnttab_set_map_op(mop, idx_to_kaddr(queue, pending_idx),
971 			  GNTMAP_host_map | GNTMAP_readonly,
972 			  txp->gref, queue->vif->domid);
973 
974 	memcpy(&queue->pending_tx_info[pending_idx].req, txp,
975 	       sizeof(*txp));
976 }
977 
978 static inline struct sk_buff *xenvif_alloc_skb(unsigned int size)
979 {
980 	struct sk_buff *skb =
981 		alloc_skb(size + NET_SKB_PAD + NET_IP_ALIGN,
982 			  GFP_ATOMIC | __GFP_NOWARN);
983 	if (unlikely(skb == NULL))
984 		return NULL;
985 
986 	/* Packets passed to netif_rx() must have some headroom. */
987 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
988 
989 	/* Initialize it here to avoid later surprises */
990 	skb_shinfo(skb)->destructor_arg = NULL;
991 
992 	return skb;
993 }
994 
995 static struct gnttab_map_grant_ref *xenvif_get_requests(struct xenvif_queue *queue,
996 							struct sk_buff *skb,
997 							struct xen_netif_tx_request *txp,
998 							struct gnttab_map_grant_ref *gop)
999 {
1000 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1001 	skb_frag_t *frags = shinfo->frags;
1002 	u16 pending_idx = XENVIF_TX_CB(skb)->pending_idx;
1003 	int start;
1004 	pending_ring_idx_t index;
1005 	unsigned int nr_slots, frag_overflow = 0;
1006 
1007 	/* At this point shinfo->nr_frags is in fact the number of
1008 	 * slots, which can be as large as XEN_NETBK_LEGACY_SLOTS_MAX.
1009 	 */
1010 	if (shinfo->nr_frags > MAX_SKB_FRAGS) {
1011 		frag_overflow = shinfo->nr_frags - MAX_SKB_FRAGS;
1012 		BUG_ON(frag_overflow > MAX_SKB_FRAGS);
1013 		shinfo->nr_frags = MAX_SKB_FRAGS;
1014 	}
1015 	nr_slots = shinfo->nr_frags;
1016 
1017 	/* Skip first skb fragment if it is on same page as header fragment. */
1018 	start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx);
1019 
1020 	for (shinfo->nr_frags = start; shinfo->nr_frags < nr_slots;
1021 	     shinfo->nr_frags++, txp++, gop++) {
1022 		index = pending_index(queue->pending_cons++);
1023 		pending_idx = queue->pending_ring[index];
1024 		xenvif_tx_create_map_op(queue, pending_idx, txp, gop);
1025 		frag_set_pending_idx(&frags[shinfo->nr_frags], pending_idx);
1026 	}
1027 
1028 	if (frag_overflow) {
1029 		struct sk_buff *nskb = xenvif_alloc_skb(0);
1030 		if (unlikely(nskb == NULL)) {
1031 			if (net_ratelimit())
1032 				netdev_err(queue->vif->dev,
1033 					   "Can't allocate the frag_list skb.\n");
1034 			return NULL;
1035 		}
1036 
1037 		shinfo = skb_shinfo(nskb);
1038 		frags = shinfo->frags;
1039 
1040 		for (shinfo->nr_frags = 0; shinfo->nr_frags < frag_overflow;
1041 		     shinfo->nr_frags++, txp++, gop++) {
1042 			index = pending_index(queue->pending_cons++);
1043 			pending_idx = queue->pending_ring[index];
1044 			xenvif_tx_create_map_op(queue, pending_idx, txp, gop);
1045 			frag_set_pending_idx(&frags[shinfo->nr_frags],
1046 					     pending_idx);
1047 		}
1048 
1049 		skb_shinfo(skb)->frag_list = nskb;
1050 	}
1051 
1052 	return gop;
1053 }
1054 
1055 static inline void xenvif_grant_handle_set(struct xenvif_queue *queue,
1056 					   u16 pending_idx,
1057 					   grant_handle_t handle)
1058 {
1059 	if (unlikely(queue->grant_tx_handle[pending_idx] !=
1060 		     NETBACK_INVALID_HANDLE)) {
1061 		netdev_err(queue->vif->dev,
1062 			   "Trying to overwrite active handle! pending_idx: %x\n",
1063 			   pending_idx);
1064 		BUG();
1065 	}
1066 	queue->grant_tx_handle[pending_idx] = handle;
1067 }
1068 
1069 static inline void xenvif_grant_handle_reset(struct xenvif_queue *queue,
1070 					     u16 pending_idx)
1071 {
1072 	if (unlikely(queue->grant_tx_handle[pending_idx] ==
1073 		     NETBACK_INVALID_HANDLE)) {
1074 		netdev_err(queue->vif->dev,
1075 			   "Trying to unmap invalid handle! pending_idx: %x\n",
1076 			   pending_idx);
1077 		BUG();
1078 	}
1079 	queue->grant_tx_handle[pending_idx] = NETBACK_INVALID_HANDLE;
1080 }
1081 
1082 static int xenvif_tx_check_gop(struct xenvif_queue *queue,
1083 			       struct sk_buff *skb,
1084 			       struct gnttab_map_grant_ref **gopp_map,
1085 			       struct gnttab_copy **gopp_copy)
1086 {
1087 	struct gnttab_map_grant_ref *gop_map = *gopp_map;
1088 	u16 pending_idx = XENVIF_TX_CB(skb)->pending_idx;
1089 	/* This always points to the shinfo of the skb being checked, which
1090 	 * could be either the first or the one on the frag_list
1091 	 */
1092 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1093 	/* If this is non-NULL, we are currently checking the frag_list skb, and
1094 	 * this points to the shinfo of the first one
1095 	 */
1096 	struct skb_shared_info *first_shinfo = NULL;
1097 	int nr_frags = shinfo->nr_frags;
1098 	const bool sharedslot = nr_frags &&
1099 				frag_get_pending_idx(&shinfo->frags[0]) == pending_idx;
1100 	int i, err;
1101 
1102 	/* Check status of header. */
1103 	err = (*gopp_copy)->status;
1104 	if (unlikely(err)) {
1105 		if (net_ratelimit())
1106 			netdev_dbg(queue->vif->dev,
1107 				   "Grant copy of header failed! status: %d pending_idx: %u ref: %u\n",
1108 				   (*gopp_copy)->status,
1109 				   pending_idx,
1110 				   (*gopp_copy)->source.u.ref);
1111 		/* The first frag might still have this slot mapped */
1112 		if (!sharedslot)
1113 			xenvif_idx_release(queue, pending_idx,
1114 					   XEN_NETIF_RSP_ERROR);
1115 	}
1116 	(*gopp_copy)++;
1117 
1118 check_frags:
1119 	for (i = 0; i < nr_frags; i++, gop_map++) {
1120 		int j, newerr;
1121 
1122 		pending_idx = frag_get_pending_idx(&shinfo->frags[i]);
1123 
1124 		/* Check error status: if okay then remember grant handle. */
1125 		newerr = gop_map->status;
1126 
1127 		if (likely(!newerr)) {
1128 			xenvif_grant_handle_set(queue,
1129 						pending_idx,
1130 						gop_map->handle);
1131 			/* Had a previous error? Invalidate this fragment. */
1132 			if (unlikely(err)) {
1133 				xenvif_idx_unmap(queue, pending_idx);
1134 				/* If the mapping of the first frag was OK, but
1135 				 * the header's copy failed, and they are
1136 				 * sharing a slot, send an error
1137 				 */
1138 				if (i == 0 && sharedslot)
1139 					xenvif_idx_release(queue, pending_idx,
1140 							   XEN_NETIF_RSP_ERROR);
1141 				else
1142 					xenvif_idx_release(queue, pending_idx,
1143 							   XEN_NETIF_RSP_OKAY);
1144 			}
1145 			continue;
1146 		}
1147 
1148 		/* Error on this fragment: respond to client with an error. */
1149 		if (net_ratelimit())
1150 			netdev_dbg(queue->vif->dev,
1151 				   "Grant map of %d. frag failed! status: %d pending_idx: %u ref: %u\n",
1152 				   i,
1153 				   gop_map->status,
1154 				   pending_idx,
1155 				   gop_map->ref);
1156 
1157 		xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_ERROR);
1158 
1159 		/* Not the first error? Preceding frags already invalidated. */
1160 		if (err)
1161 			continue;
1162 
1163 		/* First error: if the header haven't shared a slot with the
1164 		 * first frag, release it as well.
1165 		 */
1166 		if (!sharedslot)
1167 			xenvif_idx_release(queue,
1168 					   XENVIF_TX_CB(skb)->pending_idx,
1169 					   XEN_NETIF_RSP_OKAY);
1170 
1171 		/* Invalidate preceding fragments of this skb. */
1172 		for (j = 0; j < i; j++) {
1173 			pending_idx = frag_get_pending_idx(&shinfo->frags[j]);
1174 			xenvif_idx_unmap(queue, pending_idx);
1175 			xenvif_idx_release(queue, pending_idx,
1176 					   XEN_NETIF_RSP_OKAY);
1177 		}
1178 
1179 		/* And if we found the error while checking the frag_list, unmap
1180 		 * the first skb's frags
1181 		 */
1182 		if (first_shinfo) {
1183 			for (j = 0; j < first_shinfo->nr_frags; j++) {
1184 				pending_idx = frag_get_pending_idx(&first_shinfo->frags[j]);
1185 				xenvif_idx_unmap(queue, pending_idx);
1186 				xenvif_idx_release(queue, pending_idx,
1187 						   XEN_NETIF_RSP_OKAY);
1188 			}
1189 		}
1190 
1191 		/* Remember the error: invalidate all subsequent fragments. */
1192 		err = newerr;
1193 	}
1194 
1195 	if (skb_has_frag_list(skb) && !first_shinfo) {
1196 		first_shinfo = skb_shinfo(skb);
1197 		shinfo = skb_shinfo(skb_shinfo(skb)->frag_list);
1198 		nr_frags = shinfo->nr_frags;
1199 
1200 		goto check_frags;
1201 	}
1202 
1203 	*gopp_map = gop_map;
1204 	return err;
1205 }
1206 
1207 static void xenvif_fill_frags(struct xenvif_queue *queue, struct sk_buff *skb)
1208 {
1209 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1210 	int nr_frags = shinfo->nr_frags;
1211 	int i;
1212 	u16 prev_pending_idx = INVALID_PENDING_IDX;
1213 
1214 	for (i = 0; i < nr_frags; i++) {
1215 		skb_frag_t *frag = shinfo->frags + i;
1216 		struct xen_netif_tx_request *txp;
1217 		struct page *page;
1218 		u16 pending_idx;
1219 
1220 		pending_idx = frag_get_pending_idx(frag);
1221 
1222 		/* If this is not the first frag, chain it to the previous*/
1223 		if (prev_pending_idx == INVALID_PENDING_IDX)
1224 			skb_shinfo(skb)->destructor_arg =
1225 				&callback_param(queue, pending_idx);
1226 		else
1227 			callback_param(queue, prev_pending_idx).ctx =
1228 				&callback_param(queue, pending_idx);
1229 
1230 		callback_param(queue, pending_idx).ctx = NULL;
1231 		prev_pending_idx = pending_idx;
1232 
1233 		txp = &queue->pending_tx_info[pending_idx].req;
1234 		page = virt_to_page(idx_to_kaddr(queue, pending_idx));
1235 		__skb_fill_page_desc(skb, i, page, txp->offset, txp->size);
1236 		skb->len += txp->size;
1237 		skb->data_len += txp->size;
1238 		skb->truesize += txp->size;
1239 
1240 		/* Take an extra reference to offset network stack's put_page */
1241 		get_page(queue->mmap_pages[pending_idx]);
1242 	}
1243 	/* FIXME: __skb_fill_page_desc set this to true because page->pfmemalloc
1244 	 * overlaps with "index", and "mapping" is not set. I think mapping
1245 	 * should be set. If delivered to local stack, it would drop this
1246 	 * skb in sk_filter unless the socket has the right to use it.
1247 	 */
1248 	skb->pfmemalloc	= false;
1249 }
1250 
1251 static int xenvif_get_extras(struct xenvif_queue *queue,
1252 				struct xen_netif_extra_info *extras,
1253 				int work_to_do)
1254 {
1255 	struct xen_netif_extra_info extra;
1256 	RING_IDX cons = queue->tx.req_cons;
1257 
1258 	do {
1259 		if (unlikely(work_to_do-- <= 0)) {
1260 			netdev_err(queue->vif->dev, "Missing extra info\n");
1261 			xenvif_fatal_tx_err(queue->vif);
1262 			return -EBADR;
1263 		}
1264 
1265 		memcpy(&extra, RING_GET_REQUEST(&queue->tx, cons),
1266 		       sizeof(extra));
1267 		if (unlikely(!extra.type ||
1268 			     extra.type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1269 			queue->tx.req_cons = ++cons;
1270 			netdev_err(queue->vif->dev,
1271 				   "Invalid extra type: %d\n", extra.type);
1272 			xenvif_fatal_tx_err(queue->vif);
1273 			return -EINVAL;
1274 		}
1275 
1276 		memcpy(&extras[extra.type - 1], &extra, sizeof(extra));
1277 		queue->tx.req_cons = ++cons;
1278 	} while (extra.flags & XEN_NETIF_EXTRA_FLAG_MORE);
1279 
1280 	return work_to_do;
1281 }
1282 
1283 static int xenvif_set_skb_gso(struct xenvif *vif,
1284 			      struct sk_buff *skb,
1285 			      struct xen_netif_extra_info *gso)
1286 {
1287 	if (!gso->u.gso.size) {
1288 		netdev_err(vif->dev, "GSO size must not be zero.\n");
1289 		xenvif_fatal_tx_err(vif);
1290 		return -EINVAL;
1291 	}
1292 
1293 	switch (gso->u.gso.type) {
1294 	case XEN_NETIF_GSO_TYPE_TCPV4:
1295 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1296 		break;
1297 	case XEN_NETIF_GSO_TYPE_TCPV6:
1298 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1299 		break;
1300 	default:
1301 		netdev_err(vif->dev, "Bad GSO type %d.\n", gso->u.gso.type);
1302 		xenvif_fatal_tx_err(vif);
1303 		return -EINVAL;
1304 	}
1305 
1306 	skb_shinfo(skb)->gso_size = gso->u.gso.size;
1307 	/* gso_segs will be calculated later */
1308 
1309 	return 0;
1310 }
1311 
1312 static int checksum_setup(struct xenvif_queue *queue, struct sk_buff *skb)
1313 {
1314 	bool recalculate_partial_csum = false;
1315 
1316 	/* A GSO SKB must be CHECKSUM_PARTIAL. However some buggy
1317 	 * peers can fail to set NETRXF_csum_blank when sending a GSO
1318 	 * frame. In this case force the SKB to CHECKSUM_PARTIAL and
1319 	 * recalculate the partial checksum.
1320 	 */
1321 	if (skb->ip_summed != CHECKSUM_PARTIAL && skb_is_gso(skb)) {
1322 		queue->stats.rx_gso_checksum_fixup++;
1323 		skb->ip_summed = CHECKSUM_PARTIAL;
1324 		recalculate_partial_csum = true;
1325 	}
1326 
1327 	/* A non-CHECKSUM_PARTIAL SKB does not require setup. */
1328 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1329 		return 0;
1330 
1331 	return skb_checksum_setup(skb, recalculate_partial_csum);
1332 }
1333 
1334 static bool tx_credit_exceeded(struct xenvif_queue *queue, unsigned size)
1335 {
1336 	u64 now = get_jiffies_64();
1337 	u64 next_credit = queue->credit_window_start +
1338 		msecs_to_jiffies(queue->credit_usec / 1000);
1339 
1340 	/* Timer could already be pending in rare cases. */
1341 	if (timer_pending(&queue->credit_timeout))
1342 		return true;
1343 
1344 	/* Passed the point where we can replenish credit? */
1345 	if (time_after_eq64(now, next_credit)) {
1346 		queue->credit_window_start = now;
1347 		tx_add_credit(queue);
1348 	}
1349 
1350 	/* Still too big to send right now? Set a callback. */
1351 	if (size > queue->remaining_credit) {
1352 		queue->credit_timeout.data     =
1353 			(unsigned long)queue;
1354 		queue->credit_timeout.function =
1355 			tx_credit_callback;
1356 		mod_timer(&queue->credit_timeout,
1357 			  next_credit);
1358 		queue->credit_window_start = next_credit;
1359 
1360 		return true;
1361 	}
1362 
1363 	return false;
1364 }
1365 
1366 static void xenvif_tx_build_gops(struct xenvif_queue *queue,
1367 				     int budget,
1368 				     unsigned *copy_ops,
1369 				     unsigned *map_ops)
1370 {
1371 	struct gnttab_map_grant_ref *gop = queue->tx_map_ops, *request_gop;
1372 	struct sk_buff *skb;
1373 	int ret;
1374 
1375 	while (skb_queue_len(&queue->tx_queue) < budget) {
1376 		struct xen_netif_tx_request txreq;
1377 		struct xen_netif_tx_request txfrags[XEN_NETBK_LEGACY_SLOTS_MAX];
1378 		struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX-1];
1379 		u16 pending_idx;
1380 		RING_IDX idx;
1381 		int work_to_do;
1382 		unsigned int data_len;
1383 		pending_ring_idx_t index;
1384 
1385 		if (queue->tx.sring->req_prod - queue->tx.req_cons >
1386 		    XEN_NETIF_TX_RING_SIZE) {
1387 			netdev_err(queue->vif->dev,
1388 				   "Impossible number of requests. "
1389 				   "req_prod %d, req_cons %d, size %ld\n",
1390 				   queue->tx.sring->req_prod, queue->tx.req_cons,
1391 				   XEN_NETIF_TX_RING_SIZE);
1392 			xenvif_fatal_tx_err(queue->vif);
1393 			break;
1394 		}
1395 
1396 		work_to_do = RING_HAS_UNCONSUMED_REQUESTS(&queue->tx);
1397 		if (!work_to_do)
1398 			break;
1399 
1400 		idx = queue->tx.req_cons;
1401 		rmb(); /* Ensure that we see the request before we copy it. */
1402 		memcpy(&txreq, RING_GET_REQUEST(&queue->tx, idx), sizeof(txreq));
1403 
1404 		/* Credit-based scheduling. */
1405 		if (txreq.size > queue->remaining_credit &&
1406 		    tx_credit_exceeded(queue, txreq.size))
1407 			break;
1408 
1409 		queue->remaining_credit -= txreq.size;
1410 
1411 		work_to_do--;
1412 		queue->tx.req_cons = ++idx;
1413 
1414 		memset(extras, 0, sizeof(extras));
1415 		if (txreq.flags & XEN_NETTXF_extra_info) {
1416 			work_to_do = xenvif_get_extras(queue, extras,
1417 						       work_to_do);
1418 			idx = queue->tx.req_cons;
1419 			if (unlikely(work_to_do < 0))
1420 				break;
1421 		}
1422 
1423 		ret = xenvif_count_requests(queue, &txreq, txfrags, work_to_do);
1424 		if (unlikely(ret < 0))
1425 			break;
1426 
1427 		idx += ret;
1428 
1429 		if (unlikely(txreq.size < ETH_HLEN)) {
1430 			netdev_dbg(queue->vif->dev,
1431 				   "Bad packet size: %d\n", txreq.size);
1432 			xenvif_tx_err(queue, &txreq, idx);
1433 			break;
1434 		}
1435 
1436 		/* No crossing a page as the payload mustn't fragment. */
1437 		if (unlikely((txreq.offset + txreq.size) > PAGE_SIZE)) {
1438 			netdev_err(queue->vif->dev,
1439 				   "txreq.offset: %x, size: %u, end: %lu\n",
1440 				   txreq.offset, txreq.size,
1441 				   (txreq.offset&~PAGE_MASK) + txreq.size);
1442 			xenvif_fatal_tx_err(queue->vif);
1443 			break;
1444 		}
1445 
1446 		index = pending_index(queue->pending_cons);
1447 		pending_idx = queue->pending_ring[index];
1448 
1449 		data_len = (txreq.size > PKT_PROT_LEN &&
1450 			    ret < XEN_NETBK_LEGACY_SLOTS_MAX) ?
1451 			PKT_PROT_LEN : txreq.size;
1452 
1453 		skb = xenvif_alloc_skb(data_len);
1454 		if (unlikely(skb == NULL)) {
1455 			netdev_dbg(queue->vif->dev,
1456 				   "Can't allocate a skb in start_xmit.\n");
1457 			xenvif_tx_err(queue, &txreq, idx);
1458 			break;
1459 		}
1460 
1461 		if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) {
1462 			struct xen_netif_extra_info *gso;
1463 			gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1];
1464 
1465 			if (xenvif_set_skb_gso(queue->vif, skb, gso)) {
1466 				/* Failure in xenvif_set_skb_gso is fatal. */
1467 				kfree_skb(skb);
1468 				break;
1469 			}
1470 		}
1471 
1472 		XENVIF_TX_CB(skb)->pending_idx = pending_idx;
1473 
1474 		__skb_put(skb, data_len);
1475 		queue->tx_copy_ops[*copy_ops].source.u.ref = txreq.gref;
1476 		queue->tx_copy_ops[*copy_ops].source.domid = queue->vif->domid;
1477 		queue->tx_copy_ops[*copy_ops].source.offset = txreq.offset;
1478 
1479 		queue->tx_copy_ops[*copy_ops].dest.u.gmfn =
1480 			virt_to_mfn(skb->data);
1481 		queue->tx_copy_ops[*copy_ops].dest.domid = DOMID_SELF;
1482 		queue->tx_copy_ops[*copy_ops].dest.offset =
1483 			offset_in_page(skb->data);
1484 
1485 		queue->tx_copy_ops[*copy_ops].len = data_len;
1486 		queue->tx_copy_ops[*copy_ops].flags = GNTCOPY_source_gref;
1487 
1488 		(*copy_ops)++;
1489 
1490 		skb_shinfo(skb)->nr_frags = ret;
1491 		if (data_len < txreq.size) {
1492 			skb_shinfo(skb)->nr_frags++;
1493 			frag_set_pending_idx(&skb_shinfo(skb)->frags[0],
1494 					     pending_idx);
1495 			xenvif_tx_create_map_op(queue, pending_idx, &txreq, gop);
1496 			gop++;
1497 		} else {
1498 			frag_set_pending_idx(&skb_shinfo(skb)->frags[0],
1499 					     INVALID_PENDING_IDX);
1500 			memcpy(&queue->pending_tx_info[pending_idx].req, &txreq,
1501 			       sizeof(txreq));
1502 		}
1503 
1504 		queue->pending_cons++;
1505 
1506 		request_gop = xenvif_get_requests(queue, skb, txfrags, gop);
1507 		if (request_gop == NULL) {
1508 			kfree_skb(skb);
1509 			xenvif_tx_err(queue, &txreq, idx);
1510 			break;
1511 		}
1512 		gop = request_gop;
1513 
1514 		__skb_queue_tail(&queue->tx_queue, skb);
1515 
1516 		queue->tx.req_cons = idx;
1517 
1518 		if (((gop-queue->tx_map_ops) >= ARRAY_SIZE(queue->tx_map_ops)) ||
1519 		    (*copy_ops >= ARRAY_SIZE(queue->tx_copy_ops)))
1520 			break;
1521 	}
1522 
1523 	(*map_ops) = gop - queue->tx_map_ops;
1524 	return;
1525 }
1526 
1527 /* Consolidate skb with a frag_list into a brand new one with local pages on
1528  * frags. Returns 0 or -ENOMEM if can't allocate new pages.
1529  */
1530 static int xenvif_handle_frag_list(struct xenvif_queue *queue, struct sk_buff *skb)
1531 {
1532 	unsigned int offset = skb_headlen(skb);
1533 	skb_frag_t frags[MAX_SKB_FRAGS];
1534 	int i;
1535 	struct ubuf_info *uarg;
1536 	struct sk_buff *nskb = skb_shinfo(skb)->frag_list;
1537 
1538 	queue->stats.tx_zerocopy_sent += 2;
1539 	queue->stats.tx_frag_overflow++;
1540 
1541 	xenvif_fill_frags(queue, nskb);
1542 	/* Subtract frags size, we will correct it later */
1543 	skb->truesize -= skb->data_len;
1544 	skb->len += nskb->len;
1545 	skb->data_len += nskb->len;
1546 
1547 	/* create a brand new frags array and coalesce there */
1548 	for (i = 0; offset < skb->len; i++) {
1549 		struct page *page;
1550 		unsigned int len;
1551 
1552 		BUG_ON(i >= MAX_SKB_FRAGS);
1553 		page = alloc_page(GFP_ATOMIC|__GFP_COLD);
1554 		if (!page) {
1555 			int j;
1556 			skb->truesize += skb->data_len;
1557 			for (j = 0; j < i; j++)
1558 				put_page(frags[j].page.p);
1559 			return -ENOMEM;
1560 		}
1561 
1562 		if (offset + PAGE_SIZE < skb->len)
1563 			len = PAGE_SIZE;
1564 		else
1565 			len = skb->len - offset;
1566 		if (skb_copy_bits(skb, offset, page_address(page), len))
1567 			BUG();
1568 
1569 		offset += len;
1570 		frags[i].page.p = page;
1571 		frags[i].page_offset = 0;
1572 		skb_frag_size_set(&frags[i], len);
1573 	}
1574 	/* swap out with old one */
1575 	memcpy(skb_shinfo(skb)->frags,
1576 	       frags,
1577 	       i * sizeof(skb_frag_t));
1578 	skb_shinfo(skb)->nr_frags = i;
1579 	skb->truesize += i * PAGE_SIZE;
1580 
1581 	/* remove traces of mapped pages and frag_list */
1582 	skb_frag_list_init(skb);
1583 	uarg = skb_shinfo(skb)->destructor_arg;
1584 	/* increase inflight counter to offset decrement in callback */
1585 	atomic_inc(&queue->inflight_packets);
1586 	uarg->callback(uarg, true);
1587 	skb_shinfo(skb)->destructor_arg = NULL;
1588 
1589 	xenvif_skb_zerocopy_prepare(queue, nskb);
1590 	kfree_skb(nskb);
1591 
1592 	return 0;
1593 }
1594 
1595 static int xenvif_tx_submit(struct xenvif_queue *queue)
1596 {
1597 	struct gnttab_map_grant_ref *gop_map = queue->tx_map_ops;
1598 	struct gnttab_copy *gop_copy = queue->tx_copy_ops;
1599 	struct sk_buff *skb;
1600 	int work_done = 0;
1601 
1602 	while ((skb = __skb_dequeue(&queue->tx_queue)) != NULL) {
1603 		struct xen_netif_tx_request *txp;
1604 		u16 pending_idx;
1605 		unsigned data_len;
1606 
1607 		pending_idx = XENVIF_TX_CB(skb)->pending_idx;
1608 		txp = &queue->pending_tx_info[pending_idx].req;
1609 
1610 		/* Check the remap error code. */
1611 		if (unlikely(xenvif_tx_check_gop(queue, skb, &gop_map, &gop_copy))) {
1612 			/* If there was an error, xenvif_tx_check_gop is
1613 			 * expected to release all the frags which were mapped,
1614 			 * so kfree_skb shouldn't do it again
1615 			 */
1616 			skb_shinfo(skb)->nr_frags = 0;
1617 			if (skb_has_frag_list(skb)) {
1618 				struct sk_buff *nskb =
1619 						skb_shinfo(skb)->frag_list;
1620 				skb_shinfo(nskb)->nr_frags = 0;
1621 			}
1622 			kfree_skb(skb);
1623 			continue;
1624 		}
1625 
1626 		data_len = skb->len;
1627 		callback_param(queue, pending_idx).ctx = NULL;
1628 		if (data_len < txp->size) {
1629 			/* Append the packet payload as a fragment. */
1630 			txp->offset += data_len;
1631 			txp->size -= data_len;
1632 		} else {
1633 			/* Schedule a response immediately. */
1634 			xenvif_idx_release(queue, pending_idx,
1635 					   XEN_NETIF_RSP_OKAY);
1636 		}
1637 
1638 		if (txp->flags & XEN_NETTXF_csum_blank)
1639 			skb->ip_summed = CHECKSUM_PARTIAL;
1640 		else if (txp->flags & XEN_NETTXF_data_validated)
1641 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1642 
1643 		xenvif_fill_frags(queue, skb);
1644 
1645 		if (unlikely(skb_has_frag_list(skb))) {
1646 			if (xenvif_handle_frag_list(queue, skb)) {
1647 				if (net_ratelimit())
1648 					netdev_err(queue->vif->dev,
1649 						   "Not enough memory to consolidate frag_list!\n");
1650 				xenvif_skb_zerocopy_prepare(queue, skb);
1651 				kfree_skb(skb);
1652 				continue;
1653 			}
1654 		}
1655 
1656 		if (skb_is_nonlinear(skb) && skb_headlen(skb) < PKT_PROT_LEN) {
1657 			int target = min_t(int, skb->len, PKT_PROT_LEN);
1658 			__pskb_pull_tail(skb, target - skb_headlen(skb));
1659 		}
1660 
1661 		skb->dev      = queue->vif->dev;
1662 		skb->protocol = eth_type_trans(skb, skb->dev);
1663 		skb_reset_network_header(skb);
1664 
1665 		if (checksum_setup(queue, skb)) {
1666 			netdev_dbg(queue->vif->dev,
1667 				   "Can't setup checksum in net_tx_action\n");
1668 			/* We have to set this flag to trigger the callback */
1669 			if (skb_shinfo(skb)->destructor_arg)
1670 				xenvif_skb_zerocopy_prepare(queue, skb);
1671 			kfree_skb(skb);
1672 			continue;
1673 		}
1674 
1675 		skb_probe_transport_header(skb, 0);
1676 
1677 		/* If the packet is GSO then we will have just set up the
1678 		 * transport header offset in checksum_setup so it's now
1679 		 * straightforward to calculate gso_segs.
1680 		 */
1681 		if (skb_is_gso(skb)) {
1682 			int mss = skb_shinfo(skb)->gso_size;
1683 			int hdrlen = skb_transport_header(skb) -
1684 				skb_mac_header(skb) +
1685 				tcp_hdrlen(skb);
1686 
1687 			skb_shinfo(skb)->gso_segs =
1688 				DIV_ROUND_UP(skb->len - hdrlen, mss);
1689 		}
1690 
1691 		queue->stats.rx_bytes += skb->len;
1692 		queue->stats.rx_packets++;
1693 
1694 		work_done++;
1695 
1696 		/* Set this flag right before netif_receive_skb, otherwise
1697 		 * someone might think this packet already left netback, and
1698 		 * do a skb_copy_ubufs while we are still in control of the
1699 		 * skb. E.g. the __pskb_pull_tail earlier can do such thing.
1700 		 */
1701 		if (skb_shinfo(skb)->destructor_arg) {
1702 			xenvif_skb_zerocopy_prepare(queue, skb);
1703 			queue->stats.tx_zerocopy_sent++;
1704 		}
1705 
1706 		netif_receive_skb(skb);
1707 	}
1708 
1709 	return work_done;
1710 }
1711 
1712 void xenvif_zerocopy_callback(struct ubuf_info *ubuf, bool zerocopy_success)
1713 {
1714 	unsigned long flags;
1715 	pending_ring_idx_t index;
1716 	struct xenvif_queue *queue = ubuf_to_queue(ubuf);
1717 
1718 	/* This is the only place where we grab this lock, to protect callbacks
1719 	 * from each other.
1720 	 */
1721 	spin_lock_irqsave(&queue->callback_lock, flags);
1722 	do {
1723 		u16 pending_idx = ubuf->desc;
1724 		ubuf = (struct ubuf_info *) ubuf->ctx;
1725 		BUG_ON(queue->dealloc_prod - queue->dealloc_cons >=
1726 			MAX_PENDING_REQS);
1727 		index = pending_index(queue->dealloc_prod);
1728 		queue->dealloc_ring[index] = pending_idx;
1729 		/* Sync with xenvif_tx_dealloc_action:
1730 		 * insert idx then incr producer.
1731 		 */
1732 		smp_wmb();
1733 		queue->dealloc_prod++;
1734 	} while (ubuf);
1735 	wake_up(&queue->dealloc_wq);
1736 	spin_unlock_irqrestore(&queue->callback_lock, flags);
1737 
1738 	if (likely(zerocopy_success))
1739 		queue->stats.tx_zerocopy_success++;
1740 	else
1741 		queue->stats.tx_zerocopy_fail++;
1742 	xenvif_skb_zerocopy_complete(queue);
1743 }
1744 
1745 static inline void xenvif_tx_dealloc_action(struct xenvif_queue *queue)
1746 {
1747 	struct gnttab_unmap_grant_ref *gop;
1748 	pending_ring_idx_t dc, dp;
1749 	u16 pending_idx, pending_idx_release[MAX_PENDING_REQS];
1750 	unsigned int i = 0;
1751 
1752 	dc = queue->dealloc_cons;
1753 	gop = queue->tx_unmap_ops;
1754 
1755 	/* Free up any grants we have finished using */
1756 	do {
1757 		dp = queue->dealloc_prod;
1758 
1759 		/* Ensure we see all indices enqueued by all
1760 		 * xenvif_zerocopy_callback().
1761 		 */
1762 		smp_rmb();
1763 
1764 		while (dc != dp) {
1765 			BUG_ON(gop - queue->tx_unmap_ops > MAX_PENDING_REQS);
1766 			pending_idx =
1767 				queue->dealloc_ring[pending_index(dc++)];
1768 
1769 			pending_idx_release[gop-queue->tx_unmap_ops] =
1770 				pending_idx;
1771 			queue->pages_to_unmap[gop-queue->tx_unmap_ops] =
1772 				queue->mmap_pages[pending_idx];
1773 			gnttab_set_unmap_op(gop,
1774 					    idx_to_kaddr(queue, pending_idx),
1775 					    GNTMAP_host_map,
1776 					    queue->grant_tx_handle[pending_idx]);
1777 			xenvif_grant_handle_reset(queue, pending_idx);
1778 			++gop;
1779 		}
1780 
1781 	} while (dp != queue->dealloc_prod);
1782 
1783 	queue->dealloc_cons = dc;
1784 
1785 	if (gop - queue->tx_unmap_ops > 0) {
1786 		int ret;
1787 		ret = gnttab_unmap_refs(queue->tx_unmap_ops,
1788 					NULL,
1789 					queue->pages_to_unmap,
1790 					gop - queue->tx_unmap_ops);
1791 		if (ret) {
1792 			netdev_err(queue->vif->dev, "Unmap fail: nr_ops %tx ret %d\n",
1793 				   gop - queue->tx_unmap_ops, ret);
1794 			for (i = 0; i < gop - queue->tx_unmap_ops; ++i) {
1795 				if (gop[i].status != GNTST_okay)
1796 					netdev_err(queue->vif->dev,
1797 						   " host_addr: %llx handle: %x status: %d\n",
1798 						   gop[i].host_addr,
1799 						   gop[i].handle,
1800 						   gop[i].status);
1801 			}
1802 			BUG();
1803 		}
1804 	}
1805 
1806 	for (i = 0; i < gop - queue->tx_unmap_ops; ++i)
1807 		xenvif_idx_release(queue, pending_idx_release[i],
1808 				   XEN_NETIF_RSP_OKAY);
1809 }
1810 
1811 
1812 /* Called after netfront has transmitted */
1813 int xenvif_tx_action(struct xenvif_queue *queue, int budget)
1814 {
1815 	unsigned nr_mops, nr_cops = 0;
1816 	int work_done, ret;
1817 
1818 	if (unlikely(!tx_work_todo(queue)))
1819 		return 0;
1820 
1821 	xenvif_tx_build_gops(queue, budget, &nr_cops, &nr_mops);
1822 
1823 	if (nr_cops == 0)
1824 		return 0;
1825 
1826 	gnttab_batch_copy(queue->tx_copy_ops, nr_cops);
1827 	if (nr_mops != 0) {
1828 		ret = gnttab_map_refs(queue->tx_map_ops,
1829 				      NULL,
1830 				      queue->pages_to_map,
1831 				      nr_mops);
1832 		BUG_ON(ret);
1833 	}
1834 
1835 	work_done = xenvif_tx_submit(queue);
1836 
1837 	return work_done;
1838 }
1839 
1840 static void xenvif_idx_release(struct xenvif_queue *queue, u16 pending_idx,
1841 			       u8 status)
1842 {
1843 	struct pending_tx_info *pending_tx_info;
1844 	pending_ring_idx_t index;
1845 	unsigned long flags;
1846 
1847 	pending_tx_info = &queue->pending_tx_info[pending_idx];
1848 	spin_lock_irqsave(&queue->response_lock, flags);
1849 	make_tx_response(queue, &pending_tx_info->req, status);
1850 	index = pending_index(queue->pending_prod);
1851 	queue->pending_ring[index] = pending_idx;
1852 	/* TX shouldn't use the index before we give it back here */
1853 	mb();
1854 	queue->pending_prod++;
1855 	spin_unlock_irqrestore(&queue->response_lock, flags);
1856 }
1857 
1858 
1859 static void make_tx_response(struct xenvif_queue *queue,
1860 			     struct xen_netif_tx_request *txp,
1861 			     s8       st)
1862 {
1863 	RING_IDX i = queue->tx.rsp_prod_pvt;
1864 	struct xen_netif_tx_response *resp;
1865 	int notify;
1866 
1867 	resp = RING_GET_RESPONSE(&queue->tx, i);
1868 	resp->id     = txp->id;
1869 	resp->status = st;
1870 
1871 	if (txp->flags & XEN_NETTXF_extra_info)
1872 		RING_GET_RESPONSE(&queue->tx, ++i)->status = XEN_NETIF_RSP_NULL;
1873 
1874 	queue->tx.rsp_prod_pvt = ++i;
1875 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&queue->tx, notify);
1876 	if (notify)
1877 		notify_remote_via_irq(queue->tx_irq);
1878 }
1879 
1880 static struct xen_netif_rx_response *make_rx_response(struct xenvif_queue *queue,
1881 					     u16      id,
1882 					     s8       st,
1883 					     u16      offset,
1884 					     u16      size,
1885 					     u16      flags)
1886 {
1887 	RING_IDX i = queue->rx.rsp_prod_pvt;
1888 	struct xen_netif_rx_response *resp;
1889 
1890 	resp = RING_GET_RESPONSE(&queue->rx, i);
1891 	resp->offset     = offset;
1892 	resp->flags      = flags;
1893 	resp->id         = id;
1894 	resp->status     = (s16)size;
1895 	if (st < 0)
1896 		resp->status = (s16)st;
1897 
1898 	queue->rx.rsp_prod_pvt = ++i;
1899 
1900 	return resp;
1901 }
1902 
1903 void xenvif_idx_unmap(struct xenvif_queue *queue, u16 pending_idx)
1904 {
1905 	int ret;
1906 	struct gnttab_unmap_grant_ref tx_unmap_op;
1907 
1908 	gnttab_set_unmap_op(&tx_unmap_op,
1909 			    idx_to_kaddr(queue, pending_idx),
1910 			    GNTMAP_host_map,
1911 			    queue->grant_tx_handle[pending_idx]);
1912 	xenvif_grant_handle_reset(queue, pending_idx);
1913 
1914 	ret = gnttab_unmap_refs(&tx_unmap_op, NULL,
1915 				&queue->mmap_pages[pending_idx], 1);
1916 	if (ret) {
1917 		netdev_err(queue->vif->dev,
1918 			   "Unmap fail: ret: %d pending_idx: %d host_addr: %llx handle: %x status: %d\n",
1919 			   ret,
1920 			   pending_idx,
1921 			   tx_unmap_op.host_addr,
1922 			   tx_unmap_op.handle,
1923 			   tx_unmap_op.status);
1924 		BUG();
1925 	}
1926 }
1927 
1928 static inline int tx_work_todo(struct xenvif_queue *queue)
1929 {
1930 	if (likely(RING_HAS_UNCONSUMED_REQUESTS(&queue->tx)))
1931 		return 1;
1932 
1933 	return 0;
1934 }
1935 
1936 static inline bool tx_dealloc_work_todo(struct xenvif_queue *queue)
1937 {
1938 	return queue->dealloc_cons != queue->dealloc_prod;
1939 }
1940 
1941 void xenvif_unmap_frontend_rings(struct xenvif_queue *queue)
1942 {
1943 	if (queue->tx.sring)
1944 		xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(queue->vif),
1945 					queue->tx.sring);
1946 	if (queue->rx.sring)
1947 		xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(queue->vif),
1948 					queue->rx.sring);
1949 }
1950 
1951 int xenvif_map_frontend_rings(struct xenvif_queue *queue,
1952 			      grant_ref_t tx_ring_ref,
1953 			      grant_ref_t rx_ring_ref)
1954 {
1955 	void *addr;
1956 	struct xen_netif_tx_sring *txs;
1957 	struct xen_netif_rx_sring *rxs;
1958 
1959 	int err = -ENOMEM;
1960 
1961 	err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(queue->vif),
1962 				     tx_ring_ref, &addr);
1963 	if (err)
1964 		goto err;
1965 
1966 	txs = (struct xen_netif_tx_sring *)addr;
1967 	BACK_RING_INIT(&queue->tx, txs, PAGE_SIZE);
1968 
1969 	err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(queue->vif),
1970 				     rx_ring_ref, &addr);
1971 	if (err)
1972 		goto err;
1973 
1974 	rxs = (struct xen_netif_rx_sring *)addr;
1975 	BACK_RING_INIT(&queue->rx, rxs, PAGE_SIZE);
1976 
1977 	return 0;
1978 
1979 err:
1980 	xenvif_unmap_frontend_rings(queue);
1981 	return err;
1982 }
1983 
1984 static void xenvif_queue_carrier_off(struct xenvif_queue *queue)
1985 {
1986 	struct xenvif *vif = queue->vif;
1987 
1988 	queue->stalled = true;
1989 
1990 	/* At least one queue has stalled? Disable the carrier. */
1991 	spin_lock(&vif->lock);
1992 	if (vif->stalled_queues++ == 0) {
1993 		netdev_info(vif->dev, "Guest Rx stalled");
1994 		netif_carrier_off(vif->dev);
1995 	}
1996 	spin_unlock(&vif->lock);
1997 }
1998 
1999 static void xenvif_queue_carrier_on(struct xenvif_queue *queue)
2000 {
2001 	struct xenvif *vif = queue->vif;
2002 
2003 	queue->last_rx_time = jiffies; /* Reset Rx stall detection. */
2004 	queue->stalled = false;
2005 
2006 	/* All queues are ready? Enable the carrier. */
2007 	spin_lock(&vif->lock);
2008 	if (--vif->stalled_queues == 0) {
2009 		netdev_info(vif->dev, "Guest Rx ready");
2010 		netif_carrier_on(vif->dev);
2011 	}
2012 	spin_unlock(&vif->lock);
2013 }
2014 
2015 static bool xenvif_rx_queue_stalled(struct xenvif_queue *queue)
2016 {
2017 	RING_IDX prod, cons;
2018 
2019 	prod = queue->rx.sring->req_prod;
2020 	cons = queue->rx.req_cons;
2021 
2022 	return !queue->stalled
2023 		&& prod - cons < XEN_NETBK_RX_SLOTS_MAX
2024 		&& time_after(jiffies,
2025 			      queue->last_rx_time + rx_stall_timeout_jiffies);
2026 }
2027 
2028 static bool xenvif_rx_queue_ready(struct xenvif_queue *queue)
2029 {
2030 	RING_IDX prod, cons;
2031 
2032 	prod = queue->rx.sring->req_prod;
2033 	cons = queue->rx.req_cons;
2034 
2035 	return queue->stalled
2036 		&& prod - cons >= XEN_NETBK_RX_SLOTS_MAX;
2037 }
2038 
2039 static bool xenvif_have_rx_work(struct xenvif_queue *queue)
2040 {
2041 	return (!skb_queue_empty(&queue->rx_queue)
2042 		&& xenvif_rx_ring_slots_available(queue, XEN_NETBK_RX_SLOTS_MAX))
2043 		|| xenvif_rx_queue_stalled(queue)
2044 		|| xenvif_rx_queue_ready(queue)
2045 		|| kthread_should_stop()
2046 		|| queue->vif->disabled;
2047 }
2048 
2049 static long xenvif_rx_queue_timeout(struct xenvif_queue *queue)
2050 {
2051 	struct sk_buff *skb;
2052 	long timeout;
2053 
2054 	skb = skb_peek(&queue->rx_queue);
2055 	if (!skb)
2056 		return MAX_SCHEDULE_TIMEOUT;
2057 
2058 	timeout = XENVIF_RX_CB(skb)->expires - jiffies;
2059 	return timeout < 0 ? 0 : timeout;
2060 }
2061 
2062 /* Wait until the guest Rx thread has work.
2063  *
2064  * The timeout needs to be adjusted based on the current head of the
2065  * queue (and not just the head at the beginning).  In particular, if
2066  * the queue is initially empty an infinite timeout is used and this
2067  * needs to be reduced when a skb is queued.
2068  *
2069  * This cannot be done with wait_event_timeout() because it only
2070  * calculates the timeout once.
2071  */
2072 static void xenvif_wait_for_rx_work(struct xenvif_queue *queue)
2073 {
2074 	DEFINE_WAIT(wait);
2075 
2076 	if (xenvif_have_rx_work(queue))
2077 		return;
2078 
2079 	for (;;) {
2080 		long ret;
2081 
2082 		prepare_to_wait(&queue->wq, &wait, TASK_INTERRUPTIBLE);
2083 		if (xenvif_have_rx_work(queue))
2084 			break;
2085 		ret = schedule_timeout(xenvif_rx_queue_timeout(queue));
2086 		if (!ret)
2087 			break;
2088 	}
2089 	finish_wait(&queue->wq, &wait);
2090 }
2091 
2092 int xenvif_kthread_guest_rx(void *data)
2093 {
2094 	struct xenvif_queue *queue = data;
2095 	struct xenvif *vif = queue->vif;
2096 
2097 	for (;;) {
2098 		xenvif_wait_for_rx_work(queue);
2099 
2100 		if (kthread_should_stop())
2101 			break;
2102 
2103 		/* This frontend is found to be rogue, disable it in
2104 		 * kthread context. Currently this is only set when
2105 		 * netback finds out frontend sends malformed packet,
2106 		 * but we cannot disable the interface in softirq
2107 		 * context so we defer it here, if this thread is
2108 		 * associated with queue 0.
2109 		 */
2110 		if (unlikely(vif->disabled && queue->id == 0)) {
2111 			xenvif_carrier_off(vif);
2112 			xenvif_rx_queue_purge(queue);
2113 			continue;
2114 		}
2115 
2116 		if (!skb_queue_empty(&queue->rx_queue))
2117 			xenvif_rx_action(queue);
2118 
2119 		/* If the guest hasn't provided any Rx slots for a
2120 		 * while it's probably not responsive, drop the
2121 		 * carrier so packets are dropped earlier.
2122 		 */
2123 		if (xenvif_rx_queue_stalled(queue))
2124 			xenvif_queue_carrier_off(queue);
2125 		else if (xenvif_rx_queue_ready(queue))
2126 			xenvif_queue_carrier_on(queue);
2127 
2128 		/* Queued packets may have foreign pages from other
2129 		 * domains.  These cannot be queued indefinitely as
2130 		 * this would starve guests of grant refs and transmit
2131 		 * slots.
2132 		 */
2133 		xenvif_rx_queue_drop_expired(queue);
2134 
2135 		xenvif_rx_queue_maybe_wake(queue);
2136 
2137 		cond_resched();
2138 	}
2139 
2140 	/* Bin any remaining skbs */
2141 	xenvif_rx_queue_purge(queue);
2142 
2143 	return 0;
2144 }
2145 
2146 static bool xenvif_dealloc_kthread_should_stop(struct xenvif_queue *queue)
2147 {
2148 	/* Dealloc thread must remain running until all inflight
2149 	 * packets complete.
2150 	 */
2151 	return kthread_should_stop() &&
2152 		!atomic_read(&queue->inflight_packets);
2153 }
2154 
2155 int xenvif_dealloc_kthread(void *data)
2156 {
2157 	struct xenvif_queue *queue = data;
2158 
2159 	for (;;) {
2160 		wait_event_interruptible(queue->dealloc_wq,
2161 					 tx_dealloc_work_todo(queue) ||
2162 					 xenvif_dealloc_kthread_should_stop(queue));
2163 		if (xenvif_dealloc_kthread_should_stop(queue))
2164 			break;
2165 
2166 		xenvif_tx_dealloc_action(queue);
2167 		cond_resched();
2168 	}
2169 
2170 	/* Unmap anything remaining*/
2171 	if (tx_dealloc_work_todo(queue))
2172 		xenvif_tx_dealloc_action(queue);
2173 
2174 	return 0;
2175 }
2176 
2177 static int __init netback_init(void)
2178 {
2179 	int rc = 0;
2180 
2181 	if (!xen_domain())
2182 		return -ENODEV;
2183 
2184 	/* Allow as many queues as there are CPUs, by default */
2185 	xenvif_max_queues = num_online_cpus();
2186 
2187 	if (fatal_skb_slots < XEN_NETBK_LEGACY_SLOTS_MAX) {
2188 		pr_info("fatal_skb_slots too small (%d), bump it to XEN_NETBK_LEGACY_SLOTS_MAX (%d)\n",
2189 			fatal_skb_slots, XEN_NETBK_LEGACY_SLOTS_MAX);
2190 		fatal_skb_slots = XEN_NETBK_LEGACY_SLOTS_MAX;
2191 	}
2192 
2193 	rc = xenvif_xenbus_init();
2194 	if (rc)
2195 		goto failed_init;
2196 
2197 	rx_drain_timeout_jiffies = msecs_to_jiffies(rx_drain_timeout_msecs);
2198 	rx_stall_timeout_jiffies = msecs_to_jiffies(rx_stall_timeout_msecs);
2199 
2200 #ifdef CONFIG_DEBUG_FS
2201 	xen_netback_dbg_root = debugfs_create_dir("xen-netback", NULL);
2202 	if (IS_ERR_OR_NULL(xen_netback_dbg_root))
2203 		pr_warn("Init of debugfs returned %ld!\n",
2204 			PTR_ERR(xen_netback_dbg_root));
2205 #endif /* CONFIG_DEBUG_FS */
2206 
2207 	return 0;
2208 
2209 failed_init:
2210 	return rc;
2211 }
2212 
2213 module_init(netback_init);
2214 
2215 static void __exit netback_fini(void)
2216 {
2217 #ifdef CONFIG_DEBUG_FS
2218 	if (!IS_ERR_OR_NULL(xen_netback_dbg_root))
2219 		debugfs_remove_recursive(xen_netback_dbg_root);
2220 #endif /* CONFIG_DEBUG_FS */
2221 	xenvif_xenbus_fini();
2222 }
2223 module_exit(netback_fini);
2224 
2225 MODULE_LICENSE("Dual BSD/GPL");
2226 MODULE_ALIAS("xen-backend:vif");
2227